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Dynamic model reduction in power systems is necessary for improving computa-
tional efficiency. Traditional model reduction using linearized models or offline
analysis is not adequate to capture dynamic behaviors of the power system, especially
with the new mix of intermittent generation and intelligent consumption, making the
power system more dynamic and nonlinear. Real-time dynamic model reduction has
emerged to fill this important need. This paper explores using clustering techniques
to analyze real-time phasor measurements to identify groups of generators with sim-
ilar behavior, as well as a representative generator from each group for dynamic
model reduction. Two clustering techniques—graph clustering and k-means—are
considered. These techniques are compared with a previously developed dynamic
model reduction approach using singular value decomposition. Two sample power
grid datasets are used to test these different model reduction techniques. Based on the
algorithms’ relative performance, recommendations are provided for practical use.
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1 | INTRODUCTION

Power engineers rely on simulation to accomplish operation
and planning tasks. Dynamic simulation tools are used exten-
sively to simulate the behavior of power systems over time
subject to disturbances, such as faults, sudden loss of trans-
mission paths, and loss of generation or load. Good models
and accurate parameters are essential for credible computer
simulation. In some cases, inaccurate computer models and
simulations result in optimistic decisions, which can put the
electric infrastructure in jeopardy. The extreme consequences
of such optimistic decisions can be massive outages, such
as the August 1996 western US system breakup [16]. In
many other cases, inaccurate models and simulations lead to
pessimistic decisions, resulting in reduced asset utilization.
Given the power grid’s complexity and large footprint, a
power company needs a reduced model for the region outside
of its own service territory. The goal of such model reduction
is to reasonably represent the external system with a simpli-
fied smaller model so that analysis can be performed more

efficiently [1, 30]. This is of particular interest for real-time
power system operation, such as online dynamic security
assessment [27,28,31].

Traditionally, model reduction is performed in the
steady-state context, largely ignoring dynamics, or performed
offline where the scenarios may be different from real-time
conditions. This has served the power system reasonably well
when the behaviors are more predictable. However, this prac-
tice is no longer adequate, as the power system is becoming
increasingly dynamic and nonlinear due to the new mix of
intermittent generation and intelligent consumption. Model
reduction must evolve to handle these nonlinear and dynamic
behaviors.

Dynamic model reduction has been studied extensively.
Coherency is the most common concept adopted to iden-
tify groups of dynamic devices, e.g., generators, for model
reduction purposes. Specifically, a group of generators, G =
{g1,--.,8m}, 1s coherent if their difference in voltage angles
is constant over time, i.e., there exists a ¢ € R such that
0g,(1) — (ng(t) = cforallt > 0 and g;,g; € G. Coherency
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can be determined using a linearized model around an operat-
ing point [21,24] or by analyzing offline simulated dynamics
[22]. Either way, it is not capable of capturing real-time oper-
ating conditions, which renders the reduced model useless for
timely analysis.

Coherency is inherently a clustering-based reduced-order
model (ROM) method—as are the majority of the methods
discussed in this paper. However, it is important to point
out that there are many other types of ROM methods. Sub-
space projection methods, which find a simpler subspace of
the full model with certain approximation guarantees, are
very common. Proper orthogonal decompositions (PODs)
[19] and Krylov subspace methods [2] are two examples of
subspace projections. One method discussed in this paper,
singular value decomposition (SVD), is also an example of
a subspace method. Beyond clustering and subspace meth-
ods, there are also linearization techniques that are used to
reduce the variable space of the dynamic power equations
directly [10].

Recent developments and deployment of phasor tech-
nologies present an opportunity to perform dynamic model
reduction in real time because high-speed phasor measure-

Workflow showing the four basic reduction methods compared in this paper

ments capture the majority of the power system dynamics
necessary for power system operation and planning purposes.
Ref. [29] proposes an SVD-based method that can be used
for real-time dynamic model reduction. This method also pre-
serves a certain level of nonlinearity in the reduced model.
Following this line of research, our team continues developing
real-time dynamic model reduction techniques using graph
clustering methods and compares the accuracy of reduced
models with the SVD-based approach, as well as traditional
k-means clustering.

Real-time phasor measurements are used to cluster gener-
ators based on similar behaviors, and representative genera-
tors are chosen from each cluster. The final reduced model
contains only the representative generators. We investigate
two graph clustering methods—recursive spectral biparti-
tioning [25] and spectral clustering [18]. Variants of imple-
mentations of these two methods are tested alongside the
SVD and k-means algorithms on fault scenarios within the
IEEE 50-machine [4] and 16-machine systems. For refer-
ence, Figure 1 contains a workflow diagram showing each
method found in the remainder of this paper. Error measure-
ments quantify various levels of accuracy for each method,
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but many possess accuracy that is adequate for power sys-
tem operation and planning purposes. From a comparative
perspective, this paper provides a good reference point for
practical implementations.

The remainder of the paper is organized as follows:
section 2 describes the system and data used in implement-
ing and comparing the proposed model reduction methods.
Sections 3 and 4 provide an overview of the clustering tech-
niques and representative generator identification, including
their computational complexity. Section 5 presents the com-
parative study approach and results, and Section 6 concludes
the paper with suggestions for real-world use of these algo-
rithms and future research directions.

2 | TESTSYSTEMS AND DATA

There are many types of data that can be collected from power
grid systems. This paper employs data collected by phasor
measurement units (PMUs). PMUs, also called synchropha-
sors, collect data synchronously across the power grid, pro-
viding an “online” data stream. These units are deployed to
many systems throughout the grid and are time-synchronized
so that measurements taken at different locations can be cor-
related. This work focuses on phasor data and the angle of
the terminal voltage. These data are collected at millisecond
resolution, namely 100 samples per second, and afford a pic-
ture of voltage angle oscillation at each generator over time.
For each generator, a time series of phasor values is collected,
5,~ = (5;1),652), ,5;’")), where 6?) is the phasor value of
generator i at the jth time step. In both test systems, data are
collected for 3.8 s, m = 380, but, for generality, the symbolic
parameter m is used throughout the paper. In future work, a
study is planned to determine how many samples are needed
to yield a useful reduced-order model.

2.1 | Evaluated test systems

Two small model systems are used for method validation.
Specifically, the IEEE 145-bus, 50-generator system [4]
(Figure 2), referred to as system Sj, and the IEEE 68-bus,
16-generator system, system S, (Figure 3). In large power net-
works, such as the Eastern or Western Interconnects in the
United States, individual power companies only control small
areas, known as service territories. All these small areas are
interconnected to form the entire grid. Each power company
considers the generators and buses in their service territory to
be their internal system, while the remaining generators and
buses are external. Companies prefer to model their own inter-
nal generators fully and use model reduction to determine a
simpler approximation for the external system, as it typically
is much larger. In S, there are /; = 16 internal system gener-
ators and E; = 34 external generators, while in S, there are
I, = 7 internal and E, = 9 external. In Sy, generator 37 at bus
130 in the internal area is chosen as the reference machine,
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meaning it is treated as if its phasor angle is always 0. All other
machines’ phasor values are measured as deviations from the
reference machine. In S,, generator 16 is used as the reference.

All generators are modeled using the classical model for
machine dynamics with a second-order swing equation. In
power systems, following a disturbance, some state variables
decay fast, called fast variables, such as those from excita-
tion systems. Meanwhile, others, known as slow variables,
decay slowly, for example, rotor angle and speed. Oscilla-
tions of slow variables are determined by machine inertias
and are well captured by the classical (second-order) model
[5]. Moreover, slow variables dominate power oscillations in
the power system. Therefore, the classical model is used in
this work. Figure 4 illustrates the difference between the clas-
sical model response (solid blue line) and high-order model
response (dotted red line).

For the tests on Sy, simulated PMU datasets are created
using F; = 5 different three-phase short-circuit faults within
the system. The faults last for 60 ms. Then, the line is tripped
to clear the fault. In S5, F» = 3 faults are simulated. Post-fault
oscillations of the phasor values for the external system gen-
erators are recorded. The next section describes the methods
used for model reduction to determine sets of representative
generators.

3 | IDENTIFYING REPRESENTATIVE
GENERATORS

This section describes four methods for identifying represen-
tative generators. These representative generators are meant
to exhibit different types of dynamic behavior and will be
used in reduced-model simulations (described in section 4).
Recalling the workflow given in Figure 1, which identifies
each model reduction method, this section describes their
basic details. For full descriptions of these methods, refer to
other detailed papers [14,29]. The computational complex-
ity of each method is also discussed. Table 1 summarizes the
four methods in terms of their parameters and computational
complexity. Runtimes for all methods on a standard desktop
computer are less than 1 s for both test systems considered.

3.1 | Singular value decomposition (SVD)

SVD’s goal in the power grid model reduction setting is to
find a subset of external generators, known as representative
generators, whose dynamic responses, the 8; vectors, arc as
close to orthogonal as possible. The more orthogonal the rep-
resentative generators are, the larger their span. Therefore,
there is a better chance that the linear span of these represen-
tative vectors will contain the dynamic response vectors for
the rest of the generators.

SVD goes far beyond this application and is a general
method of matrix factorization into two unitary matrices and
one diagonal matrix [11]. Given an initial m X n matrix A,
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FIGURE 2 IEEE 50 generator system, S,. In this image, the 50 generators in the system are represented by circles, and the buses are numbered 1 through 145

the SVD method factorizes A into a product of three matrices
A = UZV*, where U (mxm) and V (nxn) are unitary and X is
an mXn diagonal matrix. The columns of UZ are the principal
components of A, while the diagonal values of X are singular
values. Singular values are often used to determine how many
principal components to choose because smaller singular val-
ues tend to contribute only noise to the principal components.
SVD is used across many different domains, including audio
verification [23] and evolutionary genomics [3]. This work
focuses on the algorithm described in Ref. [29], where SVD
is used for power grid model reduction.

Recall that, for each external generator 7, a time series of
phasor values is collected from a PMU and normalized to
form the vector g, = (6;1), 652), e 5;’"), where 6?)) is the nor-
malized phasor value of generator i at the jth time step, and m
is the number of time steps. This vector represents the dynam-

ics of generator i following a disturbance. The normalization
is done in a standard way by subtracting the mean and divid-
ing by the standard deviation for each gi separately. Letn = E;
be the number of external generators (in system S;) and define
the matrix 6 to have 5, as column vectors.

I
6=86,---8,
.

Given this formulation, an SVD is performed on the matrix
6, writing 6 = UXV*. The first k principal components are
found by taking the kxk submatrix of X which has the k largest
singular values, denoted X, along with the corresponding k
columns of U, denoted Uy. It can be written as

|| |
A%

UZp = X =
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FIGURE 4 Illustration of the difference between the classical model

response (solid blue line) and the high-order model response (dotted red line)

TABLE 1 Summary of model reduction methods investigated. Refer to
each corresponding section for a detailed description of the parameters

Method Parameters Computational complexity
SVD k Om>m + nm? + m® + nk)
k-Means k O(nk?i)

Recursive spectral k; ¢; “median” O((k — Dn?)
bipartitioning or “zero”; “size”,

“sum,” or “avg”
Spectral clustering k¢ o)

where X; is the ith principal component. The computa-
tional complexity of computing the principal components is
O(n*m + nm?* + m?) [12]. For both test systems considered in
this paper, the number of time steps, m, is much larger than
the number of generators, n, so the m> term will dominate.
However, this generally may not be the case, particularly in an
online process where a few time steps from the recent history
on a large system are used.

The two plots in Figure 5 show the singular values calcu-
lated for systems S| (a) and S, (b). Because smaller singular
values can contribute noise to the principal components, these
plots are used to pick the cutoffs of 4 to 15 in system S; and
3 to 6 in system S;.

Once the principal components X are computed, the sim-
ilarity between &;s and %js is analyzed. Namely, for each X;,
find the 5, closest in the Euclidean distance and choose that
5,- to be one of the representative generators. This yields the k
vectors 3,-, with the highest similarity to an X;, forming the set
of k representative generators. The complexity of this step is
O(nk) because each of the n phasor vectors must be compared
to each k principal components.

3.2 | k-Means

Because the PMU data are vector data and can be thought
of as points in R” for some m, k-means clustering is a nat-
ural choice for comparison. k-Means is a standard recursive
clustering technique for data in R™ [26] and is widely used
[15, 17]. In each recursion step, the algorithm computes the
centroids of each current cluster and then reassigns points to
the cluster whose centroid is closest to it. An initialization step
is needed to choose the initial centroids, which is often done
by choosing & points randomly from the original dataset. The
algorithm then runs as follows: assign each data point to the
cluster whose randomly chosen centroid is closest, recompute
centroids of the current clusters, reassign points to clusters
based on distance to new centroids, recompute centroids, and
so on. This is repeated for some predetermined number of iter-
ations, or until the clusters do not change and the algorithm
has converged.
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system, system S,

One problem with k-means is that there is no guarantee
that it will terminate in a globally optimal clustering. k-Means
uses gradient descent, or a similar optimization algorithm,
at each step. These are well known to have the possibility
of getting stuck in a locally optimal clustering. Because the
initialization step is done randomly, there can be multiple
clusterings from the same input data, all being local optima.
This problem can be mitigated by running k-means cluster-
ing multiple times with different random initializations and
choosing the resulting clustering that minimizes an objective
function. The chosen objective function is the residual sum of
squares defined as

RSS = Y116 = u@)II.
i=1

where ;4(5,-) denotes the centroid for the cluster that contains
S:' and the norm is taken to be the Euclidean norm. We use the
scikit-learn python implementation of k-means, which runs
a default of 10 times and chooses the clustering with the
smallest RSS value.

This local optimum problem is also encountered in the
spectral clustering method, which uses k-means. However, it
is not an issue for SVD or recursive spectral bipartitioning.
The advantage of k-means, however, is that it is the fastest
of the algorithms considered in this paper. The complexity
of k-means is O(nk*i), where i is the number of iterations
required to converge. As k will be less than n, this is faster
than the O(n*) graph clustering algorithms.

3.3 | Graph clustering

Recursive spectral bipartitioning and spectral clustering
methods are not new, but they have not previously been
used to perform power grid model reduction. We have
made modifications that will allow for fine-tuning by an
operator.

First, the graph construction method from PMU data must
be described. When setting up a graph clustering problem,
the graph vertices are chosen as the objects being clustered
(in this case, the generators), while the edges will indicate
an amount of similarity between vertices. For each generator,
consider its phasor value data vector, 5, € R™, where m is the
number of time steps recorded, and calculate a distance matrix
D = (dy);;_,- The entries in D are given by the Euclidean

distance between ; and 5] dij = ||§i - S;-l |2. Once this matrix
has been created, an Z-nearest-neighbor graph is formed by
connecting each generator (vertex) to its £ closest generators.
Alternate distances and graph constructions also can be used
(see Ref. [14] for more details).

Both types of graph clustering will use the spectral (eigen-
value) properties of the weighted Laplacian matrix associated
with the graph. The weighted Laplacian, L = L)y 18
defined as follows:

L= { Dt Wik 1=

—Wjj l7éj

The entries on the diagonal, L;, are given by the sum of
all edge weights on edges incident to vertex i. Off-diagonal
entries, L;, are equal to the negative weight on edge e;. If
an edge is absent, it is treated as an edge of weight zero. An
edge’s weight is defined as the similarity score between the
endpoint vertices based on their distance (high distance means
low similarity, and vice versa). In particular, let w; = e_(d"zf/ 2
be the Gaussian similarity between generators i and j. Other
similarity functions, also known as kernels, may be used, but
the Gaussian function is fairly standard [18].

Creating the graph and the Laplacian matrix has complex-
ity O(n*). Begin by calculating all pairs of distances between
the n generators. This will be @ distance calculations and
dominates the complexity. Then, to construct the Z-nearest
neighbor graph, for each vertex, consider all other vertices
and connect to the ¢ closest neighbors. This requires sorting
the sets of neighbors for each of the n vertices. Therefore, cre-
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Graph Laplacian

n X n matrix

FIGURE 6 Illustration of the steps in spectral clustering

ating an ¢-nearest neighbor graph can be done in O(n log n)
time after the distances have been computed.

3.3.1 | Recursive spectral bipartitioning

The most basic type of spectral graph clustering or partition-
ing is recursive spectral bipartitioning [20]. This algorithm
uses the eigenvector for the second smallest eigenvalue of the
weighted Laplacian matrix. Clearly, as each row of the Lapla-
cian matrix sums to zero, there is a zero eigenvalue. It is not
difficult to show that L is positive semi-definite. Thus, zero
is, in fact, the smallest eigenvalue, and its multiplicity is the
number of connected components in the graph. The second
smallest eigenvalue is the algebraic connectivity of the graph,
and its associated eigenvector, commonly called the Fiedler
vector after Miroslav Fiedler who first defined the theory of
algebraic connectivity and its relation to graph partitioning
[8, 9], has properties that define a partition of the graph ver-
tices into two groups. The Fiedler vector contains positive,
negative, and zero values. By partitioning the associated ver-
tices into two sets—one where the value in the Fiedler vector
is negative and the other in which it is positive (splitting the
zero values among both or putting them all in one of the two
sets)—a graph partition is obtained that minimizes the sum
of the edge weights between the two partitions, and where
both subgraphs are connected [8, 9]. Traditionally, the graph
vertices are partitioned into those with positive values and
others with negative values because of the property that both
subgraphs are connected. However, this can lead to unbal-
anced partitions because there is no guarantee that half of the
vertices will have positive values while the other half will
be negative. To construct more balanced partitions, the split
can be made based on the median of the Fiedler vector. This
choice only guarantees that one of the two induced subgraphs
is connected. However, since the partition will be recursively
continued, having disconnected induced subgraphs should not
create problems because they will have the opportunity to split
eventually. Both these splitting methods have been tested and
are reported as part of the comparison in section 5. In par-
ticular, splitting at zero often gives degenerate partitions into
fewer than £ sets.

Using the Fiedler vector to partition the graph vertices into
two disjoint sets is only the first step. A second degree of
freedom in this method is how to continue the recursive par-
titioning. In traditional recursive spectral bipartitioning, both
the sets are further partitioned using the Laplacian of the
subgraph induced by each set of vertices. If this process of
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repeatedly splitting each set is continued for N steps, it will
yield a partition with 2V sets. A more targeted approach to
the recursive splitting is explored to achieve any number of
sets rather than just powers of 2. Instead of arbitrarily splitting
each set of the partition into two at each step, a search is per-
formed among all current sets for one that is the least tight. We
define “tight” as the sum of all pairwise distances in that set,
the average of all pairwise distances, or simply the size of the
set. These three possible tightness schemes are considered, in
addition to the two methods for splitting the Fiedler vector
(zero or median). All the results are summarized in Ref. 5.
In the remainder of this paper, recursive spectral bipartition-
ing may be referred to as Fiedler partitioning because of the
prominent use of the Fiedler vector.

The computational complexity of recursive spectral biparti-
tioning is dominated by the Fiedler vector calculation, which
has complexity O(n?). This must be done many times, and
each time a set is split into two. Therefore, the complexity is
O((k — n®).

332 |

For general spectral clustering, more than just one eigenvec-
tor of the weighted Laplacian is used. Instead of using only
the Fiedler vector, the first k eigenvectors are considered.
Each entry of an eigenvector corresponds to a vertex in the
graph from which the weighted Laplacian was formed. An
n X k matrix can be formed where the columns are the first
k eigenvectors. Each row can be thought of as a new vector
representation for each of the vertices. k-Means is then used
to cluster these new vector representations, thereby clustering
the vertices themselves. The pipeline illustration in Figure 6
shows this sequence. In this case, eigenvectors are only calcu-
lated once, at O(n*) complexity, followed by a single k-means
calculation. As the k-means complexity is less than n3, the
total complexity of spectral clustering is dominated by the n*
term. For a more in-depth discussion of spectral clustering,
including other variants not investigated here, see [18].

Spectral clustering

3.4 | Choosing cluster representatives

Both k-means and the graph methods produce a partition of
the generators into clusters of similar dynamic behavior. How-
ever, in the context of model reduction, we need a set of
representative generators, as produced by the SVD method.
This is achieved by choosing one representative generator
from each cluster: the medoid.
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For each cluster, C; = {6;, }]_1, so it is preferable to choose
the average time series, the true centroid:

zlc |
oc, =
|Ci| -
However, this true centroid is unlikely to correspond exactly
to the time series of phasor values for a generator in the given
cluster. Instead, the generator whose time series is closest to
this centroid in the Euclidean distance is chosen. This ele-
ment closest to the true centroid is known as the medoid of
the cluster.

4 | FROM REPRESENTATIVE
GENERATORS TO A REDUCED MODEL
SIMULATION

Once a set C of representative generators has been pro-
duced from any one of the methods described in section 3, a
reduced model simulation can be performed. For each non-
representative generator, g, & C, coefficients a; € R are
ZS;EC ajgjl | is mini-
mized. In other words, the phasor values for each nonrep-
resentative generator are approximated as a linear combina-
tion of the phasor values for the representative generators.
Then, only the set of representative generators are simu-
lated, by solving power flow equations, and responses for
the remaining generators are approximated using the same
linear combinations of the responses for the representative
generators.

found via regression such that ||5,~ —

5 | COMPARATIVE STUDY APPROACH
AND RESULTS

In this section, a measure that quantifies the amount of error
between a reduced model and the full system is defined. In
addition, an overview of performance profiles, the method
for comparing the error in reduction methods across multiple
scenarios, is provided. Finally, performance profiles are used
to compare the reduction methods described in the previous
section.

5.1 | Measures for comparison

To judge the error of a particular model reduction method, M,
for test system S, (x = 1,2) under fault scenario 1 < u < F,,
first the full system of external and internal generators (Ey
external + [ internal) is simulated and then the reduced sys-
tem (r representative external + /, internal, depending on the
reduction ratio r). Recall that the internal system represents
the set of generators and buses owned by a particular power
company of interest and are not reduced, while the external
machines are interconnected but owned by others. Responses,

or phasor values, of the I, internal generators are recorded dur-
ing both full and reduced simulations. Let 65 .(2) be the phasor
value response of the ith internal generator in the full simula-
tion at time ¢ following fault scenario u, and let 5M ”(t) be the

same for the reduced model. Notice that 6f does not have the
M superscript because it is independent of any reduced model.
Then, for each internal system generator, define the following
metric to measure the mismatch of response curves of the full
and reduced systems:
o)
—-h /

which is the L; norm between vectors 6%’ and 6£ .- For

r()_

HEORTAC) AN

example, J3S’¥D(38) for system S| is the error on internal gen-

erator i = 38 for fault scenario # = 3 using the M =SVD

model reduction method to r = 7 generators. While using the

L, norm or some other L, norm is an option, the results are

nearly identical in our test cases. Hence, only one is presented.
To simplify the comparisons, define

sh= 1Y a0,

Iy i€l,

to be the average J1.(i) values over all internal generators. Of
note, there is a slight abuse of notation in the sum over i € .
Here, we use I, to mean both the set of internal generators and
the number of internal generators, as was originally defined.

5.2 | Performance profiles

The comparison method we use, perfprof (for “performance
profile”) [6, 7, 13], comparatively plots the performance of
different algorithms against each other. This type of analysis
is typically used when comparing the runtimes of multiple
algorithms against each other, preferring low runtime over
high. This strategy is adopted here because the premise is the
same: to choose the reduction method that most often across
multiple comparable tests (fault scenarios) has smallest error
value. Comparisons will only be made within the same reduc-
tion ratio r and within the same test system. Once a system
(x =1 or2) and an r have been chosen, there are nine methods
to compare across F, fault scenarios, which are called tests.
Table 2 summarizes these values for the example where x = 2
and r = 5.

Note that some of the methods did not return a reduced
model for all r values in a given fault scenario, so some of
these data may be missing. This is because the clustering may
have degenerated into more than r clusters. For example, if the
graph clustering resulted in r clusters where one of the clus-
ters consisted of only v isolated vertices, the algorithm treats
it as r + (v — 1) clusters. If this is the case, we let the corre-
sponding J. measure be a value larger than any of the other
values returned in the table. This indicates that it did a “bad
job” at that particular reduction ratio in that test or scenario.
Too many of these degenerate reductions reflects poorly on
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TABLE 2 Summary of the values compared for system S, and reduction
ratior =5

M Test 1 Test 2 Test 3
svD i iy s
k-Means Jllcj?eans Jl;:;neans J;—;neans
Fiedler, zero, sum Jhg JEas Jhen
Fiedler, zero, avg S Jhza JFza
Fiedler, zero, size JEzsi J;Z;‘ JEwsi
Fiedler, mid, sum JEmD B JAE
Fiedler, mid, avg JFma J;‘;"“ JEma
Fiedler, mid, size g e JE
spectral I VA I

the method and will lower the perfprof score, described next,
as its error will always be much higher than the lowest error.
The performance profile method produces a plot with a tol-
erance factor 6 on the x-axis and a proportion of the tests
0 < p < 1 on the y-axis. Each of the model reduction methods
corresponds to a staircase-shaped curve in the plot. Continu-
ing to use Table 2 as an example, a point (6, p) for method M
in this example means that J2 is within a factor of 6 of the
best J, 5 in proportion p of the three tests. It is likely that the
best method is different for each u, but the JM measurement
produced by this model reduction method is w1th1n some fac-
tor of whatever is the best for each test. In particular, a point
(1, p) means that JM is the optimal value (i.e., within a factor
of 1 of the best) in proportlon p of the tests, and a point (6, 1)
denotes that J%S is always (proportion p = 1) within a factor
of 6 of the optimal value. Figure 7 contains the perfprof plot
for this specific case. The method Fiedler-zero-size (purple
line) passes through the point ~(35, 0.66), meaning that for
roughly 66% of the tests (u values), the Fiedler-zero-size Ji ZSSi
value is within a factor of 35 of the best st. This factor of 35
may sound high, but these measures range between ~0.002
and 1, making the maximum possible factor around 500.
Given the perfprof plot for an S, and r, observe that a line
which stays close to the p-axis the longest and reaches p = 1
first is optimal. However, there may not be a single method
that achieves both these objectives. Instead, we posit that gen-
erally higher and further left is better. Therefore, much like

WILEY——22

LOF—=
0.8}
0.6}
SVD
= — fiedler_mid_avg
ol — fiedler_mid_size ||
i — fiedler_mid_sum
fiedler_zero_avg
— fiedler_zero_size
02 — fiedler_zero_sum ||
kmeans
: spectral
ool ' ' s r

10 20 30 40 50 60 70 80
g

FIGURE 7  Performance profile for system S, and reduction ratio r = 5. A
point (0, p) for method M means that Jff"ﬁ is within a factor of 8 of the best
J,, in proportion p of the three fault scenarios

judging the accuracy of a binary classification algorithm by
the area under an ROC curve, we compare the accuracy of
model reduction methods using area under its perfprof curve.
Unlike ROC curves, the x-axis (@) is not bound between O
and 1. Instead, the maximum 6 value is the maximum ratio
between any two accuracy measures for the given reduction
ratio. That is to say, for a given r, the maximum 6 will be
M,

u,r

max 8 = max

M .M,.u JuM;% ’

where the maximum is taken over all pairs of methods M| and
M, and all fault scenarios u. To normalize the area, divide by
the total possible area, which is max 6, as the y-axis maximum
is 1. In the next section, this perfprof comparison method is
used to determine optimal model reduction methods for each
system and reduction ratio.

5.3 | Results of comparison

For system S, reduction ratios 4 < r < 15 are considered,
and for system S, we let 3 < r < 6 ThlS totals 12 +4 = 16
different perfprof comparisons. Therefore, rather than includ-

TABLE 3 Relative areas under the perfprof curves for system S, rows ordered by average value

r

Method 4 5] 6 7 8 9 10 11 12 13 14 15 Avg

SVD 0.989 0.999 0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997
Fiedler-mid-sum 0.699 1.000 1.000 1.000 1.000 0.977 0.993 0.998 0.800 1.000 0.990 0.996 0.954
Fiedler-mid-size 0.699 1.000 0.982 0.994 0.999 1.000 0.800 1.000 0.994 0.994 0.990 0.996 0.954
Fiedler-mid-avg 0.699 0.975 0.975 1.000 0.775 0.991 1.000 1.000 0.988 1.000 0.991 0.756 0.929
Spectral 0.979 0.745 0.974 0.985 1.000 0.787 0.763 1.000 0.990 0.792 0.772 0.710 0.875
k-Means 0.779 0.745 0.965 0.985 1.000 0.787 0.960 0.992 0.996 0.792 0.772 0.710 0.874
Fiedler-zero-avg 0.755 0.880 0911 0.733 0.631 0.765 0.753 0.598 0.777 0.787 0.763 0.710 0.755
Fiedler-zero-sum 0.755 0.680 0.711 0.733 0.631 0.765 0.753 0.598 0.777 0.787 0.763 0.710 0.722
Fiedler-zero-size 0.755 0.680 0.711 0.733 0.631 0.765 0.753 0.598 0.777 0.787 0.763 0.710 0.722
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FIGURE 8  Perfprof plot for system S; and r = 10. The curves for
Fiedler-zero-avg and Fiedler-zero-sum are hidden under the purple
Fiedler-zero-size curve, as all three did not return any reductions for r = 10.
A point (0, p) for method M means that Ji,llo is within a factor of 0 of the
best J,, 1o in proportion p of the five fault scenarios

ing all perfprof plots, two tables of normalized areas under
the perfprof curves will be provided, one for each test system,
showing all r values. In each table, values are rounded to three
significant digits. In particular, all 1.000 values are rounded
to that value and are not equal to it. To reinforce the tables,
some perfprof plots will also be included.

(a)

113 g
112
111 §
11
109

1.08

107
106
105 -
1.04

full eeeeeee SVD

(c)

113
1.12 -+
1.11

1.1
109 4
1.08

107 4
106
1.05 ¢
1.04 -

full  eeeenian fiedler_mid_size

5.3.1 | System S,

In system S;, the methods Fiedler-zero-sum and
Fiedler-zero-size only return reductions for r = 4 and
Fiedler-zero-avg only for r = 4,5, and 6. Therefore, those
three methods have the worst performance in our compar-
isons. In this system, splitting the Fiedler vector at zero
sometimes yields a degenerate partition, where one part is
empty. Therefore, the splitting process reaches a stable point
(nothing else can be split using the Fiedler vector) prior to
obtaining the desired number of clusters.

Table 3 shows the normalized area measurements for sys-
tem ;. The methods are in decreasing order by their average
area under the curve over all r values. It is clear that SVD
dominates in this case. However, notice that for » = 5 and
6, SVD does not yield the maximum area under the perf-
prof curve. In this case, it is beaten by Fiedler-mid-sum
and Fiedler-mid-size, which are methods with the second
and third largest average areas. Figure 8 shows an example
perfprof plot for r = 10. The curves for Fiedler-mid-size
(solid blue) and k-means (dotted blue) cross around (3000,
0.8), but the area under k-means is higher than that for
Fiedler-mid-size, indicating that k-means would be preferred
between the two for r = 10.

These perfprof area comparisons may seem far removed
from the actual PMU phasor values. To further illustrate the
comparisons, some PMU traces for full and reduced systems
under four different methods are produced. Figure 9 contains

(b)

1.13
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Bk B
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108 +

1.07 -
106 -+
105 -
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full  —eeeeeen fiedler mid awvg
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1.08 4
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105 | LT
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FIGURE 9 PMU traces for generator 45 in system S| with the first fault scenario under the full model (no reduction) and three separate reduced models for
r = 10. (a) Full model vs SVD. (b) Full model vs Fiedler-mid-avg. (c) Full model vs Fiedler-mid-size. (d) Full model vs Fiedler-mid-sum
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FIGURE 10 PMU traces for generator 29 in system S; with the first fault scenario under the full model (no reduction) and three separate reduced models for
r = 10. (a) Full model vs SVD. (b) Full model vs Fiedler-mid-avg. (c) Full model vs Fiedler-mid-size. (d) Full model vs Fiedler-mid-sum

four PMU response comparisons for internal system gener-
ator #45 following fault scenario 1. In all four subfigures,
the solid black line represents the phasor values over time
for the full system without any model reduction, and the dot-
ted red line represents the phasor values simulated using the
indicated model reduction for r = 10. The r = 10 column
in Table 3 indicates that SVD and Fiedler-mid-avg have the
best reductions fairly consistently across all five fault scenar-
ios. Fiedler-mid-sum scores very high, and Fiedler-mid-size
does not perform as well. One might draw the same conclu-
sions from looking at the PMU traces, though it may not be
as clear-cut as it is when looking at the perfprof areas. In par-
ticular, Fiedler-mid-sum appears to perform very poorly, but
its perfprof area remains quite high. Of course, this is only
one of 16 internal generators and only a single fault scenario,
so the Fiedler-mid-sum method must have performed much
better for other generators.

Generator 45 is chosen because most methods seem to
perform fairly well in this fault scenario on it. In contrast, gen-
erator 29 is one where most reductions perform fairly poorly.
In Figure 10, similar PMU traces are shown for generator 29 in
S still under the first fault scenario. It is much more difficult
to judge a well-performing vs a poorly performing reduction
just by looking at these particular PMU trace plots, which is
one of the reasons for choosing the more global perfprof areas
as the comparison method.

TABLE 4 Relative areas under the perfprof curves for system S,, ordered
by the average value

Method 3 4 5 6 Avg
k-Means 0.816 0.984 0.988 0.933 0.931
SVD 0.714 0.967 0.938 0.822 0.860

Fiedler-mid-avg 0.718 0.952 0.798 0.779 0.812
Fiedler-mid-sum 0.718 0.952 0.798 0.779 0.812
Spectral 0.646 0.962 0.900 0.479 0.747
Fiedler-zero-sum 0.350 0.943 0.950 0.684 0.732
Fiedler-zero-avg 0.350 0.943 0.950 0.684 0.732
Fiedler-zero-size 0.636 0.934 0.501 0.688 0.689
Fiedler-mid-size 0.618 0.640 0.493 0.656 0.602

5.3.2 | System S,
System S, features a much smaller set with only nine gen-
erators in the external area. There still are a few degenerate
cases where a method did not return a reduction for some r
values, but it is not as widespread as in system S;. In addi-
tion, methods Fiedler-mid-avg and Fiedler-mid-sum always
return identical reductions. For completeness, both methods
are shown in the tables although they have exactly the same
values.

As in the previous section, Table 4 contains the areas
under perfprof plots summaries. In this system, the three
Fiedler-zero methods perform poorly just as in S;. Yet, there
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FIGURE 11 PMU phasor values for all nine generators in the internal

system for S, over 380 readings, totaling 3.8 s, following fault scenario 1

are two major differences between S; and S,. Instead of
SVD on top, k-means leads by a wide margin, whereas in S;
k-means is not a top performer. Additionally, Fiedler-mid-size
does very poorly in S, compared with S;.

Rather than providing PMU traces, an example partition-
ing of the input data is shown. In Figure 11, the full set of
PMU phasor values recorded at all nine internal generators
are displayed on the same axes. Then, Figures 12 and 13 show
the clustering into four sets of generators for Fiedler-mid-sum
and k-means, respectively. Although k-means did perform
better overall in S;, looking at the clusters themselves, one
could argue that the representative generators found using the
Fiedler clustering seem more representative of the system as

a whole. In particular, k-means split up generators 4 and 5
from 6 and 7, even though they appear to be very similar as
shown in Figure 12(b). Thus, having generators 4, 5, and 6 as
representative generators in the k-means reduction might be
redundant.

6 | CONCLUSION

In this paper, we provided a survey of three clustering tech-
niques and an SVD algorithm for dynamic model reduction
along with a comparison of these methods against two test
systems: the IEEE-50 and IEEE-16 generator systems. We
compared two graph methods—recursive spectral biparti-
tioning and spectral clustering—as well as an SVD method
and the standard k-means clustering algorithm. Our anal-
ysis (detailed in Section 5.3) leads us to the following
conclusions.

First, we remark that the k-means algorithm does not appear
to be very reliable. Although it does perform well on the
smaller system but did not rank highly in the larger system,
we must conclude that either k-means is not as well suited for
larger systems, or it is not expected to consistently work well.
The latter statement is consistent with known problems using
the k-means algorithm: the data must be sufficiently separated
and distributed to yield useful conclusions. Thus, it seems that
k-means, though sometimes quite suited to this problem, may
not always be dependable.
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FIGURE 12  Clustering via Fiedler-mid-sum for system S, following fault scenario 1 with r = 4. Representative generators are in red in each plot
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FIGURE 13  Clustering via k-means for system S, following fault scenario 1 with r = 4. Representative generators are in red in each plot

In contrast, we observe that the SVD method does seem
to be a consistently high performer. In S;, SVD dominates
almost all of the » values and has similarly high area under
the perfprof curve in S,. This consistency across multiple
systems will be necessary in a broadly applicable dynamic
model reduction algorithm. Similarly, the Fiedler-mid-avg
and Fiedler-mid-sum methods also appear to be repeatedly
well-performing reduction techniques.

There also are three perpetually poorly performing algo-
rithms: the Fiedler-zero methods. Recall from Section 3.3.1
that the standard method of Fiedler partitioning is to split
the set of vertices according to positive or negative Fiedler
value. However, in this application, it is clear that splitting
at the midpoint of the Fiedler values is much more advanta-
geous. Especially in the larger S system, splitting at the zero
point can yield a degenerate partition. Even in the smaller
S, system, despite not creating degenerate partitions, the
Fiedler-zero methods also perform poorly.

Lastly, the spectral method ranks in the middle of our list
of average area under the curve for both test systems. How-
ever, looking at its performance on specific r values, there
is high fluctuation. Recall that the final step of the spectral
clustering method involves using k-means. Given our earlier
conclusions that k-means may not be consistently reliable, it is
not unexpected to draw the same conclusion about the spectral
clustering method.

Overall, given the analysis of these specific methods on
these two relatively small systems, we recommend that (1)

dynamic model reduction techniques should not rely on any
kind of k-means clustering tools; (2) SVD is useful if a quick
solution is needed, there are many widely available software
packages for calculating SVDs, and it tended to be repeatedly
well-performing if not always the top method; (3) if more time
is available for a test study on a specific system of interest,
we suggest that SVD be compared against Fiedler-mid-sum
and Fiedler-mid-avg methods to see which performs best on
that system for a desired r value. This paper provided a use-
ful method for comparing performance using performance
profiles given full and reduced model simulation data.
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