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Abstract

Earth’s future carbon balance and regional carbon exchange dynamics are inextricably
linked to plant photosynthesis. Spectral vegetation indices are widely used as proxies for
vegetation greenness and to estimate state variables such as vegetation cover and leaf
area index. However, the capacity of green leaves to take up carbon can change throughout
the season. We quantify photosynthetic capacity as the maximum rate of RuBP carboxyla-
tion (Vemax) and regeneration (Jmax)- Vemax and Jmax Vary within-season due to interactions
between ontogenetic processes and meteorological variables. Remote sensing-based esti-
mation of Vomax @and Jmax Using leaf reflectance spectra is promising, but temporal variation
in relationships between these key determinants of photosynthetic capacity, leaf reflectance
spectra, and the models that link these variables has not been evaluated. To address this
issue, we studied hybrid poplar (Populus spp.) during a 7-week mid-summer period to quan-
tify seasonally-dynamic relationships between V max, Jmax, and leaf spectra. We compared
in situ estimates of V¢ max and Jmax from gas exchange measurements to estimates of Vgpax
and Jnax derived from partial least squares regression (PLSR) and fresh-leaf reflectance
spectroscopy. PLSR models were robust despite dynamic temporal variation in V¢max and
Jmax throughout the study period. Within-population variation in plant stress modestly
reduced PLSR model predictive capacity. Hyperspectral vegetation indices were well-corre-
lated to Vemax and Jmax, including the widely-used Normalized Difference Vegetation Index.
Our results show that hyperspectral estimation of plant physiological traits using PLSR may
be robust to temporal variation. Additionally, hyperspectral vegetation indices may be suffi-
cient to detect temporal changes in photosynthetic capacity in contexts similar to those stud-
ied here. Overall, our results highlight the potential for hyperspectral remote sensing to
estimate determinants of photosynthetic capacity during periods with dynamic temporal vari-
ations related to seasonality and plant stress, thereby improving estimates of plant produc-
tivity and characterization of the associated carbon budget.
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Introduction

Photosynthesis by land plants plays a critical role in regional and global carbon balance [1-3].
Globally, photosynthesis in the terrestrial biosphere, combined with photosynthetic and non-
photosynthetic processes in the oceans, offsets 45% of anthropogenic carbon emissions annu-
ally [4]. Terrestrial carbon uptake by plants varies annually and seasonally based on climate
conditions [5-9], water and nutrient availability [10,11], and plant physiological properties
such as water use efficiency [12] and photosynthetic capacity [13]. The size and future of the
terrestrial carbon sink remains a critical uncertainty in global climate models [14]. To accu-
rately predict terrestrial carbon uptake, improved quantification of spatial and temporal varia-
tion in photosynthesis is necessary.

Spatial and temporal variation in plant photosynthesis can be estimated using remote sens-
ing-derived spectral indices. Spectral estimates of green vegetation, including vegetation indi-
ces such as the Normalized Difference Vegetation Index (NDVI), are widely used to estimate
photosynthesis and vegetation productivity across spatial and temporal scales [15-18]. Esti-
mates of gross primary productivity derived from greenness measures rely on relationships
between vegetation use of light energy and photosynthesis [19-22]. However, the capacity of
green leaves to use absorbed light to convert CO, into biomass varies dynamically throughout
the season and with plant stress [23-26]. Many terrestrial biosphere models use static values of
determinants of photosynthetic capacity [27]; however, there is some evidence that allowing
photosynthetic capacity to vary temporally could improve representation of carbon dynamics
[28]. The photochemical reflectance index (PRI) is a hyperspectral vegetation index that
detects diurnal changes in xanthophyll cycle activity and responds to seasonal shifts in leaf pig-
ment concentrations [29]. PRI is used to estimate photosynthetic light-use efficiency [30];
however, its relationship to photosynthetic capacity is unclear. Spectral methods that capture
dynamic temporal changes in photosynthetic capacity could yield more accurate estimates of
vegetation productivity and associated carbon uptake.

Photosynthetic capacity represents the potential of vegetation to fix CO, under optimal
light and water conditions. In this study, we estimate photosynthetic capacity through mea-
surements of the maximum rate of carboxylation of RuBP by the enzyme rubisco (Vmax) and
the maximum rate of electron transport driving RuBP regeneration (J,.x)[31]. Some terrestrial
biosphere models treat V. and J ..« as fixed parameters [27]. However, these photosynthetic
parameters vary in response to climate conditions [32-35], atmospheric CO, concentrations
[36], plant stress [37], and seasonally in response to ontogenetic processes [38-40]. This sea-
sonal variation can be important, given that process-based biosphere models that account for
within-season variation in photosynthetic capacity show improved predictions of carbon flux
dynamics [28].

Although hyperspectral remote sensing shows promise for predicting photosynthetic capac-
ity based on leaf optical properties, questions remain regarding temporal variability. Estimates
of photosynthetic capacity from remote sensing methods are desirable because of their poten-
tial to map V pax and Jax across space and constrain terrestrial biosphere model estimates of
plant function. Predictive models of photosynthetic capacity, conditioned based on leaf reflec-
tance metrics, have been developed using partial least squares regression (PLSR) for multiple
tree species across glasshouse temperature regimes [29], in C4 crop species[41], and in C3 spe-
cies at the canopy level [33]. Emergent studies on crop species using high-throughput pheno-
typing approaches further justify a better understanding of hyperspectral characterization of
photosynthetic capacity [41-43]. Still unknown is whether hyperspectral methods of estimat-
ing Vmax and J ., are robust to temporal variation in these key determinants of photosyn-
thetic capacity. Hyperspectral leaf reflectance correlates with leaf characteristics likely to cause
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seasonal variation in photosynthetic capacity such as chlorophyll content [44], nitrogen content
[45], light-use efficiency [46], and water status [47], while spectral vegetation indices capture
some but not all of these factors. However, previous studies have generally used variation in
reflectance and plant function across space rather than time to derive these relationships so it
remains unknown whether hyperspectral methods of estimating V . ,.x and J .« are robust to
temporal variation in these key determinants of photosynthetic capacity. We hypothesize that if
seasonal variation in photosynthetic capacity is caused by a combination of leaf changes detect-
able by reflectance in bands outside of narrowband multispectral bands, then PLSR models that
utilize the full reflectance spectrum will predict seasonal changes in V. and Jiax.

In this study, we evaluated the ability of hyperspectral data to represent and predict within-
season temporal variation in V., and J ., and examined the influence of water stress on the
robustness of these estimates of photosynthetic capacity. We compared leaf reflectance spectra
from hybrid poplar (Populus spp.) to Vmax and J .. estimates throughout a 7-week period in
the middle part of the growing season. We discuss our results in the context of emerging
hyperspectral remote sensing methods and terrestrial biosphere models of global carbon
dynamics.

Methods
Experimental site

Our study was conducted using poplar trees, grown outdoors at the Biosphere 2 Research Cen-
ter near Oracle, AZ, USA (32° 34’ 51” N 110° 50’ 57” W; 1189 m). Biosphere 2 is leased to the
University of Arizona. Authors RKM, DJPM, and GABG were responsible for the poplar stand
at Biosphere 2. No additional permission was required to carry out this study, which did not
involve endangered or protected species. We studied the relationship between spectral reflec-
tance and photosynthetic capacity in 12 individual Populus deltoides hybrid poplar trees. Trees
were planted in random arrangement with 1 x 1 m spacing in January 2013. Each year during
the dormant season, the trees were coppiced and destructively sampled for biomass. Study
trees were randomly selected before the start of the experiment in May 2016. During the study
period (5/24/2016-7/5/2016), the mean high temperature was 34.4°C and the mean low tem-
perature was 21.3°C. We applied 38 liters of water per day per tree during the pre-dawn period
for 2 weeks prior to the start of the experiment (5/1/2016-5/14/2016) using an irrigation sys-
tem to begin the study in well-watered conditions. We also fertilized the trees on 5/14/2016
using tree and shrub food (Arizona’s Best) to ensure the trees were not nutrient-limited at

the start of the induced dry-down. The trees were exposed to ambient climate conditions and
had no irrigation except for supplemental watering from 6/2/2016 through 6/6/2016 and addi-
tional watering on 6/20/2016, which avoided senescence and caused variance in the water sta-
tus of the trees. On sampling dates, we measured predawn leaf water potential (W,4), leaf gas
exchange, and hyperspectral leaf reflectance for each tree. The full suite of measurements was
conducted on all 12 trees on consecutive sampling dates (6 trees per day), except for 6/30
when we measured all 12 trees in one day.

Predawn leaf water potential and A/Ci curves

Predawn leaf water potential (‘¥',q) was measured using a pressure chamber (PMS Instru-
ments, Albany, OR, USA). Leaves were collected before sunrise, transported to the lab in a
cooler, and measured within 30 minutes of collection. One leaf per plant was measured per
time point.

Leaf gas exchange was measured with two LI-COR portable photosynthesis systems
(LI-COR Biosciences, Lincoln, NE, USA) equipped with a 6400-02B LED light source. Gas
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exchange measurements were performed on the youngest, most fully-expanded leaf on the
south-facing side of each tree. Leaves were acclimated to the chamber at 25°C, a chamber-air
CO, concentration of 400 ppm, and a saturated photosynthetic photon flux density (PPFD) of
1800umol m™ s™" until the photosynthetic rate (A) stabilized. Gas exchange curves were con-
ducted only on leaves with an initial A > 10 umol CO, m™s™ to ensure that the leaves were
active enough to yield appropriate estimates for photosynthetic capacity. Each curve consisted
of 13 different intercellular CO, concentrations (Ci) starting at the ambient CO, concentration
of 400 ppm and then decreasing to 300, 200, 100, 50 to 0 ppm before increasing to 400, 400,
600, 800, 1200, 1600, 2000 ppm. We used the Predictive Ecosystem Analyzer (PEcAn) photo-
synthesis package to perform quality control of CO, response data before fitting A/Ci curves
(https://github.com/PecanProject/pecan). In total, 86 CO, response curves passed quality con-
trol. We fit A/Ci curves using the ‘fitaci’ function in ‘plantecophys’ package in R [48]. The
‘fitaci’ function fits the Farquhar-Berry-Von Caemmerer Model of leaf photosynthesis [31] to
measurements of photosynthesis and intercellular CO, and estimates V., and J .« along
with their standard errors.

Hyperspectral measurements

Reflectance was measured on the same leaves as the gas exchange measurements using a high-
spectral resolution ASD FieldSpec® 3 Full-Range (350-2500 nm) spectroradiometer (Analyti-
cal Spectral Devices, Boulder, CO, USA). Reflectance measurements were taken with a leaf-
clip assembly containing an internal calibrated light source and a black background panel face.
The relative leaf reflectance data were standardized prior to measurements of each leaf by mea-
suring a standard white reference reflectance target. ViewSpec Pro® software was used to con-
vert binary data to ASCII data. The spectral resolution is 3nm at 700 nm, 10nm at 1400 and
2100nm across the full spectrum. The hyperspectral data are sampled at every Inm. The spec-
troradiometer was turned on for at least 30 minutes before reflectance measurements were
taken. The white panel reference reflectance was captured every 2-5 minutes. All measure-
ments were taken from the leaf adaxial surface, avoiding the midrib. Three reflectance mea-
surements were obtained on three different areas of each leaf lamina, resulting in nine spectra
per leaf. Each measurement required no more than 5 s. Spectral reflectance measurements
were quality-checked by removing negative reflectance values. We then averaged the nine
spectra to determine mean optical properties for each leaf. Measures of leaf optical properties
generally occurred between 10:30am and 11:30am and followed gas exchange measurements
by no more than 2 hours.

Partial least squares regression models

Partial least-squares regression (PLSR) was performed to generate predictive models using the
package ‘PLS’ in R [49]. PLSR is a multivariate regression method commonly used in spectros-
copy because it can account for many related predictor variables and relatively few observa-
tions. PLSR identifies key components that explain variation in a trait variable and generates

a linear model to transform full-spectrum data based on these components. The package
‘PLSROpt’ in R was used for pre-processing the spectral data in the order of standard normal
variate, a second-derivative Savitzky-Golay smoother, auto-scaling, and mean centering
(https://github.com/uwadaira/plsropt). The model with the number of components that mini-
mized the Root Mean Squared Error of Prediction (RMSEP) was selected as the most parsimo-
nious PLSR model. Each PLSR model was generated independently for V.« and for J ..
The spectrum range for all models was 450-2500 nm. Performance parameters were generated
to assess the predictive ability of each model including the coefficient of determination (R?).
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Three different evaluations of the PLSR model were performed in increasing order of statis-
tical rigor. The first test was a "leave-one-out" cross-validation approach, which trains the
model on all but one observation, and then makes a prediction based on the single remaining
observation [50]. The second test was performed with a 20% holdout dataset; a random 80/
20% split of the data divided it into a training and testing dataset, respectively. New PLSR
models were generated based on calibration of the training dataset and validated based on the
remaining 20%. A 100x cross validation of training/calibration splits was performed to assess
model and data stability across different proportions of testing and training data (S1 Fig). The
third and most rigorous test of model stability was testing the model on the sampling dates
with greatest variation in the population in terms of water stress (¥,,4). The two consecutive
sampling dates with the largest individual variation in ¥4, (6/23/2016 and 6/24/2016, n = 12)
were held out. The model was trained on all data except for the holdout dataset and was tested
on the 12 observations with large variation in W4 The purpose of this test was to assess model
predictive capacity in a situation with large within-population variation in environmental
stress. For each PLSR model, Selectivity Ratio (SR) scores were calculated to enable compari-
son of the relative significance of each wavelength in its contribution to the final model.
Although the Variable Importance of the Projection (VIP) score is more widely used in the
current scientific literature, SR has been found to be more reliable for model predictions and is
thus presented in this study [51].

Spectral vegetation indices

Spectral vegetation indices for estimating chlorophyll content, water stress, and carotenoid
pigments were tested using the full set of observations (Table 1); these are all published indices
used to estimate plant physiological status. The Normalized Difference Water Index (NDWT)
was tested based on its correlation with plant water content in conifers [47], and PRI was tested
based on known relationships with photosynthetic functioning [52,53] and environmental
stress [54,55]. We also calculated ‘MODIS-like’ NDVI for all spectra. MODIS (Moderate Reso-
lution Imaging Spectroradiometer) NDVT uses the red band (band 1; 620-670 nm) and the
near-infrared (NIR) band (band 2; 841-876 nm). For both the red and NIR, we calculated the
full-width- half-maximum for the subset of wavelengths corresponding to the MODIS band-
widths using the ‘peakshape’ function in the ‘pavo’ package [56]. We then took the mean of all
reflectance values between the endpoints of the width of the spectrum curve. We then applied
the standard NDVI equation (see Table 1) to get a ‘MODIS-like’ NDVI. Pairwise correlations
between V., and J,.x estimated using standard gas exchange techniques and spectral indices
were tested and R* reported.

Results

Weather conditions, photosynthetic capacity, and pre-dawn water potential (‘\¥},4) varied over
the course of our study (Fig 1). Conditions were generally hot and dry throughout the study
period, with high daytime temperatures and Vapor Pressure Deficit (VPD) and low precipita-
tion (Fig 1A). Mean daytime temperature (06:00 to 18:00 MST) ranged from 20.73°C to
38.90°C throughout the study period with a mean of 30.1 +4.3°C. Peak VPD (10:00 to 14:00
MST) ranged from 0.60 kPa to 7.2 kPa with a mean of 3.9 +1.3 kPa. There was little precipita-
tion throughout the study period with most (30.3 mm) of the total rainfall (36.1 mm) occur-
ring between 6-28-2016 and 6-30-2016 (Fig 1A). V pax and J . both varied throughout the
study period. V. ranged from 43.9 to 130.4 with a mean of 75.7 £20.8 umol m > s ™" J oy
ranged from 76.7 to 261.2 with a mean of 150.1 £37.5 pmol m s Ve and Jax declined
by approximately two-fold throughout the 7-week study period (Fig 1C and 1D). V., and
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Table 1. Hyperspectral vegetation indices that were compared to estimated V ,ax and Jnax Values.

Index Formula Reference R? Vcmax R? Jmax
SR1 p750/p700 Gitelson and Merzlyak 1997 [57] 0.74 0.61
Double Difference (p749-p720)-(p701-p672) le Maire et al. 2004 [58] 0.74 0.58
Vogelmann1 p740/p720 Vogelmann et al. 1993 [59] 0.73 0.58
mSR705 (p750-p445)/(p705-p445) Sims and Gamon 2002 [44] 0.73 0.57
SRCarter p760/p695 Carter et al. 1994 [60] 0.72 0.61
Maccioni (p780-p710)/(p780-p680) Maccioni et al. 2001 [61] 0.72 0.55
SR3 p750/p550 Gitelson and Merzlyak 1997 [57] 0.70 0.63
Gitelson 1/p700 Gitelson et al. 1999 [62] 0.62 0.52
NDVI (MODIS-like) (p NIRmopis - p Redmopis)/ (P NIRvopis + p Redwopis) see methods 0.60 0.50
Datt4 p672/(p550*p708) Datt (1998) [63] 0.57 0.45
SR4 p700/p670 McMurtey et al. (1994) 0.57 0.36
SR2 p752/p690 Gitelson and Merzlyak 1997 [42] 0.56 0.53
NDVI (hyperspectral) (p860-p690)/(p860+p690) Stimson et al. 2005 [47] 0.49 0.46
Vogelmann2 (p734-p747)-(p715+p726) Vogelmann et al. 1993 [59] 0.17 0.14
mNDVI (p800-p680)/(p800+p680—2p445) Sims and Gamon 2002 [44] 0.07 0.03"
NDWI (p860-p1240)/(p860+p1240) Gao 1996 [64] 0.06 0.20
SIPI (p800-p445) Penuelas et al. 1995 [65] 0.06 0.03"
PRI (p531-p570)/(p531+p570) Gamon 1997 [52] 0.02"° 0.00"®
mSRCHL (p800-p445)/(p680-p445) Sims and Gamon 2002 [44] 0.00" 0.00"®

The predictive formula (p = spectral reflectance) and reference for each index is shown in addition to the coefficient of determination for Vynax and Jmax-
Nonsignificant correlations are indicated with an “ns” superscript. Values of R above 0.50 are bolded.

https://doi.org/10.1371/journal.pone.0189539.t001

Jmax appeared to stabilize following the rain events between 6-28-2016 and 6-30-2016 which
relieved water stress (Fig 1B). Pre-dawn water potential varied seasonally, with the lowest
water potentials (most stressed) generally occurring in the middle of the study period (6-23
and 6-24, Fig 1B). Water potential values ranged from -1.35 to -0.8 MPa with a mean of -0.45
+0.23 MPa. Leaf reflectance varied between individuals and temporally (Fig 2A). We evaluated
our results first in terms of variability in leaf reflectance spectra in the study period, then evalu-
ated estimates of V., and J ;.. from three different variations of PLSR models with increas-
ing statistical rigor, and finally assessed relationships between V .y and J ., and published
hyperspectral indices.

We performed three different evaluations of the PLSR models, presented in increasing
order of statistical rigor. First, to assess the relationship between photosynthetic capacity and
leaf spectra, PLSR models based on the complete dataset were developed. This least rigorous
test of temporal stability used the "leave-one-out" cross validation approach to quantify the
relationship between leaf reflectance spectra (450-2500 nm) and V ax and Jax. PLSR models
predicted photosynthetic capacity accurately, with comparable model predictive ability for
Vemax (RZ = 0.72; Fig 3A) and Jinax (R*=0.72; Fig 3B). The root mean squared error (RMSE)
was lower for the V,.x model (RMSE = 4.2, Fig 3A) than the J,;,,, model (RMSE = 18.2, Fig
3B). The predictive model for V. only required two components to explain the variance,
while the PLSR model for J ., required four components.

Second, to assess temporal stability of the model, the data were split into training and test-
ing datasets to generate PLSR models. This second test of PLSR model stability used 80% of
the observations for training and withheld a 20% holdout dataset for testing. The 20% holdout
dataset was randomly selected from the full dataset and the remaining 80% were used to build
PLSR models for V. and Jax. This procedure was performed 100 times with different
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Fig 1. Temporal variability in meteorological and physiological conditions throughout the study
period. A) shows mean daytime temperature in °C (orange line; 06:00 to 18:00), peak VPD in kPa (purple
line; 10:00 to 14:00), precipitation in mm and supplemental watering throughout the study period with dark
blue bars representing precipitation and light blue representing supplemental watering days. B) Shows the
time series of predawn water potential (MPa) throughout the study period. C) and D) show the time series of
estimated Vemayx (Mol M2 s7) and Jpmax (Mol m2s™), respectively.

https://doi.org/10.1371/journal.pone.0189539.g001

randomly selected 20% holdout datasets (S1 Fig); the mean R for the 80/20 split was 0.64
+0.03 for V yax and 0.64 +0.07 for J . (S1 Table). Models with a 20% holdout dataset that
were representative of mean predictive ability are shown in Fig 3C and 3D; predictive ability
was comparable for V. (R*=0.67; Fig 3C) and Jax (R*=0.69; Fig 3D). The predictive capa-
bility of the 80% model was similar to the predictive capability of the full cross-validated
model (Fig 3A and 3B). The RMSE was lower for the V., model (RMSE = 12.6; Fig 3C) than
the J . model (RMSE = 17.6; Fig 3D).

Third, to assess temporal stability in situations with large within-population variation in
environmental stress, the data was split into a testing and training set based on variability in
W,,4. This third and most rigorous test of PLSR model stability trained the PLSR model on low
environmental stress conditions (‘*F'pq) and tested it on the two consecutive sampling days with
highest individual variation in W,4, (6/23 and 6/24; Fig 1C). PLSR models for Vpax and Jimax
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Fig 2. Leaf reflectance spectra and wavelength importance in PLSR models. (A) Pooled reflectance
spectra (A = 450-2500 nm) for all plants studied throughout the course of the study period (5/24/2016 to 7/05/
2017). The mean reflectance at each wavelength is shown by the red line, the maximum and minimum
reflectance at each wavelength are shown by the blue and green lines, respectively. (B)&(C): selectivity ratio
of each wavelength in the PLSR models tested on variable water potential. (B) Shows the selectivity ratio of
each wavelength in the Vnhax PLSR model, and (C) shows the selectivity ratio of each wavelength in the Jp,ax
PLSR model. The red lines in B&C are LOESS smoothers for visualization purposes.

https://doi.org/10.1371/journal.pone.0189539.9002

in this third test differed in their predictive abilities. The predictive ability was only moderately
reduced for V.., (R* = 0.51; Fig 3E), whereas PLSR model predictive ability was substantially
reduced for J . (R* = 0.24; Fig 3F). The RSME was the same for both models (RMSE = 7.7;
Fig 3E and 3F).

To compare the relative significance of different wavelengths in a given PLSR model, the
selectivity ratio (SR) was used as a method of variable selection. The SR was used to assess rela-
tive contributions of different portions of the spectrum to the overall PLSR model. Both V.«
and ], models were sensitive to variation in the visible wavelength and near infrared (Fig 2B,
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Fig 3. Temporal stability of PLSR models. All figures show observed vs. predicted values from PLS regression models. A&B: leave-one-out cross-
validation procedure for (a) maximum rates of RuBP carboxylation (Vemax, WMol m2s-') and (b) RuBP regeneration Jmayx (Umol m2s-'), n = 86. C&D:

representative 80/20% split of the data for PLSR (C) Vemax (Mol m2 s-') and (D) Jmax (umol m2 s-'). Each model was trained on 69 observations and

tested on 17 observations. E & F: models tested on the period with the greatest between-individual variation in pre-dawn water potential (Wpq) for (E) Vemax
(umol m2s-") and (F) Jmax (WMol m2 s-"). Each model was trained on 74 observations and tested on the 12 observations on 6/23/2016 and 6/24/2016 when
the population varied widely in W,,4. Statistical tests of increase in rigor moving downward.

https://doi.org/10.1371/journal.pone.0189539.g003

Fig 2C). Peak SR was at 703 nm for V¢ and 583 nm for J ., (Fig 2B and 2C). Contributions

from the short-wave infrared regions were small to both V)., and J .. models, however the

SWIR contributed more to the J,,,, models than V., models (Fig 2B and 2C).
To assess relationships between existing hyperspectral indices and photosynthetic capacity,

correlations between V ., and J ., and a suite of hyperspectral vegetation indices were com-
pared (Fig 4). Estimated V ax and J .y from hyperspectral chlorophyll and stress indices were
well-correlated with measured values (Table 1). For Vy.x four other metrics were all compa-
rable to the full PLSR model (R* = 0.72) based on the coefficient of determination: Maccioni
(R? = 0.72), Double Difference (R* = 0.74), Vogelmann2 (R* = 0.73), and SR1 (R* = 0.74) (Fig
4A). The PLSR model for J,,.x (R = 0.72) outperformed all tested hyperspectral indices, the

best of which was SR3 (R® = 0.63; Fig 4B). Several indices had very low or non-significant
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Fig 4. Comparison of predictive abilities of hyperspectral indices and PLSR models. Predictive
capability for (A) maximum rates of RuBP carboxylation (Vemax, imol m2s-') and (B) RuBP regeneration Jmax
(umol m2 s-"). Pairwise correlations between Vmay and Jmax estimated using standard gas exchange
techniques and spectral indices were tested and R? is reported. The R? reported for the PLSR model is from
the leave-one-out cross-validation approach. Indices with non-significant correlations are represented with
“ns”.

https://doi.org/10.1371/journal.pone.0189539.9004

correlations with V., including PRI, NDWI, mNDVI, and SIPI (Table 1). The mNDVI,
SIPL PRI, and mSRCHL indices all had non-significant relationships with Jmax (Table 1). The
hyperspectral normalized difference vegetation index (NDVI) had moderate predictive capa-
bility for Vemax (R® = 0.49) and Jmay (R* = 0.46). The MODIS-like NDVI (“mod_NDVI”) per-
formed better than the hyperspectral NDVI for both Vyax (R* = 0.60) and J,ax (R = 0.50)
(Fig 4, Table 1).

Discussion

Our results show that hypers can predict photosynthetic parameters across time, suggesting
that these hyperspectral remote sensing techniques have great potential to constrain model
estimates of plant function. In this study, relationships between leaf reflectance spectra and
photosynthetic capacity were robust throughout a 7-week period with dynamic change in pho-
tosynthetic capacity. Hyperspectral vegetation indices to estimate chlorophyll content were
correlated with the key determinants of photosynthetic capacity, Vi max and Jiax. Predictions
of Vmax and J oy from PLSR models derived from leaf reflectance spectra were proportion-
ally-sensitive to observed variation in V., and J ;... These results support our hypothesis
that PLSR models that utilize the full spectrum can predict photosynthetic capacity through
time. These findings highlight the potential of hyperspectral remote sensing methods to
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accurately predict V p.x and J,.x despite dynamic temporal variation in photosynthetic capac-
ity related to within-season variation and plant stress.

Leaf-level hyperspectral data have previously been used to estimate photosynthesis [66] and
photosynthetic capacity across temperature regimes in glasshouse experiments [32], and in
diverse agroecosystems [41,42], but our study is the first to assess the impacts of in situ within-
season temporal variation on estimates of photosynthetic capacity derived from leaf reflectance
spectra. As in previous studies, measured and PLSR-modeled leaf traits were significantly corre-
lated [32,42,66,67]. Regression models predicted V. and J ., during a 7-week period with
dynamic declines in photosynthetic capacity. This is confirmation that the spectral signals
detected by leaf reflectance observations are accurately tracking seasonal metabolic adjustments
made within the photosynthetic machinery of the leaf. When PLSR models were trained on only
80% of the data and tested on the remaining 20%, their mean predictive capability were similar
to that of the full PLSR models. This shows that relationships between leaf reflectance spectra
and V . and J ., are robust despite large variation in these values. Known hyperspectral vege-
tation indices had varying predictive capabilities. Hyperspectral vegetation indices developed for
estimating chlorophyll content (e.g. SR1, Double Difference, Vogelmann 1) and plant stress
(SRCarter) had the highest correlations with plant photosynthetic capacity (Table 1). The wave-
lengths that explained variance in photosynthetic capacity in the PLSR models (based on selectiv-
ity ratio) were consistent with the wavelengths that comprised the best-performing hyperspectral
indices. The important wavelengths in PLSR models, based on Selectivity Ratio, for predicting
V emax and J o largely fell in the visible and short wavelength end of the near-infrared (~500 to
850 nm), with minor contributions from wavelengths in the short-wave infrared. Important
wavelengths in the visible region fell largely in the blue region (450-495 nm) and red regions
(620-650 nm) for the V ,.x models, which is consistent with the chlorophyll absorption regions
(i.e. ~430-460 nm and 640-670 nm). The highest-performing hyperspectral vegetation indices
generally leveraged diagnostic differences in the red-edge portion (680-750 nm) of the spectrum
to estimate chlorophyll content. The red edge region of reflectance is known to be sensitive to
differences in chlorophyll content, and chlorophyll content is generally positively correlated with
photosynthetic capacity [68]. Overall, both hyperspectral indices and PLSR models had the capa-
bility to predict variation in within-season photosynthetic capacity.

Accurate representation of photosynthesis in terrestrial biosphere models is essential to pre-
dicting future carbon and global change dynamics [69]. Although modeled rates of photosyn-
thesis are sensitive t0 V pax and Jinay [3,70,71], most terrestrial biosphere models use static
values for these parameters [27]. Furthermore, V., and J ., values are often parameterized
based on limited or poorly represented data sets [27]. Monthly optimization of V . improved
process-based biosphere model (Organizing Carbon and Hydrology in Dynamic Ecosystems;
ORCHIDEE) representation of seasonal carbon dynamics (NEE; Net Ecosystem Exchange) in a
tropical evergreen forest in Brazil, however, seasonal parameter variations could not be extrapo-
lated spatially [28]. Remote sensing observations can improve model representation of photo-
synthesis across spatial and temporal scales [31,55,72]. Our results support the use of remotely
sensed estimation of photosynthetic capacity using hyperspectral observations. Furthermore,
hyperspectral remote sensing could be used to incorporate spatially explicit photosynthetic
capacity/environment relationships in next-generation trait-based models. Our results highlight
the potential of hyperspectral remote sensing to parameterize determinants of photosynthetic
capacity and inform trait-environment relationships in terrestrial biosphere models, thereby
improving model representation of photosynthesis and carbon dynamics.

Although PLSR model predictive capabilities for V. and J,.x were generally similar,
there were differences in PLSR model performance and sensitivity between the two variables.
The mean predictive capability of the 80% PLSR models were comparable for V .x and Jax
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(Table 1); however, the variance in J,,.x was nearly twice that of the variance in V., (Table 1,
S1 Fig). A rigorous test of PLSR model performance in the population with individual varia-
tion in drought stress indicated modest reductions in predictive capability for V., and sub-
stantial reductions in predictive capability for J,,.x. This test of temporal stability indicates that
predictive relationships between leaf reflectance spectra and photosynthetic capacity are
reduced when there is within-population variation in environmental stress, particularly for
Jmax- PLSR models for J,,.x included more wavelengths in the short-wave infrared that are
associated with leaf water content and internal structure. The performance improvement of
the PLSR model for J,,,,, compared to simple indices underscores the importance of full spec-
tral information for predicting this parameter (Fig 4B)[42]. Terrestrial biosphere models gen-
erally simulate .., as a function of V., rather than as its own parameter [73]. However, our
results suggest that V,.x and J ., may be differentially sensitive to within-population varia-
tion in environmental stress.

Quantifying temporal variation in relationships between photosynthetic capacity and leaf
reflectance spectra is timely given the increasing availability of high resolution spectral remote
sensing, such as hyperspectral overflights planned by the National Ecological Observatory
Network (NEON) [74] and NASA’s Hyperspectral Infrared Imager (HyspIRI) mission [75].
NEON hyperspectral overflights, which may only occur once per year over a given region, may
be used to develop predictive relationships between leaf reflectance spectra and photosynthetic
capacity. Our results suggest that such predictive relationships developed from data in a short
portion of the growing season could hold true throughout the growing season. The widely
used NDVI had moderate predictive capacity for V ax and J ... Notably, our approximation
of MODIS NDVT had higher predictive capacity than hyperspectral NDVI (Table 1). Detecting
temporal changes in photosynthetic capacity using MODIS NDVI could improve model pre-
dictions of photosynthesis given its broad spatial and daily temporal coverage. Another im-
portant consideration in extrapolating the results of this study to aerial and satellite remote
sensing is additional technical challenges posed by these approaches, such as view angle effects,
canopy architecture, and atmospheric effects. More studies are needed to further test temporal
stability of relationships between leaf reflectance spectra and photosynthetic capacity in other
contexts before relationships from a single hyperspectral overflight can be extrapolated
through the growing season. Nonetheless, our results suggest promise for this approach.

In this study, spectral estimation of V .y and J ., in hybrid poplar was robust to temporal
variation of up to 200% in photosynthetic capacity. Applying remote sensing tools to predict
photosynthetic capacity across a wider range of wildlands requires an in situ test of this method
outside of agroecosystem or controlled glasshouse conditions across a time period of variable
abiotic and biotic conditions. Our results show that relationships between photosynthetic
capacity and leaf reflectance spectra developed from limited data can in some cases be extrapo-
lated temporally. These results highlight the potential of hyperspectral remote sensing methods
to detect dynamic temporal variations in V., and Jy,.x related to seasonality and plant stress,
thereby aiding improved estimates of plant productivity and associated carbon budget. Fur-
thermore, our results suggest that terrestrial biosphere models could use hyperspectral remote
sensing to parameterize V yax and Jy.x within season to improve predictions of future carbon
dynamics. Reliable and precise methods to estimate V.5 and J . across spatial and temporal
scales will improve understanding of ecosystem carbon uptake and the terrestrial carbon sink.

Supporting information

S1 Fig. Variance of R” values based on proportion of data used for training the PLSR
model. Each point represents the r-squared between predicted and actual Vcmax/Jmax values
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from PLSR using a random sample corresponding to the designated proportion of training
data (each proportion was sampled 100 times).
(TIF)

S1 Table. Mean, median, and standard deviation of R? values based on proportion of data
used for training the PLSR model. The mean, median, and standard deviation in R* of 100
PLSR models per training proportion are represented.

(DOCX)

Acknowledgments

The authors thank Kyle D. Morton for assistance in the field. We also thank John Adams and
Ian M. Shiach for maintaining the poplar plantation.

Author Contributions

Conceptualization: Mallory L. Barnes, David D. Breshears, Darin ]. Law, David J. P. Moore.
Data curation: Mallory L. Barnes, Alec C. Fojtik.

Formal analysis: Mallory L. Barnes, Greg A. Barron-Gafford.

Funding acquisition: David ]. P. Moore.

Investigation: Mallory L. Barnes, Darin J. Law, Willem J. D. van Leeuwen, Alec C. Fojtik,
Greg A. Barron-Gafford, David J. P. Moore.

Methodology: Mallory L. Barnes, Darin J. Law, Willem ]. D. van Leeuwen, Alec C. Fojtik,
David J. P. Moore.

Project administration: David D. Breshears, Darin J. Law, Russell K. Monson, Greg A. Bar-
ron-Gafford, David J. P. Moore.

Resources: David D. Breshears, Willem J. D. van Leeuwen, Russell K. Monson, David J. P.
Moore.

Software: Willem J. D. van Leeuwen.

Supervision: David D. Breshears, Russell K. Monson, David ]. P. Moore.
Validation: Mallory L. Barnes, Russell K. Monson.

Visualization: Mallory L. Barnes.

Writing - original draft: Mallory L. Barnes.

Writing - review & editing: David D. Breshears, Darin J. Law, Willem J. D. van Leeuwen,
Russell K. Monson, Alec C. Fojtik, Greg A. Barron-Gafford, David J. P. Moore.

References

1. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, et al. An integrated biosphere model
of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem
Cycles. 1996; 10: 603—-628. https://doi.org/10.1029/96 GB02692

2. Zaehle S, Friend AD. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model
description, site-scale evaluation, and sensitivity to parameter estimates. Glob Biogeochem Cycles.
2010; 24: GB1005. https://doi.org/10.1029/2009GB003521

3. Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, et al. Improving canopy pro-
cesses in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from

PLOS ONE | https://doi.org/10.1371/journal.pone.0189539 December 27, 2017 13/17


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189539.s002
https://doi.org/10.1029/96GB02692
https://doi.org/10.1029/2009GB003521
https://doi.org/10.1371/journal.pone.0189539

@° PLOS | ONE

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

FLUXNET data. J Geophys Res Biogeosciences. 2011; 116: G02014. https://doi.org/10.1029/
2010JG001593

Quéré CL, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al. Global Carbon Budget
2015. Earth Syst Sci Data. 2015; 7: 349-396. https://doi.org/10.5194/essd-7-349-2015

Cao M, Woodward Fl. Dynamic responses of terrestrial ecosystem carbon cycling to global climate
change. Nature. 1998; 393: 249-252. https://doi.org/10.1038/30460

Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, et al. Contribution of Increasing CO2
and Climate to Carbon Storage by Ecosystems in the United States. Science. 2000; 287: 2004—2006.
https://doi.org/10.1126/science.287.5460.2004 PMID: 10720324

Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, et al. Effects of climate extremes
on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Change Biol.
2015; 21: 2861-2880. https://doi.org/10.1111/gcb.12916 PMID: 25752680

Xia J, Chen J, Piao S, Ciais P, Luo Y, Wan S. Terrestrial carbon cycle affected by non-uniform climate
warming. Nat Geosci. 2014; 7: 173—180. hitps://doi.org/10.1038/nge02093

Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, et al. Terrestrial Gross Carbon Diox-
ide Uptake: Global Distribution and Covariation with Climate. Science. 2010; 329: 834-838. https://doi.
org/10.1126/science.1184984 PMID: 20603496

Nijp JJ, Limpens J, Metselaar K, van der Zee SEATM, Berendse F, Robroek BJM. Can frequent precipi-
tation moderate the impact of drought on peatmoss carbon uptake in northern peatlands? New Phytol.
2014; 203: 70-80. https://doi.org/10.1111/nph.12792 PMID: 24689361

Reich PB, Hobbie SE, Lee TD. Plant growth enhancement by elevated CO2 eliminated by joint water
and nitrogen limitation. Nat Geosci. 2014; 7: 920-924. https://doi.org/10.1038/nge02284

Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, et al. Increase in forest water-
use efficiency as atmospheric carbon dioxide concentrations rise. Nature. 2013; 499: 324-327. https:/
doi.org/10.1038/nature12291 PMID: 23842499

Morecroft MD, Stokes VJ, Morison JIL. Seasonal changes in the photosynthetic capacity of canopy oak
(Quercus robur) leaves: the impact of slow development on annual carbon uptake. Int J Biometeorol.
2003; 47: 221-226. https://doi.org/10.1007/s00484-003-0173-3 PMID: 12733054

Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, et al. Uncertainties in
CMIP5 Climate Projections due to Carbon Cycle Feedbacks. J Clim. 2013; 27: 511-526. https://doi.org/
10.1175/JCLI-D-12-00579.1

Running SW, Nemani RR. Relating seasonal patterns of the AVHRR vegetation index to simulated pho-
tosynthesis and transpiration of forests in different climates. Remote Sens Environ. 1988; 24: 347-367.
https://doi.org/10.1016/0034-4257(88)90034-X

Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB. Variations in northern vege-
tation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res Atmo-
spheres. 2001; 106: 20069-20083. https://doi.org/10.1029/2000JD000115

Barnes ML, Moran MS, Scott RL, Kolb TE, Ponce-Campos GE, Moore DJP, et al. Vegetation productiv-
ity responds to sub-annual climate conditions across semiarid biomes. Ecosphere. 2016; 7: n/a-n/a.
https://doi.org/10.1002/ecs2.1339

ShiH, LiL, Eamus D, Huete A, Cleverly J, Tian X, et al. Assessing the ability of MODIS EVI to estimate
terrestrial ecosystem gross primary production of multiple land cover types. Ecol Indic. 2017; 72: 153—
164. https://doi.org/10.1016/j.ecolind.2016.08.022

Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. A Continuous Satellite-
Derived Measure of Global Terrestrial Primary Production. BioScience. 2004; 54: 547-560. https://doi.
org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

Asrar G, Fuchs M, Kanemasu ET, Hatfield JL. Estimating Absorbed Photosynthetic Radiation and Leaf
Area Index from Spectral Reflectance in Wheat. Agron J. 1984; 76: 300-306. https://doi.org/10.2134/
agronj1984.00021962007600020029x

Fensholt R, Sandholt |, Rasmussen MS. Evaluation of MODIS LAI, fAPAR and the relation between
fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens Environ. 2004;
91: 490-507. https://doi.org/10.1016/j.rse.2004.04.009

Huete A, Ponce-Campos G, Zhang Y, Restrepo-Coupe N, Ma X, Moran MS. Monitoring Photosynthesis
from Space [Internet]. CRC Press; 2016. Available: https://opus.lib.uts.edu.au/handle/10453/73083

Ruimy A, Jarvis PG, Baldocchi DD, Saugier B. CO2 Fluxes over Plant Canopies and Solar Radiation: A
Review. Adv Ecol Res. 1995; 26: 1-68. https://doi.org/10.1016/S0065-2504(08)60063-X

Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, et al. A cross-biome comparison of
daily light use efficiency for gross primary production. Glob Change Biol. 2003; 9: 383—-395. https://doi.
org/10.1046/j.1365-2486.2003.00573.x

PLOS ONE | https://doi.org/10.1371/journal.pone.0189539 December 27, 2017 14/17


https://doi.org/10.1029/2010JG001593
https://doi.org/10.1029/2010JG001593
https://doi.org/10.5194/essd-7-349-2015
https://doi.org/10.1038/30460
https://doi.org/10.1126/science.287.5460.2004
http://www.ncbi.nlm.nih.gov/pubmed/10720324
https://doi.org/10.1111/gcb.12916
http://www.ncbi.nlm.nih.gov/pubmed/25752680
https://doi.org/10.1038/ngeo2093
https://doi.org/10.1126/science.1184984
https://doi.org/10.1126/science.1184984
http://www.ncbi.nlm.nih.gov/pubmed/20603496
https://doi.org/10.1111/nph.12792
http://www.ncbi.nlm.nih.gov/pubmed/24689361
https://doi.org/10.1038/ngeo2284
https://doi.org/10.1038/nature12291
https://doi.org/10.1038/nature12291
http://www.ncbi.nlm.nih.gov/pubmed/23842499
https://doi.org/10.1007/s00484-003-0173-3
http://www.ncbi.nlm.nih.gov/pubmed/12733054
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.1016/0034-4257(88)90034-X
https://doi.org/10.1029/2000JD000115
https://doi.org/10.1002/ecs2.1339
https://doi.org/10.1016/j.ecolind.2016.08.022
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
https://doi.org/10.2134/agronj1984.00021962007600020029x
https://doi.org/10.2134/agronj1984.00021962007600020029x
https://doi.org/10.1016/j.rse.2004.04.009
https://opus.lib.uts.edu.au/handle/10453/73083
https://doi.org/10.1016/S0065-2504(08)60063-X
https://doi.org/10.1046/j.1365-2486.2003.00573.x
https://doi.org/10.1046/j.1365-2486.2003.00573.x
https://doi.org/10.1371/journal.pone.0189539

@° PLOS | ONE

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Flanagan LB, et al. On the use of
MODIS EVI to assess gross primary productivity of North American ecosystems. J Geophys Res Bio-
geosciences. 2006; 111: G04015. hitps://doi.org/10.1029/2006JG000162

Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith M-L. Refining light-use effi-
ciency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and
radiometric measurements. Agric For Meteorol. 2007; 143: 64—79. https://doi.org/10.1016/j.agrformet.
2006.11.008

Rogers A. The use and misuse of V¢,max in Earth System Models. Photosynth Res. 2014; 119: 15-29.
https://doi.org/10.1007/s11120-013-9818-1 PMID: 23564478

Verbeeck H, Peylin P, Bacour C, Bonal D, Steppe K, Ciais P. Seasonal patterns of CO2 fluxes in Ama-
zon forests: Fusion of eddy covariance data and the ORCHIDEE model. J Geophys Res Biogeos-
ciences. 2011; 116: G02018. https://doi.org/10.1029/2010JG001544

Gitelson AA, Gamon JA, Solovchenko A. Multiple drivers of seasonal change in PRI: Implications for
photosynthesis 1. Leaf level. Remote Sens Environ. 2017; 191: 110-116. https://doi.org/10.1016/j.rse.
2016.12.014

Gamon JA, Pefiuelas J, Field CB. A narrow-waveband spectral index that tracks diurnal changes in
photosynthetic efficiency. Remote Sens Environ. 1992; 41: 35—44. https://doi.org/10.1016/0034-4257
(92)90059-S

Farquhar GD, Caemmerer S von, Berry JA. A biochemical model of photosynthetic CO2 assimilation in
leaves of C3 species. Planta. 149: 78-90. https://doi.org/10.1007/BF00386231 PMID: 24306196

Serbin SP, Dillaway DN, Kruger EL, Townsend PA. Leaf optical properties reflect variation in photosyn-
thetic metabolism and its sensitivity to temperature. J Exp Bot. 2012; 63: 489-502. https://doi.org/10.
1093/jxb/err294 PMID: 21984647

Serbin SP, Singh A, Desai AR, Dubois SG, Jablonski AD, Kingdon CC, et al. Remotely estimating pho-
tosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectros-
copy. Remote Sens Environ. 2015; 167: 78-87. https://doi.org/10.1016/.rse.2015.05.024

Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of
data from 36 species. Plant Cell Environ. 2007; 30: 1176—1190. https://doi.org/10.1111/j.1365-3040.
2007.01690.x PMID: 17661754

Dreyer E, Le Roux X, Montpied P, Daudet FA, Masson F. Temperature response of leaf photosynthetic
capacity in seedlings from seven temperate tree species. Tree Physiol. 2001; 21: 223-232. https://doi.
org/10.1093/treephys/21.4.223 PMID: 11276416

Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, et al. Photo-
synthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) dur-
ing the first growth cycle and immediately following coppice. New Phytol. 2003; 159: 609—621. https://
doi.org/10.1046/j.1469-8137.2003.00850.x

Limousin J-M, Misson L, Lavoir A-V, Martin NK, Rambal S. Do photosynthetic limitations of evergreen
Quercus ilex leaves change with long-term increased drought severity? Plant Cell Environ. 2010; 33:
863-875. https://doi.org/10.1111/j.1365-3040.2009.02112.x PMID: 20051039

Onoda Y, Hikosaka K, Hirose T. The balance between RuBP carboxylation and RuBP regeneration: a
mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in
temperature. Funct Plant Biol. 2005; 32: 903-910. https://doi.org/10.1071/FP05024

Xu L, Baldocchi DD. Seasonal trends in photosynthetic parameters and stomatal conductance of blue
oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 2003;
23: 865-877. hitps://doi.org/10.1093/treephys/23.13.865 PMID: 14532010

Wilson KB, Baldocchi DD, Hanson PJ. Spatial and seasonal variability of photosynthetic parameters
and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 2000; 20: 565-578. https://doi.
org/10.1093/treephys/20.9.565 PMID: 12651421

Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA. Using leaf optical properties to detect ozone
effects on foliar biochemistry. Photosynth Res. 2014; 119: 65-76. https://doi.org/10.1007/s11120-013-
9837-y PMID: 23657827

Yendrek C, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, et al. High-throughput phenotyping of
maize leaf physiology and biochemistry using hyperspectral reflectance. Plant Physiol.
2016; pp.01447.2016. https://doi.org/10.1104/pp.16.01447 PMID: 28049858

Heckmann D, Schliter U, Weber APM. Machine Learning Techniques for Predicting Crop Photosyn-
thetic Capacity from Leaf Reflectance Spectra. Mol Plant. 2017; 10: 878-890. https://doi.org/10.1016/].
molp.2017.04.009 PMID: 28461269

PLOS ONE | https://doi.org/10.1371/journal.pone.0189539 December 27, 2017 15/17


https://doi.org/10.1029/2006JG000162
https://doi.org/10.1016/j.agrformet.2006.11.008
https://doi.org/10.1016/j.agrformet.2006.11.008
https://doi.org/10.1007/s11120-013-9818-1
http://www.ncbi.nlm.nih.gov/pubmed/23564478
https://doi.org/10.1029/2010JG001544
https://doi.org/10.1016/j.rse.2016.12.014
https://doi.org/10.1016/j.rse.2016.12.014
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1007/BF00386231
http://www.ncbi.nlm.nih.gov/pubmed/24306196
https://doi.org/10.1093/jxb/err294
https://doi.org/10.1093/jxb/err294
http://www.ncbi.nlm.nih.gov/pubmed/21984647
https://doi.org/10.1016/j.rse.2015.05.024
https://doi.org/10.1111/j.1365-3040.2007.01690.x
https://doi.org/10.1111/j.1365-3040.2007.01690.x
http://www.ncbi.nlm.nih.gov/pubmed/17661754
https://doi.org/10.1093/treephys/21.4.223
https://doi.org/10.1093/treephys/21.4.223
http://www.ncbi.nlm.nih.gov/pubmed/11276416
https://doi.org/10.1046/j.1469-8137.2003.00850.x
https://doi.org/10.1046/j.1469-8137.2003.00850.x
https://doi.org/10.1111/j.1365-3040.2009.02112.x
http://www.ncbi.nlm.nih.gov/pubmed/20051039
https://doi.org/10.1071/FP05024
https://doi.org/10.1093/treephys/23.13.865
http://www.ncbi.nlm.nih.gov/pubmed/14532010
https://doi.org/10.1093/treephys/20.9.565
https://doi.org/10.1093/treephys/20.9.565
http://www.ncbi.nlm.nih.gov/pubmed/12651421
https://doi.org/10.1007/s11120-013-9837-y
https://doi.org/10.1007/s11120-013-9837-y
http://www.ncbi.nlm.nih.gov/pubmed/23657827
https://doi.org/10.1104/pp.16.01447
http://www.ncbi.nlm.nih.gov/pubmed/28049858
https://doi.org/10.1016/j.molp.2017.04.009
https://doi.org/10.1016/j.molp.2017.04.009
http://www.ncbi.nlm.nih.gov/pubmed/28461269
https://doi.org/10.1371/journal.pone.0189539

@° PLOS | ONE

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a
wide range of species, leaf structures and developmental stages. Remote Sens Environ. 2002; 81:
337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

Smith M-L, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL. Direct Estimation of Aboveground
Forest Productivity Through Hyperspectral Remote Sensing of Canopy Nitrogen. Ecol Appl. 2002; 12:
1286—1302. https://doi.org/10.1890/1051-0761(2002)012[1286:DEOAFP]2.0.CO;2

Rahman AF, Gamon JA, Fuentes DA, Roberts DA, Prentiss D. Modeling spatially distributed ecosystem
flux of boreal forest using hyperspectral indices from AVIRIS imagery. J Geophys Res Atmospheres.
2001; 106: 33579-33591. https://doi.org/10.1029/2001JD900157

Stimson HC, Breshears DD, Ustin SL, Kefauver SC. Spectral sensing of foliar water conditions in two
co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ. 2005;
96: 108—118. https://doi.org/10.1016/j.rse.2004.12.007

Duursma RA. Plantecophys—An R Package for Analysing and Modelling Leaf Gas Exchange Data.
Struik PC, editor. PLOS ONE. 2015; 10: e0143346. https://doi.org/10.1371/journal.pone.0143346
PMID: 26581080

Wehrens R, Mevik B-H. The pls Package: Principal Component and Partial Least Squares Regression
in R. 24.2007; Available: http:/repository.ubn.ru.nl/handle/2066/36604

Siegmann B, Jarmer T. Comparison of different regression models and validation techniques for the
assessment of wheat leaf area index from hyperspectral data. Int J Remote Sens. 2015; 36: 4519—
4534. https://doi.org/10.1080/01431161.2015.1084438

Farrés M, Platikanov S, Tsakovski S, Tauler R. Comparison of the variable importance in projection
(VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation: Comparison of
variable selection methods. J Chemom. 2015; 29: 528-536. https://doi.org/10.1002/cem.2736

Gamon JA, Serrano L, Surfus JS. The photochemical reflectance index: an optical indicator of photo-
synthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia. 1997;
112: 492-501. https://doi.org/10.1007/s004420050337 PMID: 28307626

Drolet GG, Middleton EM, Huemmrich KF, Hall FG, Amiro BD, Barr AG, et al. Regional mapping of
gross light-use efficiency using MODIS spectral indices. Remote Sens Environ. 2008; 112: 3064-3078.
https://doi.org/10.1016/j.rse.2008.03.002

Gray SB, Dermody O, DeLucia EH. Spectral reflectance from a soybean canopy exposed to elevated
CO2 and O3. J Exp Bot. 2010; 61: 4413—-4422. https://doi.org/10.1093/jxb/erq244 PMID: 20696654

Dobrowski SZ, Pushnik JC, Zarco-Tejada PJ, Ustin SL. Simple reflectance indices track heat and water
stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens
Environ. 2005; 97: 403—414. https://doi.org/10.1016/j.rse.2005.05.006

Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD. pavo: an R package for the analysis, visuali-
zation and organization of spectral data. Methods Ecol Evol. 2013; 4: 906-913. https://doi.org/10.1111/
2041-210X.12069

Gitelson AA, Merzlyak MN. Remote estimation of chlorophyll content in higher plant leaves. Int J
Remote Sens. 1997; 18: 2691-2697. https://doi.org/10.1080/014311697217558

le Maire G, Francois C, Dufréne E. Towards universal broad leaf chlorophyll indices using PROSPECT
simulated database and hyperspectral reflectance measurements. Remote Sens Environ. 2004; 89: 1—
28. https://doi.org/10.1016/j.rse.2003.09.004

Vogelmann JE, Rock BN, Moss DM. Red edge spectral measurements from sugar maple leaves. Int J
Remote Sens. 1993; 14: 1563—-1575. https://doi.org/10.1080/01431169308953986

Carter GA. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int J Remote
Sens. 1994; 15: 697-703. https://doi.org/10.1080/01431169408954109

Maccioni A, Agati G, Mazzinghi P. New vegetation indices for remote measurement of chlorophylls
based on leaf directional reflectance spectra. J Photochem Photobiol B. 2001; 61: 52—61. https://doi.
org/10.1016/S1011-1344(01)00145-2 PMID: 11485848

Gitelson AA, Buschmann C, Lichtenthaler HK. The Chlorophyll Fluorescence Ratio F735/F700 as an
Accurate Measure of the Chlorophyll Content in Plants. Remote Sens Environ. 1999; 69: 296-302.
https://doi.org/10.1016/S0034-4257(99)00023-1

Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content
in Eucalyptus Leaves. Remote Sens Environ. 1998; 66: 111-121. https://doi.org/10.1016/S0034-4257
(98)00046-7

Gao B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens Environ. 1996; 58: 257—266. https://doi.org/10.1016/S0034-4257(96)00067-3

Penuelas J. “Semi-empirical indices.” Photosynthetica 31.2 (1995): 221-230. APA.

PLOS ONE | https://doi.org/10.1371/journal.pone.0189539 December 27, 2017 16/17


https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1890/1051-0761(2002)012[1286:DEOAFP]2.0.CO;2
https://doi.org/10.1029/2001JD900157
https://doi.org/10.1016/j.rse.2004.12.007
https://doi.org/10.1371/journal.pone.0143346
http://www.ncbi.nlm.nih.gov/pubmed/26581080
http://repository.ubn.ru.nl/handle/2066/36604
https://doi.org/10.1080/01431161.2015.1084438
https://doi.org/10.1002/cem.2736
https://doi.org/10.1007/s004420050337
http://www.ncbi.nlm.nih.gov/pubmed/28307626
https://doi.org/10.1016/j.rse.2008.03.002
https://doi.org/10.1093/jxb/erq244
http://www.ncbi.nlm.nih.gov/pubmed/20696654
https://doi.org/10.1016/j.rse.2005.05.006
https://doi.org/10.1111/2041-210X.12069
https://doi.org/10.1111/2041-210X.12069
https://doi.org/10.1080/014311697217558
https://doi.org/10.1016/j.rse.2003.09.004
https://doi.org/10.1080/01431169308953986
https://doi.org/10.1080/01431169408954109
https://doi.org/10.1016/S1011-1344(01)00145-2
https://doi.org/10.1016/S1011-1344(01)00145-2
http://www.ncbi.nlm.nih.gov/pubmed/11485848
https://doi.org/10.1016/S0034-4257(99)00023-1
https://doi.org/10.1016/S0034-4257(98)00046-7
https://doi.org/10.1016/S0034-4257(98)00046-7
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1371/journal.pone.0189539

@° PLOS | ONE

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Doughty CE, Asner GP, Martin RE. Predicting tropical plant physiology from leaf and canopy spectros-
copy. Oecologia. 2011; 165: 289-299. https://doi.org/10.1007/s00442-010-1800-4 PMID: 20963611

Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in
wheat crops using normalized difference vegetation indices and partial least squares regression.
Remote Sens Environ. 2003; 86: 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7

Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia. 1989; 78: 9—19.
https://doi.org/10.1007/BF00377192 PMID: 28311896

Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, et al. A roadmap for improv-
ing the representation of photosynthesis in Earth system models. New Phytol. 2017; 213: 22—42.
https://doi.org/10.1111/nph.14283 PMID: 27891647

Zaehle S, Sitch S, Smith B, Hatterman F. Effects of parameter uncertainties on the modeling of terres-
trial biosphere dynamics. Glob Biogeochem Cycles. 2005; 19: GB3020. https://doi.org/10.1029/
2004GB002395

Verheijen LM, Brovkin V, Aerts R, Bonish G, Cornelissen JHC, Kattge J, et al. Impacts of trait variation
through observed trait-climate relationships on performance of a representative Earth System Model: a
conceptual analysis. Biogeosciences. 2013; 10: 5497-5515. https://doi.org/10.5194/bg-10-5497-2013

Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, et al. Observing terrestrial ecosys-
tems and the carbon cycle from space. Glob Change Biol. 2015; n/a-n/a. https://doi.org/10.1111/gcb.
12822 PMID: 25472464

Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA, Domingues TF, et al. The relationship of leaf
photosynthetic traits—Vemax and Jmax—to leaf nitrogen, leaf phosphorus, and specific leaf area: a
meta-analysis and modeling study. Ecol Evol. 2014; 4: 3218-3235. https://doi.org/10.1002/ece3.1173
PMID: 25473475

Kampe TU, Johnson BR, Kuester M, Keller M. NEON: the first continental-scale ecological observatory
with airborne remote sensing of vegetation canopy biochemistry and structure. J Appl Remote Sens.
2010; 4: 043510-043510-24. https://doi.org/10.1117/1.3501124

Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, et al. An introduction to the NASA Hyper-
spectral InfraRed Imager (HysplRI) mission and preparatory activities. Remote Sens Environ. 2015;
167: 6—19. https://doi.org/10.1016/j.rse.2015.06.012

PLOS ONE | https://doi.org/10.1371/journal.pone.0189539 December 27, 2017 17/17


https://doi.org/10.1007/s00442-010-1800-4
http://www.ncbi.nlm.nih.gov/pubmed/20963611
https://doi.org/10.1016/S0034-4257(03)00131-7
https://doi.org/10.1007/BF00377192
http://www.ncbi.nlm.nih.gov/pubmed/28311896
https://doi.org/10.1111/nph.14283
http://www.ncbi.nlm.nih.gov/pubmed/27891647
https://doi.org/10.1029/2004GB002395
https://doi.org/10.1029/2004GB002395
https://doi.org/10.5194/bg-10-5497-2013
https://doi.org/10.1111/gcb.12822
https://doi.org/10.1111/gcb.12822
http://www.ncbi.nlm.nih.gov/pubmed/25472464
https://doi.org/10.1002/ece3.1173
http://www.ncbi.nlm.nih.gov/pubmed/25473475
https://doi.org/10.1117/1.3501124
https://doi.org/10.1016/j.rse.2015.06.012
https://doi.org/10.1371/journal.pone.0189539

