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Abstract: Curvularia protuberata, an endophytic fungus in the Ascomycota, provides plants with
thermotolerance only when it carries a mycovirus known as Curvularia thermotolerance virus
(CThTV), and forms a three-way symbiotic relationship among these organisms. Under heat stress,
several genes are expressed differently between virus-free C. protuberata (VF) and C. protuberata
carrying CThTV (AN). We developed an expression vector, pM2Z-fun, carrying a zeocin resistance
gene driven by the ToxA promoter, to study gene functions in C. protuberata to better understand
this three-way symbiosis. Using this new 3.7-kb vector, five genes that are differentially expressed
in C. protuberata—including genes involved in the trehalose, melanin, and catalase biosynthesis
pathways—were successfully overexpressed or downregulated in VF or AN C. protuberata strains,
respectively. The VF overexpression lines showed higher metabolite and enzyme activity than in the
control VF strain. Furthermore, downregulation of expression of the same genes in the AN strain
resulted in lower metabolite and enzyme activity than in the control AN strain. The newly generated
expression vector, pM2Z-fun, has been successfully used to express target genes in C. protuberata and
will be useful in further functional expression studies in other Ascomycota fungi.

Keywords: ToxA promoter; zeocin resistance; Curvularia protuberata; Curvularia thermotolerance virus;
overexpression; downregulation

1. Introduction

The endophytic fungus Curvularia protuberata carrying the mycovirus Curvularia thermotolerance
virus (CThTV) can participate in a three-way symbiosis with plants that leads to extreme
thermotolerance [1]. C. protuberata confers plant thermotolerance only when the CThTV is present,
but neither the virus-free fungus (VF) nor plant can survive extremely high soil temperature (65 °C)
independently. The C. protuberata AN strain, which was produced by hyphal anastomosis of VF and
wild-type C. protuberata, regains the ability to confer thermotolerance [1]. This virus—fungus—plant
three-way symbiosis has been discovered in monocot (Dichanthelium lanuginosum) and was confirmed
in dicot (Solanum lycopersicon) plants also, which suggests a conserved thermotolerance mechanism [1,2].
In order to make the best use of this three-way symbiosis to improve crop thermotolerance, it is
necessary to understand the molecular mechanisms that govern this system. Therefore, in order to
study the C. protuberata gene functions and their roles in acquired thermotolerance, we constructed
an expression vector, pM2Z-fun, using the ToxA gene promotor and zeocin resistance gene as a
selective marker.

The promoter of the ToxA gene, a necrosis-inducing host-selective toxin gene from Pyrenophora
tritici-repentis [3], was used to drive expression in the vector pCT74 [4]. This vector has been used
to express a reporter gene encoding green fluorescent protein, which causes bright cytoplasmic
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fluorescence in eight ascomycete fungal genera [4]. The ToxA promoter has also been used successfully
to drive expression of other fluorescent proteins in several related fungi [3-5].

We are using a vector that carries the 370-bp Sh ble gene, which confers resistance to zeocin [6,7],
an antibiotic that causes cell death by cleaving DNA that has been widely used as selective marker
for transformation of fungi, algae, and mammalian cells [8-11]. In some cases, selection using zeocin
results in higher transformation efficiencies than selection using other antibiotics [12,13].

Because several C. protuberata genes are differently expressed between AN and VF strains
under heat stress, we hypothesize that these genes are involved in the thermotolerance mechanism
that results from this three-way symbiosis [2]. Five of these genes were chosen to test the
new expression vector. These target genes included genes in the melanin synthesis pathway:
1,3,6,8-tetrahydroxynaphthalene reductase (T4HN) and scytalone dehydratase (SCD); genes in the
trehalose synthesis pathway: trehalose-6-phosphate synthase (TP51) and trehalose-6-phosphate
phosphatase (TPS2); and a catalase/peroxidase gene (CAT) [2].

Melanin is a pigment formed by polymerization of phenolic compounds that protects organisms
from ultraviolet radiation and environmental stressors [14-17]. The two dominant types of melanin in
fungi are dihydroxynaphthalene (DHN)-melanin and dihydroxyphenylalanine (DOPA)-melanin [18].
Expression of the DHN-melanin biosynthesis genes in Metarhizium anisopliae enhances stress tolerance
and virulence [19]. T4HN and SCD are other key genes involved in the DHN-melanin biosynthesis
pathway [20,21]. Interestingly, expression of both T4HN and SCD transcripts in Bipolaris oryzae is
enhanced by near-ultraviolet irradiation [22].

Trehalose, a non-reducing disaccharide present in bacteria, fungi, plants, and invertebrates [23,24],
serves as a carbohydrate storage molecule, developmental regulator, and abiotic stress protectant [25-28].
Trehalose is synthesized in two steps: first, trehalose phosphate synthase (TPS1) catalyzes the
synthesis of trehalose-6-phosphase from gluose-6-phosphate and uridine diphosphate-glucose; second,
trehalose-6-phosphate phosphatase (TPS2) catalyzes the dephosphorylation of trehalose-6-phosphate
to trehalose [24,29]. A mutation in the TPS1 gene of Botrytis cinerea prevents trehalose synthesis and
leads to increased heat sensitivity of the mutant compared to the wild type [30].

Hydrogen peroxide (H,O,) is a reactive oxygen species that can cause severe cellular damage.
It can be degraded and catalyzed into water (H,O) and oxygen (O;) by the enzyme catalase/peroxidase,
which is present in all aerobic organisms [31,32]. Catalase is also used to protect cells from oxidative
damages associated with a variety of stresses [33-36]. In addition, overexpression of catalase in fungi
improves their spore germination and mycelial growth rate [36,37].

In this article, we demonstrate the differences in metabolite and enzyme activity between
overexpressed and downregulated targeted genes in C. protuberata VF and AN stains, respectively,
using the newly developed expression vector pM2Z-fun, to further the understanding of the molecular
mechanisms that drive this plant, fungus, and virus three-way symbiotic relationship.

2. Materials and Methods

2.1. Fungal Culture

All fungal strains of C. protuberata (VF, AN, and their transformants) were cultured on 0.1 x
potato dextrose agar (PDA) plates (pH 5.8) or in 1x potato dextrose (PD) liquid medium (pH 5.8)
supplemented with ampicillin (100 pg/mL), kanamycin (50 pg/mL), and streptomycin (100 pg/mL).
Different concentrations (described below) of zeocin were added for selection of fungal transformants.

2.2. Vector Construction

To generate the fungal expression vector pM2Z-fun, a multiple cloning site (MCS) cassette
containing EcoRI, Kpnl, Pstl, BamHI, Spel, HindIll, and Xbal, terminator NOS (Genebank ID:
KY031321.1), the ToxA promoter (Genebank ID: D(Q423483.1), zeocin cassette containing pTEF1
promoter, Sh ble gene (Genebank ID: KY793908.1), and terminator CYC1 (Genebank ID: KM035419.1)
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was synthesized by Invitrogen (Invitrogen, Waltham, MA, USA) and inserted into pMZ vector.
The newly synthesized vector was used as the backbone for both overexpression and RNAi vectors
for the target genes. The vector described in this paper is available to share by contacting the
corresponding author.

2.3. Overexpression and RNAi Constructs

Total RNA was extracted from 3 mg of lyophilized AN strain mycelia using a PureLink® RNA Mini
Kit (Thermo Fisher Scientific, Waltham, MA, USA). First-strand cDNA was synthesized from 1 ug RNA
using Oligo-dT primers and Moloney murine leukemia virus reverse transcriptase (Promega, Madison,
WI, USA). To clone genes of interest for overexpression, primers containing specific restriction site
sequences were designed according to our EST data (Table 1). Each gene of interest was amplified by
PCR using Phusion® High-Fidelity DNA polymerase (New England Biolabs, Ipswich, MA, USA), then
PCR products purified, cleaved with the appropriate restriction enzyme, and cloned into the pM2Z-fun
vector. All clones were sequenced to confirm the presence of expected genes in the correct sequence.

For the RNAI vectors, the sense fragment (A) and anti-sense fragment (B) of each target gene was
amplified separately, and then inserted into the pM2Z-fun vector sequentially (primers and restriction
enzyme sites are listed in Table 1). For each specific gene, the forward primer of the sense fragment
and the reverse primer of the antisense fragment were the same. The 5’ end of the anti-sense fragment
was about 100-bp (£10-bp, varied according to specific gene) shorter than the sense fragment to allow
hairpin formation. The vectors were digested with EcoRI to confirm the insertion.

Table 1. Primer sequences used to clone target genes for overexpression and downregulation, and for
semi-quantitative RT-PCR. Underlined sequence showing the restriction enzyme sites.

Gene Primers Sequence 5’ —3’ R::smcnon
nzyme
Overexpression
TPS1 Forward TCGAATTCATGCCTGACGAACCCACAAGAC EcoR1
Reverse GAGGATCCTCATTGGGCATTGGCAGGAGCAG BamH1
TPS2 Forward GTGAATTCATGAGTGCCCCTACCGATGACAAG EcoR1
Reverse TGCAGTCTAGACTATGGCACCGCCCGAGACTCAG Xbal
SCD Forward CAGAATTCATGTTTGAGAAGAACAAACTCC EcoRI
Reverse CACTGCAGTTACATGGCCAGCCCTGGCGCCTTC Pstl
T4HN Forward TTGAATTCATGGTCATCAACGTTCCCAC EcoRI
Reverse TCGGATCCCTACTGGGATGATCCACCAGAG BamHI
CAT Forward CAGAATTCATGTCCAAAGGCGAGTGTCC EcoRI
Reverse CTGGATCCTCAAGTCGACTTGTTCTTGAC BamHI
Downregulation
TPS1 Forward Sense CAGCAAGCTTGAATTCGCTCCGAGATCTACCGAATC  EcoRI/HindIIl
Reverse Sense CAAACGGATCCGTGGAAGAAACAAGGCAGACG BamHI
Forward Anti-sense =~ TCCACGGATCCAAACTTACCATTGATGCGGCC BamHI
TPS2 Forward Sense CACCAAGCTTGAATTCACCTATCCCCGTTGATCCCA  EcoRI/HindIIl
Reverse Sense ACGTGGATCCACAATGTCGCCTGGCTTGTA BamHI
Forward Anti-sense =~ TTGTGGATCCTCCGTCGGCAGGCTCATTTTG BamHI
SCD Forward Sense CACCAAGCTTGAATTCAGCTACGACAGCAAGGACTG EcoR1/HindIIl
Reverse Sense GCTACTGCAGTCCACTCGCCGTCAATCTTC Pstl
Forward Anti-sense = GCACCTGCAGACGCATCCGTGTATCGCTG Pstl
T4HN Forward Sense GACTAAGCTTGAATTCAGCCAACGAAGTGTGCGAC  EcoRI/HindIIl
Reverse Sense TCAAGGATCCTGGCTCGCCATAAGCGACTCG BamHI
Forward Anti-sense = AGCCAGGATCCTTGATGCCACCGGGGGCGAC BamHI
CAT Forward Sense CTTCTCTAGAGAATTCGCGCTTTGCTCCTCTCAATG EcoR1/ Xbal
Reverse Sense GGAAAGGATCCTGGCAAGGTCCTCTGAGTTG BamHI

Forward Anti-sense =~ GCCAGGATCCTTTCCATATCGTTCATAGCC BamHI
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Table 1. Cont.

Restriction

Gene Primers Sequence 5’ —3’
Enzyme

Semi-quantitative RT-PCR

TPS1 Forward TGACGAACCCACAAGACTGG
Reverse CTCCTCCCGCAGCATAGAAG
TPS2 Forward GACATTGGCCTCATTACCAG
Reverse CTTCGTTTTGCCAGCTCAT
SCD Forward AACTCCAGCCTACCTTTGAGG
Reverse ACTCGTACCACCGAATGTCC
T4HN Forward CACCATGGTCATCAACGTTCCCA
Reverse TACTTCTCCTCGCTAATCTCC
CAT Forward GTGCCTGGTTCAAGCTTCTC
Reverse TGAACGTCAGTCTGCTCCTG
GPD Forward GCAACAACCTGACCGTCAAC
Reverse CCCACTCGTTGTCGTACCAA

2.4. Protoplast Isolation

Fungal protoplasts were isolated using the method described by Young [38] with modifications.
Five-day-old mycelia cultures were harvested for protoplast preparation. One gram of wet mycelia
was resuspended in 30 mL of enzyme buffer (1.2 M MgSO,, 10 mM K,HPOy, pH 5.8) containing
1.2% lysing enzyme (Sigma, St. Louis, MO, USA) and shaken at 50 rpm in the dark for 4 h with
gradually increased temperatures: 26 °C for 30 min, 30 °C for 30 min, 33 °C for 30 min, 35 °C for 2 h,
and finally 37 °C for 30 min. The protoplasts were harvested and washed 3 x using STC buffer (1 M
sorbitol, 50 mM Tris, pH 5.8, 50 mM CaCl,). The protoplasts were resuspended in STC buffer at a final
concentration of 1 x 10% cells/mL.

2.5. Transformation and Screening

Protoplast transformation was carried out as described by Itoh [39] with modifications.
Transformants were selected on HM media (138.5 g mannitol, 1 g casamino acids, 1 g yeast extract, 4 g
sucrose and 20 g agar per 1 L) plates containing 50 pg/mL zeocin. The resulting transformants were
subsequently maintained on PDA containing 20 pg/mL zeocin.

Potential fungal transformants were screened for the presence of inserted genes by PCR with
forward primers for ToxA and reverse primers targeting each specific target gene (Table 1).

2.6. Semi-Quantitative Reverse Transcription-PCR

Seven-day-old liquid fungus cultures were vacuum filtered and washed with sterile H,O. The
collected mycelia were then freeze-dried overnight. Total RNA extraction and synthesis of first-strand
cDNA were performed as described above. To quantify the expression of specific genes, 1 uL of
first-strand cDNA was used with GoTaq (Promega, Madison, WI, USA) and 5x green GoTaq Reaction
Buffer in each 20 pL PCR reaction for 25-27 amplification cycles at 57-60 °C for annealing temperature
depending on the specific gene (primers are listed in Table 1). The glyceradehyde-3-phosphate
dehydrogenase (GPD) gene was used as an internal control.

2.7. Melanin Extraction and Quantification

Melanin extraction and analysis were performed as described by Fernandes [40] with minor
modifications. Briefly, 1 M NaOH was added to 20 mg of freeze-dried mycelia (1 mL/10 mg) and
the pigment was extracted by autoclaving at 121 °C for 60 min. Samples were centrifuged and the
collected supernatant was used to spectrophotometrically quantify melanin content by absorbance at
405 nm. Three independent samples were analyzed.
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Figure 1: Eonstruction of fungal veetor. (a) Map of pM2Z-fun with zeaein resistance gene and ToxA
promoter to express fungal genes of interest; (b) Restriction digestions using EeoRI te confirm the
presence of RNAI construets insertion. M = 1-kb DNA ladder:

3.2. Molecular Analysis nsformants
0 construct tlfl IQ&TX? VéCtOI‘S tboth sense and anti-sense fragments of genes of interest were

inserfeel tirstotpdvEtlifyrofotob thin 4> Wiz Eafetarvier thiiy expaessinip taog ¢ hpgeteganresn tidddde langea g piteg
Iy HIY S$CIDP IR Sdy TIED, wasCitiHepipdstidly ohbamduvedtonteritheEd30RIspeodueed tthe
fragafertsantiargere3dekignettdrasAgimEAHMMVFSR O \BOOFR $00 BP-§difs2 andVirtisthisedspgetizehe
Siagiteehyt, (HigunspbotiVh dNAipveetd s agenertelividirahydintroebtdederttorthe AN strain to generate
transformants AN-T4HN, AN-SCD, AN-TPS1, AN-TPS2, or AN-CAT. To screen for the presence of
randdelseulan An@ UL DiHIRFY IS zeocin-resistant colonies were randomly picked to PCR for

amplifiqaemwibitley dpwdbimwvaptarisier andrihe aRpreRiteciRrsiRgdHeS RIS IIMEar RIS
fhamB08epf firese, zepsn-issigtant cplenicd etharied tBmiplifications Rreduste samsistant, Wb the
ipsREkorInghthw diesHestiea feer iR Eata IOt vhaseD, Venrpguantitatpsy RE-VER AT taagstcaeasy.
SHRTEARYCBRIO b ¥R Ai Rt Ahret¥ Friaapricsmyninksrived Righarexmesaiomabtherdarget
BERRTSAMBTIKCA N-therern Rl MtrajonErgrg e, 2aNDr pdditipnatasiqriratiQab e Vihatpigserth
s IR frnsb emied ehehRRg o iR g rRXRIRIsioN Bl JAres hasaesa Hagwiry 2bic e 1o Do R 02
thapwrsitrsd aaanditernal eoprelahnmmdmmehanesp Jrasns R peResipphsines e pionmed and
neRrBensbetmed sbsine (dSigie: 2aiBhicd s Hapvetnshpatiba isEqsHoeRRs RbRardtenf R INS intestrRs
b dpeeivaipagsnltadinovepb iy essinn Qhsaakael thR Topgat gensspaies deexpression in
hrrildatyreHbekEai TV gare AmEhel) dHoWEasRigR Gl dpBslssn et tdhsrydt BensiQunanisY 86
fheectihths alitvand thesdire daprametantorsussastbiivadeive tiseevpreasinnvefithase e sxebos s
8RORR N hangeb ¢ iHe -k Pred v BT B M8 ioiRRCHDS. HHECE BENG dRAR: RN TRASHS 4R
ARPHESIORIEPXRESTSIPRE YRR RN MM Yerlobpirsilanhy déendaimation ohths AN steainitlysPRriy
M fenpshewsdnoshanestrbrthssapreatian A darsebaanet thigRI¢ APV ectors into the AN strain
resulted in lower expression of each of the target genes compared to expression in the wild-type AN
strain (Figure 3a). Higher expression of target genes in the VF transformants was due to the ability of
the ToxA promoter to successfully drive the expression of these heterologous genes in VF C. protuberata.
The downregulation of each specific target gene in AN occurred due to suppression of expression by
the RNAi vector. Similarly, transformation of the AN strain with empty pM2Z-fun showed no changes
in the expression of target genes (Figure 3b).
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transformed with the empty vector (EV), GPD, again, was used as an internal control.
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3.4. Trehalose Assay

To investigate whether TPS1 and TPS2 overexpression and downregulation strains were
associated with any changes in trehalose content, we assayed control and transformed strains for
trehalose content. Nicotinamide-adenine dinucleotide phosphate (NADPH), a product of trehalose
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seems that overexpression of the T4HN reductase gene had a negative effect on melanin synthesis in
C. protuberata. Extra T4HN reductase might result in accumulation of scytalone, which would require
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the T4HN reductase gene had a negative effect on melanin synthesis in C. protuberata. Extra T4HN
reductase might result in accumulation of scytalone, which would require increased SCD dehydratase
activity to dehydrate scytalone to T3HN. Limitation of the SCD dehydratase activity in fungus would
mean that less vermelone could be dehydrated to D2ZHN, which would then be oxidized to melanin. In
VF-T4HN, lower accumulation of melanin might be caused by a lack of SCD scytalone dehydratase to
produce sufficient D2HN.

Fungal trehalose biosynthesis is catalyzed by TPS1 and TPS2, two main enzymes in the trehalose
synthase complex [48]. The TPS1 subunit catalyzes the formation of trehalose 6-phosphate (T6P),
which is then dephosphorylated to trehalose by the TPS2 subunit [49]. We found that overexpression of
TPS1 and TPS2 resulted in increased accumulation of trehalose in C. protuberata, while downregulation
of TPS1 and TPS2 expression diminished trehalose accumulation. Similar results have been reported in
yeast and other fungi [30,50,51]. Furthermore, T6P mediates TPS1 to regulate sugar influx which can
relate to trehalose synthesis. Up- or downregulation of the TPS1 gene might directly cause increases
or decreases of the abundance of T6P as a substrate for TPS2 to synthesize trehalose. However,
downregulation of expression of the TPS2 gene leads to the accumulation of T6P instead of trehalose.

H,O, generated within cells could be detoxified by CAT or other enzymes. HyO, can permeate
cells directly; therefore, a reaction between HyO, and catalase can be observed immediately upon
addition of HyO, to fungus. In the catalase assay, the depth of O, foam indicated the relative activity
of catalase in each fungal strain/CAT combination. Overexpression of the CAT gene in the VF strain
resulted in twice the catalase activity of the wild-type VF fungus. On the other hand, downregulation
of CAT gene expression in the AN strain leads to lower catalase activity. Similar results have been
observed in Magnaporthe oryzae, where disruption of the CAT gene (CPXB in M. oryzae) significantly
diminishes catalase activity [52], which is subject to transcriptional control.

In summary, we have generated a simple expression vector, pM2Z-fun, from which expression
of a cloned gene is driven by the ToxA promoter. We showed that this newly synthesized expression
vector could be used to overexpress or downregulate five C. protuberata genes that might be involved
in the control of the plant, fungus, and virus three-way symbiosis. pM2Z-fun could also be useful for
molecular genetic studies in other Ascomycota fungi.
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