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Variance Analysis of Forecasted Streamflow Maxima in a Wet Temperate Climate

Abstract:

Coupling global climate models, hydrologic models and extreme value analysis provides
a method to forecast streamflow maxima, however the elusive variance structure of the results
hinders confidence in application. Directly correcting the bias of forecasts using the relative
change between forecast and control simulations has been shown to marginalize hydrologic
uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly
and mean annual streamflow, prompting our investigation for maxima streamflow. We assess
the variance structure of streamflow maxima using realizations of emission scenario, global
climate model type and project phase, downscaling methods, bias correction, extreme value
methods, and hydrologic model inputs and parameterization. Results show that the relative
change of streamflow maxima was not dependent on systematic variance from the annual
maxima versus peak over threshold method applied, albeit we stress that researchers strictly
adhere to rules from extreme value theory when applying the peak over threshold method.
Regardless of which method is applied, extreme value model fitting does add variance to the
projection, and the variance is an increasing function of the return period. Unlike the relative
change of mean streamflow, results show that the variance of the maxima’s relative change was
dependent on all climate model factors tested as well as hydrologic model inputs and calibration.
Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced
forecast standard error, including an increase of +30(£21), +38(+34) and +51(£85)% for 2, 20
and 100 year streamflow events for the wet temperate region studied. The variance of maxima

projections was dominated by climate model factors and extreme value analyses.
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1 INTRODUCTION

Streamflow maxima is one of the most sought after response variables within hydrologic
research and application (Coles, 2001, Begueria & Vicente-Serrano, 2006, Reiss & Thomas,
2007). Streamflow extreme maxima re-contours the morphology of the fluvial system (Leopold
et al., 2012), partially controls the stream biogeochemical function (Ford and Fox, 2015), can
destroy human infrastructure (Melillo et al., 2014), and resupplies human water stores for
consumption, food production and energy generation (Rosenzweig et al., 2001, Mirza, 2003,
McMichael et al., 2007). The complex earth system for which streamflow maxima responds is
no less encompassing of hydrology than streamflow itself and includes components such as the
climates ability to produce precipitation and weather patterns, the watershed’s physiogeographic
configuration and ability to respond to precipitation, and human’s influence on both the
watershed and climate. Despite hydrologists’ long historical emphasis upon study of streamflow
extreme maxima, current disparity is prevalent in terms of both streamflow maxima’s current
estimations and its gradient as we forecast into the future (Khaliq et al., 2006). Scientific gaps
associated with estimating and forecasting current and future streamflow maxima is qualitatively
attributed to scientific uncertainty surrounding human’s economic behavior and influence on the
earth system, representation of the climate and its changes, hydrologic representation of
streamflow, and scalar coupling of a changing climate within a hydrologic representation of the
earth (Madsen et al., 2014, IPCC, 2013). The difficulty of streamflow extreme maxima
estimation and forecasting in a non-stationary earth system has challenged hydrologists to
consider the potential use of new methodologies for investigating and forecasting streamflow.

One methodology for which streamflow maxima investigation and forecasting has
received some recent attention is through the use of non-stationary projection with global climate
models that can be used to drive hydrologic and statistical forecasting (Prudhomme et al., 2003;
Dankers and Feyen, 2008; Mantua et al., 2010; Lawrence &Hisdal, 2011; Zhang et al., 2014).
This method involves application of the non-stationarity form of long-term climate change
projected using global climate models as a means to provide a physics-based guideline for
extrapolation (Lima et al., 2015, Shamir et al., 2015). The global climate model results are post-
processed for scalar considerations and then propagated through hydrologic models for
predicting multi-year streamflow time series. Thereafter, the extreme value theorem is adopted

to study streamflow extremes because the theory provides a mathematical basis for the definition
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of extremes and has been used to prove that the distribution of extremes follow similarity at their
limit (e.g., Coles, 2001). Somewhat analogous to the central limit theorem, the extreme value
theorem focuses on the statistical distribution and behavior of maxima that may arise from an
unknown distribution for a population of a sequence of values measured over many time units.
In this manner, hydrologists can statistically investigate current and forecast extreme value
extreme maxima such as 2-, 20- and 100-year events via time series generated from the
mentioned hydrologic modeling.

The coupling of global climate and hydrologic models for forecasting streamflow
extreme maxima has been recently criticized for water infrastructure planning in some
engineering and management circuits (Moradkhani, 2017), and we tend to agree that use of the
methodology in a infrastructure design capacity is a bit preliminary given that published
applications and results of the method is still in its infancy. Yet, we argue that the time is ripe
for elucidating the variance structure of streamflow maxima forecasted with global climate
models. We offer several reasons for this contention. First, highlighting the variance structure
of forecasted streamflow maxima provides hydrologic and climate researchers with knowledge
of highly sensitive factors and parameters of streamflow forecasting that systemically increase
the size of the solution space, so that researchers might focus their attention towards improving
model structure and parameterization. Second, the variance structure of forecasted streamflow
maxima allows researchers to see what extent the previous results of forecasted mean streamflow
might be adopted and extrapolated for forecasting extremes. There is a plethora of studies that
forecast mean streamflow with global climate models (Chen et al., 2011, Al Aamery et al., 2016,
Fatichi et al., 2014) and there is a question as to what extent results from these mean-focused
studies might be relevant to the study of extreme streamflow, especially in light of the extra level
of uncertainty that is introduced to forecasting maxima during application of the extreme value
theorem. Third, a reason for investigating the variance structure of forecasted streamflow
maxima is to help provide balanced forecasts that can be compared with a meta-analysis of
trends in existing literature results such as in wet temperate regions.

While variance analysis of streamflow extreme maxima is sparse in the literature, global
climate model research and forecasting of mean annual and mean monthly streamflow tends to
suggest that climate models are different in their structures and parametrizations (Randall et al.

2007), downscaling methods are distinct in their stucture and results to re-scale global results



102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

(Wilby and Dawson, 2007, Warner, 2010, Mearns et al., 2013), emission scenarios address the
uncertainty of future economic and CO, conditions (IPCC, 2007, IPCC, 2013), the version of
climate model projects are different in their structures, and the newer version (CMIP5) is distinct
realtive older versions of models (CMIP3) (Brekke et al., 2013), and the bias implementation of
climate results is a source for variance presence in hydrologic models (Teutschbein and Seibert,
2012, Al Aamery et al., 2016); and therefore all such components could have the potential to
impact the variance structure of forecasted streamflow maxima. The few studies that have
forecasted streamflow maxima with global climate models (see Table 1) have results that tend to
corroborate some findings from mean-focused studies and suggest the type of global climate
model applied caused differences in streamflow extreme forecasts (Prudhomme et al., 2003;
Lawrence and Hisdal, 2011), and emission scenario can also shift extreme predictions (Dankers
and Feyen, 2008; Mantua et al., 2010; Zhang et al., 2014). Applications of extreme value theory
suggest the statistical analysis associated with the choice of extreme value analysis method has
the potential to impact the variance of forecasted streamflow maxima; and the annual maxima
method is criticized for its neglect of multiple extremes per annum while the peak over threshold
method has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott
and MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016).

<Table 1 here please>

Beyond uncertainty surrounding the global climate model projections and extreme value
methods, there are additional uncertainty considerations with respect to the future hydrologic
balance and its simulation when forecasting streamflow maxima. As one example, future
changes in the hydrologic cycle, and in turn streamflow, are primarily driven by changes in
precipitation and evapotranspiration. Studies that forecast streamflow maxima with global
climate models have focused on precipitation and temperature differences within simulation of
future periods (Mantua et al., 2010; Zhang et al., 2014), however it is now recognized that
evaporative demand is physically controlled by net radiation, vapor pressure and wind speed as
well as air temperature (Donohue et al 2010). Future projections of these additional variables
suggest decreases in wind speed and net radiation and an increase in relative humidity for some
regions (Willet et al., 2008; Wild, 2009; McVicar et al., 2012). The directions of the projected
shifts would decrease evapotranspiration and in turn could potentially increase variability when

forecasting streamflow maxima. As a second example, hydrologic model fit and modeling
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uncertainty when simulating the water balance has the potential to increase the variability of
projected streamflow maxima (Al Aamery et al., 2016). Recent study has tended to marginalize
the importance of hydrologic model calibration and uncertainty for mean streamflow projections
when considering relative future changes (Niraula et al., 2015), however streamflow maxima has
not yet been tested in this context, to our knowledge.

Our objectives were to: (1) perform coupled climate, hydrologic and statistical model
simulation and evaluation to build realizations of streamflow maxima; (2) perform variance
analysis to test for systematic uncertainty from climate and extreme modeling factors potentially
controlling streamflow maxima forecasting; (3) perform uncertainty analysis to quantify variance
from hydrologic modeling; and (4) forecast streamflow maxima for the wet temperate region
studied herein and provide literature comparison. These objectives provide the structural sub-

headings used in the following Methods, Results and Discussion sections.

2 THEORETICAL BACKGROUND

The variance structure of forecasted streamflow maxima can be decomposed as a
function of potentially controlling modeling factors. The conceptual model of factors that have
the potential impact forecasted streamflow maxima variance is shown in Figure 1. As can be
seen in the figure, modeling factors that may impact the variance structure can be grouped into
those associated with climate modeling (CMFs in Figure 1) including global climate model
(GCM) type, hydrologic modeling (HMFs) and uncertainty in inputs and parameterization, and
statistical modeling of extremes (SMFs) associated with different fitting methods and
distributions. Land use and management modeling is not shown in the figure and was treated as
static in this study, but it is also recognized to potentially control future streamflow.

<Figure 1 here please>

The response variables are streamflow maxima associated with different return periods,
including 2, 20 and 100 year return periods, so the distribution of extremes can be quantified
(Lawrence and Hisdal, 2011). We consider response of the future relative change in streamflow
equal to the percent difference of GCM-forecasted streamflow maxima relative to GCM-hindcast
maxima (4Qr.ix, Where x indicates the return period). The future streamflow maxima can be

related to the ‘real’ streamflow maxima by using the relative changes derived from the forecast
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projections and hindcast-control projections coupled with the observations, such as using the
delta method directly applied to streamflow model results.

The relative change approach has become rather popular in climate change studies that
emphasize GCM-forecasted streamflow (Chien et al., 2012; Harding et al., 2012; Fitichi et al.,
2014; Niraula et al., 2015; Al Aamery et al., 2016). The approach has been suggested to remove
seasonal, spatial, and/or inter-annual biases of GCMs or statistical artifacts from the downscaling
method that are not accounted for in bias correction methods (Harding et al., 2012). In addition,
application of the relative change has recently shown no significant dependence upon calibrated
versus un-calibrated hydrologic model simulation, thus suggesting the response variable does not
require model calibration to see the projected direction of future streamflow (Niraula et al.,
2015). The approach has also shown less dependence upon climate modelling factors (i.e.,
CMFs in Fig 1) as compared to the absolute forecasted streamflow suggesting that biases specific
to a model structure could be accounted (Al Aamery et al., 2016). While the relative change
approach has shown potential in past studies, these studies have tended to focus on the mean
forecasting of streamflow. In the present study, we consider the method for streamflow maxima,
which is one contribution of this paper.

Realizations of the relative change in streamflow maxima can be simulated as a function
of climate, hydrologic, and statistical modeling factors within a variance analysis ensemble (Al
Aamery et al., 2016). In the present study, we included permutations using seven emission
scenarios (i.e., emission factor, CMF1) propagated through eight different GCMs associated
with phase three and four climate projects, i.e., CMIP3, CMIPS5, (i.e., GCM type and version
factors, CMF2, 3) that were downscaled using two statistical downscaling methods and four
dynamical downscaling methods (i.e., downscaling factor, CMF4). Further, our post-processing
and hydrologic analyses of downscaled hindcast (1983-2000) and forecast (2048-2065) climate
model results considered bias correction (i.e., bias factor, SMF1) propagated through a
continuous simulation hydrologic model. We performed both annual maxima and peak over
threshold extreme value analyses (i.e., extreme value factor, SMF1,2) of hydrologic model
results given recent debate in the literature over the best method. We also investigated additional
uncertainty considerations with respect to additional hydrologic inputs and hydrologic

uncertainty (HMF 1, 3).
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3 STUDY SITE AND MATERIALS:

The study site was South Elkhorn Watershed in Lexington, Kentucky USA (see Figure
2). This watershed is within a wet and temperate region where a future change in climate,
including an increase in precipitation and temperature, is projected (Melillo et al., 2014).
According to Melillo et al. (2014), a 20 to 30% increase in annual maximum precipitation is
projected under RCP 8.5 emission scenario for the end of the century. Additionally, at least, 80%
of the models used in Melillo et al. (2014) are in agreement for this region. The watershed
covers an area of 478.6 km” with surface elevations ranging between 197 to 325 m asl. The land
use is dominated by agricultural equal to 72%. The remaining land uses are urban/suburban
equal to 13%, forest equal to 14%, and open water and wetlands equal to 1%.

<Figure 2 here please>

The results of eight GCMs were implemented in this analysis. The GCM models
reflected four different GCM model types and two versions of each model, inculding a version
from CMIP3 and the newer version from CMIP5 (Brekke et al., 2013; Al Aamery et al., 2016).
The GCMs included the Canadian Global Climate Model including CGCM3 from CMIP3 and
CanESM2 from CMIPS5 (Flato, 2005); the National Center for Atmospheric Research
Community Climate Model including CCSM3 from CMIP3 and CCSM4 from CMIP5 (Collins
et al., 2006); the Geophysical Fluid Dynamics Laboratory including GFDL CM2.1 from CMIP3
and CM3 from CMIP5 (Delworth et al., 2006); and the United Kingdom Hadley Centre Climate
Model including HadCM3 from CMIP3 and HadGEM2-ES from CMIP5 (Gordon et al., 2000).
These GCMs were chosen for their representation in different climate projects, including CMIP3,
CMIPS, and NARCCAP projects, and their available archives of climate results for the current
and future periods focused on in this study (Brekke et al., 2013; Mearns et al., 2013; Al Aamery
etal., 2016).

Statistical downscaling and dynamical downscaling results were included in this analysis.
The statistical downscaling results were used from the Coupled Model Inter-comparison Project
phase three (CMIP3) and phase five (CMIP5) (Brekke et al., 2013). The dynamical downscaling
results were used from the North American Regional Climate Change Assessment Program
(NARCCAP) (Mearns et al., 2013). These downscaling methods represent two distinct
approaches for downscaling GCM results from their coarse scale to a finer watershed scale. The

statistical downscaling method is statistically based and adopts empirical-statistical relationships
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to estimate the small-scale climate variables based on the large-scale atmospheric variables
(Wilby and Dawson, 2007). The statistical downscaling method implemented in CMIP3 and
CMIPS projects adopt two schemes including bias correction and spatial disaggregation (BCSD)
and bias-correction and constructed analogs (BCCA) (Brekke et al., 2013). The dynamical
downscaling method is physically-based and uses regional climate models (RCMs) whose
boundary conditions are forced by the results of the parent GCM to simulate the atmospheric
physical processes on a regional scale (Warner, 2010). Six regional climate models were
implemented through the NARCCAP project including the Canadian Regional Climate Model
(CRCM) (Plummer et al., 2006), the Experimental Climate Prediction Center (ECPC) model
(Juang et al., 1997), the Hadley Regional Model 3 (HRM3) (Jones et al., 2003), the MM5-
PSU/NCAR mesoscale model (MMS5I) (Chen and Dudhia, 2001), the Reginal Climate Model
version 3 (RCM3) (Giorgi et al., 1993), and the Weather Research and Forecasting model
(WRFP) (Skamarock et al., 2005).

4 METHODS
4.1 Modeling simulations and evaluation

The Soil and Water Assessment Tool (SWAT; the version was ArcSWAT 2012.10.1.13)
model was applied to simulate the hydrology of South Elkhorn Watershed. This model is
physically based and was applied successfully in this region and many other regions around the
world (Palanisamy and Workman, 2014; Gassman et al., 2007; Arnold et al., 1998). The model
was evaluated over 1981-2000 using the observed climate and streamflow data and applied for
the hindcast period (1981-2000) and forecast period (2046-2065) using the GCMs results of
daily precipitation and maximum and minimum temperature (see Figure 3 in Al Aamery et al.,
2016 for evaluation methods of SWAT). We obtained all the data required by SWAT including
topography, soil, and landuse data from publically available databases. The topography and
streamlines data were obtained from the National Map website
(http://viewer.nationalmap.gov/viewer/), and the soil data was obtained from the Data Gateway
website (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). The landuse data of
1992 was used from the USGS website (http://www.mrlc.gov/nlcd2011.php). The observed
climate data of daily precipitation and maximum and minimum temperature were obtained from

Bluegrass Airport meteorological gage station. The model was evaluated using four USGS
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256  streamflow gage stations within the watershed including South Elkhorn Creek at Fort Spring,
257  USGS03289000, Town Branch at Yarnallton Road, USGS03289200, South Elkhorn Creek near
258  Midway, USGS03289300, and Elkhorn Creek near Frankfort, USGS03289500. Results for the
259  South Elkhorn Creek near Midway station were analyzed for the relative change in streamflow
260  maxima. Model evaluation including calibration, validation, and sensitivity analysis was

261  performed semi-automatically via SWAT-CUP software for Sequential Uncertainty Fitting

262  SUFI2 for the four gage stations in the watershed (Abbaspour et al., 2007). The first two years
263  was left as a spin-up period for SWAT (Arnold et al., 2010).

264 <Figure 3 here please>

265 As input to the hydrologic modeling, the scaling of precipitation and temperature method
266  of Lenderink et al. (2007) was applied to correct the bias in the climate data. The method

267  operates with monthly correction values based on the difference between observed and current

268  period simulated values as:

* _ Um(Pops(d))
269 Poo(d) = Pio(d) Lnle= @), (M)
* _ Um(Pobs(d))
270 P7op(d) = Pop(d) S0 2)
271 Trs(d) = Tsc(d) + .um(Tobs(d)) - .um(Tsc(d)) , and (3)
272 T*Sf(d) = Tsf(d) + .um(Tobs(d)) - :um(Tsc(d)) s (4)

273  where P*;.(d) and T*,.(d) are the corrected daily precipitation and temperature for the

274  simulated current period, P*s¢(d) and T*s¢(d) are the corrected daily precipitation and

275  temperature for the simulated future period, P,.(d) and T,.(d) are the uncorrected daily

276  precipitation and temperature for the simulated current period, Psf(d) and Ts¢(d) are the

277  uncorrected daily precipitation and temperature for the simulated future period, p,, (P,ps(d)) is
278  the average of observed daily precipitation values for a given month, p,,, (P;.(d)) is the average
279  daily precipitation for the current simulated values, p,, (Tob s (d)) is the average of observed daily
280  temperature values, i, (TSC (d)) is the average of daily temperature for the current simulated
281  period, and m stands for “within monthly time step”.

282 The annual maxima (AM) and peak over threshold (POT) methods were carried out for
283  each realization from the hydrologic modeling results in order to analyze the extremes (see

284  Figure 3). The AM series is constructed by selecting one value per a specific time over the

10



285  sample size. In streamflow studies such as herein, this value is the maximum water discharge
286  value selected over one year from the daily time series data (Khaliq et al., 2006, Haan, 2002).
287  Thereby, the AM series replaces the flow series (¢, g2, -...., q365) of a year (j) by the largest flood

288  value g,/ (where 1<m <total number of days in year j, 1< j<n, and 7 is the number of years).
289  According to the extreme theorem, the probability of the rescaled M, is approaching the

290  General Extreme Value (GEV) family when n—00. The GEV family distribution is expressed
291  as follows:

—1/&
292 G(q):exp{—[1+§(%)} } 8

293 where {q I+ &( -4 ) > 0} , the location parameter —oo < 1 < o0, the scale parameter o >0, and
o

294 the shape parameter —o0 < & <. Depending on the value of the shape parameter &, the GEV
295  family has three distinct probability distributions. The light tail Gumbel type when & =0, the
296  heavy tail Fréchet type when & > 0, and the bounded upper tail Weibull type when £ <0. The
297  extreme quantiles of the return level 7 when & # 0 are then calculated as follows:

o 1.,
298 gy =pu——[1-{-log(1--)}"] (6

& T
299  and when £=0

1

300 g, =,u—0'log{—log(1—?)}. (7

301 The POT series was constructed by selecting all independent and identically distributed
302 values (g1, q2, .....) that are higher than a specific, and carefully chosen, value called threshold
303  point (g,) (see example in Figure 4). According to extreme value theory, for large enough ¢, the
304  distribution function of y= (¢-¢q,) conditioned by g>¢, is approximated by the Generalized Pareto
305  (GP) family as follows (Coles, 2001):

306 H(y)zl—(1+§—~y)’”§ (8
G
307  where { y:y>0and (1+ é?) > 0}, and 6 =6 £&(q,— ) , q 1s a specific value in the sequence
G
308 (g1 g2 .....),and o, u, and & are the scale, location, and shape parameters. Depending on the

11



309
310

311
312

313

314

315
316

317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332

333

334
335
336

value of the shape factor, the GP family consists of three probability distribution functions as

follows: the heavy tail Pareto type when & > 0; the light tail Exponential type when & =0; and

bounded upper tail Beta type when & < 0. To calculate the extreme quantile ( g, ) of the return
period T, the probability £, =Pr (¢ >g¢,) is calculated first and then the return period when

&#0 is given by:

G
qr =4, {EJ[@ LT - 1] ©
When & =0, the return level of a period T is given by:
4 =4, +6log(T¢, ) (1

<Figure 4 here please>

Threshold Point Choice: We adopted the parameter stabilization method explained by
Coles (2001) to choose threshold points used within the POT method. The method is based on
fitting the General Pareto distribution across a range of different threshold points. When fitting,

the model parameters including the shape parameter (£) and scale parameter (&) were

estimated for each point across the range. The shape parameter should be approximately
constant, and the scale parameter should be linear in ¢ when the GP distribution is valid above

the g, (Coles, 2001). Figure 4 shows an example of fitting the GP model using the maximum

likelihood method over a range of 1 to 40 for the threshold point. As observed, the shape and the

reparametrized scale parameters are nearly stable until reaching the point 21. We, therefore,
specified the point 21 cms as the threshold point for the POT series of the observed daily

streamflow series in this example; and the method was repeated for each model hydrologic

realization performed in our study. In order to support our choice of the threshold, we compared

our final results of threshold selection using the parameter stabilization method with three Rules

of Thumb presented by Scarrott and MacDonald (2012). Using general order statistics

convergence properties, methods including the upper 10% rule, square root rule &, = \/; , and

k, =n’" /log[log(n)] rule were developed (see Scarrott and MacDonald, 2012). Figure 4 shows

that our choices compared well to the three methods.
Temporal Independency in the POT Series: The values of the POT series, in the sense o

extreme theorem, should admit to the temporal independence condition. By only selecting all

f
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values that are higher than the threshold point, we will obviously violate this condition within a
streamflow time series. Therefore, to identify and remove the time dependency in the POT series
values, de-clustering of the POT series was adopted. The de-clustering was performed by
calculating the Extremal Index (@) as follows (Coles, 2001):

6 = (limiting mean clustering size) ', (11)
where 6 equal to one indicates an independent series. Therefore, the objective was to minimize
the size of the clusters until @ reaches one. Our approach was to make manual iteration for each
POT series to select the number of threshold deficits, 7, used to define a cluster. Moreover, to
support our independent choices of POT series, we performed the auto-tail dependence function
plots for the data series (Reiss and Thomas, 2007) to test the dependency of the events in the
series.

Trend Analysis: We analyzed the POT and the AM series with respect to the non-
stationarity explained by trend analysis. We used the Mann-Kendall nonparametric test to
identify the presence of trends in each independent POT and AM series (Haan, 2002). If the
trend was present, we removed the trend from the series, although as will be discussed in the
results, very few series exhibited a significant mean trend.

Likelihood Ratio Test: The likelihood ratio test was used to test the null hypothesis of the

shape factor (&) to be zero. This test is used in statistics to test the goodness of fit of two

distributions when one of them is a special case of the other, 1.e., nested models (Hogg et al.,
2014, Coles, 2001). In our case, the Gumbel distribution is nested within the GEV distribution,
and the Exponential distribution is nested within the GP distribution.

Currently, the AM and POT series are the only two types of flood peak series that can be
used for flood frequency analysis, and further discussion of a comprehensive comparison
between the two series is provided in the literature in Bezak et al. (2014) and Madsen et al.
(1997). To perform all the methods described in the extreme analysis methods section and
shown in Figure 3, we have applied the R package extRemes version 2.0 described in Gilleland

& Katz (2016).

4.2 Uncertainty from climate and extreme modeling factors
Our results from the coupled climate, hydrologic, and extreme modeling methods

produced 226 realizations of model runs available for variance analysis based on a factorial
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design that considered emission type, GCM type and version, downscaling type, bias correction,
and extreme value method type. Each factor was divided within variance decomposition as
follows: the GCM type factor was divided into four levels for the four parent models mentioned
previously; the GCM version factor was divided into two levels indicating CMIP3 and CMIP5
project phases of the models; the downscaling factor was divided into two levels for statistical
and dynamical methods; the emission factor was divided into seven levels including the SRES
type used in CMIP3 (A1B, A2, and B1) and the RCPs type used in CMIP5 (RCP2.6, RCP4.5,
RCP6.0, and RCP8.5); the bias factor was divided into two levels indicating inclusion of
methods in Equations (1-4) or lack thereof; and the extreme value factor was divided into two
levels for AM and POT methods. Further details of the factorial levels for each of the 226
realizations are provided in the Supplementary On-line Table. We simulated variance analysis
following both more traditional linear methods and more recently published nonlinear methods
in order to maintain robustness of the analyses.

Linear Analysis of Variance (ANOVA): We performed statistical analysis through fitting
the linear analysis of variance model (ANOVA) to the results of the maxima extreme analysis.
ANOVA was applied separately for each streamflow maxima quantile. The extreme quantiles
represent the response variables of 2-year, 20-year, and 100-year return periods (4Qrx2-year-mE),
AQF-H20-year-mE), a0d AQp.11100-year-mE) TESPECtively) via the general linear model-univariate
procedure in SPSS 22 software (Pallant, 2013). ANOVA explores the effect of different factors
on the variance of the response using the p-value of the statistical test and ranking factor
importance by using the F-value. The F-value of each factor was divided by the summation of F-
values in a single model to determine how much variance that factor explains from the total
predictable variance. Several considerations were determined when applying ANOV A methods.
First, because the datasets were not represented in the climate factors equally, we applied four
separate models that balanced a set of factors. The reason for the multiple models is attributed to
our climate datasets where the CMIP3 project has both statistically and dynamically downscaled
results while the CMIPS5 project has only statistically downscaled results. We, also, have
different emission scenarios between the two projects. CMIP3 has SRES emission scenarios; and
CMIP5 has RCPs emission scenarios. We built therefore four-way ANOV A models as the
highest possible order to constrain the balanced and nested models. Figure 5 shows four possible

4-way ANOVA models that we built from our factorial design. Second, we analyzed the factors
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across the models using the highest possible order, however, if a factor was found to be
unimportant, we omitted the factor to maximize repetitions.

<Figure 5 here please>

ANOVA assumes that the population is normally distributed, although the violation of
this assumption should not cause major problems when the sample size is greater than 30
(Pallant, 2005, Gravetter&Wallnau, 2000, Stevens, 1996). In our factorial design, the least
sample size was recorded in ANOVA model 3, where the sample size was 56. Therefore, our
concern about the normality assumption is limited. The homogeneity of variance assumption
was treated by using the Levene test for the equality of variance (Pallant, 2005). If the data failed
in this test, the significant level by which we compare the variances of the different groups in the
ANOVA models was 0.01, which overcomes the violation of this assumption (Pallant, 2005).

Nonlinear Artificial Neural Network (ANN): ANN models, on the other hand, were
considered in this study to reinforce our robustness of the variance analysis. ANNs provides a
model framework based on a set of multivariate nonlinear functions, and therefore could account
for nonlinearity between factors controlling variance and the streamflow response variable, if it
exists. In this manner, ANNs could overcome the underlying multivariate linear model
limitation that ANOVA is based on. We used the ANN model to examine the climate factors
importance on streamflow maxima projections through SPSS 22 software (IBM , 2012, Tufféry,
2011). The input layer represented the climate and the statistical factors with nominal variables,
and the output layer represented the relative change in streamflow maxima. We used one hidden
layer with a randomly generated number of neurons. We used supervised training with multilayer
perceptron and feedforward architecture. All values of the input and output layers were
normalized so that all values ranged between 0 and 1. The hyperbolic tangent activation function
was considered in the hidden layer. We used the same four models proposed in the ANOVA
analysis to perform the ANN analysis. The dataset partitioning was performed with SPSS-ANN
to divide the data into training and testing datasets. However, through generation of random
numbers within SPSS-ANN, the partitioning values of training and testing will swing around the
70% and 30% marks for each run of many runs performed for each model. The values of training
partitioning ranged between 60% and 80% affecting the testing portion and providing a new
relative error value for both training and testing parts. Accordingly, the smallest relative error

provides the best results for the ANN model (IBM, 2012). Therefore, our approach was to use
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an initial 70% of the dataset for training and the rest for testing, and then rerun the model until

obtaining the minimum possible relative errors across the training and testing data.

4.3 Uncertainty from hydrologic modeling

Additional uncertainty from the future hydrologic balance and its simulation were also
quantified as part of our study. Future projections of net radiation, vapor pressure and wind
speed were tested in simulation for the study region with the premise that decreases in wind
speed and net radiation and an increase in relative humidity could decrease future
evapotranspiration and in turn increase streamflow maxima while at the same time increase
uncertainty of forecasts. Future projections that consider hydrologic model fit and hydrologic
parameter uncertainty were also tested to assess the potential to increase the variability of
projected streamflow maxima.

Future climate change of wind speed, net radiation, and relative humidity were tested
within hydrologic simulation by considering projected shifts reported in the literature. The
average monthly wind speed in the study site ranges between 3 and 5 m/s. According to
McVicar et al. (2012), the possible stilling in the middle of the current century is approximately
0.5 m/s for the study site region when assuming a linear trend of their observations reported
therein. In turn, the percent climate change of wind speed is between -10% and -17% for the
future period in the study region. Wild (2009) indicates that the surface solar radiation has a
decadal variation and that the absolute trend was observed as -6 W m™ per decade and 8 W m™
per decade for the periods of 1961-1990 and 1995-2007, respectively, over the United States.
We recognized that increasing radiation would offset decreasing wind speed when estimating
evapotranspiration, and therefore we considered the decreasing trend of -6 W m™ per decade for
the future period, in order to test its sensitivity. The mean daily solar radiation ranges throughout
the year between 81 W m? (1.9 kW h m?d") and 300 W m™ (7.2 kW h m™d™). Considering the
mentioned net decrease produces a change in the solar radiation reaching the surface to be
between -4% and -15%. Regarding the relative humidity, Willett et al. (2008) shows data that
suggests an increase in the relative humidity for the northern hemisphere. The net increase
shown was 0.07% for the 10 year period of investigation. We assumed the same change for the
future period, which resulted in a range between +0.4% and +0.5% for the study region.

Donohue et al. (2010) showed that the Penman equation produced the most reasonable
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estimation of evaporation demand, and this method is included within the hydrologic model used
in the present study. Therefore, we considered a number of scenarios in hydrologic modeling
that test the mentioned ranges of wind speed, net radiation, and relative humidity concurrently to
see their added impact on streamflow maxima. We also tested the variables independently to see
their individual sensitivity upon the streamflow maxima.

Future projections that consider hydrologic model fit and hydrologic modeling
uncertainty were also tested with the hydrologic model to investigate their impact on forecasted
streamflow maxima. Recent literature results have marginalized the importance of model fit
when forecasting the relative change in future mean streamflow (Niraula et al., 2015), and we
tested this concept for future streamflow maxima. The future streamflow maxima produced from
the calibrated hydrologic model simulation for a set of GCM realizations was compared against
the future streamflow maxima produced using the un-calibrated (i.e., default) parameterization of
the hydrologic model for the same climate realizations. Additionally, the impact of hydrologic
model uncertainty was considered by carrying forward uncertainty projections from the
hydrologic model parameterization to the extreme value methods and thereafter to compute the
relative change in future streamflow. The SWAT-CUP software provides parameter sets and
solutions used to create uncertainty bounds during the model simulation. Realizations of all
parameter sets that meet the objective function criteria were chosen and extreme value methods
were performed for hindcast and forecast global climate pairs to compute the relative change in

streamflow maxima.

4.4  Forecast of streamflow maxima for wet temperate regions

After quantifying the climate, hydrologic, and extreme modeling factors controlling
variability of the projections, an ensemble was created to forecast the relative change in the
streamflow maxima for the wet temperate study region (Al Aamery et al., 2016). The extreme
forecasts for this study calculated the net effect on the mean and variance of the balanced
ensemble from variation of climate modeling factors and extreme modeling factors, the added
uncertainty from hydrologic model parameterization, and the added mean shift and its variance
from climate change shifts in net radiation, vapor pressure and wind speed. Results were
compared with other studies reported in the literature of streamflow maxima (see Table 1) that

fell within wet temperate regions.
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5 RESULTS AND DISCUSSION
5.1 Modeling simulations and evaluation

Results from the model evaluation showed that the hydrologic model performed within
an acceptable range, and the simulated and observed daily streamflow signals showed close
agreement (see Figure 6). The four quantitative matrics including coefficient of determination
(R%), percent bias (PBIAS%), Nash-Sutcliff Efficiency (NS), and the ratio of the root mean square
error to the standard deviation of measured data (RSR) showed results within the acceptable
range (Moriasi et al., 2007, Donigan, 2002, Gassman et al., 2007) in both calibration and
validation periods for the majority of the four observation sites for which the model was
compared against (see compiled metrics in Table 2), although one of the four sites showed values
just below or equal to the acceptable range boundary during validation. Overall, 53 out of the 56
metrics that compared observations with model results were above the acceptable range showing
that the model simulated streamflow well. According to Moriasi et al. (2007) the monthly time
step model performance is considered satisfactory if the NS>0.5, RSR<0.7, and PBIAS <£25%.
The model performance on finer time steps (e.g. daily) is usually poorer than the coarser time
steps model (e.g. monthly) in terms of the statistical matrices (e.g. NS, RST, PBIAS) (Moriasi et
al., 2007, Engel et al., 2007). For instance, while the monthly NS was 0.656 for the calibration
period in Fernandez et al. (2005), the daily one was 0.395. Moreover, Moriasi et al. (2007)
indicated that when reviewing previous studies, NS and PBIAS were “as expected” lower in the
validation period than the calibration period for streamflow. Note that the Midway station was
our primary calibration, since all of the model’s streamflow forecasts occurred from this
location. The model we established for South Elkhorn watershed showed results for the Midway
gage station to have NS values equal to 0.9 and 0.66 for the monthly and daily time steps,
respectively, for the calibration period; and NS values equal to 0.88 and 0.46 for the monthly and
daily time steps, respectively, for the validation period. In summary, the metrics showed
adequate performance considering the above information and results.

<Figure 6 here please>

<Table 2 here please>

Results from fitting both the AM and POT extreme series methods to the streamflow

results showed that in general the extreme series results had little mean trend and were
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523  dominated by the two parameter probability distributions (see Supplementary On-line Table).
524  The Mann-Kendall test results showed that only 2% of the AM series included a mean trend that
525  required removal and only 4% of POT series results had a mean trend that required removal. A
526  regression approach was also carried out and provided identical results as the Mann-Kendall
527  tests. The results highlight that although non-stationarity is exhibited when comparing extremes
528  from the hindcast to the forecast periods, little significant non-stationarity is exhibited within the
529  simulation periods. Statistical results showed that 91% of the AM series best followed the two-
530  parameter Gumbel distribution while 85% of the POT series best followed the exponential

531  distribution. The results tend to agree with the results of Dankers and Feyen (2008) who also
532 found that a two parameter distribution was most adequate when fitting distributions from

533  extreme value theory to streamflow results derived from global climate modeling. Additional
534 results from the extreme value analyses is also compiled in the Supplemental On-line Table and
535 includes: threshold selections, the value of the extremal index 8 before de-clustering, the value of
536  rrequired to make the extremal index € equal to unity, the p-value of Mann-Kendall non-

537  parametric test, and the resultant sample size (n).

538 We found less than 10% difference between observed and simulated maxima for all

539  return periods (i.e., 2, 20 and 100 year return periods) for both AM and POT methods. Both
540  observed and simulated maxima followed exponential distributions for the POT method; and
541  both followed the Gumbel distribution for the AM method. Donigan (2002) indicates that an
542 absolute hydrologic model calibration/validation target of less than 10% difference between the
543  simulated and the observed hydrology flow is considered a very good target; and that the range
544  of such target should be applied on the mean and the individual events may show larger

545  differences while still acceptable. With this criteria in mind, our SWAT evaluation results for
546  the extremes were deemed adequate.

547 Extreme quantiles for 2-, 20-, and 100-year maxima streamflow levels showed that

548  forecast results were in general greater than hindcast results for simulation pairs with the same
549  climate modeling factors, highlighting the non-stationarity of extremes mentioned previously.
550  Figure 7 illustrates hindcast simulations corresponding to POT extreme series method, and all
551  simulation results are shown in the Supplementary On-line Table. Statistical downscaling of the
552 hindcast GCM realizations in general under-predicted hydrologic model results analyzed with

553  the extreme series method; and the under-prediction was especially true for streamflow levels
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from the 100-year return period. Results from the dynamical downscaling hindcast realizations
better bound the observed extremes. The result supports the idea that regional climate models
can capture small-scale climate features, e.g., strong fronts, and realistically simulate extreme
events (Fowler et al., 2007, Warner, 2010), which would suggest a better choice for extreme
streamflow forecasting. Fowler et al. (2007) pointed out that the statistical downscaling methods
poorly represent the extreme events and underestimate variance, which reflects the fact that both
BCSD and BCCA methods use the distribution of precipitation from historical climate records to
create the future distributions. Warner (2010) compared the statistical and dynamical
downscaling with respect to their advantages and disadvantages, and he indicated that dynamical
downscaling methods could better capture extreme events and variance. Sunyer et al. (2015)
shows that the RCM-GCM projections are the main source of variability in their results, and
between 30-50% of the total variance is explained by statistical downscaling in several
catchments in their study. Trayhorn and DeGaetano (2001) compared several different
downscaling methods for rainfall extremes over the Northeastern United States; and their results
suggest that regional climate models overestimate the observed extremes. Aside from the
Trayhorn and DeGaetano (2001) results, literature results and this study generally support the
idea that hindcast extremes from dynamic downscaling agree better with observed extremes as
compared to statistical downscaling results.

<Figure 7 here please>

We also examined specific results of individual climate models and downscaling methods
in order to provide insight on how climate model structure may be impacting forecasted
streamflow maxima. The four GCMs from CMIP3 all illustrate differences when comparing
across the 2, 20 and 100 year return periods (Figure 7). The result was not surprising given that
GCM has been found as a significant factor in studies of forecasted mean streamflow and
precipitation, and climate scientists highlight variability of GCMs due to the differences in the
models’ structures and parameterizations (Randall et al., 2007; Weart, 2010; Mearns et al., 2013;
Melillo et al., 2014; Al Aamery et al., 2016). Given the many differences between the four
GCMs, it 1s difficult to discern specific processes represented within the climate models that
might be controlling the extreme streamflow forecasts, however, direct comparison of CMIP3

and CMIP5 model versions provided some discussion.
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Figure 7 reveals that CCSM has a pronounced difference between CMIP3 and CMIP5
forecasted streamflow maxima while the other GCMs (Had, GFDL and CGCM) do not show
differences between model versions for our analyses. The reason is perhaps attributed to the
newer version CCSM4 that produces El Nino-Southern Oscillation (ENSO) variability in a more
realistic frequency distribution than CCSM3 by changing the deep convection scheme.

The Had, GFDL and CGCM models also made changes from CMIP3 to CMIP5 but these
tend to have little differences in terms of streamflow extremes (Figure 7). The HadGEM?2 of
CMIPS improved the performance of ENSO, northern continent land-surface temperature biases,
SSTs, and wind stress compared to the previous models; however, Collins et al. (2008) suggests
that the power spectrum of El Nino was not a substantial improvement. GFDL version 3 (CM3)
used in CMIP5 made minimal changes to the ocean and sea ice models compared to those used
in CM2.1 version of CMIP3; however, the newer version is extensively developed the
atmosphere and land model components (Griffies et al., 2011). CanESM2 of CMIP5 combines
the fourth generation atmospheric general circulation model (CanCM4) with terrestrial carbon
cycle model (CTEM). Compared to the third generation of CanCM3 that was used in CGCM3.1
of CMIP3, CanCM4 is different in many aspects such as the finer resolution and the addition of
new schemes such as shallow convection scheme (see Chylek et al., 2011).

Taken together, of all the changes to the four different GCMs between CMIP3 and
CMIPS, only augmenting ENSO within the GCM seems to have a substantial impact on
forecasted streamflow maxima. The suggestion is reasonable given that ENSO has been
suggested to show significant impacts on precipitation in this region of North America (Gabler et
al., 2009). Results suggest that the El Nino-Southern Oscillation and its representation within
climate modeling may exhibit a substantial control on forecasting streamflow maxima for the
wet temperate study region; and additional emphasis upon oscillations when forecasting

streamflow maxima in wet temperate regions may be fruitful.

5.2 Uncertainty from climate and extreme modeling factors

Variance analysis results determined via ANOVA showed that the variance structure of
forecasted streamflow maxima exhibits some dependence on all of the climate modeling
considered factors but does not exhibit dependence upon the extreme value method applied (see

Figure 8). The results are interesting due the fact that previous variance analysis of mean
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streamflow forecasted from GCMs only showed dependence on a subset of the climate modeling
factors while debate in the literature suggests that AM and POT methods would give different
results (Scarrott and MacDonald, 2012; Bezak et al., 2014; Al Aamery et al., 2016).
Specifically, results of the ANOVA (Figure 8) show that variance of the 2 year and 20 year
streamflow maxima are significantly dependent upon GCM type, downscaling method, emission
scenario, GCM project phase, and bias implementation; and variance of the 100 year streamflow
maxima is significantly dependent upon GCM type, GCM project phase, and bias
implementation. For reference, results of forecasted mean streamflow are included in Figure 8
and show dependence on GCM type and phase and downscaling.

<Figure 8 here please>

The climate modeling factors that significantly influenced the forecasted streamflow
maxima variances were ranked using the weighted F-value according to their variance
contribution (see Figure 8) as GCM type, downscaling method, bias implementation, GCM
version associated with the climate project phase, and the emission scenario input to the GCM.
Results of the ANN non-linear variance analysis compared well with linear analysis via ANOVA
(see comparisons in Figure 9) providing further confidence in our ranking results.

<Figure 9 here please>

In addition to the variance breakdown, the total variance of the forecasted extremes also
displays pertinent information. The total variance of streamflow extremes increased
substantially with return period—a result most easily observed with the standard error bars in
Figure 10. In addition, the proportion of the variance that was predictable with the climate
modeling factors tended to decrease with return period. The result suggests a propagation of
unexplainable variance throughout the analysis that becomes more pronounced with the higher
order extremes associated with higher return periods.

<Figure 10 here please>

We at least partially attribute the pronounced growth of uncertainty with return period to
fitting the extreme value distributions to the hydrologic results. The 100 year return period falls
at the tail end of the GEV and GP distributions (i.e., /=0.99) and therefore uncertainty introduced
in fitting the distributions will be most pronounced for the highest return periods. To illustrate
the point, we performed sensitivity of the extreme value parameterization method by assuming a

known parent Gumbel distribution for M,, drawing sets of realizations consistent with the years
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of data in our analyses, and fitting the extreme value distribution consistent with the maximum
likelihood method of our analyses as well as typically performed by others (e.g., Gilleland and
Katz, 2006). Results from the sensitivity show that the variance associated with the 100 year
streamflow is about five times greater than that of the 2 year streamflow event (see Table 3).
The result highlights one reason for pronounced increases in unexplainable variance within
forecasted streamflow maxima.

<Table 3 here please>

On the other hand, factorial comparison between the AM and POT series fitted by the
General Extreme Value (GEV) and General Pareto (GP) distributions did not show significance
within the analysis of variance results. The result is surprising given recent debate and critique
of each method, e.g., AM is criticized for its neglect of multiple extremes per annum while POT
has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott and
MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016). However, further
investigation of the literature suggests that the variance analysis result is consistent with
fundamental theory and that the methods might be used interchangeably, as needed, so long as
care is taken in their application. Fundamentally, Coles (2001) shows that the GEV distribution
provides the base that can be used to derive the GP distribution so long as the threshold point is
sufficiently large and the events are independent and random. In this manner, we recommend
that future coupled hydrologic and climate research studies that apply the POT method should
strive for relatively high threshold values that fall within the Rules of Thumb outlined by
Scarrott and MacDonald (2012) and ensure that the extremal index is not less than one (see
Figure 3).

One noteworthy comparison of the present study’s results with previously published
results is that the variance of forecasted streamflow maxima is even more sensitive to climate
modeling factors as compared to the variance of mean forecasted streamflow. Specifically, the
variance of streamflow maxima showed significant dependence upon the choice of emission
scenario and bias correction approach (see Figure 8) while the variance of mean streamflow did
not exhibit significant dependence upon emission and bias (see Al Aamery et al., 2016 and
results summarized in Figure 8). The streamflow maxima’s dependence upon emission scenario
is worthy of mentioning given that the mean atmospheric CO, concentration projected for the

emission scenarios varies by just £50 ppm for 2050 (IPCC, 2001; Meinshausen et al., 2011).

23



677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

Further, the mean annual temperature has a total range of just 1.5°C for 2050 across emission
scenarios projected within the GCMs applied in this study and the mean streamflow study of Al
Aamery et al. (2016). The subtle mean changes in CO, and MAT for 2050 appear to mask
temporal anomalies captured within the GCMs. The potential of emissions to help control
streamflow maxima is somewhat corroborated by the work of Mantua et al. (2010) where they
show streamflow maxima differences among two emission scenarios. Significance of emission
scenario within variance analysis of forecasted streamflow maxima suggests that hydrologic and
climate research is needed that examines how models might be coupled at a higher temporal
resolution, rather than the more prevalent emphasis on mean coupling (e.g., see review Table 1
in Al Aamery et al., 2016). Similarly, the significance of bias correction upon the variance of
forecasted streamflow maxima reflects the boundary between climate and hydrologic models that
has emphasized mean coupling and thus linear shifts in rainfall and temperature data to show
agreement with observations (Lenderink et al., 2007). More sophisticated bias correction
methods are available (Teutschbein and Seibert, 2012) but typically come with the added
conundrum of forcing functional constraints on climate model results that are sought after due to
their non-stationarity. Surely, research might consider higher resolution model coupling to

understand anomalies that control maxima streamflow.

5.3 Uncertainty from hydrologic modeling

Future climate change of wind speed, net radiation, and relative humidity were tested
within hydrologic simulation by considering projected shifts reported in the literature. Results
suggest that the net impact of wind speed, net radiation, and relative humidity could provide an
additional 1 to 5% increase in streamflow maxima for 2, 20 and 100 year return periods for the
wet temperate study region and future period considered (see Table 4). Average daily change in
evapotranspiration ranged from 0.5 to 5% decreases. Streamflow maxima increases and standard
error associated with the wind speed, radiation and relative humidity shifts were +3.2(£1.7),
+2.2(£1.6) and +1.9(%£1.6)% for 2, 20 and 100 year events. Relative to the increases of
+27(£21), +36(£34) and +49(+85)% for streamflow maxima associated with GCM-projection of
precipitation and temperature from ensemble analysis (see Figure 10), the effect of wind speed,
net radiation and relative humidity were small for this region. Nevertheless, the effect is non-

zero; and the variables may be more substantial in other regions or for forecasting to 2100.
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<Table 4 here please>

Future projections that considered hydrologic model fit and hydrologic modeling
uncertainty were also tested to investigate their impact on the relative change of streamflow
maxima. The future streamflow maxima produced from the calibrated hydrologic model
simulation was compared against the future streamflow maxima produced using the un-
calibrated (i.e., default) parameterization of the hydrologic model for the realization pairs for the
AM extreme value analysis method (n=74). Results for the uncalibrated hydrologic analysis of
the relative change in streamflow maxima were +19(£28), +20(+35) and +24(£59)% for 2, 20
and 100 year events in comparison to the calibrated model results equal to +27(£23), +35(30)
and +49(£92)% for 2, 20 and 100 year events. Results show that the uncalibrated model gives a
much lower increase in future streamflow maxima compared to the calibrated model results,
especially for the 100 year extreme. Note that the default model simulations tended to under-
predict streamflow during peak events. The simulation bias is carried forward to the extreme
modeling results and is not removed when considering the relative change. In this manner, the
variance of the streamflow maxima was dependent on hydrologic model parameterization.

These results contrast the work of Niraula et al. (2015) where we showed that the relative change
in mean forecasted streamflow was not dependent on parameter selection during calibration. The
results further highlight the variance structure’s sensitivity when forecasting streamflow
extremes.

Given the dependence on hydrologic calibration, the hydrologic uncertainty realizations
were also performed. Results suggest that hydrologic model parameter sets generated during
uncertainty analysis also impart variance upon relative changes in streamflow maxima. We
calculated the error associated with the relative change in streamflow maxima using the
parameter sets within SWAT-CUP that met model objective function criteria. Standard error
was 3.1, 3.3 and 3.6% for the relative change of 2, 20 and 100 year events. Standard error is
small in comparison to the error produced from climate and extreme modeling factors.
Nevertheless the error is nonzero and may be larger for other regions. We also calculated the
standard error from absolute forecasted streamflow maxima and found values of 11, 21, and 27
cms for 2, 20 and 100 year events. We compared these values with the standard error from direct
bias-correction of the streamflow maxima via the relative change approach, and the standard

error was 3, 6 and 9 cms for 2, 20 and 100 year events. The results highlight that the delta
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method applied to the direct observed streamflow via the relative change does reduce hydrologic

uncertainty relative to the absolute forecasts.

5.4 Forecast of streamflow maxima for wet temperate regions

One corollary of variance analysis is inclusion of significant factors impacting prediction
and thus forecasting of future streamflow. The relative change in streamflow maxima were
increases of +30(x21), +38(£34) and +51(£85)% for the study region for 2, 20 and 100 year
events. The increases are substantially larger than the 11% increases found for mean streamflow
and mean precipitation for the study region (Al Aamery et al., 2016). Additionally, streamflow
maxima increases as a function of return period. The variability of the projections is
pronounced, and the uncertainty from climate and extreme model factors dominates the variance
(see Table 5).

<Table 5 here please>

The forecasted results of increased maxima streamflow in 2050 for the wet temperate
region of North America (1120 mm y™') is in agreement with scientific sentiment and forecasting
that wet regions will get wetter and wet time periods will be wetter (Melillo et al., 2014). We
performed analysis of published maxima streamflow forecasts in wet regions of Europe and their
comparison corroborated the finding that maxima streamflow increases as a function of return
period. Analysis of the results from Lawrence and Hisdal (2011) show an increase of maxima
streamflow as a function of return period for Norway (760-2250 mm y™'). Also, analysis of the
results from Dankers and Feyen (2008) show an increase of maxima streamflow as a function of
return period for their European sites studied where the mean annual precipitation was greater
than 500 mm per year and is projected to be less in the end of this century.

The finding that forecasted maxima streamflow may show further increases as a function
of return period further supports general scientific agreement that the most extreme flooding
events will get even more extreme for wet temperate climates (Melillo et al., 2014). This
concept is reflected in the timing of streamflow increases and extremities in the present study,
and Table 6 shows that the months of the year with the highest future changes in mean
precipitation and streamflow tend to also account for the majority of forecasted streamflow
maxima events during the study period. The results also reflect the fundamental scientific

consequences of climate change. That is, increased precipitation in wet regions is expected due
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to higher amounts of moisture in the atmosphere due to warmer atmospheric temperatures and
expansion of the high Sub-tropical Belt as the air temperature increases and moist air is
transported to higher and lower latitudes (Gabler et al., 2009; Melillo et al., 2014). In turn,
climate change in wet temperate region may increase precipitation, temperature, and relative
humidity while decreasing wind speed and net radiation, and the net effect both individually and
cumulatively of all these shifts is an increase in streamflow maxima.

<Table 6 here please>

6 CONCLUSION
The main conclusions of our work are described as follows:

(1) Model simulation and evaluation results from comparison of different global climate model
downscaling methods suggests that dynamic downscaling results more closely align with
observations, presumably due to the explicit simulation of small-scale features such as strong
fronts. Comparison of streamflow maxima forecasted with paired climate models from
CMIP3 versus CMIPS5 projects suggest that the El Nino-Southern Oscillation representation
within modeling exhibits a control on forecasting streamflow maxima for the wet temperate
region studied.

(2) Uncertainty from climate and extreme modeling factors was evaluated and showed that the
relative change of streamflow maxima was not dependent on systematic variance from the
annual maxima versus peak over threshold method applied. We find that the variance of
streamflow maxima is an increasing function of the return period, which is at least partly
attributed to fitting the extreme value distributions to the hydrologic model results. The
variance of the relative change in streamflow maxima is dependent upon global climate
model, emission scenario, project phase, downscaling, and bias correction.

(3) Uncertainty from hydrologic modelling was analyzed and unlike results from previous
research focused on the relative change of mean streamflow, the relative change of
streamflow maxima was dependent on hydrologic model fit and modeling uncertainty. The
streamflow maxima also showed some dependence on climate projections of wind speed, net
radiation and relative humidity.

(4) Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced

forecast standard error, including +30(£21), +38(%£34) and +51(£85)% for 2, 20 and 100 year
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events for the wet temperate region studied. The variance of maxima projections was
dominated by climate model factors and extreme value analyses with lesser control from

hydrologic inputs and hydrologic model parameterization.
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Figure 1

Figure 1. Conceptual model of variance structure for forecasted streamflow maxima.
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Figure 2

Figure 2. Study area of the South Elkhorn Watershed, Kentucky USA (adopted from Figure 2 in
Al Amery et al., 2016)
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Figure 3

Figure 3. Methodology of extreme value analysis.
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Figure 4

Figure 4. (a) AM series example, (b) POT series example, (¢) Parameter stabilization drawing for
observed 0, and (d) Threshold choices, comparison of three Rule of Thumb methods and parameter
stabilization method.

(a)

(b)

©

(d)

> Observed daily Q series
DObserved AM series

% Observed daily Q series

'E 400 OObserved AM series 50
5 300 Y N,
~ o o o 3 3
o o o %) %)
z SN NN N
E 200 WY Y T
100
S o
7 [ ]
A D ® & o o 9\ I\
A 060 o@o OQP oeﬁ‘ oeﬁ‘ oeﬁ’
N N Y Y ¥ il Al
% Observed daily Q series XObserved daily Q series
—_~ 150 .
) . = DObserved POT series,
£ 400 OObserved POT series £ 100
< <
£ 300 o
5} E 04 %
= 200 5 & S S ® S S
E 100 T 0T o
3 0 RO ST
bl
i
@n
D
o
QY
2 =)
g7
g =1
£
2 2
£ o il
g
ns
g g
o |
s
o |
0 S
Q
g3 ¢+++++++HH’HHHH
&
o -
s
=
2
o
s
: T T T T T
0 10 40 50
Threshold
— P arameter-Stabilize = = == === 90% Quantile e— Parameter-Stabilize = === === 90% Quantile
«== === == Threshold-of-k1 Threshold-of-k2 «== === == Threshold-of-kl ~ cscceccee Threshold-of-k2
60 60
= 50 & 50
z - z
S 40 A A~ \ S0
= =
EERRUATY \ PSS AT Y, R
g2 D g2
R P e R S L Ne=mITNS TS £ 10
04 0
0 5 10 15 20 25 30 35 40 45 0 10 20 30 40 50 60 70 80

Hindcast-Realizations Realizations



Figure 5

Figure 5. Factorial design for the four analysis of variance models.
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Fig

Figury 6. Observed anthsimuldted stteamflow by using SWAT.
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Figure 7

Figure 7. Results of the extreme quantiles fir (a) hindcast simulation, (b) different GCM results, and (c)
CMIP3 versus CMIPS5 results.
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Figure 8. ANOVA results that present a comparison between the factors with respect to their significance and ranking. The horizontal dark grey

bars represent the fraction of variance explained by the factor by using ANOVA method.

Model 1 GCM downscaling Project Bias Emission SRES Emission RCPs Series

Variable

AQF Hpmean I _ Project was not Emission was not tested in model 1 NA

AQF_Hf1 year extreme) - _ ® tested in model 1 Series were mnot
AQF-H20year extreme) . - ) _ significant for any
AOF-H(100-year extreme) _ AQr 55t exemey model
Model 2 GCM downscaling Project Bias Emission SRES Emission RCPs Series

Variable

AQF Himean _ downscaling was | Project was not NA NA

AQF-H2year extreme) _ not tested in | tested in model 2 - ) Series  were not
AQF H20year extreme) - model 2 - . *) significant for any
AQFH(100-yea extreme) A0z ausng model
Model 3 GCM downscaling Project Bias Emission SRES Emission RCPs Series

Variable

AQF-Himean) _ downscaling was | Project was not NA NA

AQF-H(2year extreme) _ not tested in | tested in model 3 I I Series were mnot
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AQF 8100-yoar extreme] - ‘- o) -(*) AQr sy exremey model

® Indicates that F-value was selected from the interaction effect. NA indicates not applicable simulation.



Figure 9

Figure 9. ANN and ANOVA results; comparison of variance decomposition. The horizontal grey bars represent the fraction of variance explained

by the factor.
Model Return ANOVA ANN Method Weights
# Period (R?) (RE)
(Year)
Train Test GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series
2 0.54 0.43 0.43 ANN Not tested Not tested Not tested
ANOVA 0 0
Model
) 20 0.46 0.64 0.66 ANN
ANOVA 0
100 0.08 0.8 0.83 ANN
ANOVA 0 0 0
GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series
2 0.43 0.74 0.72 ANN Not tested Not tested Not tested
ANOVA 0 0
Model
5 20 0.49 0.75 0.76 ANN
ANOVA 0
100 0.25 0.87 0.88 ANN
ANOVA 0 0 0 0
GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series
2 0.96 0.37 0.35 ANN Not tested Not tested Not tested
ANOVA 0
Model 20 0.83 0.5 0.5 ANN
’ ANOVA 0
100 0.23 0.77 0.79 ANN
ANOVA 0 0 0
GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series
2 0.71 0.3 0.28 ANN Not tested Not tested Not tested
ANOVA 0
Model
4 20 0.55 0.5 0.51 ANN
ANOVA 0
100 0.37 0.93 0.92 ANN
ANOVA 0

The horizontal grey bars represent the fraction of variance explained by the factor. The representation is by bar length where maximum and minimum lengths are 1 and 0 respectively and calculated
from F-value. Adding the lengths for each extreme level will equal 1. The length of dark grey bars were calculated by using ANOV A method while the length of light grey bars were calculated by using
ANN method.



Figure 10

Flood Frequency Curves
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Table 1
Click here to download Table: Table1.docx

Table 1. Previous studies of streamflow maxima forecasted with global climate models.

Study/Location Number of Downscaling Project Number of Bias implementation Extreme Response

GCMs method Phase emission for climate data series type variable
scenarios

Zhang et al., 2014 (China) 1 Dynamical CMIP3, 3 No AM OF(extreme)

Lawrence & Hisdal, 2011 (Norway) 8 Dynamical CMIP3, 3 Yes AM AQF(extreme)

Mantua et al., 2010 (Washington state, USA) 10 Statistical CMIP3, 2 Yes AM OF(extreme)

Dankers and Feyen, 2008 (Europe) 1 Dynamical CMIP3, 2 No AM AQF(exireme)

Prudhomme et al., 2003 (Great Britain) 7 Statistical CMIP3, 4 Yes POT OF(extreme)

GCM.: Global Circulation Model, AM: Annual Maxima extreme series, POT: Peak Over Threshold extreme series

CMIP3,,: Equivalent to CMIP3 project where either the model version or the downscaling method is different but with the same forces (emission scenarios)



Table 2
Click here to download Table: Table2.docx

Table 2. Calibration and validation results for the SWAT model.

Optimization ) Sub- Soil Data Landuse Total Flow Calibration (For the period 1/1/1983- Total Flow Validation ( For the period 1/1/1994-
Gage Time Step basins /landcover
Type 12/31/1993) 12/31/2000)
Number dataset
R? PBIAS% NS RSR R? PBIAS NS RSR
Near Midway Daily 12 STAT-SGO 1992 0.67 0.7 0.66 0.58 052 -1497 046 0.74
Monthly 12 STAT-SGO 1992 0.91 -1.08 0.9 031 091  -1511  0.88 0.34
Near Daily 12 STAT-SGO 1992 0.6 0.14 0.58 0.65 052  -1665 04 0.77
Frankfort
Monthly 12 STAT-SGO 1992 0.84 -0.35 0.84 0.4 09  -167 084 04
Total Flow Calibration (For the period 1/1/1983-9/30/1992) ITZ"/E"II /g(l)‘;)‘;)val‘da"““ (For the period 10/1/1997-
Yarnalton Daily 12 STAT-SGO 1992 NA NA NA NA 077 1356 0.75 05
Monthly 12 STAT-SGO 1992 NA NA NA NA 084 135 0.78 0.46
Fort Spring Daily 12 STAT-SGO 1992 0.7 59 0.68 0.58 053  -11.6  -0.01 1.00
Monthly 12 STAT-SGO 1992 0.89 5.6 0.88 0.34 088 -11.62 073 051

NA indicates that there are no observation data were available.



Table 3
Click here to download Table: Table3.docx

Table 3. Sensitivity analysis of Extreme value modeling

Extreme event Standard deviation of AQ Variance of AQ

2 year event +43% 1850
20 year event +54% 2920
100 year event  +£93% 8650




Table 4

Click here to download Table: Table4.docx

Table 4. Wind speed, net radiation and relative humidity impacts on streamflow maxima.

Model run Sse‘;m;) oo 4 hum’fdrif\'/ sy @ lms) Quolems) Quolems) 80, (6) 800 (%) Ao (4
Control NA NA NA 78 161 215 NA NA NA
Scenario 1 -10 -4 0.4 79 161 216 0.8 0.6 0.5
Scenario 2 -13.5 -9.5 0.45 81 165 220 3.6 2.7 2.5
Scenario 3 -17 -15 0.5 82 166 222 4.7 3.5 3.2
Scenario 4 -17 0 0 79 161 215 1.4 0.4 0.1
Scenario 5 0 -15 0 81 165 220 33 2.5 2.3
Scenario 6 0 0 0.5 78 160 214 -0.1 -0.2 -0.2




Table 5
Click here to download Table: Table5.docx

Table 5. Variance of the relative change in streamflow maxima from climate, extreme and hydrologic
modeling components.

Modeling component Var[AQ; ] Var[AQy ] Var[AQgo vl
1. Climate and extreme modeling factors 441 1122 7225
2. Additional climate shifts input to hydrologic model 3 3 3

3. Hydrologic model parameterization 9 11 13




Table 6
Click here to download Table: Table6.docx

Table 6. Monthly distribution of precipitation changes, streamflow changes and number of extremes.

Month AP ean AQnean AQy number of extreme per 20 year period
October -9% -2% 1
November 4% 0% 5
December  26% 34% 11
January 19% 27% 10
February 32% 21% 7
March 14% 15% 11
April 20% 25% 3
May 2% 2% 7
June -3% -11% 8
July 5% 2% 3
August 4% 10% 0
September 6% 17% 0

AQZ-yearzzs%

APyearlyr: 10% Adearlyr: 11% A(220-year:3 5%
AQ 1 00-year:49%
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Variance Analysis of Forecasted Streamflow Maxima in a Wet Temperate Climate

Abstract:

Coupling global climate models, hydrologic models and extreme value analysis provides
a method to forecast streamflow maxima, however the elusive variance structure of the results
hinders confidence in application. Directly correcting the bias of forecasts using the relative
change between forecast and control simulations has been shown to marginalize hydrologic
uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly
and mean annual streamflow, prompting our investigation for maxima streamflow. We assess
the variance structure of streamflow maxima using realizations of emission scenario, global
climate model type and project phase, downscaling methods, bias correction, extreme value
methods, and hydrologic model inputs and parameterization.

——The Results show that the relative change of streamflow maxima was not dependent on

systematic variance from the annual maxima versus peak over threshold method applied, albeit we
stress that researchers strictly adhere to rules from extreme value theory when applying the peak over
threshold method. Regardless of which method is applied, extreme value model fitting does add
variance to the projection, and the variance is an increasing function of the return period.

_Unlike the relative change of mean streamflow, results show that the variance of the
maxima’s relative change was dependent on all climate model factors tested as well as
hydrologic model inputs and calibration. Ensemble projections forecast an increase of
streamflow maxima for 2050 with pronounced forecast standard error, including an increase of
+30(+21), +38(%£34) and +51(£85)% for 2, 20 and 100 year streamflow events for the wet
temperate region studied. The variance of maxima projections was dominated by climate model

factors and extreme value analyses.
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1 INTRODUCTION

Streamflow maxima is one of the most sought after response variables within hydrologic
research and application (Coles, 2001, Begueria & Vicente-Serrano, 2006, Reiss & Thomas,
2007). Streamflow extreme maxima re-contours the morphology of the fluvial system (Leopold
et al., 2012), partially controls the stream biogeochemical function (Ford and Fox, 2015), can
destroy human infrastructure (Melillo et al., 2014), and resupplies human water stores for
consumption, food production and energy generation (Rosenzweig et al., 2001, Mirza, 2003,
McMichael et al., 2007). The complex earth system for which streamflow maxima responds is
no less encompassing of hydrology than streamflow itself and includes components such as the
climates ability to produce precipitation and weather patterns, the watershed’s physiogeographic
configuration and ability to respond to precipitation, and human’s influence on both the
watershed and climate. Despite hydrologists’ long historical emphasis upon study of streamflow
extreme maxima, current disparity is prevalent in terms of both streamflow maxima’s current
estimations and its gradient as we forecast into the future (Khaliq et al., 2006). Scientific gaps
associated with estimating and forecasting current and future streamflow maxima is qualitatively
attributed to scientific uncertainty surrounding human’s economic behavior and influence on the
earth system, representation of the climate and its changes, hydrologic representation of
streamflow, and scalar coupling of a changing climate within a hydrologic representation of the
earth (Madsen et al., 2014, IPCC, 2013). The difficulty of streamflow extreme maxima
estimation and forecasting in a non-stationary earth system has challenged hydrologists to
consider the potential use of new methodologies for investigating and forecasting streamflow.

One methodology for which streamflow maxima investigation and forecasting has
received some recent attention is through the use of non-stationary projection with global climate
models that can be used to drive hydrologic and statistical forecasting (Prudhomme et al., 2003;
Dankers and Feyen, 2008; Mantua et al., 2010; Lawrence &Hisdal, 2011; Zhang et al., 2014).
This method involves application of the non-stationarity form of long-term climate change
projected using global climate models as a means to provide a physics-based guideline for
extrapolation (Lima et al., 2015, Shamir et al., 2015). The global climate model results are post-
processed for scalar considerations and then propagated through hydrologic models for
predicting multi-year streamflow time series. Thereafter, the extreme value theorem is adopted

to study streamflow extremes because the theory provides a mathematical basis for the definition
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of extremes and has been used to prove that the distribution of extremes follow similarity at their
limit (e.g., Coles, 2001). Somewhat analogous to the central limit theorem, the extreme value
theorem focuses on the statistical distribution and behavior of maxima that may arise from an
unknown distribution for a population of a sequence of values measured over many time units.
In this manner, hydrologists can statistically investigate current and forecast extreme value
extreme maxima such as 2-, 20- and 100-year events via time series generated from the
mentioned hydrologic modeling.

The coupling of global climate and hydrologic models for forecasting streamflow
extreme maxima has been recently criticized for water infrastructure planning in some
engineering and management circuits (Moradkhani, 2017), and we tend to agree that use of the
methodology in a infrastructure design capacity is a bit preliminary given that published
applications and results of the method is still in its infancy. Yet, we argue that the time is ripe
for elucidating the variance structure of streamflow maxima forecasted with global climate
models. We offer several reasons for this contention. First, highlighting the variance structure
of forecasted streamflow maxima provides hydrologic and climate researchers with knowledge
of highly sensitive factors and parameters of streamflow forecasting that systemically increase
the size of the solution space, so that researchers might focus their attention towards improving
model structure and parameterization. Second, the variance structure of forecasted streamflow
maxima allows researchers to see what extent the previous results of forecasted mean streamflow
might be adopted and extrapolated for forecasting extremes. There is a plethora of studies that
forecast mean streamflow with global climate models (Chen et al., 2011, Al Aamery et al., 2016,
Fatichi et al., 2014) and there is a question as to what extent results from these mean-focused
studies might be relevant to the study of extreme streamflow, especially in light of the extra level
of uncertainty that is introduced to forecasting maxima during application of the extreme value
theorem. Third, a reason for investigating the variance structure of forecasted streamflow
maxima is to help provide balanced forecasts that can be compared with a meta-analysis of
trends in existing literature results such as in wet temperate regions.

While variance analysis of streamflow extreme maxima is sparse in the literature, global
climate model research and forecasting of mean annual and mean monthly streamflow tends to
suggest that climate models are different in their structures and parametrizations (Randall et al.

2007), downscaling methods are distinct in their stucture and results to re-scale global results
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(Wilby and Dawson, 2007, Warner, 2010, Mearns et al., 2013), emission scenarios address the
uncertainty of future economic and CO; conditions (IPCC, 2007, IPCC, 2013), the version of
climate model projects are different in their structures, and the newer version (CMIP5) is distinct
realtive older versions of models (CMIP3) (Brekke et al., 2013), and the bias implementation of
climate results is a source for variance presence in hydrologic models (Teutschbein and Seibert,
2012, Al Aamery et al., 2016); and therefore all such components could have the potential to
impact the variance structure of forecasted streamflow maxima. The few studies that have
forecasted streamflow maxima with global climate models (see Table 1) have results that tend to
corroborate some findings from mean-focused studies and suggest the type of global climate
model applied caused differences in streamflow extreme forecasts (Prudhomme et al., 2003;
Lawrence and Hisdal, 2011), and emission scenario can also shift extreme predictions (Dankers
and Feyen, 2008; Mantua et al., 2010; Zhang et al., 2014). Applications of extreme value theory
suggest the statistical analysis associated with the choice of extreme value analysis method has
the potential to impact the variance of forecasted streamflow maxima; and the annual maxima
method is criticized for its neglect of multiple extremes per annum while the peak over threshold
method has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott
and MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016).

<Table 1 here please>

Beyond uncertainty surrounding the global climate model projections and extreme value
methods, there are additional uncertainty considerations with respect to the future hydrologic
balance and its simulation when forecasting streamflow maxima. As one example, future
changes in the hydrologic cycle, and in turn streamflow, are primarily driven by changes in
precipitation and evapotranspiration. Studies that forecast streamflow maxima with global
climate models have focused on precipitation and temperature differences within simulation of
future periods (Mantua et al., 2010; Zhang et al., 2014), however it is now recognized that
evaporative demand is physically controlled by net radiation, vapor pressure and wind speed as
well as air temperature (Donohue et al 2010). Future projections of these additional variables
suggest decreases in wind speed and net radiation and an increase in relative humidity for some
regions (Willet et al., 2008; Wild, 2009; McVicar et al., 2012). The directions of the projected
shifts would decrease evapotranspiration and in turn could potentially increase variability when

forecasting streamflow maxima. As a second example, hydrologic model fit and modeling
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uncertainty when simulating the water balance has the potential to increase the variability of
projected streamflow maxima (Al Aamery et al., 2016). Recent study has tended to marginalize
the importance of hydrologic model calibration and uncertainty for mean streamflow projections
when considering relative future changes (Niraula et al., 2015), however streamflow maxima has
not yet been tested in this context, to our knowledge.

Our objectives were to: (1) perform coupled climate, hydrologic and statistical model
simulation and evaluation to build realizations of streamflow maxima; (2) perform variance
analysis to test for systematic uncertainty from climate and extreme modeling factors potentially
controlling streamflow maxima forecasting; (3) perform uncertainty analysis to quantify variance
from hydrologic modeling; and (4) forecast streamflow maxima for the wet temperate region
studied herein and provide literature comparison. These objectives provide the structural sub-

headings used in the following Methods, Results and Discussion sections.

2 THEORETICAL BACKGROUND

The variance structure of forecasted streamflow maxima can be decomposed as a
function of potentially controlling modeling factors. The conceptual model of factors that have
the potential impact forecasted streamflow maxima variance is shown in Figure 1. As can be
seen in the figure, modeling factors that may impact the variance structure can be grouped into
those associated with climate modeling (CMFs in Figure 1) including global climate model
(GCM) type, hydrologic modeling (HMFs) and uncertainty in inputs and parameterization, and
statistical modeling of extremes (SMFs) associated with different fitting methods and
distributions. Land use and management modeling is not shown in the figure and was treated as
static in this study, but it is also recognized to potentially control future streamflow.

<Figure 1 here please>

The response variables are streamflow maxima associated with different return periods,
including 2, 20 and 100 year return periods, so the distribution of extremes can be quantified
(Lawrence and Hisdal, 2011). We consider response of the future relative change in streamflow
equal to the percent difference of GCM-forecasted streamflow maxima relative to GCM-hindcast
maxima (4QF .y », where x indicates the return period). The future streamflow maxima can be

related to the ‘real’ streamflow maxima by using the relative changes derived from the forecast
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projections and hindcast-control projections coupled with the observations, such as using the
delta method directly applied to streamflow model results.

The relative change approach has become rather popular in climate change studies that
emphasize GCM-forecasted streamflow (Chien et al., 2012; Harding et al., 2012; Fitichi et al.,
2014; Niraula et al., 2015; Al Aamery et al., 2016). The-relative-change approach has been
suggested to remove seasonal, spatial, and/or inter-annual biases of GCMs or statistical artifacts
from the downscaling method that are not accounted for in bias correction methods (Harding et

al., 2012). Fheln addition, application of the relative change alsehas recently shewedshown no

significant dependence upon calibrated versus un-calibrated hydrologic model simulation, thus
suggesting the response variable does not require model calibration to see the projected direction
of future streamflow (Niraula et al., 2015). The relative-changeapproach has also shown less
dependence upon climate modelling factors (i.e., CMFs in Fig 1) as compared to the absolute
forecasted streamflow suggesting that biases specific to a model structure could be accounted (Al
Aamery et al., 2016). FheWhile the relative change approach has shown potential in past
studies, yet-these studies have tended to focus on the mean forecasting of streamflow. In the
present study, we consider the relativechanse-is-eonsideredmethod for streamflow maxima,
which is one contribution of this paper.

Realizations of the relative change in streamflow maxima can be simulated as a function
of climate, hydrologic, and statistical modeling factors within a variance analysis ensemble (Al
Aamery et al., 2016). In the present study, we included permutations using seven emission
scenarios (i.e., emission factor, CMF1) propagated through eight different GCMs associated
with phase three and four climate projects, i.e., CMIP3, CMIPS5, (i.e., GCM type and version
factors, CMF2, 3) that were downscaled using two statistical downscaling methods and four
dynamical downscaling methods (i.e., downscaling factor, CMF4). Further, our post-processing
and hydrologic analyses of downscaled hindcast (1983-2000) and forecast (2048-2065) climate
model results considered bias correction (i.e., bias factor, SMF1) propagated through a
continuous simulation hydrologic model. We performed both annual maxima and peak over
threshold extreme value analyses (i.e., extreme value factor, SMF1,2) of hydrologic model
results given recent debate in the literature over the best method. We also investigated additional
uncertainty considerations with respect to additional hydrologic inputs and hydrologic

uncertainty (HMF 1, 3).
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3 STUDY SITE AND MATERIALS:

The study site was South Elkhorn Watershed in Lexington, Kentucky USA (see Figure
2). This watershed is within a wet and temperate region where a future change in climate,
including an increase in precipitation and temperature, is projected (Melillo et al., 2014).
According to Melillo et al. (2014), a 20 to 30% increase in annual maximum precipitation is
projected under RCP 8.5 emission scenario for the end of the century. Additionally, at least, 80%
of the models used in Melillo et al. (2014) are in agreement for this region. The watershed
covers an area of 478.6 km? with surface elevations ranging between 197 to 325 m asl. The land
use is dominated by agricultural lands—with-abeut7Hequal to 72%. The remaining land uses are
urban/suburban equal to 13%, forest equal to 14%, and wrbanizationlands-thatspread-over12%
ofthe-watershed—open water and wetlands equal to 1%.

<Figure 2 here please>

The results of eight GCMs were implemented in this analysis. The GCM models
reflected four different GCM model types and two versions of each model, inculding a version
from CMIP3 and the newer version from CMIP5 (Brekke et al., 2013; Al Aamery et al., 2016).
The GCMs included the Canadian Global Climate Model including CGCM3 from CMIP3 and
CanESM2 from CMIPS5 (Flato, 2005); the National Center for Atmospheric Research
Community Climate Model including CCSM3 from CMIP3 and CCSM4 from CMIP5 (Collins
et al., 2006); the Geophysical Fluid Dynamics Laboratory including GFDL CM2.1 from CMIP3
and CM3 from CMIP5 (Delworth et al., 2006); and the United Kingdom Hadley Centre Climate
Model including HadCM3 from CMIP3 and HadGEM2-ES from CMIP5 (Gordon et al., 2000).
These GCMs were chosen for their representation in different climate projects, including CMIP3,
CMIPS5, and NARCCAP projects, and their available archives of climate results for the current
and future periods focused on in this study (Brekke et al., 2013; Mearns et al., 2013; Al Aamery
etal., 2016).

Statistical downscaling and dynamical downscaling results were included in this analysis.
The statistical downscaling results were used from the Coupled Model Inter-comparison Project
phase three (CMIP3) and phase five (CMIP5) (Brekke et al., 2013). The dynamical downscaling
results were used from the North American Regional Climate Change Assessment Program

(NARCCAP) (Mearns et al., 2013). These downscaling methods represent two distinct
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approaches for downscaling GCM results from their coarse scale to a finer watershed scale. The
statistical downscaling method is statistically based and adopts empirical-statistical relationships
to estimate the small-scale climate variables based on the large-scale atmospheric variables
(Wilby and Dawson, 2007). The statistical downscaling method implemented in CMIP3 and
CMIPS projects adopt two schemes including bias correction and spatial disaggregation (BCSD)
and bias-correction and constructed analogs (BCCA) (Brekke et al., 2013). The dynamical
downscaling method is physically-based and uses regional climate models (RCMs) whose
boundary conditions are forced by the results of the parent GCM to simulate the atmospheric
physical processes on a regional scale (Warner, 2010). Six regional climate models were
implemented through the NARCCAP project including the Canadian Regional Climate Model
(CRCM) (Plummer et al., 2006), the Experimental Climate Prediction Center (ECPC) model
(Juang et al., 1997), the Hadley Regional Model 3 (HRM3) (Jones et al., 2003), the MMS5-
PSU/NCAR mesoscale model (MMS5I) (Chen and Dudhia, 2001), the Reginal Climate Model
version 3 (RCM3) (Giorgi et al., 1993), and the Weather Research and Forecasting model
(WRFP) (Skamarock et al., 2005).

4 METHODS
4.1 Modeling simulations and evaluation

The Soil and Water Assessment Tool (SWATS; the version was ArcSWAT 2012.10.1.13)
model was applied to simulate the hydrology of South Elkhorn Watershed. This model is
physically based and was applied successfully in this region and many other regions around the
world (Palanisamy and Workman, 2014; Gassman et al., 2007; Arnold et al., 1998). The model
was evaluated over 1981-2000 using the observed climate and streamflow data and applied for
the hindcast period (1981-2000) and forecast period (2046-2065) using the GCMs results of
daily precipitation and maximum and minimum temperature (see Figure 3 in Al Aamery et al.,
2016 for evaluation methods of SWAT). We obtained all the data required by SWAT including
topography, soil, and landuse data from publically available databases. The topography and
streamlines data were obtained from the National Map website
(http://viewer.nationalmap.gov/viewer/), and the soil data was obtained from the Data Gateway
website (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). The landuse data of
1992 was used from the USGS website (http://www.mrlc.gov/nlcd2011.php). The observed
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climate data of daily precipitation and maximum and minimum temperature were obtained from
Bluegrass Airport meteorological gage station. The model was evaluated using four USGS
streamflow gage stations within the watershed including South Elkhorn Creek at Fort Spring,
USGS03289000, Town Branch at Yarnallton Road, USGS03289200, South Elkhorn Creek near
Midway, USGS03289300, and Elkhorn Creek near Frankfort, USGS03289500. Results for the
South Elkhorn Creek near Midway station were analyzed for the relative change in streamflow
maxima. Model evaluation including calibration, validation, and sensitivity analysis was
performed semi-automatically via SWAT-CUP software for Sequential Uncertainty Fitting
SUFI2 for the four gage stations in the watershed (Abbaspour et al., 2007). The first two years
was left as a spin-up period for SWAT (Arnold et al., 2010).

<Figure 3 here please>

As input to the hydrologic modeling, the scaling of precipitation and temperature method
of Lenderink et al. (2007) was applied to correct the bias in the climate data. The method
operates with monthly correction values based on the difference between observed and current

period simulated values as:

* _ Um(Po s(d))
Poe(d) = Po(d) LoD (1)
* — m(Pabs(d))
P*sp(d) = Pyp(d) F222220 ©)
T*sc(d) = Tsc(d) + ,um(Tobs(d)) - /Jm(Tsc(d)) , and (3)
T*sf(d) = Tsf(d) + ,u-m(Tobs(d)) - #m(Tsc(d)) > “4)

where P*;.(d) and T*;.(d) are the corrected daily precipitation and temperature for the
simulated current period, P*s¢(d) and T"¢(d) are the corrected daily precipitation and
temperature for the simulated future period, P, (d) and Ty.(d) are the uncorrected daily
precipitation and temperature for the simulated current period, Psf(d) and Tz (d) are the
uncorrected daily precipitation and temperature for the simulated future period, t, (Pyps(d)) is
the average of observed daily precipitation values for a given month, w,, (Ps.(d)) is the average
daily precipitation for the current simulated values, um(Tobs(d)) is the average of observed daily
temperature values, U, (TSC (d)) is the average of daily temperature for the current simulated

period, and m stands for “within monthly time step”.
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The annual maxima (AM) and peak over threshold (POT) methods were carried out for
each realization from the hydrologic modeling results in order to analyze the extremes (see
Figure 3). The AM series is constructed by selecting one value per a specific time over the
sample size. In streamflow studies such as herein, this value is the maximum water discharge
value selected over one year from the daily time series data (Khaliq et al., 2006, Haan, 2002).
Thereby, the AM series replaces the flow series (q;, ¢2, ....., q365) of a year (j) by the largest flood

value ¢,/ (where 1< m <total number of days in year j, 1< j<n_ and n is the number of years).
According to the extreme theorem, the probability of the rescaled M, is approaching the

General Extreme Value (GEV) family when n—00. The GEV family distribution is expressed

as follows:

G(q):exp{—[us(%)} } 5)

where {q 1+& (u) > 0}, the location parameter —oo < y < o0, the scale parameter o >0, and
o

the shape parameter —o < £ <o . Depending on the value of the shape parameter &, the GEV
family has three distinct probability distributions. The light tail Gumbel type when & =0, the
heavy tail Fréchet type when & >0, and the bounded upper tail Weibull type when & <0. The

extreme quantiles of the return level 7 when & # 0 are then calculated as follows:

I o I _l -
dr == Z 01 (-logll =3 ©6)
and when £=0
qT=#—0"10g{—10g(1—%)}- )

The POT series was constructed by selecting all independent and identically distributed
values (¢;, ¢, .....) that are higher than a specific, and carefully chosen, value called threshold
point (¢,) (see example in Figure 4). According to extreme value theory, for large enough g, the
distribution function of y= (¢-¢,) conditioned by ¢>¢, is approximated by the Generalized Pareto
(GP) family as follows (Coles, 2001):

H(y) =1—(1+%)'“f )

11
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where {y :y>0and (1+ éfy) > 0}, and 6=+ ¢&(q,— ) , q s aspecific value in the sequence
é

(g1, g2 .....),and o, u, and & are the scale, location, and shape parameters. Depending on the
value of the shape factor, the GP family consists of three probability distribution functions as

follows: the heavy tail Pareto type when & > 0; the light tail Exponential type when & =0 and
bounded upper tail Beta type when & < 0. To calculate the extreme quantile (g, ) of the return
period 7, the probability &, =Pr (¢>g,) is calculated first and then the return period when

£#0 is given by:

é P
¢ =4, +(EJ[(§%TV ~1] ©
When & =0, the return level of a period T is given by:
qr =q,+clog(Tg, ) (10)

<Figure 4 here please>

Threshold Point Choice: We adopted the parameter stabilization method explained by
Coles (2001) to choose threshold points used within the POT method. The method is based on
fitting the General Pareto distribution across a range of different threshold points. When fitting,
the model parameters including the shape parameter (&) and scale parameter (&) were
estimated for each point across the range. The shape parameter should be approximately
constant, and the scale parameter should be linear in ¢ when the GP distribution is valid above
the ¢, (Coles, 2001). Figure 4 shows an example of fitting the GP model using the maximum
likelihood method over a range of 1 to 40 for the threshold point. As observed, the shape and the
reparametrized scale parameters are nearly stable until reaching the point 21. We, therefore,
specified the point 21 cms as the threshold point for the POT series of the observed daily
streamflow series in this example; and the method was repeated for each model hydrologic
realization performed in our study. In order to support our choice of the threshold, we compared
our final results of threshold selection using the parameter stabilization method with three Rules

of Thumb presented by Scarrott and MacDonald (2012). Using general order statistics

convergence properties, methods including the upper 10% rule, square root rule &, = \/; , and
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k, = n*" [log[log(n)] rule were developed (see Scarrott and MacDonald, 2012). Figure 4 shows

that our choices compared well to the three methods.

Temporal Independency in the POT Series: The values of the POT series, in the sense of
extreme theorem, should admit to the temporal independence condition. By only selecting all
values that are higher than the threshold point, we will obviously violate this condition within a
streamflow time series. Therefore, to identify and remove the time dependency in the POT series
values, de-clustering of the POT series was adopted. The de-clustering was performed by
calculating the Extremal Index (&) as follows (Coles, 2001):

6 = (limiting mean clustering size)™',

(11
where 6 equal to one indicates an independent series. Therefore, the objective was to minimize
the size of the clusters until & reaches one. Our approach was to make manual iteration for each
POT series to select the number of threshold deficits, », used to define a cluster. Moreover, to
support our independent choices of POT series, we performed the auto-tail dependence function
plots for the data series (Reiss and Thomas, 2007) to test the dependency of the events in the
series.

Trend Analysis: We analyzed the POT and the AM series with respect to the non-
stationarity explained by trend analysis. We used the Mann-Kendall nonparametric test to
identify the presence of trends in each independent POT and AM series (Haan, 2002). If the
trend was present, we removed the trend from the series, although as will be discussed in the
results, very few series exhibited a significant mean trend.

Likelihood Ratio Test: The likelihood ratio test was used to test the null hypothesis of the
shape factor (&) to be zero. This test is used in statistics to test the goodness of fit of two
distributions when one of them is a special case of the other, i.e., nested models (Hogg et al.,
2014, Coles, 2001). In our case, the Gumbel distribution is nested within the GEV distribution,
and the Exponential distribution is nested within the GP distribution.

Currently, the AM and POT series are the only two types of flood peak series that can be
used for flood frequency analysis, and further discussion of a comprehensive comparison
between the two series is provided in the literature in Bezak et al. (2014) and Madsen et al.

(1997). To perform all the methods described in the extreme analysis methods section and
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shown in Figure 3, we have applied the R package extRemes version 2.0 described in Gilleland
& Katz (2016).

4.2 Uncertainty from climate and extreme modeling factors

Our results from the coupled climate, hydrologic, and extreme modeling methods
produced 226 realizations of model runs available for variance analysis based on a factorial
design that considered emission type, GCM type and version, downscaling type, bias correction,
and extreme value method type. Each factor was divided within variance decomposition as
follows: the GCM type factor was divided into four levels for the four parent models mentioned
previously; the GCM version factor was divided into two levels indicating CMIP3 and CMIP5
project phases of the models; the downscaling factor was divided into two levels for statistical
and dynamical methods; the emission factor was divided into seven levels including the SRES
type used in CMIP3 (A1B, A2, and B1) and the RCPs type used in CMIP5 (RCP2.6, RCP4.5,
RCP6.0, and RCPS8.5); the bias factor was divided into two levels indicating inclusion of
methods in Equations (1-4) or lack thereof; and the extreme value factor was divided into two
levels for AM and POT methods. Further details of the factorial levels for each of the 226
realizations are provided in the Supplementary On-line Table. We simulated variance analysis
following both more traditional linear methods and more recently published nonlinear methods
in order to maintain robustness of the analyses.

Linear Analysis of Variance (ANOVA): We performed statistical analysis through fitting
the linear analysis of variance model (ANOVA) to the results of the maxima extreme analysis.
ANOVA was applied separately for each streamflow maxima quantile. The extreme quantiles
represent the response variables of 2-year, 20-year, and 100-year return periods (4Qp-#2-year-mE),
AQr-ti20-year-me), A0d AQr-i(100-year-mE) TESPEctively) via the general linear model-univariate
procedure in SPSS 22 software (Pallant, 2013). ANOVA explores the effect of different factors
on the variance of the response using the p-value of the statistical test and ranking factor
importance by using the F-value. The F-value of each factor was divided by the summation of F-
values in a single model to determine how much variance that factor explains from the total
predictable variance. Several considerations were determined when applying ANOV A methods.
First, because the datasets were not represented in the climate factors equally, we applied four

separate models that balanced a set of factors. The reason for the multiple models is attributed to
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our climate datasets where the CMIP3 project has both statistically and dynamically downscaled
results while the CMIP5 project has only statistically downscaled results. We, also, have
different emission scenarios between the two projects. CMIP3 has SRES emission scenarios; and
CMIP5 has RCPs emission scenarios. We built therefore four-way ANOVA models as the
highest possible order to constrain the balanced and nested models. Figure 5 shows four possible
4-way ANOVA models that we built from our factorial design. Second, we analyzed the factors
across the models using the highest possible order, however, if a factor was found to be
unimportant, we omitted the factor to maximize repetitions.

<Figure 5 here please>

ANOVA assumes that the population is normally distributed, although the violation of
this assumption should not cause major problems when the sample size is greater than 30
(Pallant, 2005, Gravetter&Wallnau, 2000, Stevens, 1996). In our factorial design, the least
sample size was recorded in ANOVA model 3, where the sample size was 56. Therefore, our
concern about the normality assumption is limited. The homogeneity of variance assumption
was treated by using the Levene test for the equality of variance (Pallant, 2005). If the data failed
in this test, the significant level by which we compare the variances of the different groups in the
ANOVA models was 0.01, which overcomes the violation of this assumption (Pallant, 2005).

Nonlinear Artificial Neural Network (ANN): ANN models, on the other hand, were
considered in this study to reinforce our robustness of the variance analysis. ANNs provides a
model framework based on a set of multivariate nonlinear functions, and therefore could account
for nonlinearity between factors controlling variance and the streamflow response variable, if it
exists. In this manner, ANNs could overcome the underlying multivariate linear model
limitation that ANOVA is based on. We used the ANN model to examine the climate factors
importance on streamflow maxima projections through SPSS 22 software (IBM , 2012, Tufféry,
2011). The input layer represented the climate and the statistical factors with nominal variables,
and the output layer represented the relative change in streamflow maxima. We used one hidden
layer with a randomly generated number of neurons. We used supervised training with multilayer
perceptron and feedforward architecture. All values of the input and output layers were
normalized so that all values ranged between 0 and 1. The hyperbolic tangent activation function
was considered in the hidden layer. We used the same four models proposed in the ANOVA
analysis to perform the ANN analysis. The dataset partitioning was performed with SPSS-ANN
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to divide the data into training and testing datasets. However, through generation of random
numbers within SPSS-ANN, the partitioning values of training and testing will swing around the
70% and 30% marks for each run of many runs performed for each model. The values of training
partitioning ranged between 60% and 80% affecting the testing portion and providing a new
relative error value for both training and testing parts. Accordingly, the smallest relative error
provides the best results for the ANN model (IBM, 2012). Therefore, our approach was to use
an initial 70% of the dataset for training and the rest for testing, and then rerun the model until

obtaining the minimum possible relative errors across the training and testing data.

4.3 Uncertainty from hydrologic modeling

Additional uncertainty from the future hydrologic balance and its simulation were also
quantified as part of our study. Future projections of net radiation, vapor pressure and wind
speed were tested in simulation for the study region with the premise that decreases in wind
speed and net radiation and an increase in relative humidity could decrease future
evapotranspiration and in turn increase streamflow maxima while at the same time increase
uncertainty of forecasts. Future projections that consider hydrologic model fit and hydrologic
parameter uncertainty were also tested to assess the potential to increase the variability of
projected streamflow maxima.

Future climate change of wind speed, net radiation, and relative humidity were tested
within hydrologic simulation by considering projected shifts reported in the literature. The
average monthly wind speed in the study site ranges between 3 and 5 m/s. According to
McVicar et al. (2012), the possible stilling in the middle of the current century is approximately
0.5 m/s for the study site region when assuming a linear trend of their observations reported
therein. In turn, the percent climate change of wind speed is between -10% and -17% for the
future period in the study region. Wild (2009) indicates that the surface solar radiation has a
decadal variation and that the absolute trend was observed as -6 W m™ per decade and 8 W m™
per decade for the periods of 1961-1990 and 1995-2007, respectively, over the United States.
We recognized that increasing radiation would offset decreasing wind speed when estimating
evapotranspiration, and therefore we considered the decreasing trend of -6 W m™ per decade for
the future period, in order to test its sensitivity. The mean daily solar radiation ranges throughout

the year between 81 W m? (1.9 kW h m2d") and 300 W m? (7.2 kW h m?d™"). Considering the
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mentioned net decrease produces a change in the solar radiation reaching the surface to be
between -4% and -15%. Regarding the relative humidity, Willett et al. (2008) shows data that
suggests an increase in the relative humidity for the northern hemisphere. The net increase
shown was 0.07% for the 10 year period of investigation. We assumed the same change for the
future period, which resulted in a range between +0.4% and +0.5% for the study region.
Donohue et al. (2010) showed that the Penman equation produced the most reasonable
estimation of evaporation demand, and this method is included within the hydrologic model used
in the present study. Therefore, we considered a number of scenarios in hydrologic modeling
that test the mentioned ranges of wind speed, net radiation, and relative humidity concurrently to
see their added impact on streamflow maxima. We also tested the variables independently to see
their individual sensitivity upon the streamflow maxima.

Future projections that consider hydrologic model fit and hydrologic modeling
uncertainty were also tested with the hydrologic model to investigate their impact on forecasted
streamflow maxima. Recent literature results have marginalized the importance of model fit
when forecasting the relative change in future mean streamflow (Niraula et al., 2015), and we
tested this concept for future streamflow maxima. The future streamflow maxima produced from
the calibrated hydrologic model simulation for a set of GCM realizations was compared against
the future streamflow maxima produced using the un-calibrated (i.e., default) parameterization of
the hydrologic model for the same climate realizations. Additionally, the impact of hydrologic
model uncertainty was considered by carrying forward uncertainty projections from the
hydrologic model parameterization to the extreme value methods and thereafter to compute the
relative change in future streamflow. The SWAT-CUP software provides parameter sets and
solutions used to create uncertainty bounds during the model simulation. Realizations of all
parameter sets that meet the objective function criteria were chosen and extreme value methods
were performed for hindcast and forecast global climate pairs to compute the relative change in

streamflow maxima.

44 Forecast of streamflow maxima for wet temperate regions
After quantifying the climate, hydrologic, and extreme modeling factors controlling
variability of the projections, an ensemble was created to forecast the relative change in the

streamflow maxima for the wet temperate study region (Al Aamery et al., 2016). The extreme
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forecasts for this study calculated the net effect on the mean and variance of the balanced
ensemble from variation of climate modeling factors and extreme modeling factors, the added
uncertainty from hydrologic model parameterization, and the added mean shift and its variance
from climate change shifts in net radiation, vapor pressure and wind speed. Results were
compared with other studies reported in the literature of streamflow maxima (see Table 1) that

fell within wet temperate regions.

5 RESULTS AND DISCUSSION
5.1 Modeling simulations and evaluation

Results from the model evaluation showed that the hydrologic model performed within
an acceptable range, and simulated-streamflow—well—Thethe simulated and observed daily
streamflow signals showed close agreement (see Figure 6). The four quantitative matrics
including coefficient of determination (R”), percent bias (PBIAS%), Nash-Sutcliff Efficiency
(NS), and the ratio of the root mean square error to the standard deviation of measured data
(RSR) showed results within the acceptable range (Moriasi et al., 2007, Donigan, 2002, Gassman
et al., 2007) in both calibration and validation periods for the majority of the four observation
sites for which the model was compared against (see compiled metrics in Table 2), although one
of the four sites showed values just below or equal to the acceptable range boundary during
validation. Overall, 53 out of the 56 metrics that compared observations with model results were
above the acceptable range showing that the model simulated streamflow well. According to
Moriasi et al. (2007) the monthly time step model performance is considered satisfactory if the
NS>0.5, RSR<0.7, and PBIAS <+25%. The model performance on finer time steps (e.g. daily) is
usually poorer than the coarser time steps model (e.g. monthly) in terms of the statistical
matrices (e.g. NS, RST, PBIAS) (Moriasi et al., 2007, Engel et al., 2007). For instance, while the
monthly NS was 0.656 for the calibration period in Fernandez et al. (2005), the daily one was
0.395. Moreover, Moriasi et al. (2007) indicated that when reviewing previous studies, NS and
PBIAS were “as expected” lower in the validation period than the calibration period for
streamflow. Note that the Midway station was our primary calibration, since all of the model’s
streamflow forecasts occurred from this location. The model we established for South Elkhorn
watershed showed results for the Midway gage station to have NS values equal to 0.9 and 0.66

for the monthly and daily time steps, respectively, for the calibration period; and NS values equal
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to 0.88 and 0.46 for the monthly and daily time steps, respectively, for the validation period. In
summary, the metrics showed adequate performance considering the above information and
results.

<Figure 6 here please>

<Table 2 here please>

Results from fitting both the AM and POT extreme series methods to the streamflow
results showed that in general the extreme series results had little mean trend and were
dominated by the two parameter probability distributions (see Supplementary On-line Table).
The Mann-Kendall test results showed that only 2% of the AM series included a mean trend that
required removal and only 4% of POT series results had a mean trend that required removal. A
regression approach was also carried out and provided identical results as the Mann-Kendall
tests. The results highlight that although non-stationarity is exhibited when comparing extremes
from the hindcast to the forecast periods, little significant non-stationarity is exhibited within the
simulation periods. Statistical results showed that 91% of the AM series best followed the two-
parameter Gumbel distribution while 85% of the POT series best followed the exponential
distribution. The results tend to agree with the results of Dankers and Feyen (2008) who also
found that a two parameter distribution was most adequate when fitting distributions from
extreme value theory to streamflow results derived from global climate modeling. Additional
results from the extreme value analyses is also compiled in the Supplemental On-line Table and
includes: threshold selections, the value of the extremal index  before de-clustering, the value of
r required to make the extremal index € equal to unity, the p-value of Mann-Kendall non-
parametric test, and the resultant sample size (n).

We found less than 10% difference between observed and simulated maxima for all
return periods (i.e., 2, 20 and 100 year return periods) for both AM and POT methods. Both
observed and simulated maxima followed exponential distributions for the POT method; and
both followed the Gumbel distribution for the AM method. Donigan (2002) indicates that an
absolute hydrologic model calibration/validation target of less than 10% difference between the
simulated and the observed hydrology flow is considered a very good target; and that the range
of such target should be applied on the mean and the individual events may show larger
differences while still acceptable. With this criteria in mind, our SWAT evaluation results for

the extremes were deemed adequate.
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Extreme quantiles for 2-, 20-, and 100-year maxima streamflow levels showed that
forecast results were in general greater than hindcast results for simulation pairs with the same
climate modeling factors, highlighting the non-stationarity of extremes mentioned previously.
Figure 7 illustrates hindcast simulations corresponding to POT extreme series method, and all
simulation results are shown in the Supplementary On-line Table. Statistical downscaling of the
hindcast GCM realizations in general under-predicted hydrologic model results analyzed with
the extreme series method; and the under-prediction was especially true for streamflow levels
from the 100-year return period. Results from the dynamical downscaling hindcast realizations
better bound the observed extremes. The result supports the idea that regional climate models
can capture small-scale climate features, e.g., strong fronts, and realistically simulate extreme
events (Fowler et al., 2007, Warner, 2010), which would suggest a better choice for extreme
streamflow forecasting. Fowler et al. (2007) pointed out that the statistical downscaling methods
poorly represent the extreme events and underestimate variance, which reflects the fact that both
BCSD and BCCA methods use the distribution of precipitation from historical climate records to
create the future distributions. Warner (2010) compared the statistical and dynamical
downscaling with respect to their advantages and disadvantages, and he indicated that dynamical
downscaling methods could better capture extreme events and variance. Sunyer et al. (2015)
shows that the RCM-GCM projections are the main source of variability in their results, and
between 30-50% of the total variance is explained by statistical downscaling in several
catchments in their study. Trayhorn and DeGaetano (2001) compared several different
downscaling methods for rainfall extremes over the Northeastern United States; and their results
suggest that regional climate models overestimate the observed extremes. Aside from the
Trayhorn and DeGaetano (2001) results, literature results and this study generally support the
idea that hindcast extremes from dynamic downscaling agree better with observed extremes as
compared to statistical downscaling results.

<Figure 7 here please>

We also examined specific results of individual climate models and downscaling methods
in order to provide insight on how climate model structure may be impacting forecasted
streamflow maxima. The four GCMs from CMIP3 all illustrate differences when comparing
across the 2, 20 and 100 year return periods (Figure 7). The result was not surprising given that

GCM has been found as a significant factor in studies of forecasted mean streamflow and
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precipitation, and climate scientists highlight variability of GCMs due to the differences in the
models’ structures and parameterizations (Randall et al., 2007; Weart, 2010; Mearns et al., 2013;
Melillo et al., 2014; Al Aamery et al., 2016). Given the many differences between the four
GCMs, it is difficult to discern specific processes represented within the climate models that
might be controlling the extreme streamflow forecasts, however, direct comparison of CMIP3
and CMIPS5 model versions provided some discussion.

Figure 7 reveals that CCSM has a pronounced difference between CMIP3 and CMIP5
forecasted streamflow maxima while the other GCMs (Had, GFDL and CGCM) do not show
differences between model versions for our analyses. The reason is perhaps attributed to the
newer version CCSM4 that produces El Nino-Southern Oscillation (ENSO) variability in a more
realistic frequency distribution than CCSM3 by changing the deep convection scheme.

The Had, GFDL and CGCM models also made changes from CMIP3 to CMIP5 but these
tend to have little differences in terms of streamflow extremes (Figure 7). The HadGEM2 of
CMIPS5 improved the performance of ENSO, northern continent land-surface temperature biases,
SSTs, and wind stress compared to the previous models; however, Collins et al. (2008) suggests
that the power spectrum of El Nino was not a substantial improvement. GFDL version 3 (CM3)
used in CMIP5 made minimal changes to the ocean and sea ice models compared to those used
in CM2.1 version of CMIP3; however, the newer version is extensively developed the
atmosphere and land model components (Griffies et al., 2011). CanESM2 of CMIP5 combines
the fourth generation atmospheric general circulation model (CanCM4) with terrestrial carbon
cycle model (CTEM). Compared to the third generation of CanCM3 that was used in CGCM3.1
of CMIP3, CanCM4 is different in many aspects such as the finer resolution and the addition of
new schemes such as shallow convection scheme (see Chylek et al., 2011).

Taken together, of all the changes to the four different GCMs between CMIP3 and
CMIPS, only augmenting ENSO within the GCM seems to have a substantial impact on
forecasted streamflow maxima. The suggestion is reasonable given that ENSO has been
suggested to show significant impacts on precipitation in this region of North America (Gabler et
al., 2009). Results suggest that the El Nino-Southern Oscillation and its representation within
climate modeling may exhibit a substantial control on forecasting streamflow maxima for the
wet temperate study region; and additional emphasis upon oscillations when forecasting

streamflow maxima in wet temperate regions may be fruitful.
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5.2 Uncertainty from climate and extreme modeling factors

Variance analysis results determined via ANOVA showed that the variance structure of
forecasted streamflow maxima exhibits some dependence on all of the climate modeling
considered factors but does not exhibit dependence upon the extreme value method applied (see
Figure 8). The results are interesting due the fact that previous variance analysis of mean
streamflow forecasted from GCMs only showed dependence on a subset of the climate modeling
factors while debate in the literature suggests that AM and POT methods would give different
results (Scarrott and MacDonald, 2012; Bezak et al., 2014; Al Aamery et al., 2016).
Specifically, results of the ANOVA (Figure 8) show that variance of the 2 year and 20 year
streamflow maxima are significantly dependent upon GCM type, downscaling method, emission
scenario, GCM project phase, and bias implementation; and variance of the 100 year streamflow
maxima is significantly dependent upon GCM type, GCM project phase, and bias
implementation. For reference, results of forecasted mean streamflow are included in Figure 8
and show dependence on GCM type and phase and downscaling.

<Figure 8 here please>

The climate modeling factors that significantly influenced the forecasted streamflow
maxima variances were ranked using the weighted F-value according to their variance
contribution (see Figure 8) as GCM type, downscaling method, bias implementation, GCM
version associated with the climate project phase, and the emission scenario input to the GCM.
Results of the ANN non-linear variance analysis compared well with linear analysis via ANOVA
(see comparisons in Figure 9) providing further confidence in our ranking results.

<Figure 9 here please>

In addition to the variance breakdown, the total variance of the forecasted extremes also
displays pertinent information. The total variance of streamflow extremes increased
substantially with return period—a result most easily observed with the standard error bars in
Figure 10. In addition, the proportion of the variance that was predictable with the climate
modeling factors tended to decrease with return period. The result suggests a propagation of
unexplainable variance throughout the analysis that becomes more pronounced with the higher
order extremes associated with higher return periods.

<Figure 10 here please>
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We at least partially attribute the pronounced growth of uncertainty with return period to
fitting the extreme value distributions to the hydrologic results. The 100 year return period falls
at the tail end of the GEV and GP distributions (i.e., /~0.99) and therefore uncertainty introduced
in fitting the distributions will be most pronounced for the highest return periods. To illustrate
the point, we performed sensitivity of the extreme value parameterization method by assuming a
known parent Gumbel distribution for M,,, drawing sets of realizations consistent with the years
of data in our analyses, and fitting the extreme value distribution consistent with the maximum
likelihood method of our analyses as well as typically performed by others (e.g., Gilleland and
Katz, 2006). Results from the sensitivity show that the variance associated with the 100 year
streamflow is about five times greater than that of the 2 year streamflow event (see Table 3).
The result highlights one reason for pronounced increases in unexplainable variance within
forecasted streamflow maxima.

<Table 3 here please>

On the other hand, factorial comparison between the AM and POT series fitted by the
General Extreme Value (GEV) and General Pareto (GP) distributions did not show significance
within the analysis of variance results. The result is surprising given recent debate and critique
of each method, e.g., AM is criticized for its neglect of multiple extremes per annum while POT
has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott and
MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016). However, further
investigation of the literature suggests that the variance analysis result is consistent with
fundamental theory and that the methods might be used interchangeably, as needed, so long as
care is taken in their application. Fundamentally, Coles (2001) shows that the GEV distribution
provides the base that can be used to derive the GP distribution so long as the threshold point is
sufficiently large and the events are independent and random. In this manner, we recommend
that future coupled hydrologic and climate research studies that apply the POT method should
strive for relatively high threshold values that fall within the Rules of Thumb outlined by
Scarrott and MacDonald (2012) and ensure that the extremal index is not less than one (see
Figure 3).

One noteworthy comparison of the present study’s results with previously published
results is that the variance of forecasted streamflow maxima is even more sensitive to climate

modeling factors as compared to the variance of mean forecasted streamflow. Specifically, the
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variance of streamflow maxima showed significant dependence upon the choice of emission
scenario and bias correction approach (see Figure 8) while the variance of mean streamflow did
not exhibit significant dependence upon emission and bias (see Al Aamery et al., 2016 and
results summarized in Figure 8). The streamflow maxima’s dependence upon emission scenario
is worthy of mentioning given that the mean atmospheric CO; concentration projected for the
emission scenarios varies by just +50 ppm for 2050 (IPCC, 2001; Meinshausen et al., 2011).
Further, the mean annual temperature has a total range of just 1.5°C for 2050 across emission
scenarios projected within the GCMs applied in this study and the mean streamflow study of Al
Aamery et al. (2016). The subtle mean changes in CO; and MAT for 2050 appear to mask
temporal anomalies captured within the GCMs. The potential of emissions to help control
streamflow maxima is somewhat corroborated by the work of Mantua et al. (2010) where they
show streamflow maxima differences among two emission scenarios. Significance of emission
scenario within variance analysis of forecasted streamflow maxima suggests that hydrologic and
climate research is needed that examines how models might be coupled at a higher temporal
resolution, rather than the more prevalent emphasis on mean coupling (e.g., see review Table 1
in Al Aamery et al., 2016). Similarly, the significance of bias correction upon the variance of
forecasted streamflow maxima reflects the boundary between climate and hydrologic models that
has emphasized mean coupling and thus linear shifts in rainfall and temperature data to show
agreement with observations (Lenderink et al., 2007). More sophisticated bias correction
methods are available (Teutschbein and Seibert, 2012) but typically come with the added
conundrum of forcing functional constraints on climate model results that are sought after due to
their non-stationarity. Surely, research might consider higher resolution model coupling to

understand anomalies that control maxima streamflow.

5.3 Uncertainty from hydrologic modeling

Future climate change of wind speed, net radiation, and relative humidity were tested
within hydrologic simulation by considering projected shifts reported in the literature. Results
suggest that the net impact of wind speed, net radiation, and relative humidity could provide an
additional 1 to 5% increase in streamflow maxima for 2, 20 and 100 year return periods for the
wet temperate study region and future period considered (see Table 4). Average daily change in

evapotranspiration ranged from 0.5 to 5% decreases. Streamflow maxima increases and standard
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error associated with the wind speed, radiation and relative humidity shifts were +3.2(£1.7),

+2.2(£1.6) and +1.9(x1.6)% for 2, 20 and 100 year events. Relative to the increases of

+27(+21), +36(%34) and +49(£85)% for streamflow maxima associated with GCM-projection of

precipitation and temperature from ensemble analysis (see Figure 10), the effect of wind speed,

net radiation and relative humidity were small for this region. Nevertheless, the effect is non-

zero; and the variables may be more substantial in other regions or for forecasting to 2100.
<Table 4 here please>

Future projections that considered hydrologic model fit and hydrologic modeling
uncertainty were also tested to investigate their impact on the relative change of streamflow
maxima. The future streamflow maxima produced from the calibrated hydrologic model
simulation was compared against the future streamflow maxima produced using the un-
calibrated (i.e., default) parameterization of the hydrologic model for the realization pairs for the
AM extreme value analysis method (n=74). Results for the uncalibrated hydrologic analysis of
the relative change in streamflow maxima were +19(x28), +20(£35) and +24(+59)% for 2, 20
and 100 year events in comparison to the calibrated model results equal to +27(£23), +35(30)
and +49(+92)% for 2, 20 and 100 year events. Results show that the uncalibrated model gives a
much lower increase in future streamflow maxima compared to the calibrated model results,
especially for the 100 year extreme. Note that the default model simulations tended to under-
predict streamflow during peak events. The simulation bias is carried forward to the extreme
modeling results and is not removed when considering the relative change. In this manner, the
variance of the streamflow maxima was dependent on hydrologic model parameterization.
These results contrast the work of Niraula et al. (2015) where we showed that the relative change
in mean forecasted streamflow was not dependent on parameter selection during calibration. The
results further highlight the variance structure’s sensitivity when forecasting streamflow
extremes.

Given the dependence on hydrologic calibration, the hydrologic uncertainty realizations
were also performed. Results suggest that hydrologic model parameter sets generated during
uncertainty analysis also impart variance upon relative changes in streamflow maxima. We
calculated the error associated with the relative change in streamflow maxima using the
parameter sets within SWAT-CUP that met model objective function criteria. Standard error

was 3.1, 3.3 and 3.6% for the relative change of 2, 20 and 100 year events. Standard error is

25



738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

small in comparison to the error produced from climate and extreme modeling factors.
Nevertheless the error is nonzero and may be larger for other regions. We also calculated the
standard error from absolute forecasted streamflow maxima and found values of 11, 21, and 27
cms for 2, 20 and 100 year events. We compared these values with the standard error from direct
bias-correction of the streamflow maxima via the relative change approach, and the standard
error was 3, 6 and 9 cms for 2, 20 and 100 year events. The results highlight that the delta
method applied to the direct observed streamflow via the relative change does reduce hydrologic

uncertainty relative to the absolute forecasts.

5.4 Forecast of streamflow maxima for wet temperate regions

One corollary of variance analysis is inclusion of significant factors impacting prediction
and thus forecasting of future streamflow. The relative change in streamflow maxima were
increases of +30(+21), +38(£34) and +51(x85)% for the study region for 2, 20 and 100 year
events. The increases are substantially larger than the 11% increases found for mean streamflow
and mean precipitation for the study region (Al Aamery et al., 2016). Additionally, streamflow
maxima increases as a function of return period. The variability of the projections is
pronounced, and the uncertainty from climate and extreme model factors dominates the variance
(see Table 5).

<Table 5 here please>

The forecasted results of increased maxima streamflow in 2050 for the wet temperate
region of North America (1120 mm y™) is in agreement with scientific sentiment and forecasting
that wet regions will get wetter and wet time periods will be wetter (Melillo et al., 2014). We
performed analysis of published maxima streamflow forecasts in wet regions of Europe and their
comparison corroborated the finding that maxima streamflow increases as a function of return
period. Analysis of the results from Lawrence and Hisdal (2011) show an increase of maxima
streamflow as a function of return period for Norway (760-2250 mm y™). Also, analysis of the
results from Dankers and Feyen (2008) show an increase of maxima streamflow as a function of
return period for their European sites studied where the mean annual precipitation was greater
than 500 mm per year and is projected to be less in the end of this century.

The finding that forecasted maxima streamflow may show further increases as a function

of return period further supports general scientific agreement that the most extreme flooding
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events will get even more extreme for wet temperate climates (Melillo et al., 2014). This
concept is reflected in the timing of streamflow increases and extremities in the present study,
and Table 6 shows that the months of the year with the highest future changes in mean
precipitation and streamflow tend to also account for the majority of forecasted streamflow
maxima events during the study period. The results also reflect the fundamental scientific
consequences of climate change. That is, increased precipitation in wet regions is expected due
to higher amounts of moisture in the atmosphere due to warmer atmospheric temperatures and
expansion of the high Sub-tropical Belt as the air temperature increases and moist air is
transported to higher and lower latitudes (Gabler et al., 2009; Melillo et al., 2014). In turn,
climate change in wet temperate region may increase precipitation, temperature, and relative
humidity while decreasing wind speed and net radiation, and the net effect both individually and
cumulatively of all these shifts is an increase in streamflow maxima.

<Table 6 here please>

6 CONCLUSION, ( Formatted: Font: Bold

The main conclusions of our work are described as follows:

(1) Model simulation and evaluation results from comparison of different global climate model
downscaling methods suggests that dynamic downscaling results more closely align with
observations, presumably due to the explicit simulation of small-scale features such as strong
fronts. Comparison of streamflow maxima forecasted with paired climate models from
CMIP3 versus CMIPS5 projects suggest that the El Nino-Southern Oscillation representation
within modeling exhibits a control on forecasting streamflow maxima for the wet temperate
region studied.

(2) Uncertainty from climate and extreme modeling factors was evaluated and showed that the
relative change of streamflow maxima was not dependent on systematic variance from the
annual maxima versus peak over threshold method applied. We find that the variance of
streamflow maxima is an increasing function of the return period, which is at least partly
attributed to fitting the extreme value distributions to the hydrologic model results. The
variance of the relative change in streamflow maxima is dependent upon global climate

model, emission scenario, project phase, downscaling, and bias correction.
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(3) Uncertainty from hydrologic modelling was analyzed and unlike results from previous

research focused on the relative change of mean streamflow, the relative change of

streamflow maxima was dependent on hydrologic model fit and modeling uncertainty. The

streamflow maxima also showed some dependence on climate projections of wind speed, net

radiation and relative humidity.

(4) Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced

forecast standard error, including +30(+21), +38(+£34) and +51(£85)% for 2, 20 and 100 year

events for the wet temperate region studied. The variance of maxima projections was
dominated by climate model factors and extreme value analyses with lesser control from

hydrologic inputs and hydrologic model parameterization.
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