
                             Elsevier Editorial System(tm) for Journal of 

Hydrology 

                                  Manuscript Draft 

 

 

Manuscript Number: HYDROL26154R2 

 

Title: Variance Analysis of Forecasted Streamflow Maxima in a Wet 

Temperate Climate  

 

Article Type: Research paper 

 

Keywords: extreme streamflow; variance structure 

 

Corresponding Author: Dr. James Forrest Fox, PhD 

 

Corresponding Author's Institution: University of Kentucky 

 

First Author: Nabil Al Aamery 

 

Order of Authors: Nabil Al Aamery; James Forrest Fox, PhD; Mark Snyder; 

Chandra Chandramouli 

 

Abstract: Coupling global climate models, hydrologic models and extreme 

value analysis provides a method to forecast streamflow maxima, however 

the elusive variance structure of the results hinders confidence in 

application.  Directly correcting the bias of forecasts using the 

relative change between forecast and control simulations has been shown 

to marginalize hydrologic uncertainty, reduce model bias, and remove 

systematic variance when predicting mean monthly and mean annual 

streamflow, prompting our investigation for maxima streamflow.  We assess 

the variance structure of streamflow maxima using realizations of 

emission scenario, global climate model type and project phase, 

downscaling methods, bias correction, extreme value methods, and 

hydrologic model inputs and parameterization.  Results show that the 

relative change of streamflow maxima was not dependent on systematic 

variance from the annual maxima versus peak over threshold method 

applied, albeit we stress that researchers strictly adhere to rules from 

extreme value theory when applying the peak over threshold method.  

Regardless of which method is applied, extreme value model fitting does 

add variance to the projection, and the variance is an increasing 

function of the return period.  Unlike the relative change of mean 

streamflow, results show that the variance of the maxima's relative 

change was dependent on all climate model factors tested as well as 

hydrologic model inputs and calibration.  Ensemble projections forecast 

an increase of streamflow maxima for 2050 with pronounced forecast 

standard error, including an increase of +30(±21), +38(±34) and +51(±85)% 

for 2, 20 and 100 year streamflow events for the wet temperate region 

studied.  The variance of maxima projections was dominated by climate 

model factors and extreme value analyses. 

 

 

 

 



March 9, 2018 

Dear Editor McVicar: 

Please find the second revised submittal to Journal of Hydrology entitled “Variance 
Analysis of Forecasted Streamflow Maxima in a Wet Temperate Climate” by Nabil Al Aamery, 
Jimmy Fox, Mark Snyder, and Chandra Chandramouli. 

We thank the reviewers and editorial board for their hard work on reviewing our paper, 
and our appreciation is extended in the Acknowledgements section.  We have addressed all 
remaining minor comments. 
 

My contact information is: 

James F. Fox,  
Raymond-Blythe Professor of Civil Engineering 
Professor  
Civil Engineering Department 
University of Kentucky 
161 O. H. Raymond Bldg. - Rm 354G 
Lexington, KY 40506-0281  
Phone: 859-257-8668 
Fax: 859-257-4404 
Email: james.fox@uky.edu 
 

Please feel free to contact me for any information that might assist in the review of this 
manuscript. 

 

Best regards, 

Jimmy Fox 

Cover Letter

mailto:james.fox@uky.edu


Editor and Reviewer comments are Blue. 

 

Author’s Responses are Black. 
 

*************************************************************** 

COMMENTS FROM EDITORS AND REVIEWERS 

*************************************************************** 

Editor comments: 

 

Hello again Jimmy, Nabil, Mark and Chandra, 

 

thanks for submitting your revised manuscript (MS) back to JoH where it was assessed by the same two 

reviewers as your original submission. Also thanks for your comprehensive response letter, noting 

please use black-and-blue interleaved text as requested in my comment 18 of your original submission. 

 

EC1) Most abstracts do not include separate paragraphs. Please see if it works OK if you remove these. 

 

No problem, and Done. 

 

EC2) RE your response to comment 11 the Associate Editor is not  anonymous, it is Yongqiang Zhang - 

please see the names at the bottom of the previous and this version of the official correspondence from 

JoH to you. 

 

We now include Associate Editor Yongqiang Zhang in the Acknowledgements. 

 

EC3) L203, what are the remaining (17%) land uses?  It would be good to get the total provided to be 

more than 95% as opposed to the current 83%. 

 

We have added: 

"The land use is dominated by agricultural equal to 72%.  The remaining land uses are 

urban/suburban equal to 13%, forest equal to 14%, and open water and wetlands equal to 1%." 

 

EC4) L442, this is very good addition to your MS. Its great to see the GCM hydroclimatic community 

assessing all meteorological variables that govern the evaporative process. I hope all others follow your 

lead, and this is something you can recommend when reviewing future submissions for JoH and 

elsewhere that will surely come your way once this MS is published in JoH. 

 

Thank you for the comment and we agree. 

 

EC5) Good luck; and I look forward to seeing the next revision (which I hope is 'near-final', if not 'final') 

ASAP. 

 

Thank you. 

 

*************************************************************** 

Associate Editor comments:  

 

Revision Notes



AEC1) The authors addressed most of comments from the two reviewers. I would like to recommend its 

publication after some minor issues are solved. Congratulations! 

 

Thank you and we have addressed the minor comments mentioned. 

 

*************************************************************** 

 

Reviewer #1:  

 

R1C1) I am very satisfied with the careful revision. All my comments have been well addressed. 

 

Thank you. 

 

*************************************************************** 

 

Reviewer #2:  

 

Dear Authors, 

 

I think the manuscript has been substantially improved. I like the inclusions and the new structure. 

Indeed the numbered objectives matching the conclusions were a good choice. 

As it was a very good job, I have just some minor suggestions: 

 

R1C1) Lines 165 - 178: Almost all sentences in the paragraph starts with "The relative change approach", 

that does not allow a pleasurable reading. 

 

Thank you, and we have edited the lines to read more nicely. 

 

R2C2) Lines 495 - 496: I do not think that the sentence "simulated streamflow well" is clear enough for 

scientific communication; 

 

We removed the phrase, and used a conjunction to combine with the next sentence, which describes 

what we were inferring regarding ͞well͟. 

 

R2C3) Conclusions: Numbered conclusions are much better. But I would still use a small sentence before 

the numbers ("The main conclusions or our work are described following...") 

[EiC: agree, break the ice a little.] 

 

Yes, we have added this small sentence.  Thank you. 

 

Congratulations 

 

Thank you. 

 

*************************************************************** 

 

 



HIGHLIGHTS 

 Variance of forecasted streamflow maxima is not dependent on the extremal method 

 Variance of forecasted maxima increases with return period from extreme model fitting 

 The variance of the maxima’s relative change was dependent on all climate model factors 

 Variance from climate and extreme model factors dominates over hydrologic model factors 

 

  

*Highlights (3 to 5 bullet points (maximum 85 characters including spaces per bullet point)



1 

 

Variance Analysis of Forecasted Streamflow Maxima in a Wet Temperate Climate 1 

By Nabil Al Aamery, James F. Fox, Mark Snyder and Chandra V. Chandramouli 2 

 3 

Nabil Al Aamery, Ph.D. Candidate of Civil Engineering at the University of Kentucky, 4 

nabil.hussain@uky.edu.  5 

James F. Fox, Professor of Civil Engineering at the University of Kentucky, james.fox@uky.edu, 6 

+1(859)257-8668. 7 

Mark Snyder, Project Scientist of Earth and Planetary Sciences Department, University of 8 

California Santa Cruz, masnyder@ucsc.edu.  9 

Chandra V Chandramouli, Associate Professor of Civil Engineering, Mechanical and Civil 10 

Engineering Department at  Purdue University Northwest, cviswana@pnw.edu.  11 

 12 

Corresponding Author:  James F. Fox, james.fox@uky.edu, +1(859)257-8668, 161 Raymond 13 

Bldg, Lexington KY 40506. 14 

  15 

*Revised Manuscript with no changes marked
Click here to view linked References

mailto:nabil.hussain@uky.edu
mailto:james.fox@uky.edu
mailto:msnyder@pmc.ucsc.edu
mailto:cviswana@pnw.edu
mailto:james.fox@uky.edu


2 

 

Variance Analysis of Forecasted Streamflow Maxima in a Wet Temperate Climate 16 

 17 

Abstract: 18 

Coupling global climate models, hydrologic models and extreme value analysis provides 19 

a method to forecast streamflow maxima, however the elusive variance structure of the results 20 

hinders confidence in application.  Directly correcting the bias of forecasts using the relative 21 

change between forecast and control simulations has been shown to marginalize hydrologic 22 

uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly 23 

and mean annual streamflow, prompting our investigation for maxima streamflow.  We assess 24 

the variance structure of streamflow maxima using realizations of emission scenario, global 25 

climate model type and project phase, downscaling methods, bias correction, extreme value 26 

methods, and hydrologic model inputs and parameterization.  Results show that the relative 27 

change of streamflow maxima was not dependent on systematic variance from the annual 28 

maxima versus peak over threshold method applied, albeit we stress that researchers strictly 29 

adhere to rules from extreme value theory when applying the peak over threshold method.  30 

Regardless of which method is applied, extreme value model fitting does add variance to the 31 

projection, and the variance is an increasing function of the return period.  Unlike the relative 32 

change of mean streamflow, results show that the variance of the maxima’s relative change was 33 

dependent on all climate model factors tested as well as hydrologic model inputs and calibration.  34 

Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced 35 

forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 36 

and 100 year streamflow events for the wet temperate region studied.  The variance of maxima 37 

projections was dominated by climate model factors and extreme value analyses.  38 

  39 
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1 INTRODUCTION   40 

 Streamflow maxima is one of the most sought after response variables within hydrologic 41 

research and application (Coles, 2001, Begueria & Vicente-Serrano, 2006, Reiss &Thomas, 42 

2007).  Streamflow extreme maxima re-contours the morphology of the fluvial system (Leopold 43 

et al., 2012), partially controls the stream biogeochemical function (Ford and Fox, 2015), can 44 

destroy human infrastructure (Melillo et al., 2014), and resupplies human water stores for 45 

consumption, food production and energy generation (Rosenzweig et al., 2001, Mirza, 2003, 46 

McMichael et al., 2007).  The complex earth system for which streamflow maxima responds is 47 

no less encompassing of hydrology than streamflow itself and includes components such as the 48 

climates ability to produce precipitation and weather patterns, the watershed’s physiogeographic 49 

configuration and ability to respond to precipitation, and human’s influence on both the 50 

watershed and climate.  Despite hydrologists’ long historical emphasis upon study of streamflow 51 

extreme maxima, current disparity is prevalent in terms of both streamflow maxima’s current 52 

estimations and its gradient as we forecast into the future (Khaliq et al., 2006).  Scientific gaps 53 

associated with estimating and forecasting current and future streamflow maxima is qualitatively 54 

attributed to scientific uncertainty surrounding human’s economic behavior and influence on the 55 

earth system, representation of the climate and its changes, hydrologic representation of 56 

streamflow, and scalar coupling of a changing climate within a hydrologic representation of the 57 

earth (Madsen et al., 2014, IPCC, 2013).  The difficulty of streamflow extreme maxima 58 

estimation and forecasting in a non-stationary earth system has challenged hydrologists to 59 

consider the potential use of new methodologies for investigating and forecasting streamflow. 60 

 One methodology for which streamflow maxima investigation and forecasting has 61 

received some recent attention is through the use of non-stationary projection with global climate 62 

models that can be used to drive hydrologic and statistical forecasting (Prudhomme et al., 2003; 63 

Dankers and Feyen, 2008; Mantua et al., 2010; Lawrence &Hisdal, 2011; Zhang et al., 2014).  64 

This method involves application of the non-stationarity form of long-term climate change 65 

projected using global climate models as a means to provide a physics-based guideline for 66 

extrapolation (Lima et al., 2015, Shamir et al., 2015).  The global climate model results are post-67 

processed for scalar considerations and then propagated through hydrologic models for 68 

predicting multi-year streamflow time series.  Thereafter, the extreme value theorem is adopted 69 

to study streamflow extremes because the theory provides a mathematical basis for the definition 70 
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of extremes and has been used to prove that the distribution of extremes follow similarity at their 71 

limit (e.g., Coles, 2001).  Somewhat analogous to the central limit theorem, the extreme value 72 

theorem focuses on the statistical distribution and behavior of maxima that may arise from an 73 

unknown distribution for a population of a sequence of values measured over many time units.  74 

In this manner, hydrologists can statistically investigate current and forecast extreme value 75 

extreme maxima such as 2-, 20- and 100-year events via time series generated from the 76 

mentioned hydrologic modeling. 77 

 The coupling of global climate and hydrologic models for forecasting streamflow 78 

extreme maxima has been recently criticized for water infrastructure planning in some 79 

engineering and management circuits (Moradkhani, 2017), and we tend to agree that use of the 80 

methodology in a infrastructure design capacity is a bit preliminary given that published 81 

applications and results of the method is still in its infancy.  Yet, we argue that the time is ripe 82 

for elucidating the variance structure of streamflow maxima forecasted with global climate 83 

models.  We offer several reasons for this contention.  First, highlighting the variance structure 84 

of forecasted streamflow maxima provides hydrologic and climate researchers with knowledge 85 

of highly sensitive factors and parameters of streamflow forecasting that systemically increase 86 

the size of the solution space, so that researchers might focus their attention towards improving 87 

model structure and parameterization.  Second, the variance structure of forecasted streamflow 88 

maxima allows researchers to see what extent the previous results of forecasted mean streamflow 89 

might be adopted and extrapolated for forecasting extremes.  There is a plethora of studies that 90 

forecast mean streamflow with global climate models (Chen et al., 2011, Al Aamery et al., 2016, 91 

Fatichi et al., 2014) and there is a question as to what extent results from these mean-focused 92 

studies might be relevant to the study of extreme streamflow, especially in light of the extra level 93 

of uncertainty that is introduced to forecasting maxima during application of the extreme value 94 

theorem.  Third, a reason for investigating the variance structure of forecasted streamflow 95 

maxima is to help provide balanced forecasts that can be compared with a meta-analysis of 96 

trends in existing literature results such as in wet temperate regions. 97 

While variance analysis of streamflow extreme maxima is sparse in the literature, global 98 

climate model research and forecasting of mean annual and mean monthly streamflow tends to 99 

suggest that climate models are different in their structures and parametrizations (Randall et al. 100 

2007), downscaling methods are distinct in their stucture and results to re-scale global results 101 
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(Wilby and Dawson, 2007, Warner, 2010, Mearns et al., 2013), emission scenarios address the 102 

uncertainty of future economic and CO2 conditions (IPCC, 2007, IPCC, 2013), the version of 103 

climate model projects are different in their structures, and the newer version (CMIP5) is distinct 104 

realtive older versions of models (CMIP3) (Brekke et al., 2013), and the bias implementation of 105 

climate results is a source for variance presence in hydrologic models (Teutschbein and Seibert, 106 

2012, Al Aamery et al., 2016); and therefore all such components could have the potential to 107 

impact the variance structure of forecasted streamflow maxima.  The few studies that have 108 

forecasted streamflow maxima with global climate models (see Table 1) have results that tend to 109 

corroborate some findings from mean-focused studies and suggest the type of global climate 110 

model applied caused differences in streamflow extreme forecasts (Prudhomme et al., 2003; 111 

Lawrence and Hisdal, 2011), and emission scenario can also shift extreme predictions (Dankers 112 

and Feyen, 2008; Mantua et al., 2010; Zhang et al., 2014).  Applications of extreme value theory 113 

suggest the statistical analysis associated with the choice of extreme value analysis method has 114 

the potential to impact the variance of forecasted streamflow maxima; and the annual maxima 115 

method is criticized for its neglect of multiple extremes per annum while the peak over threshold 116 

method has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott 117 

and MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016).   118 

<Table 1 here please> 119 

Beyond uncertainty surrounding the global climate model projections and extreme value 120 

methods, there are additional uncertainty considerations with respect to the future hydrologic 121 

balance and its simulation when forecasting streamflow maxima.  As one example, future 122 

changes in the hydrologic cycle, and in turn streamflow, are primarily driven by changes in 123 

precipitation and evapotranspiration.  Studies that forecast streamflow maxima with global 124 

climate models have focused on precipitation and temperature differences within simulation of 125 

future periods (Mantua et al., 2010; Zhang et al., 2014), however it is now recognized that 126 

evaporative demand is physically controlled by net radiation, vapor pressure and wind speed as 127 

well as air temperature (Donohue et al 2010).  Future projections of these additional variables 128 

suggest decreases in wind speed and net radiation and an increase in relative humidity for some 129 

regions (Willet et al., 2008; Wild, 2009; McVicar et al., 2012).  The directions of the projected 130 

shifts would decrease evapotranspiration and in turn could potentially increase variability when 131 

forecasting streamflow maxima.  As a second example, hydrologic model fit and modeling 132 
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uncertainty when simulating the water balance has the potential to increase the variability of 133 

projected streamflow maxima (Al Aamery et al., 2016).  Recent study has tended to marginalize 134 

the importance of hydrologic model calibration and uncertainty for mean streamflow projections 135 

when considering relative future changes (Niraula et al., 2015), however streamflow maxima has 136 

not yet been tested in this context, to our knowledge. 137 

Our objectives were to: (1) perform coupled climate, hydrologic and statistical model 138 

simulation and evaluation to build realizations of streamflow maxima; (2) perform variance 139 

analysis to test for systematic uncertainty from climate and extreme modeling factors potentially 140 

controlling streamflow maxima forecasting; (3) perform uncertainty analysis to quantify variance 141 

from hydrologic modeling; and (4) forecast streamflow maxima for the wet temperate region 142 

studied herein and provide literature comparison.  These objectives provide the structural sub-143 

headings used in the following Methods, Results and Discussion sections. 144 

  145 

2 THEORETICAL BACKGROUND 146 

The variance structure of forecasted streamflow maxima can be decomposed as a 147 

function of potentially controlling modeling factors.  The conceptual model of factors that have 148 

the potential impact forecasted streamflow maxima variance is shown in Figure 1.  As can be 149 

seen in the figure, modeling factors that may impact the variance structure can be grouped into 150 

those associated with climate modeling (CMFs in Figure 1) including global climate model 151 

(GCM) type, hydrologic modeling (HMFs) and uncertainty in inputs and parameterization, and 152 

statistical modeling of extremes (SMFs) associated with different fitting methods and 153 

distributions.  Land use and management modeling is not shown in the figure and was treated as 154 

static in this study, but it is also recognized to potentially control future streamflow. 155 

<Figure 1 here please> 156 

The response variables are streamflow maxima associated with different return periods, 157 

including 2, 20 and 100 year return periods, so the distribution of extremes can be quantified 158 

(Lawrence and Hisdal, 2011).  We consider response of the future relative change in streamflow 159 

equal to the percent difference of GCM-forecasted streamflow maxima relative to GCM-hindcast 160 

maxima (ΔQF-H x, where x indicates the return period).  The future streamflow maxima can be 161 

related to the ‘real’ streamflow maxima by using the relative changes derived from the forecast 162 
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projections and hindcast-control projections coupled with the observations, such as using the 163 

delta method directly applied to streamflow model results.   164 

The relative change approach has become rather popular in climate change studies that 165 

emphasize GCM-forecasted streamflow (Chien et al., 2012; Harding et al., 2012; Fitichi et al., 166 

2014; Niraula et al., 2015; Al Aamery et al., 2016).  The approach has been suggested to remove 167 

seasonal, spatial, and/or inter-annual biases of GCMs or statistical artifacts from the downscaling 168 

method that are not accounted for in bias correction methods (Harding et al., 2012).  In addition, 169 

application of the relative change has recently shown no significant dependence upon calibrated 170 

versus un-calibrated hydrologic model simulation, thus suggesting the response variable does not 171 

require model calibration to see the projected direction of future streamflow (Niraula et al., 172 

2015).  The approach has also shown less dependence upon climate modelling factors (i.e., 173 

CMFs in Fig 1) as compared to the absolute forecasted streamflow suggesting that biases specific 174 

to a model structure could be accounted (Al Aamery et al., 2016).  While the relative change 175 

approach has shown potential in past studies, these studies have tended to focus on the mean 176 

forecasting of streamflow.  In the present study, we consider the method for streamflow maxima, 177 

which is one contribution of this paper. 178 

Realizations of the relative change in streamflow maxima can be simulated as a function 179 

of climate, hydrologic, and statistical modeling factors within a variance analysis ensemble (Al 180 

Aamery et al., 2016).  In the present study, we included permutations using seven emission 181 

scenarios (i.e., emission factor, CMF1) propagated through eight different GCMs  associated 182 

with phase three and four climate projects, i.e., CMIP3, CMIP5, (i.e., GCM type and version 183 

factors, CMF2, 3) that were downscaled using two statistical downscaling methods and four 184 

dynamical downscaling methods (i.e., downscaling factor, CMF4).  Further, our post-processing 185 

and hydrologic analyses of downscaled hindcast (1983-2000) and forecast (2048-2065) climate 186 

model results considered bias correction (i.e., bias factor, SMF1) propagated through a 187 

continuous simulation hydrologic model.  We performed both annual maxima and peak over 188 

threshold extreme value analyses (i.e., extreme value factor, SMF1,2) of hydrologic model 189 

results given recent debate in the literature over the best method.  We also investigated additional 190 

uncertainty considerations with respect to additional hydrologic inputs and hydrologic 191 

uncertainty (HMF 1, 3). 192 

 193 
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3 STUDY SITE AND MATERIALS: 194 

The study site was South Elkhorn Watershed in Lexington, Kentucky USA (see Figure 195 

2). This watershed is within a wet and temperate region where a future change in climate, 196 

including an increase in precipitation and temperature, is projected (Melillo et al., 2014). 197 

According to Melillo et al. (2014), a 20 to 30% increase in annual maximum precipitation is 198 

projected under RCP 8.5 emission scenario for the end of the century. Additionally, at least, 80% 199 

of the models used in Melillo et al. (2014) are in agreement for this region.  The watershed 200 

covers an area of 478.6 km2 with surface elevations ranging between 197 to 325 m asl. The land 201 

use is dominated by agricultural equal to 72%.  The remaining land uses are urban/suburban 202 

equal to 13%, forest equal to 14%, and open water and wetlands equal to 1%. 203 

<Figure 2 here please> 204 

The results of eight GCMs were implemented in this analysis.  The GCM models 205 

reflected four different GCM model types and two versions of each model, inculding a version 206 

from CMIP3 and the newer version from CMIP5 (Brekke et al., 2013; Al Aamery et al., 2016).  207 

The GCMs included the Canadian Global Climate Model including CGCM3 from CMIP3 and 208 

CanESM2 from CMIP5 (Flato, 2005); the National Center for Atmospheric Research 209 

Community Climate Model including CCSM3 from CMIP3 and CCSM4 from CMIP5 (Collins 210 

et al., 2006); the Geophysical Fluid Dynamics Laboratory including GFDL CM2.1 from CMIP3 211 

and CM3 from CMIP5 (Delworth et al., 2006); and the United Kingdom Hadley Centre Climate 212 

Model including HadCM3 from CMIP3 and HadGEM2-ES from CMIP5 (Gordon et al., 2000). 213 

These GCMs were chosen for their representation in different climate projects, including CMIP3, 214 

CMIP5, and NARCCAP projects, and their available archives of climate results for the current 215 

and future periods focused on in this study (Brekke et al., 2013; Mearns et al., 2013; Al Aamery 216 

et al., 2016). 217 

Statistical downscaling and dynamical downscaling results were included in this analysis. 218 

The statistical downscaling results were used from the Coupled Model Inter-comparison Project 219 

phase three (CMIP3) and phase five (CMIP5) (Brekke et al., 2013). The dynamical downscaling 220 

results were used from the North American Regional Climate Change Assessment Program 221 

(NARCCAP) (Mearns et al., 2013). These downscaling methods represent two distinct 222 

approaches for downscaling GCM results from their coarse scale to a finer watershed scale. The 223 

statistical downscaling method is statistically based and adopts empirical-statistical relationships 224 



9 

 

to estimate the small-scale climate variables based on the large-scale atmospheric variables 225 

(Wilby and Dawson, 2007). The statistical downscaling method implemented in CMIP3 and 226 

CMIP5 projects adopt two schemes including bias correction and spatial disaggregation (BCSD) 227 

and bias-correction and constructed analogs (BCCA) (Brekke et al., 2013). The dynamical 228 

downscaling method is physically-based and uses regional climate models (RCMs) whose 229 

boundary conditions are forced by the results of the parent GCM to simulate the atmospheric 230 

physical processes on a regional scale (Warner, 2010).  Six regional climate models were 231 

implemented through the NARCCAP project including the Canadian Regional Climate Model 232 

(CRCM) (Plummer et al., 2006), the Experimental Climate Prediction Center (ECPC) model 233 

(Juang et al., 1997), the Hadley Regional Model 3 (HRM3) (Jones et al., 2003), the MM5- 234 

PSU/NCAR mesoscale model (MM5I) (Chen and Dudhia, 2001), the Reginal Climate Model 235 

version 3 (RCM3) (Giorgi et al., 1993), and the Weather Research and Forecasting model 236 

(WRFP) (Skamarock et al., 2005).  237 

 238 

4 METHODS 239 

4.1 Modeling simulations and evaluation 240 

The Soil and Water Assessment Tool (SWAT; the version was ArcSWAT 2012.10.1.13) 241 

model was applied to simulate the hydrology of South Elkhorn Watershed.  This model is 242 

physically based and was applied successfully in this region and many other regions around the 243 

world (Palanisamy and Workman, 2014; Gassman et al., 2007; Arnold et al., 1998).  The model 244 

was evaluated over 1981-2000 using the observed climate and streamflow data and applied for 245 

the hindcast period (1981-2000) and forecast period (2046-2065) using the GCMs results of 246 

daily precipitation and maximum and minimum temperature (see Figure 3 in Al Aamery et al., 247 

2016 for evaluation methods of SWAT). We obtained all the data required by SWAT including 248 

topography, soil, and landuse data from publically available databases. The topography and 249 

streamlines data were obtained from the National Map website 250 

(http://viewer.nationalmap.gov/viewer/), and the soil data was obtained from the Data Gateway 251 

website (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). The landuse data of 252 

1992 was used from the USGS website (http://www.mrlc.gov/nlcd2011.php). The observed 253 

climate data of daily precipitation and maximum and minimum temperature were obtained from 254 

Bluegrass Airport meteorological gage station. The model was evaluated using four USGS 255 

http://viewer.nationalmap.gov/viewer/
http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
http://www.mrlc.gov/nlcd2011.php
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streamflow gage stations within the watershed including South Elkhorn Creek at Fort Spring, 256 

USGS03289000, Town Branch at Yarnallton Road, USGS03289200, South Elkhorn Creek near 257 

Midway, USGS03289300, and Elkhorn Creek near Frankfort, USGS03289500. Results for the 258 

South Elkhorn Creek near Midway station were analyzed for the relative change in streamflow 259 

maxima.  Model evaluation including calibration, validation, and sensitivity analysis was 260 

performed semi-automatically via SWAT-CUP software for Sequential Uncertainty Fitting 261 

SUFI2 for the four gage stations in the watershed (Abbaspour et al., 2007). The first two years 262 

was left as a spin-up period for SWAT (Arnold et al., 2010).  263 

<Figure 3 here please> 264 

As input to the hydrologic modeling, the scaling of precipitation and temperature method 265 

of Lenderink et al. (2007) was applied to correct the bias in the climate data. The method 266 

operates with monthly correction values based on the difference between observed and current 267 

period simulated values as: 268                                      ,        (1) 269                                      ,        (2) 270                                       , and     (3) 271                                       ,       (4) 272 

where         and         are the corrected daily precipitation and temperature for the 273 

simulated current period,         and         are the corrected daily precipitation and 274 

temperature for the simulated future period,        and        are the uncorrected daily 275 

precipitation and temperature for the simulated current period,        and        are the 276 

uncorrected daily precipitation and temperature for the simulated future period,             is 277 

the average of observed daily precipitation values for a given month,            is the average 278 

daily precipitation for the current simulated values,             is the average of observed daily 279 

temperature values,            is the average of daily temperature for the current simulated 280 

period, and m stands for “within monthly time step”.   281 

The annual maxima (AM) and peak over threshold (POT) methods were carried out for 282 

each realization from the hydrologic modeling results in order to analyze the extremes (see 283 

Figure 3).  The AM series is constructed by selecting one value per a specific time over the 284 
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sample size. In streamflow studies such as herein, this value is the maximum water discharge 285

value selected over one year from the daily time series data (Khaliq et al., 2006, Haan, 2002). 286

Thereby, the AM series replaces the flow series (q1, q2, ….., q365) of a year (j) by the largest flood 287

value qm
j (where 1 m  total number of days in year j, 1 j n  , and n  is the number of years).  288

According to the extreme theorem, the probability of the rescaled  nM  is approaching the 289

General Extreme Value (GEV) family when n. The GEV family distribution is expressed 290

as follows: 291
1/

( ) exp 1 ( )qG q




          
,        (5 ) 292

where :1 ( ) 0qq 

   

 
, the location parameter     , the scale parameter 0  , and 293

the shape parameter     . Depending on the value of the shape parameter  , the GEV 294

family has three distinct probability distributions. The light tail Gumbel type when 0  , the 295

heavy tail Fréchet type when 0  , and the bounded upper tail Weibull type when 0  . The 296

extreme quantiles of the return level T when 0   are then calculated as follows: 297

1[1 { log(1 )} ]Tq
T




             (6 ) 298

and when 0    299

1log{ log(1 )}Tq
T

     .         (7 ) 300

The POT series was constructed by selecting all independent and identically distributed 301

values (q1, q2, …..) that are higher than a specific, and carefully chosen, value called threshold 302

point (qo) (see example in Figure 4). According to extreme value theory, for large enough qo the 303

distribution function of y= (q-qo) conditioned by q>qo is approximated by the Generalized Pareto 304

(GP) family as follows (Coles, 2001): 305

1/( ) 1 (1 )yH y 


  ( ) 1 (1 )( ) 1 (1 )( ) 1 (1 )( ) 1 (1 )          (8 ) 306

where : 0  (1 ) 0 ,   ( )o
yy y and and q    

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 
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 
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(q1, q2, …..), and , ,  and     are the scale, location, and shape parameters.  Depending on the 308



12 

 

value of the shape factor, the GP family consists of three probability distribution functions as 309

follows: the heavy tail Pareto type when 0  ; the light tail Exponential type when 0  ; and 310

bounded upper tail Beta type when 0  . To calculate the extreme quantile ( Tq ) of the return 311

period T, the probability Pr  ( )
oq oq q     is calculated first and then the return period when 312

0    is given by: 313

( ) 1
oT o qq q T  


         

    ( ) 1 ( ) 1( ) 1( ) 1 ( ) 1( ) 1( ) 1( ) 1 ( ) 1( ) 1  
 
 
  
 
     ( ) 1 ( ) 1 ( ) 1 ( ) 1( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1          (9 ) 314

When 0  , the return level of a period T is given by: 315

log( )
oT o qq q T    q q T q q Tq q T q q T           (1 0 ) 316

<Figure 4 here please> 317

Threshold Point Choice: We adopted the parameter stabilization method explained by 318

Coles (2001) to choose threshold points used within the POT method. The method is based on 319

fitting the General Pareto distribution across a range of different threshold points. When fitting, 320

the model parameters including the shape parameter ( )  and scale parameter ( )( )( )( )  were 321

estimated for each point across the range.  The shape parameter should be approximately 322

constant, and the scale parameter should be linear in q when the GP distribution is valid above 323

the qo (Coles, 2001).  Figure 4 shows an example of fitting the GP model using the maximum 324

likelihood method over a range of 1 to 40 for the threshold point.  As observed, the shape and the 325

reparametrized scale parameters are nearly stable until reaching the point 21.  We, therefore, 326

specified the point 21 cms as the threshold point for the POT series of the observed daily 327

streamflow series in this example; and the method was repeated for each model hydrologic 328

realization performed in our study.  In order to support our choice of the threshold, we compared 329

our final results of threshold selection using the parameter stabilization method with three Rules 330

of Thumb presented by Scarrott and MacDonald (2012).  Using general order statistics 331

convergence properties, methods including the upper 10% rule, square root rule 1k n  , and 332

2/3
2 log[log( )]k n n  rule were developed (see Scarrott and MacDonald, 2012). Figure 4 shows 333

that our choices compared well to the three methods.  334

Temporal Independency in the POT Series: The values of the POT series, in the sense of 335

extreme theorem, should admit to the temporal independence condition.  By only selecting all 336
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values that are higher than the threshold point, we will obviously violate this condition within a 337 

streamflow time series. Therefore, to identify and remove the time dependency in the POT series 338 

values, de-clustering of the POT series was adopted. The de-clustering was performed by 339 

calculating the Extremal Index ( ) as follows (Coles, 2001): 340 
1(limiting mean clustering size)  ,        (11) 341 

where   equal to one indicates an independent series.  Therefore, the objective was to minimize 342 

the size of the clusters until   reaches one. Our approach was to make manual iteration for each 343 

POT series to select the number of threshold deficits, r, used to define a cluster.  Moreover, to 344 

support our independent choices of POT series, we performed the auto-tail dependence function 345 

plots for the data series (Reiss and Thomas, 2007) to test the dependency of the events in the 346 

series.   347 

Trend Analysis: We analyzed the POT and the AM series with respect to the non-348 

stationarity explained by trend analysis. We used the Mann-Kendall nonparametric test to 349 

identify the presence of trends in each independent POT and AM series (Haan, 2002). If the 350 

trend was present, we removed the trend from the series, although as will be discussed in the 351 

results, very few series exhibited a significant mean trend. 352 

Likelihood Ratio Test: The likelihood ratio test was used to test the null hypothesis of the 353 

shape factor ( ) to be zero. This test is used in statistics to test the goodness of fit of two 354 

distributions when one of them is a special case of the other, i.e., nested models (Hogg et al., 355 

2014, Coles, 2001). In our case, the Gumbel distribution is nested within the GEV distribution, 356 

and the Exponential distribution is nested within the GP distribution. 357 

Currently, the AM and POT series are the only two types of flood peak series that can be 358 

used for flood frequency analysis, and further discussion of a comprehensive comparison 359 

between the two series is provided in the literature in Bezak et al. (2014) and Madsen et al. 360 

(1997).  To perform all the methods described in the extreme analysis methods section and 361 

shown in Figure 3, we have applied the R package extRemes version 2.0 described in Gilleland 362 

& Katz (2016).   363 

 364 

4.2 Uncertainty from climate and extreme modeling factors 365 

Our results from the coupled climate, hydrologic, and extreme modeling methods 366 

produced 226 realizations of model runs available for variance analysis based on a factorial 367 
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design that considered emission type, GCM type and version, downscaling type, bias correction, 368 

and extreme value method type.  Each factor was divided within variance decomposition as 369 

follows: the GCM type factor was divided into four levels for the four parent models mentioned 370 

previously; the GCM version factor was divided into two levels indicating CMIP3 and CMIP5 371 

project phases of the models; the downscaling factor was divided into two levels for statistical 372 

and dynamical methods; the emission factor was divided into seven levels including the SRES 373 

type used in CMIP3 (A1B, A2, and B1) and the RCPs type used in CMIP5 (RCP2.6, RCP4.5, 374 

RCP6.0, and RCP8.5); the bias factor was divided into two levels indicating inclusion of 375 

methods in Equations (1-4) or lack thereof; and the extreme value factor was divided into two 376 

levels for AM and POT methods.  Further details of the factorial levels for each of the 226 377 

realizations are provided in the Supplementary On-line Table.  We simulated variance analysis 378 

following both more traditional linear methods and more recently published nonlinear methods 379 

in order to maintain robustness of the analyses. 380 

Linear Analysis of Variance (ANOVA): We performed statistical analysis through fitting 381 

the linear analysis of variance model (ANOVA) to the results of the maxima extreme analysis.  382 

ANOVA was applied separately for each streamflow maxima quantile. The extreme quantiles 383 

represent the response variables of 2-year, 20-year, and 100-year return periods (ΔQF-H(2-year-ME), 384 

ΔQF-H(20-year-ME), and ΔQF-H(100-year-ME) respectively) via the general linear model-univariate 385 

procedure in SPSS 22 software (Pallant, 2013). ANOVA explores the effect of different factors 386 

on the variance of the response using the p-value of the statistical test and ranking factor 387 

importance by using the F-value. The F-value of each factor was divided by the summation of F-388 

values in a single model to determine how much variance that factor explains from the total 389 

predictable variance. Several considerations were determined when applying ANOVA methods. 390 

First, because the datasets were not represented in the climate factors equally, we applied four 391 

separate models that balanced a set of factors.  The reason for the multiple models is attributed to 392 

our climate datasets where the CMIP3 project has both statistically and dynamically downscaled 393 

results while the CMIP5 project has only statistically downscaled results. We, also, have 394 

different emission scenarios between the two projects. CMIP3 has SRES emission scenarios; and 395 

CMIP5 has RCPs emission scenarios. We built therefore four-way ANOVA models as the 396 

highest possible order to constrain the balanced and nested models. Figure 5 shows four possible 397 

4-way ANOVA models that we built from our factorial design. Second, we analyzed the factors 398 
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across the models using the highest possible order, however, if a factor was found to be 399 

unimportant, we omitted the factor to maximize repetitions.   400 

<Figure 5 here please> 401 

ANOVA assumes that the population is normally distributed, although the violation of 402 

this assumption should not cause major problems when the sample size is greater than 30 403 

(Pallant, 2005, Gravetter&Wallnau, 2000, Stevens, 1996). In our factorial design, the least 404 

sample size was recorded in ANOVA model 3, where the sample size was 56.  Therefore, our 405 

concern about the normality assumption is limited.  The homogeneity of variance assumption 406 

was treated by using the Levene test for the equality of variance (Pallant, 2005). If the data failed 407 

in this test, the significant level by which we compare the variances of the different groups in the 408 

ANOVA models was 0.01, which overcomes the violation of this assumption (Pallant, 2005).   409 

Nonlinear Artificial Neural Network (ANN): ANN models, on the other hand, were 410 

considered in this study to reinforce our robustness of the variance analysis.  ANNs provides a 411 

model framework based on a set of multivariate nonlinear functions, and therefore could account 412 

for nonlinearity between factors controlling variance and the streamflow response variable, if it 413 

exists.  In this manner, ANNs could overcome the underlying multivariate linear model 414 

limitation that ANOVA is based on.  We used the ANN model to examine the climate factors 415 

importance on streamflow maxima projections through SPSS 22 software (IBM , 2012, Tufféry, 416 

2011). The input layer represented the climate and the statistical factors with nominal variables, 417 

and the output layer represented the relative change in streamflow maxima. We used one hidden 418 

layer with a randomly generated number of neurons. We used supervised training with multilayer 419 

perceptron and feedforward architecture. All values of the input and output layers were 420 

normalized so that all values ranged between 0 and 1.  The hyperbolic tangent activation function 421 

was considered in the hidden layer. We used the same four models proposed in the ANOVA 422 

analysis to perform the ANN analysis.  The dataset partitioning was performed with SPSS-ANN 423 

to divide the data into training and testing datasets. However, through generation of random 424 

numbers within SPSS-ANN, the partitioning values of training and testing will swing around the 425 

70% and 30% marks for each run of many runs performed for each model. The values of training 426 

partitioning ranged between 60% and 80% affecting the testing portion and providing a new 427 

relative error value for both training and testing parts. Accordingly, the smallest relative error 428 

provides the best results for the ANN model (IBM, 2012).  Therefore, our approach was to use 429 
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an initial 70% of the dataset for training and the rest for testing, and then rerun the model until 430 

obtaining the minimum possible relative errors across the training and testing data. 431 

 432 

4.3 Uncertainty from hydrologic modeling 433 

Additional uncertainty from the future hydrologic balance and its simulation were also 434 

quantified as part of our study.  Future projections of net radiation, vapor pressure and wind 435 

speed were tested in simulation for the study region with the premise that decreases in wind 436 

speed and net radiation and an increase in relative humidity could decrease future 437 

evapotranspiration and in turn increase streamflow maxima while at the same time increase 438 

uncertainty of forecasts.  Future projections that consider hydrologic model fit and hydrologic 439 

parameter uncertainty were also tested to assess the potential to increase the variability of 440 

projected streamflow maxima. 441 

Future climate change of wind speed, net radiation, and relative humidity were tested 442 

within hydrologic simulation by considering projected shifts reported in the literature. The 443 

average monthly wind speed in the study site ranges between 3 and 5 m/s.  According to 444 

McVicar et al. (2012), the possible stilling in the middle of the current century is approximately 445 

0.5 m/s for the study site region when assuming a linear trend of their observations reported 446 

therein.  In turn, the percent climate change of wind speed is between -10% and -17% for the 447 

future period in the study region.  Wild (2009) indicates that the surface solar radiation has a 448 

decadal variation and that the absolute trend was observed as -6 W m-2 per decade and 8 W m-2 449 

per decade for the periods of 1961-1990 and 1995-2007, respectively, over the United States.  450 

We recognized that increasing radiation would offset decreasing wind speed when estimating 451 

evapotranspiration, and therefore we considered the decreasing trend of -6 W m-2 per decade for 452 

the future period, in order to test its sensitivity.  The mean daily solar radiation ranges throughout 453 

the year between 81 W m-2 (1.9 kW h m-2d-1) and 300 W m-2 (7.2 kW h m-2d-1).  Considering the 454 

mentioned net decrease produces a change in the solar radiation reaching the surface to be 455 

between -4% and -15%.  Regarding the relative humidity, Willett et al. (2008) shows data that 456 

suggests an increase in the relative humidity for the northern hemisphere.  The net increase 457 

shown was 0.07% for the 10 year period of investigation.  We assumed the same change for the 458 

future period, which resulted in a range between +0.4% and +0.5% for the study region.  459 

Donohue et al. (2010) showed that the Penman equation produced the most reasonable 460 
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estimation of evaporation demand, and this method is included within the hydrologic model used 461 

in the present study.  Therefore, we considered a number of scenarios in hydrologic modeling 462 

that test the mentioned ranges of wind speed, net radiation, and relative humidity concurrently to 463 

see their added impact on streamflow maxima.  We also tested the variables independently to see 464 

their individual sensitivity upon the streamflow maxima. 465 

Future projections that consider hydrologic model fit and hydrologic modeling 466 

uncertainty were also tested with the hydrologic model to investigate their impact on forecasted 467 

streamflow maxima.  Recent literature results have marginalized the importance of model fit 468 

when forecasting the relative change in future mean streamflow (Niraula et al., 2015), and we 469 

tested this concept for future streamflow maxima.  The future streamflow maxima produced from 470 

the calibrated hydrologic model simulation for a set of GCM realizations was compared against 471 

the future streamflow maxima produced using the un-calibrated (i.e., default) parameterization of 472 

the hydrologic model for the same climate realizations.  Additionally, the impact of hydrologic 473 

model uncertainty was considered by carrying forward uncertainty projections from the 474 

hydrologic model parameterization to the extreme value methods and thereafter to compute the 475 

relative change in future streamflow.  The SWAT-CUP software provides parameter sets and 476 

solutions used to  create uncertainty bounds during the model simulation.  Realizations of all 477 

parameter sets that meet the objective function criteria were chosen and extreme value methods 478 

were performed for hindcast and forecast global climate pairs to compute the relative change in 479 

streamflow maxima.   480 

 481 

4.4 Forecast of streamflow maxima for wet temperate regions 482 

 After quantifying the climate, hydrologic, and extreme modeling factors controlling 483 

variability of the projections, an ensemble was created to forecast the relative change in the 484 

streamflow maxima for the wet temperate study region (Al Aamery et al., 2016).  The extreme 485 

forecasts for this study calculated the net effect on the mean and variance of the balanced 486 

ensemble from variation of climate modeling factors and extreme modeling factors, the added 487 

uncertainty from hydrologic model parameterization, and the added mean shift and its variance 488 

from climate change shifts in net radiation, vapor pressure and wind speed.  Results were 489 

compared with other studies reported in the literature of streamflow maxima (see Table 1) that 490 

fell within wet temperate regions.   491 
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 492 

5 RESULTS AND DISCUSSION 493 

5.1 Modeling simulations and evaluation 494 

Results from the model evaluation showed that the hydrologic model performed within 495 

an acceptable range, and the simulated and observed daily streamflow signals showed close 496 

agreement (see Figure 6).  The four quantitative matrics including coefficient of determination 497 

(R2), percent bias (PBIAS%), Nash-Sutcliff Efficiency (NS), and the ratio of the root mean square 498 

error to the standard deviation of measured data (RSR) showed results within the acceptable 499 

range (Moriasi et al., 2007, Donigan, 2002, Gassman et al., 2007) in both calibration and 500 

validation periods for the majority of the four observation sites for which the model was 501 

compared against (see compiled metrics in Table 2), although one of the four sites showed values 502 

just below or equal to the acceptable range boundary during validation.  Overall, 53 out of the 56 503 

metrics that compared observations with model results were above the acceptable range showing 504 

that the model simulated streamflow well.  According to Moriasi et al. (2007) the monthly time 505 

step model performance is considered satisfactory if the NS>0.5, RSR<0.7, and PBIAS <±25%.  506 

The model performance on finer time steps (e.g. daily) is usually poorer than the coarser time 507 

steps model (e.g. monthly) in terms of the statistical matrices (e.g. NS, RST, PBIAS) (Moriasi et 508 

al., 2007, Engel et al., 2007).  For instance, while the monthly NS was 0.656 for the calibration 509 

period in Fernandez et al. (2005), the daily one was 0.395. Moreover, Moriasi et al. (2007) 510 

indicated that when reviewing previous studies, NS and PBIAS were “as expected” lower in the 511 

validation period than the calibration period for streamflow. Note that the Midway station was 512 

our primary calibration, since all of the model’s streamflow forecasts occurred from this 513 

location. The model we established for South Elkhorn watershed showed results for the Midway 514 

gage station to have NS values equal to 0.9 and 0.66 for the monthly and daily time steps, 515 

respectively, for the calibration period; and NS values equal to 0.88 and 0.46 for the monthly and 516 

daily time steps, respectively, for the validation period.  In summary, the metrics showed 517 

adequate performance considering the above information and results. 518 

<Figure 6 here please> 519 

<Table 2 here please> 520 

Results from fitting both the AM and POT extreme series methods to the streamflow 521 

results showed that in general the extreme series results had little mean trend and were 522 



19 

 

dominated by the two parameter probability distributions (see Supplementary On-line Table).  523 

The Mann-Kendall test results showed that only 2% of the AM series included a mean trend that 524 

required removal and only 4% of POT series results had a mean trend that required removal.  A 525 

regression approach was also carried out and provided identical results as the Mann-Kendall 526 

tests.  The results highlight that although non-stationarity is exhibited when comparing extremes 527 

from the hindcast to the forecast periods, little significant non-stationarity is exhibited within the 528 

simulation periods.  Statistical results showed that 91% of the AM series best followed the two-529 

parameter Gumbel distribution while 85% of the POT series best followed the exponential 530 

distribution.  The results tend to agree with the results of Dankers and Feyen (2008) who also 531 

found that a two parameter distribution was most adequate when fitting distributions from 532 

extreme value theory to streamflow results derived from global climate modeling.  Additional 533 

results from the extreme value analyses is also compiled in the Supplemental On-line Table and 534 

includes: threshold selections, the value of the extremal index θ before de-clustering, the value of 535 

r required to make the extremal index θ equal to unity, the p-value of Mann-Kendall non-536 

parametric test, and the resultant sample size (n).   537 

We found less than 10% difference between observed and simulated maxima for all 538 

return periods (i.e., 2, 20 and 100 year return periods) for both AM and POT methods.  Both 539 

observed and simulated maxima followed exponential distributions for the POT method; and 540 

both followed the Gumbel distribution for the AM method.  Donigan (2002) indicates that an 541 

absolute hydrologic model calibration/validation target of less than 10% difference between the 542 

simulated and the observed hydrology flow is considered a very good target; and that the range 543 

of such target should be applied on the mean and the individual events may show larger 544 

differences while still acceptable.  With this criteria in mind, our SWAT evaluation results for 545 

the extremes were deemed adequate.  546 

Extreme quantiles for 2-, 20-, and 100-year maxima streamflow levels showed that 547 

forecast results were in general greater than hindcast results for simulation pairs with the same 548 

climate modeling factors, highlighting the non-stationarity of extremes mentioned previously.  549 

Figure 7 illustrates hindcast simulations corresponding to POT extreme series method, and all 550 

simulation results are shown in the Supplementary On-line Table.  Statistical downscaling of the 551 

hindcast GCM realizations in general under-predicted hydrologic model results analyzed with 552 

the extreme series method; and the under-prediction was especially true for streamflow levels 553 
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from the 100-year return period.  Results from the dynamical downscaling hindcast realizations 554 

better bound the observed extremes.  The result supports the idea that regional climate models 555 

can capture small-scale climate features, e.g., strong fronts, and realistically simulate extreme 556 

events (Fowler et al., 2007, Warner, 2010), which would suggest a better choice for extreme 557 

streamflow forecasting.  Fowler et al. (2007) pointed out that the statistical downscaling methods 558 

poorly represent the extreme events and underestimate variance, which reflects the fact that both 559 

BCSD and BCCA methods use the distribution of precipitation from historical climate records to 560 

create the future distributions.  Warner (2010) compared the statistical and dynamical 561 

downscaling with respect to their advantages and disadvantages, and he indicated that dynamical 562 

downscaling methods could better capture extreme events and variance. Sunyer et al. (2015) 563 

shows that the RCM-GCM projections are the main source of variability in their results, and 564 

between 30-50% of the total variance is explained by statistical downscaling in several 565 

catchments in their study. Trayhorn and DeGaetano (2001) compared several different 566 

downscaling methods for rainfall extremes over the Northeastern United States; and their results 567 

suggest that regional climate models overestimate the observed extremes.  Aside from the 568 

Trayhorn and DeGaetano (2001) results, literature results and this study generally support the 569 

idea that hindcast extremes from dynamic downscaling agree better with observed extremes as 570 

compared to statistical downscaling results. 571 

<Figure 7 here please> 572 

We also examined specific results of individual climate models and downscaling methods 573 

in order to provide insight on how climate model structure may be impacting forecasted 574 

streamflow maxima.  The four GCMs from CMIP3 all illustrate differences when comparing 575 

across the 2, 20 and 100 year return periods (Figure 7).  The result was not surprising given that 576 

GCM has been found as a significant factor in studies of forecasted mean streamflow and 577 

precipitation, and climate scientists highlight variability of GCMs due to the differences in the 578 

models’ structures and parameterizations (Randall et al., 2007; Weart, 2010; Mearns et al., 2013; 579 

Melillo et al., 2014; Al Aamery et al., 2016).  Given the many differences between the four 580 

GCMs, it is difficult to discern specific processes represented within the climate models that 581 

might be controlling the extreme streamflow forecasts, however, direct comparison of CMIP3 582 

and CMIP5 model versions provided some discussion. 583 
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Figure 7 reveals that CCSM has a pronounced difference between CMIP3 and CMIP5 584 

forecasted streamflow maxima while the other GCMs (Had, GFDL and CGCM) do not show 585 

differences between model versions for our analyses.  The reason is perhaps attributed to the 586 

newer version CCSM4 that produces El Nino-Southern Oscillation (ENSO) variability in a more 587 

realistic frequency distribution than CCSM3 by changing the deep convection scheme.   588 

The Had, GFDL and CGCM models also made changes from CMIP3 to CMIP5 but these 589 

tend to have little differences in terms of streamflow extremes (Figure 7).  The HadGEM2 of 590 

CMIP5 improved the performance of ENSO, northern continent land-surface temperature biases, 591 

SSTs, and wind stress compared to the previous models; however, Collins et al. (2008) suggests 592 

that the power spectrum of El Nino was not a substantial improvement.  GFDL version 3 (CM3) 593 

used in CMIP5 made minimal changes to the ocean and sea ice models compared to those used 594 

in CM2.1 version of CMIP3; however, the newer version is extensively developed the 595 

atmosphere and land model components (Griffies et al., 2011).  CanESM2 of CMIP5 combines 596 

the fourth generation atmospheric general circulation model (CanCM4) with terrestrial carbon 597 

cycle model (CTEM). Compared to the third generation of CanCM3 that was used in CGCM3.1 598 

of CMIP3, CanCM4 is different in many aspects such as the finer resolution and the addition of 599 

new schemes such as shallow convection scheme (see Chylek et al., 2011).   600 

Taken together, of all the changes to the four different GCMs between CMIP3 and 601 

CMIP5, only augmenting ENSO within the GCM seems to have a substantial impact on 602 

forecasted streamflow maxima.  The suggestion is reasonable given that ENSO has been 603 

suggested to show significant impacts on precipitation in this region of North America (Gabler et 604 

al., 2009).  Results suggest that the El Nino-Southern Oscillation and its representation within 605 

climate modeling may exhibit a substantial control on forecasting streamflow maxima for the 606 

wet temperate study region; and additional emphasis upon oscillations when forecasting 607 

streamflow maxima in wet temperate regions may be fruitful. 608 

 609 

5.2 Uncertainty from climate and extreme modeling factors 610 

Variance analysis results determined via ANOVA showed that the variance structure of 611 

forecasted streamflow maxima exhibits some dependence on all of the climate modeling 612 

considered factors but does not exhibit dependence upon the extreme value method applied (see 613 

Figure 8).  The results are interesting due the fact that previous variance analysis of mean 614 
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streamflow forecasted from GCMs only showed dependence on a subset of the climate modeling 615 

factors while debate in the literature suggests that AM and POT methods would give different 616 

results (Scarrott and MacDonald, 2012; Bezak et al., 2014; Al Aamery et al., 2016).  617 

Specifically, results of the ANOVA (Figure 8) show that variance of the 2 year and 20 year 618 

streamflow maxima are significantly dependent upon GCM type, downscaling method, emission 619 

scenario, GCM project phase, and bias implementation; and variance of the 100 year streamflow 620 

maxima is significantly dependent upon GCM type, GCM project phase, and bias 621 

implementation.  For reference, results of forecasted mean streamflow are included in Figure 8 622 

and show dependence on GCM type and phase and downscaling.   623 

<Figure 8 here please> 624 

The climate modeling factors that significantly influenced the forecasted streamflow 625 

maxima variances were ranked using the weighted F-value according to their variance 626 

contribution (see Figure 8) as GCM type, downscaling method, bias implementation, GCM 627 

version associated with the climate project phase, and the emission scenario input to the GCM.  628 

Results of the ANN non-linear variance analysis compared well with linear analysis via ANOVA 629 

(see comparisons in Figure 9) providing further confidence in our ranking results.   630 

<Figure 9 here please> 631 

In addition to the variance breakdown, the total variance of the forecasted extremes also 632 

displays pertinent information.  The total variance of streamflow extremes increased 633 

substantially with return period—a result most easily observed with the standard error bars in 634 

Figure 10.  In addition, the proportion of the variance that was predictable with the climate 635 

modeling factors tended to decrease with return period.  The result suggests a propagation of 636 

unexplainable variance throughout the analysis that becomes more pronounced with the higher 637 

order extremes associated with higher return periods. 638 

<Figure 10 here please> 639 

We at least partially attribute the pronounced growth of uncertainty with return period to 640 

fitting the extreme value distributions to the hydrologic results.  The 100 year return period falls 641 

at the tail end of the GEV and GP distributions (i.e., f=0.99) and therefore uncertainty introduced 642 

in fitting the distributions will be most pronounced for the highest return periods.  To illustrate 643 

the point, we performed sensitivity of the extreme value parameterization method by assuming a 644 

known parent Gumbel distribution for Mn, drawing sets of realizations consistent with the years 645 
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of data in our analyses, and fitting the extreme value distribution consistent with the maximum 646 

likelihood method of our analyses as well as typically performed by others (e.g., Gilleland and 647 

Katz, 2006).  Results from the sensitivity show that the variance associated with the 100 year 648 

streamflow is about five times greater than that of the 2 year streamflow event (see Table 3).  649 

The result highlights one reason for pronounced increases in unexplainable variance within 650 

forecasted streamflow maxima.   651 

<Table 3 here please> 652 

 On the other hand, factorial comparison between the AM and POT series fitted by the 653 

General Extreme Value (GEV) and General Pareto (GP) distributions did not show significance 654 

within the analysis of variance results.  The result is surprising given recent debate and critique 655 

of each method, e.g., AM is criticized for its neglect of multiple extremes per annum while POT 656 

has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott and 657 

MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016).  However, further 658 

investigation of the literature suggests that the variance analysis result is consistent with 659 

fundamental theory and that the methods might be used interchangeably, as needed, so long as 660 

care is taken in their application.  Fundamentally, Coles (2001) shows that the GEV distribution 661 

provides the base that can be used to derive the GP distribution so long as the threshold point is 662 

sufficiently large and the events are independent and random.  In this manner, we recommend 663 

that future coupled hydrologic and climate research studies that apply the POT method should 664 

strive for relatively high threshold values that fall within the Rules of Thumb outlined by 665 

Scarrott and MacDonald (2012) and ensure that the extremal index is not less than one (see 666 

Figure 3).   667 

One noteworthy comparison of the present study’s results with previously published 668 

results is that the variance of forecasted streamflow maxima is even more sensitive to climate 669 

modeling factors as compared to the variance of mean forecasted streamflow.  Specifically, the 670 

variance of streamflow maxima showed significant dependence upon the choice of emission 671 

scenario and bias correction approach (see Figure 8) while the variance of mean streamflow did 672 

not exhibit significant dependence upon emission and bias (see Al Aamery et al., 2016 and 673 

results summarized in Figure 8).  The streamflow maxima’s dependence upon emission scenario 674 

is worthy of mentioning given that the mean atmospheric CO2 concentration projected for the 675 

emission scenarios varies by just ±50 ppm for 2050 (IPCC, 2001; Meinshausen et al., 2011).  676 
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Further, the mean annual temperature has a total range of just 1.5°C for 2050 across emission 677 

scenarios projected within the GCMs applied in this study and the mean streamflow study of Al 678 

Aamery et al. (2016).  The subtle mean changes in CO2 and MAT for 2050 appear to mask 679 

temporal anomalies captured within the GCMs.  The potential of emissions to help control 680 

streamflow maxima is somewhat corroborated by the work of Mantua et al. (2010) where they 681 

show streamflow maxima differences among two emission scenarios.  Significance of emission 682 

scenario within variance analysis of forecasted streamflow maxima suggests that hydrologic and 683 

climate research is needed that examines how models might be coupled at a higher temporal 684 

resolution, rather than the more prevalent emphasis on mean coupling (e.g., see review Table 1 685 

in Al Aamery et al., 2016).  Similarly, the significance of bias correction upon the variance of 686 

forecasted streamflow maxima reflects the boundary between climate and hydrologic models that 687 

has emphasized mean coupling and thus linear shifts in rainfall and temperature data to show 688 

agreement with observations (Lenderink et al., 2007).  More sophisticated bias correction 689 

methods are available (Teutschbein and Seibert, 2012) but typically come with the added 690 

conundrum of forcing functional constraints on climate model results that are sought after due to 691 

their non-stationarity.  Surely, research might consider higher resolution model coupling to 692 

understand anomalies that control maxima streamflow. 693 

 694 

5.3 Uncertainty from hydrologic modeling 695 

Future climate change of wind speed, net radiation, and relative humidity were tested 696 

within hydrologic simulation by considering projected shifts reported in the literature.  Results 697 

suggest that the net impact of wind speed, net radiation, and relative humidity could provide an 698 

additional 1 to 5% increase in streamflow maxima for 2, 20 and 100 year return periods for the 699 

wet temperate study region and future period considered (see Table 4).  Average daily change in 700 

evapotranspiration ranged from 0.5 to 5% decreases.  Streamflow maxima increases and standard 701 

error associated with the wind speed, radiation and relative humidity shifts were +3.2(±1.7), 702 

+2.2(±1.6) and +1.9(±1.6)% for 2, 20 and 100 year events.  Relative to the increases of 703 

+27(±21), +36(±34) and +49(±85)% for streamflow maxima associated with GCM-projection of 704 

precipitation and temperature from ensemble analysis (see Figure 10), the effect of wind speed, 705 

net radiation and relative humidity were small for this region.  Nevertheless, the effect is non-706 

zero; and the variables may be more substantial in other regions or for forecasting to 2100.   707 
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<Table 4 here please> 708 

Future projections that considered hydrologic model fit and hydrologic modeling 709 

uncertainty were also tested to investigate their impact on the relative change of streamflow 710 

maxima.  The future streamflow maxima produced from the calibrated hydrologic model 711 

simulation was compared against the future streamflow maxima produced using the un-712 

calibrated (i.e., default) parameterization of the hydrologic model for the realization pairs for the 713 

AM extreme value analysis method (n=74).  Results for the uncalibrated hydrologic analysis of 714 

the relative change in streamflow maxima were +19(±28), +20(±35) and +24(±59)% for 2, 20 715 

and 100 year events in comparison to the calibrated model results equal to +27(±23), +35(30) 716 

and +49(±92)% for 2, 20 and 100 year events.  Results show that the uncalibrated model gives a 717 

much lower increase in future streamflow maxima compared to the calibrated model results, 718 

especially for the 100 year extreme.  Note that the default model simulations tended to under-719 

predict streamflow during peak events.  The simulation bias is carried forward to the extreme 720 

modeling results and is not removed when considering the relative change.  In this manner, the 721 

variance of the streamflow maxima was dependent on hydrologic model parameterization.  722 

These results contrast the work of Niraula et al. (2015) where we showed that the relative change 723 

in mean forecasted streamflow was not dependent on parameter selection during calibration.  The 724 

results further highlight the variance structure’s sensitivity when forecasting streamflow 725 

extremes.   726 

Given the dependence on hydrologic calibration, the hydrologic uncertainty realizations 727 

were also performed.  Results suggest that hydrologic model parameter sets generated during 728 

uncertainty analysis also impart variance upon relative changes in streamflow maxima.  We 729 

calculated the error associated with the relative change in streamflow maxima using the 730 

parameter sets within SWAT-CUP that met model objective function criteria.  Standard error 731 

was 3.1, 3.3 and 3.6% for the relative change of 2, 20 and 100 year events.  Standard error is 732 

small in comparison to the error produced from climate and extreme modeling factors.  733 

Nevertheless the error is nonzero and may be larger for other regions.  We also calculated the 734 

standard error from absolute forecasted streamflow maxima and found values of 11, 21, and 27 735 

cms for 2, 20 and 100 year events.  We compared these values with the standard error from direct 736 

bias-correction of the streamflow maxima via the relative change approach, and the standard 737 

error was 3, 6 and 9 cms for 2, 20 and 100 year events.  The results highlight that the delta 738 
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method applied to the direct observed streamflow via the relative change does reduce hydrologic 739 

uncertainty relative to the absolute forecasts. 740 

 741 

5.4 Forecast of streamflow maxima for wet temperate regions 742 

One corollary of variance analysis is inclusion of significant factors impacting prediction 743 

and thus forecasting of future streamflow.  The relative change in streamflow maxima were 744 

increases of +30(±21), +38(±34) and +51(±85)% for the study region for 2, 20 and 100 year 745 

events.  The increases are substantially larger than the 11% increases found for mean streamflow 746 

and mean precipitation for the study region (Al Aamery et al., 2016).  Additionally, streamflow 747 

maxima increases as a function of return period.  The variability of the projections is 748 

pronounced, and the uncertainty from climate and extreme model factors dominates the variance 749 

(see Table 5). 750 

<Table 5 here please> 751 

The forecasted results of increased maxima streamflow in 2050 for the wet temperate 752 

region of North America (1120 mm y-1) is in agreement with scientific sentiment and forecasting 753 

that wet regions will get wetter and wet time periods will be wetter (Melillo et al., 2014).  We 754 

performed analysis of published maxima streamflow forecasts in wet regions of Europe and their 755 

comparison corroborated the finding that maxima streamflow increases as a function of return 756 

period.  Analysis of the results from Lawrence and Hisdal (2011) show an increase of maxima 757 

streamflow as a function of return period for Norway (760-2250 mm y-1).  Also, analysis of the 758 

results from Dankers and Feyen (2008) show an increase of maxima streamflow as a function of 759 

return period for their European sites studied where the mean annual precipitation was greater 760 

than 500 mm per year and is projected to be less in the end of this century.  761 

The finding that forecasted maxima streamflow may show further increases as a function 762 

of return period further supports general scientific agreement that the most extreme flooding 763 

events will get even more extreme for wet temperate climates (Melillo et al., 2014).  This 764 

concept is reflected in the timing of streamflow increases and extremities in the present study, 765 

and Table 6 shows that the months of the year with the highest future changes in mean 766 

precipitation and streamflow tend to also account for the majority of forecasted streamflow 767 

maxima events during the study period.  The results also reflect the fundamental scientific 768 

consequences of climate change.   That is, increased precipitation in wet regions is expected due 769 



27 

 

to higher amounts of moisture in the atmosphere due to warmer atmospheric temperatures and 770 

expansion of the high Sub-tropical Belt as the air temperature increases and moist air is 771 

transported to higher and lower latitudes (Gabler et al., 2009; Melillo et al., 2014).  In turn, 772 

climate change in wet temperate region may increase precipitation, temperature, and relative 773 

humidity while decreasing wind speed and net radiation, and the net effect both individually and 774 

cumulatively of all these shifts is an increase in streamflow maxima.  775 

<Table 6 here please> 776 

 777 

6 CONCLUSION 778 

 The main conclusions of our work are described as follows: 779 

(1) Model simulation and evaluation results from comparison of different global climate model 780 

downscaling methods suggests that dynamic downscaling results more closely align with 781 

observations, presumably due to the explicit simulation of small-scale features such as strong 782 

fronts.  Comparison of streamflow maxima forecasted with paired climate models from 783 

CMIP3 versus CMIP5 projects suggest that the El Nino-Southern Oscillation representation 784 

within modeling exhibits a control on forecasting streamflow maxima for the wet temperate 785 

region studied.   786 

(2) Uncertainty from climate and extreme modeling factors was evaluated and showed that the 787 

relative change of streamflow maxima was not dependent on systematic variance from the 788 

annual maxima versus peak over threshold method applied.  We find that the variance of 789 

streamflow maxima is an increasing function of the return period, which is at least partly 790 

attributed to fitting the extreme value distributions to the hydrologic model results.  The 791 

variance of the relative change in streamflow maxima is dependent upon global climate 792 

model, emission scenario, project phase, downscaling, and bias correction.   793 

(3) Uncertainty from hydrologic modelling was analyzed and unlike results from previous 794 

research focused on the relative change of mean streamflow, the relative change of 795 

streamflow maxima was dependent on hydrologic model fit and modeling uncertainty.  The 796 

streamflow maxima also showed some dependence on climate projections of wind speed, net 797 

radiation and relative humidity.   798 

(4) Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced 799 

forecast standard error, including +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year 800 
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events for the wet temperate region studied.  The variance of maxima projections was 801 

dominated by climate model factors and extreme value analyses with lesser control from 802 

hydrologic inputs and hydrologic model parameterization. 803 
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Figure 1. Conceptual model of variance structure for forecasted streamflow maxima. 
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Figure 2. Study area of the South Elkhorn Watershed, Kentucky USA (adopted from Figure 2 in 
Al Amery et al., 2016) 
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Figure 3. Methodology of extreme value analysis. 
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Figure 4. (a) AM series example, (b) POT series example, (c) Parameter stabilization drawing for 
observed Q, and (d) Threshold choices, comparison of three Rule of Thumb methods and parameter 
stabilization method. 
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Figure 5. Factorial design for the four analysis of variance models. 
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Figure 6. Observed and simulated streamflow by using SWAT. 
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Figure 7. Results of the extreme quantiles fir (a) hindcast simulation, (b) different GCM results, and (c) 

CMIP3 versus CMIP5 results. 
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Figure 8. ANOVA results that present a comparison between the factors with respect to their significance and ranking. The horizontal dark grey 
bars represent the fraction of variance explained by the factor by using ANOVA method. 

 
 (*) Indicates that F-value was selected from the interaction effect.  NA indicates not applicable simulation.  

Figure 8



Figure 9. ANN and ANOVA results; comparison of variance decomposition. The horizontal grey bars represent the fraction of variance explained 

by the factor. 

Model 

# 

Return 

Period 

(Year) 

ANOVA 

(R2) 

ANN 

(RE) 

 Method Weights 

Model 

1 

  Train Test  GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series 

2 0.54 0.43 0.43 ANN   Not tested  Not tested Not tested  

    ANOVA    0   0 

20 0.46 0.64 0.66 ANN        

    ANOVA       0 

100 0.08 0.8 0.83 ANN        

    ANOVA 0 0     0 

Model 

2 

     GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series 

2 0.43 0.74 0.72 ANN  Not tested Not tested   Not tested  

    ANOVA  0  0 

20 0.49 0.75 0.76 ANN     

    ANOVA    0 

100 0.25 0.87 0.88 ANN     

    ANOVA 0 0 0 0 

Model 

3 

     GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series 

2 0.96 0.37 0.35 ANN  Not tested Not tested  Not tested   

    ANOVA    0 

20 0.83 0.5 0.5 ANN     

    ANOVA    0 

100 0.23 0.77 0.79 ANN     

    ANOVA  0 0 0 

Model 

4 

     GCM Downscaling Project Bias Emission (SRES) Emission (RCPs) Series 

2 0.71 0.3 0.28 ANN  Not tested   Not tested Not tested  

    ANOVA    0 

20 0.55 0.5 0.51 ANN     

    ANOVA    0 

100 0.37 0.93 0.92 ANN     

    ANOVA    0 

The horizontal grey bars represent the fraction of variance explained by the factor. The representation is by bar length where maximum and minimum lengths are 1 and 0 respectively and calculated 
from F-value. Adding the lengths for each extreme level will equal 1. The length of dark grey bars were calculated by using ANOVA method while the length of light grey bars were calculated by using 
ANN method. 
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Figure 10. Flood frequency curves and percent change in extreme quantiles found from ensemble 
analyses of climate modeling and statistical modeling analyses. 
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Table 1. Previous studies of streamflow maxima forecasted with global climate models.  

Study/Location  Number of 

GCMs  

Downscaling 

method 

Project 

Phase 

Number of 

emission 

scenarios 

Bias implementation 

for climate data 

Extreme 

series type 

Response 

variable  

Zhang et al., 2014 (China) 1 Dynamical  CMIP3eq. 3 No AM QF(extreme) 

Lawrence & Hisdal, 2011 (Norway) 8 Dynamical CMIP3eq. 3 Yes AM ΔQF(extreme) 

Mantua et al., 2010 (Washington state, USA) 10 Statistical  CMIP3eq. 2 Yes AM QF(extreme) 

Dankers and Feyen,  2008 (Europe) 1 Dynamical  CMIP3eq. 2 No AM ΔQF(extreme) 

Prudhomme et al., 2003 (Great Britain) 7 Statistical  CMIP3eq. 4 Yes POT QF(extreme) 

GCM: Global Circulation Model, AM: Annual Maxima extreme series, POT: Peak Over Threshold extreme series 

CMIP3eq.: Equivalent to CMIP3 project where either the model version or the downscaling method is different but with the same forces (emission scenarios) 

 

 

Table 1
Click here to download Table: Table1.docx
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Table 2. Calibration and validation results for the SWAT model. 

Optimization 
Gage Time Step 

Sub- 
basins 

Number 

Soil Data 
Type 

Landuse 
/landcover  

dataset 

Total Flow Calibration (For the period 1/1/1983-
12/31/1993) 

Total Flow Validation ( For the period 1/1/1994-
12/31/2000) 

        R2 PBIAS% NS RSR R2 PBIAS NS RSR 
Near Midway Daily 12 STAT-SGO 1992 0.67 -0.7 0.66 0.58 0.52 -14.97 0.46 0.74 

 Monthly 12 STAT-SGO 1992 0.91 -1.08 0.9 0.31 0.91 -15.11 0.88 0.34 
Near 

Frankfort Daily 12 STAT-SGO 1992 0.6 0.14 0.58 0.65 0.52 -16.65 0.4 0.77 

 Monthly 12 STAT-SGO 1992 0.84 -0.35 0.84 0.4 0.9 -16.7 0.84 0.4 
        Total Flow Calibration (For the period 1/1/1983-9/30/1992) Total Flow Validation ( For the period 10/1/1997-

12/31/2000) 
Yarnalton Daily 12 STAT-SGO 1992 NA NA NA NA 0.77 13.56 0.75 0.5 

 Monthly 12 STAT-SGO 1992 NA NA NA NA 0.84 13.5 0.78 0.46 
Fort Spring Daily 12 STAT-SGO 1992 0.7 5.9 0.68 0.58 0.53 -11.6 -0.01 1.00 

 Monthly 12 STAT-SGO 1992 0.89 5.6 0.88 0.34 0.88 -11.62 0.73 0.51 
NA indicates that there are no observation data were available.   

Table 2
Click here to download Table: Table2.docx



Table 3. Sensitivity analysis of Extreme value modeling 

Extreme event Standard deviation of ΔQ Variance of ΔQ 
2 year event ±43% 1850 
20 year event ±54% 2920 
100 year event ±93% 8650 
 

Table 3
Click here to download Table: Table3.docx



Table 4. Wind speed, net radiation and relative humidity impacts on streamflow maxima. 

  

 

 

 

 

Model run
Δ Wind 

speed (%)

Δ net 
Radiation (%)

Δ rel 
humidity (%)

Q2 (cms) Q20 (cms) Q100 (cms) ΔQ2 (%) ΔQ20 (%) ΔQ100 (%)

Control NA NA NA 78 161 215 NA NA NA

Scenario 1 -10 -4 0.4 79 161 216 0.8 0.6 0.5

Scenario 2 -13.5 -9.5 0.45 81 165 220 3.6 2.7 2.5

Scenario 3 -17 -15 0.5 82 166 222 4.7 3.5 3.2

Scenario 4 -17 0 0 79 161 215 1.4 0.4 0.1

Scenario 5 0 -15 0 81 165 220 3.3 2.5 2.3

Scenario 6 0 0 0.5 78 160 214 -0.1 -0.2 -0.2

Table 4
Click here to download Table: Table4.docx



Table 5. Variance of the relative change in streamflow maxima from climate, extreme and hydrologic 
modeling components. 

Modeling component Var[ΔQ2 yr] Var[ΔQ20 yr] Var[ΔQ100 yr] 
1. Climate and extreme modeling factors 441 1122 7225 
2. Additional climate shifts input to hydrologic model 3 3 3 
3. Hydrologic model parameterization  9 11 13 
 

 

Table 5
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Table 6. Monthly distribution of precipitation changes, streamflow changes and number of extremes. 

Month ΔPmean ΔQmean ΔQx number of extreme per 20 year period 

October -9% -2% 1 

November 4% 0% 5 

December 26% 34% 11 

January 19% 27% 10 

February 32% 21% 7 

March 14% 15% 11 

April 20% 25% 3 

May -2% -2% 7 

June -3% -11% 8 

July 5% 2% 3 

August 4% 10% 0 

September 6% 17% 0 

    

   ΔQ2-year=25% 

 ΔPyearlyr=10% ΔQyearlyr=11% ΔQ20-year=35% 

   ΔQ100-year=49% 
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Variance Analysis of Forecasted Streamflow Maxima in a Wet Temperate Climate 16 

 17 

Abstract: 18 

Coupling global climate models, hydrologic models and extreme value analysis provides 19 

a method to forecast streamflow maxima, however the elusive variance structure of the results 20 

hinders confidence in application.  Directly correcting the bias of forecasts using the relative 21 

change between forecast and control simulations has been shown to marginalize hydrologic 22 

uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly 23 

and mean annual streamflow, prompting our investigation for maxima streamflow.  We assess 24 

the variance structure of streamflow maxima using realizations of emission scenario, global 25 

climate model type and project phase, downscaling methods, bias correction, extreme value 26 

methods, and hydrologic model inputs and parameterization. 27 

 The  Results show that the relative change of streamflow maxima was not dependent on 28 

systematic variance from the annual maxima versus peak over threshold method applied, albeit we 29 

stress that researchers strictly adhere to rules from extreme value theory when applying the peak over 30 

threshold method.  Regardless of which method is applied, extreme value model fitting does add 31 

variance to the projection, and the variance is an increasing function of the return period. 32 

  Unlike the relative change of mean streamflow, results show that the variance of the 33 

maxima’s relative change was dependent on all climate model factors tested as well as 34 

hydrologic model inputs and calibration.  Ensemble projections forecast an increase of 35 

streamflow maxima for 2050 with pronounced forecast standard error, including an increase of 36 

+30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet 37 

temperate region studied.  The variance of maxima projections was dominated by climate model 38 

factors and extreme value analyses.  39 

  40 
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1 INTRODUCTION   41 

 Streamflow maxima is one of the most sought after response variables within hydrologic 42 

research and application (Coles, 2001, Begueria & Vicente-Serrano, 2006, Reiss &Thomas, 43 

2007).  Streamflow extreme maxima re-contours the morphology of the fluvial system (Leopold 44 

et al., 2012), partially controls the stream biogeochemical function (Ford and Fox, 2015), can 45 

destroy human infrastructure (Melillo et al., 2014), and resupplies human water stores for 46 

consumption, food production and energy generation (Rosenzweig et al., 2001, Mirza, 2003, 47 

McMichael et al., 2007).  The complex earth system for which streamflow maxima responds is 48 

no less encompassing of hydrology than streamflow itself and includes components such as the 49 

climates ability to produce precipitation and weather patterns, the watershed’s physiogeographic 50 

configuration and ability to respond to precipitation, and human’s influence on both the 51 

watershed and climate.  Despite hydrologists’ long historical emphasis upon study of streamflow 52 

extreme maxima, current disparity is prevalent in terms of both streamflow maxima’s current 53 

estimations and its gradient as we forecast into the future (Khaliq et al., 2006).  Scientific gaps 54 

associated with estimating and forecasting current and future streamflow maxima is qualitatively 55 

attributed to scientific uncertainty surrounding human’s economic behavior and influence on the 56 

earth system, representation of the climate and its changes, hydrologic representation of 57 

streamflow, and scalar coupling of a changing climate within a hydrologic representation of the 58 

earth (Madsen et al., 2014, IPCC, 2013).  The difficulty of streamflow extreme maxima 59 

estimation and forecasting in a non-stationary earth system has challenged hydrologists to 60 

consider the potential use of new methodologies for investigating and forecasting streamflow. 61 

 One methodology for which streamflow maxima investigation and forecasting has 62 

received some recent attention is through the use of non-stationary projection with global climate 63 

models that can be used to drive hydrologic and statistical forecasting (Prudhomme et al., 2003; 64 

Dankers and Feyen, 2008; Mantua et al., 2010; Lawrence &Hisdal, 2011; Zhang et al., 2014).  65 

This method involves application of the non-stationarity form of long-term climate change 66 

projected using global climate models as a means to provide a physics-based guideline for 67 

extrapolation (Lima et al., 2015, Shamir et al., 2015).  The global climate model results are post-68 

processed for scalar considerations and then propagated through hydrologic models for 69 

predicting multi-year streamflow time series.  Thereafter, the extreme value theorem is adopted 70 

to study streamflow extremes because the theory provides a mathematical basis for the definition 71 
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of extremes and has been used to prove that the distribution of extremes follow similarity at their 72 

limit (e.g., Coles, 2001).  Somewhat analogous to the central limit theorem, the extreme value 73 

theorem focuses on the statistical distribution and behavior of maxima that may arise from an 74 

unknown distribution for a population of a sequence of values measured over many time units.  75 

In this manner, hydrologists can statistically investigate current and forecast extreme value 76 

extreme maxima such as 2-, 20- and 100-year events via time series generated from the 77 

mentioned hydrologic modeling. 78 

 The coupling of global climate and hydrologic models for forecasting streamflow 79 

extreme maxima has been recently criticized for water infrastructure planning in some 80 

engineering and management circuits (Moradkhani, 2017), and we tend to agree that use of the 81 

methodology in a infrastructure design capacity is a bit preliminary given that published 82 

applications and results of the method is still in its infancy.  Yet, we argue that the time is ripe 83 

for elucidating the variance structure of streamflow maxima forecasted with global climate 84 

models.  We offer several reasons for this contention.  First, highlighting the variance structure 85 

of forecasted streamflow maxima provides hydrologic and climate researchers with knowledge 86 

of highly sensitive factors and parameters of streamflow forecasting that systemically increase 87 

the size of the solution space, so that researchers might focus their attention towards improving 88 

model structure and parameterization.  Second, the variance structure of forecasted streamflow 89 

maxima allows researchers to see what extent the previous results of forecasted mean streamflow 90 

might be adopted and extrapolated for forecasting extremes.  There is a plethora of studies that 91 

forecast mean streamflow with global climate models (Chen et al., 2011, Al Aamery et al., 2016, 92 

Fatichi et al., 2014) and there is a question as to what extent results from these mean-focused 93 

studies might be relevant to the study of extreme streamflow, especially in light of the extra level 94 

of uncertainty that is introduced to forecasting maxima during application of the extreme value 95 

theorem.  Third, a reason for investigating the variance structure of forecasted streamflow 96 

maxima is to help provide balanced forecasts that can be compared with a meta-analysis of 97 

trends in existing literature results such as in wet temperate regions. 98 

While variance analysis of streamflow extreme maxima is sparse in the literature, global 99 

climate model research and forecasting of mean annual and mean monthly streamflow tends to 100 

suggest that climate models are different in their structures and parametrizations (Randall et al. 101 

2007), downscaling methods are distinct in their stucture and results to re-scale global results 102 
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(Wilby and Dawson, 2007, Warner, 2010, Mearns et al., 2013), emission scenarios address the 103 

uncertainty of future economic and CO2 conditions (IPCC, 2007, IPCC, 2013), the version of 104 

climate model projects are different in their structures, and the newer version (CMIP5) is distinct 105 

realtive older versions of models (CMIP3) (Brekke et al., 2013), and the bias implementation of 106 

climate results is a source for variance presence in hydrologic models (Teutschbein and Seibert, 107 

2012, Al Aamery et al., 2016); and therefore all such components could have the potential to 108 

impact the variance structure of forecasted streamflow maxima.  The few studies that have 109 

forecasted streamflow maxima with global climate models (see Table 1) have results that tend to 110 

corroborate some findings from mean-focused studies and suggest the type of global climate 111 

model applied caused differences in streamflow extreme forecasts (Prudhomme et al., 2003; 112 

Lawrence and Hisdal, 2011), and emission scenario can also shift extreme predictions (Dankers 113 

and Feyen, 2008; Mantua et al., 2010; Zhang et al., 2014).  Applications of extreme value theory 114 

suggest the statistical analysis associated with the choice of extreme value analysis method has 115 

the potential to impact the variance of forecasted streamflow maxima; and the annual maxima 116 

method is criticized for its neglect of multiple extremes per annum while the peak over threshold 117 

method has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott 118 

and MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016).   119 

<Table 1 here please> 120 

Beyond uncertainty surrounding the global climate model projections and extreme value 121 

methods, there are additional uncertainty considerations with respect to the future hydrologic 122 

balance and its simulation when forecasting streamflow maxima.  As one example, future 123 

changes in the hydrologic cycle, and in turn streamflow, are primarily driven by changes in 124 

precipitation and evapotranspiration.  Studies that forecast streamflow maxima with global 125 

climate models have focused on precipitation and temperature differences within simulation of 126 

future periods (Mantua et al., 2010; Zhang et al., 2014), however it is now recognized that 127 

evaporative demand is physically controlled by net radiation, vapor pressure and wind speed as 128 

well as air temperature (Donohue et al 2010).  Future projections of these additional variables 129 

suggest decreases in wind speed and net radiation and an increase in relative humidity for some 130 

regions (Willet et al., 2008; Wild, 2009; McVicar et al., 2012).  The directions of the projected 131 

shifts would decrease evapotranspiration and in turn could potentially increase variability when 132 

forecasting streamflow maxima.  As a second example, hydrologic model fit and modeling 133 
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uncertainty when simulating the water balance has the potential to increase the variability of 134 

projected streamflow maxima (Al Aamery et al., 2016).  Recent study has tended to marginalize 135 

the importance of hydrologic model calibration and uncertainty for mean streamflow projections 136 

when considering relative future changes (Niraula et al., 2015), however streamflow maxima has 137 

not yet been tested in this context, to our knowledge. 138 

Our objectives were to: (1) perform coupled climate, hydrologic and statistical model 139 

simulation and evaluation to build realizations of streamflow maxima; (2) perform variance 140 

analysis to test for systematic uncertainty from climate and extreme modeling factors potentially 141 

controlling streamflow maxima forecasting; (3) perform uncertainty analysis to quantify variance 142 

from hydrologic modeling; and (4) forecast streamflow maxima for the wet temperate region 143 

studied herein and provide literature comparison.  These objectives provide the structural sub-144 

headings used in the following Methods, Results and Discussion sections. 145 

  146 

2 THEORETICAL BACKGROUND 147 

The variance structure of forecasted streamflow maxima can be decomposed as a 148 

function of potentially controlling modeling factors.  The conceptual model of factors that have 149 

the potential impact forecasted streamflow maxima variance is shown in Figure 1.  As can be 150 

seen in the figure, modeling factors that may impact the variance structure can be grouped into 151 

those associated with climate modeling (CMFs in Figure 1) including global climate model 152 

(GCM) type, hydrologic modeling (HMFs) and uncertainty in inputs and parameterization, and 153 

statistical modeling of extremes (SMFs) associated with different fitting methods and 154 

distributions.  Land use and management modeling is not shown in the figure and was treated as 155 

static in this study, but it is also recognized to potentially control future streamflow. 156 

<Figure 1 here please> 157 

The response variables are streamflow maxima associated with different return periods, 158 

including 2, 20 and 100 year return periods, so the distribution of extremes can be quantified 159 

(Lawrence and Hisdal, 2011).  We consider response of the future relative change in streamflow 160 

equal to the percent difference of GCM-forecasted streamflow maxima relative to GCM-hindcast 161 

maxima (ΔQF-H x, where x indicates the return period).  The future streamflow maxima can be 162 

related to the ‘real’ streamflow maxima by using the relative changes derived from the forecast 163 
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projections and hindcast-control projections coupled with the observations, such as using the 164 

delta method directly applied to streamflow model results.   165 

The relative change approach has become rather popular in climate change studies that 166 

emphasize GCM-forecasted streamflow (Chien et al., 2012; Harding et al., 2012; Fitichi et al., 167 

2014; Niraula et al., 2015; Al Aamery et al., 2016).  The relative change approach has been 168 

suggested to remove seasonal, spatial, and/or inter-annual biases of GCMs or statistical artifacts 169 

from the downscaling method that are not accounted for in bias correction methods (Harding et 170 

al., 2012).  TheIn addition, application of the relative change alsohas recently showedshown no 171 

significant dependence upon calibrated versus un-calibrated hydrologic model simulation, thus 172 

suggesting the response variable does not require model calibration to see the projected direction 173 

of future streamflow (Niraula et al., 2015).  The relative changeapproach has also shown less 174 

dependence upon climate modelling factors (i.e., CMFs in Fig 1) as compared to the absolute 175 

forecasted streamflow suggesting that biases specific to a model structure could be accounted (Al 176 

Aamery et al., 2016).  TheWhile the relative change approach has shown potential in past 177 

studies, yet these studies have tended to focus on the mean forecasting of streamflow.  In the 178 

present study, we consider the relative change is consideredmethod for streamflow maxima, 179 

which is one contribution of this paper. 180 

Realizations of the relative change in streamflow maxima can be simulated as a function 181 

of climate, hydrologic, and statistical modeling factors within a variance analysis ensemble (Al 182 

Aamery et al., 2016).  In the present study, we included permutations using seven emission 183 

scenarios (i.e., emission factor, CMF1) propagated through eight different GCMs  associated 184 

with phase three and four climate projects, i.e., CMIP3, CMIP5, (i.e., GCM type and version 185 

factors, CMF2, 3) that were downscaled using two statistical downscaling methods and four 186 

dynamical downscaling methods (i.e., downscaling factor, CMF4).  Further, our post-processing 187 

and hydrologic analyses of downscaled hindcast (1983-2000) and forecast (2048-2065) climate 188 

model results considered bias correction (i.e., bias factor, SMF1) propagated through a 189 

continuous simulation hydrologic model.  We performed both annual maxima and peak over 190 

threshold extreme value analyses (i.e., extreme value factor, SMF1,2) of hydrologic model 191 

results given recent debate in the literature over the best method.  We also investigated additional 192 

uncertainty considerations with respect to additional hydrologic inputs and hydrologic 193 

uncertainty (HMF 1, 3). 194 
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 195 

3 STUDY SITE AND MATERIALS: 196 

The study site was South Elkhorn Watershed in Lexington, Kentucky USA (see Figure 197 

2). This watershed is within a wet and temperate region where a future change in climate, 198 

including an increase in precipitation and temperature, is projected (Melillo et al., 2014). 199 

According to Melillo et al. (2014), a 20 to 30% increase in annual maximum precipitation is 200 

projected under RCP 8.5 emission scenario for the end of the century. Additionally, at least, 80% 201 

of the models used in Melillo et al. (2014) are in agreement for this region.  The watershed 202 

covers an area of 478.6 km2 with surface elevations ranging between 197 to 325 m asl. The land 203 

use is dominated by agricultural lands with about 71equal to 72%.  The remaining land uses are 204 

urban/suburban equal to 13%, forest equal to 14%, and urbanization lands that spread over 12% 205 

of the watershed.  open water and wetlands equal to 1%. 206 

<Figure 2 here please> 207 

The results of eight GCMs were implemented in this analysis.  The GCM models 208 

reflected four different GCM model types and two versions of each model, inculding a version 209 

from CMIP3 and the newer version from CMIP5 (Brekke et al., 2013; Al Aamery et al., 2016).  210 

The GCMs included the Canadian Global Climate Model including CGCM3 from CMIP3 and 211 

CanESM2 from CMIP5 (Flato, 2005); the National Center for Atmospheric Research 212 

Community Climate Model including CCSM3 from CMIP3 and CCSM4 from CMIP5 (Collins 213 

et al., 2006); the Geophysical Fluid Dynamics Laboratory including GFDL CM2.1 from CMIP3 214 

and CM3 from CMIP5 (Delworth et al., 2006); and the United Kingdom Hadley Centre Climate 215 

Model including HadCM3 from CMIP3 and HadGEM2-ES from CMIP5 (Gordon et al., 2000). 216 

These GCMs were chosen for their representation in different climate projects, including CMIP3, 217 

CMIP5, and NARCCAP projects, and their available archives of climate results for the current 218 

and future periods focused on in this study (Brekke et al., 2013; Mearns et al., 2013; Al Aamery 219 

et al., 2016). 220 

Statistical downscaling and dynamical downscaling results were included in this analysis. 221 

The statistical downscaling results were used from the Coupled Model Inter-comparison Project 222 

phase three (CMIP3) and phase five (CMIP5) (Brekke et al., 2013). The dynamical downscaling 223 

results were used from the North American Regional Climate Change Assessment Program 224 

(NARCCAP) (Mearns et al., 2013). These downscaling methods represent two distinct 225 
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approaches for downscaling GCM results from their coarse scale to a finer watershed scale. The 226 

statistical downscaling method is statistically based and adopts empirical-statistical relationships 227 

to estimate the small-scale climate variables based on the large-scale atmospheric variables 228 

(Wilby and Dawson, 2007). The statistical downscaling method implemented in CMIP3 and 229 

CMIP5 projects adopt two schemes including bias correction and spatial disaggregation (BCSD) 230 

and bias-correction and constructed analogs (BCCA) (Brekke et al., 2013). The dynamical 231 

downscaling method is physically-based and uses regional climate models (RCMs) whose 232 

boundary conditions are forced by the results of the parent GCM to simulate the atmospheric 233 

physical processes on a regional scale (Warner, 2010).  Six regional climate models were 234 

implemented through the NARCCAP project including the Canadian Regional Climate Model 235 

(CRCM) (Plummer et al., 2006), the Experimental Climate Prediction Center (ECPC) model 236 

(Juang et al., 1997), the Hadley Regional Model 3 (HRM3) (Jones et al., 2003), the MM5- 237 

PSU/NCAR mesoscale model (MM5I) (Chen and Dudhia, 2001), the Reginal Climate Model 238 

version 3 (RCM3) (Giorgi et al., 1993), and the Weather Research and Forecasting model 239 

(WRFP) (Skamarock et al., 2005).  240 

 241 

4 METHODS 242 

4.1 Modeling simulations and evaluation 243 

The Soil and Water Assessment Tool (SWAT; the version was ArcSWAT 2012.10.1.13) 244 

model was applied to simulate the hydrology of South Elkhorn Watershed.  This model is 245 

physically based and was applied successfully in this region and many other regions around the 246 

world (Palanisamy and Workman, 2014; Gassman et al., 2007; Arnold et al., 1998).  The model 247 

was evaluated over 1981-2000 using the observed climate and streamflow data and applied for 248 

the hindcast period (1981-2000) and forecast period (2046-2065) using the GCMs results of 249 

daily precipitation and maximum and minimum temperature (see Figure 3 in Al Aamery et al., 250 

2016 for evaluation methods of SWAT). We obtained all the data required by SWAT including 251 

topography, soil, and landuse data from publically available databases. The topography and 252 

streamlines data were obtained from the National Map website 253 

(http://viewer.nationalmap.gov/viewer/), and the soil data was obtained from the Data Gateway 254 

website (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). The landuse data of 255 

1992 was used from the USGS website (http://www.mrlc.gov/nlcd2011.php). The observed 256 

http://viewer.nationalmap.gov/viewer/
http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
http://www.mrlc.gov/nlcd2011.php
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climate data of daily precipitation and maximum and minimum temperature were obtained from 257 

Bluegrass Airport meteorological gage station. The model was evaluated using four USGS 258 

streamflow gage stations within the watershed including South Elkhorn Creek at Fort Spring, 259 

USGS03289000, Town Branch at Yarnallton Road, USGS03289200, South Elkhorn Creek near 260 

Midway, USGS03289300, and Elkhorn Creek near Frankfort, USGS03289500. Results for the 261 

South Elkhorn Creek near Midway station were analyzed for the relative change in streamflow 262 

maxima.  Model evaluation including calibration, validation, and sensitivity analysis was 263 

performed semi-automatically via SWAT-CUP software for Sequential Uncertainty Fitting 264 

SUFI2 for the four gage stations in the watershed (Abbaspour et al., 2007). The first two years 265 

was left as a spin-up period for SWAT (Arnold et al., 2010).  266 

<Figure 3 here please> 267 

As input to the hydrologic modeling, the scaling of precipitation and temperature method 268 

of Lenderink et al. (2007) was applied to correct the bias in the climate data. The method 269 

operates with monthly correction values based on the difference between observed and current 270 

period simulated values as: 271                                      ,        (1) 272                                      ,        (2) 273                                       , and     (3) 274                                       ,       (4) 275 

where         and         are the corrected daily precipitation and temperature for the 276 

simulated current period,         and         are the corrected daily precipitation and 277 

temperature for the simulated future period,        and        are the uncorrected daily 278 

precipitation and temperature for the simulated current period,        and        are the 279 

uncorrected daily precipitation and temperature for the simulated future period,             is 280 

the average of observed daily precipitation values for a given month,            is the average 281 

daily precipitation for the current simulated values,             is the average of observed daily 282 

temperature values,            is the average of daily temperature for the current simulated 283 

period, and m stands for “within monthly time step”.   284 
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The annual maxima (AM) and peak over threshold (POT) methods were carried out for 285 

each realization from the hydrologic modeling results in order to analyze the extremes (see 286 

Figure 3).  The AM series is constructed by selecting one value per a specific time over the 287 

sample size. In streamflow studies such as herein, this value is the maximum water discharge 288 

value selected over one year from the daily time series data (Khaliq et al., 2006, Haan, 2002). 289 

Thereby, the AM series replaces the flow series (q1, q2, ….., q365) of a year (j) by the largest flood 290 

value qm
j (where 1 m  total number of days in year j, 1 j n  , and n  is the number of years).  291 

According to the extreme theorem, the probability of the rescaled  nM  is approaching the 292 

General Extreme Value (GEV) family when n. The GEV family distribution is expressed 293 

as follows: 294 
1/

( ) exp 1 ( )qG q




          
,        (5) 295 

where :1 ( ) 0qq 

   

 
, the location parameter     , the scale parameter 0  , and 296 

the shape parameter     . Depending on the value of the shape parameter  , the GEV 297 

family has three distinct probability distributions. The light tail Gumbel type when 0  , the 298 

heavy tail Fréchet type when 0  , and the bounded upper tail Weibull type when 0  . The 299 

extreme quantiles of the return level T when 0   are then calculated as follows: 300 

1[1 { log(1 )} ]Tq
T




             (6) 301 

and when 0    302 

1log{ log(1 )}Tq
T

     .         (7) 303 

The POT series was constructed by selecting all independent and identically distributed 304 

values (q1, q2, …..) that are higher than a specific, and carefully chosen, value called threshold 305 

point (qo) (see example in Figure 4). According to extreme value theory, for large enough qo the 306 

distribution function of y= (q-qo) conditioned by q>qo is approximated by the Generalized Pareto 307 

(GP) family as follows (Coles, 2001): 308 

1/( ) 1 (1 )yH y 


  ( ) 1 (1 )( ) 1 (1 )( ) 1 (1 )( ) 1 (1 )          (8) 309 
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where : 0  (1 ) 0 ,   ( )o
yy y and and q    


       
 

: 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )   : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )      : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )   : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )   : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )   : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )
  
 
 
 : 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( )
 

: 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( ): 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( )
 

: 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( ) : 0  (1 ) 0 ,   ( )    : 0  (1 ) 0 ,   ( )  , q is a specific value in the sequence 310 

(q1, q2, …..), and , ,  and     are the scale, location, and shape parameters.  Depending on the 311 

value of the shape factor, the GP family consists of three probability distribution functions as 312 

follows: the heavy tail Pareto type when 0  ; the light tail Exponential type when 0  ; and 313 

bounded upper tail Beta type when 0  . To calculate the extreme quantile ( Tq ) of the return 314 

period T, the probability Pr  ( )
oq oq q     is calculated first and then the return period when 315 

0    is given by: 316 

( ) 1
oT o qq q T  


         

    ( ) 1 ( ) 1( ) 1( ) 1 ( ) 1( ) 1( ) 1( ) 1 ( ) 1( ) 1  
 
 
  
 
     ( ) 1 ( ) 1 ( ) 1 ( ) 1( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1 ( ) 1( ) 1          (9) 317 

When 0  , the return level of a period T is given by: 318 

log( )
oT o qq q T    q q T q q Tq q T q q T           (10) 319 

<Figure 4 here please> 320 

Threshold Point Choice: We adopted the parameter stabilization method explained by 321 

Coles (2001) to choose threshold points used within the POT method. The method is based on 322 

fitting the General Pareto distribution across a range of different threshold points. When fitting, 323 

the model parameters including the shape parameter ( )  and scale parameter ( )( )( )( )  were 324 

estimated for each point across the range.  The shape parameter should be approximately 325 

constant, and the scale parameter should be linear in q when the GP distribution is valid above 326 

the qo (Coles, 2001).  Figure 4 shows an example of fitting the GP model using the maximum 327 

likelihood method over a range of 1 to 40 for the threshold point.  As observed, the shape and the 328 

reparametrized scale parameters are nearly stable until reaching the point 21.  We, therefore, 329 

specified the point 21 cms as the threshold point for the POT series of the observed daily 330 

streamflow series in this example; and the method was repeated for each model hydrologic 331 

realization performed in our study.  In order to support our choice of the threshold, we compared 332 

our final results of threshold selection using the parameter stabilization method with three Rules 333 

of Thumb presented by Scarrott and MacDonald (2012).  Using general order statistics 334 

convergence properties, methods including the upper 10% rule, square root rule 1k n  , and 335 
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2/3
2 log[log( )]k n n  rule were developed (see Scarrott and MacDonald, 2012). Figure 4 shows 336 

that our choices compared well to the three methods.  337 

Temporal Independency in the POT Series: The values of the POT series, in the sense of 338 

extreme theorem, should admit to the temporal independence condition.  By only selecting all 339 

values that are higher than the threshold point, we will obviously violate this condition within a 340 

streamflow time series. Therefore, to identify and remove the time dependency in the POT series 341 

values, de-clustering of the POT series was adopted. The de-clustering was performed by 342 

calculating the Extremal Index ( ) as follows (Coles, 2001): 343 
1(limiting mean clustering size)  ,       344 

 (11) 345 

where   equal to one indicates an independent series.  Therefore, the objective was to minimize 346 

the size of the clusters until   reaches one. Our approach was to make manual iteration for each 347 

POT series to select the number of threshold deficits, r, used to define a cluster.  Moreover, to 348 

support our independent choices of POT series, we performed the auto-tail dependence function 349 

plots for the data series (Reiss and Thomas, 2007) to test the dependency of the events in the 350 

series.   351 

Trend Analysis: We analyzed the POT and the AM series with respect to the non-352 

stationarity explained by trend analysis. We used the Mann-Kendall nonparametric test to 353 

identify the presence of trends in each independent POT and AM series (Haan, 2002). If the 354 

trend was present, we removed the trend from the series, although as will be discussed in the 355 

results, very few series exhibited a significant mean trend. 356 

Likelihood Ratio Test: The likelihood ratio test was used to test the null hypothesis of the 357 

shape factor ( ) to be zero. This test is used in statistics to test the goodness of fit of two 358 

distributions when one of them is a special case of the other, i.e., nested models (Hogg et al., 359 

2014, Coles, 2001). In our case, the Gumbel distribution is nested within the GEV distribution, 360 

and the Exponential distribution is nested within the GP distribution. 361 

Currently, the AM and POT series are the only two types of flood peak series that can be 362 

used for flood frequency analysis, and further discussion of a comprehensive comparison 363 

between the two series is provided in the literature in Bezak et al. (2014) and Madsen et al. 364 

(1997).  To perform all the methods described in the extreme analysis methods section and 365 
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shown in Figure 3, we have applied the R package extRemes version 2.0 described in Gilleland 366 

& Katz (2016).   367 

 368 

4.2 Uncertainty from climate and extreme modeling factors 369 

Our results from the coupled climate, hydrologic, and extreme modeling methods 370 

produced 226 realizations of model runs available for variance analysis based on a factorial 371 

design that considered emission type, GCM type and version, downscaling type, bias correction, 372 

and extreme value method type.  Each factor was divided within variance decomposition as 373 

follows: the GCM type factor was divided into four levels for the four parent models mentioned 374 

previously; the GCM version factor was divided into two levels indicating CMIP3 and CMIP5 375 

project phases of the models; the downscaling factor was divided into two levels for statistical 376 

and dynamical methods; the emission factor was divided into seven levels including the SRES 377 

type used in CMIP3 (A1B, A2, and B1) and the RCPs type used in CMIP5 (RCP2.6, RCP4.5, 378 

RCP6.0, and RCP8.5); the bias factor was divided into two levels indicating inclusion of 379 

methods in Equations (1-4) or lack thereof; and the extreme value factor was divided into two 380 

levels for AM and POT methods.  Further details of the factorial levels for each of the 226 381 

realizations are provided in the Supplementary On-line Table.  We simulated variance analysis 382 

following both more traditional linear methods and more recently published nonlinear methods 383 

in order to maintain robustness of the analyses. 384 

Linear Analysis of Variance (ANOVA): We performed statistical analysis through fitting 385 

the linear analysis of variance model (ANOVA) to the results of the maxima extreme analysis.  386 

ANOVA was applied separately for each streamflow maxima quantile. The extreme quantiles 387 

represent the response variables of 2-year, 20-year, and 100-year return periods (ΔQF-H(2-year-ME), 388 

ΔQF-H(20-year-ME), and ΔQF-H(100-year-ME) respectively) via the general linear model-univariate 389 

procedure in SPSS 22 software (Pallant, 2013). ANOVA explores the effect of different factors 390 

on the variance of the response using the p-value of the statistical test and ranking factor 391 

importance by using the F-value. The F-value of each factor was divided by the summation of F-392 

values in a single model to determine how much variance that factor explains from the total 393 

predictable variance. Several considerations were determined when applying ANOVA methods. 394 

First, because the datasets were not represented in the climate factors equally, we applied four 395 

separate models that balanced a set of factors.  The reason for the multiple models is attributed to 396 
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our climate datasets where the CMIP3 project has both statistically and dynamically downscaled 397 

results while the CMIP5 project has only statistically downscaled results. We, also, have 398 

different emission scenarios between the two projects. CMIP3 has SRES emission scenarios; and 399 

CMIP5 has RCPs emission scenarios. We built therefore four-way ANOVA models as the 400 

highest possible order to constrain the balanced and nested models. Figure 5 shows four possible 401 

4-way ANOVA models that we built from our factorial design. Second, we analyzed the factors 402 

across the models using the highest possible order, however, if a factor was found to be 403 

unimportant, we omitted the factor to maximize repetitions.   404 

<Figure 5 here please> 405 

ANOVA assumes that the population is normally distributed, although the violation of 406 

this assumption should not cause major problems when the sample size is greater than 30 407 

(Pallant, 2005, Gravetter&Wallnau, 2000, Stevens, 1996). In our factorial design, the least 408 

sample size was recorded in ANOVA model 3, where the sample size was 56.  Therefore, our 409 

concern about the normality assumption is limited.  The homogeneity of variance assumption 410 

was treated by using the Levene test for the equality of variance (Pallant, 2005). If the data failed 411 

in this test, the significant level by which we compare the variances of the different groups in the 412 

ANOVA models was 0.01, which overcomes the violation of this assumption (Pallant, 2005).   413 

Nonlinear Artificial Neural Network (ANN): ANN models, on the other hand, were 414 

considered in this study to reinforce our robustness of the variance analysis.  ANNs provides a 415 

model framework based on a set of multivariate nonlinear functions, and therefore could account 416 

for nonlinearity between factors controlling variance and the streamflow response variable, if it 417 

exists.  In this manner, ANNs could overcome the underlying multivariate linear model 418 

limitation that ANOVA is based on.  We used the ANN model to examine the climate factors 419 

importance on streamflow maxima projections through SPSS 22 software (IBM , 2012, Tufféry, 420 

2011). The input layer represented the climate and the statistical factors with nominal variables, 421 

and the output layer represented the relative change in streamflow maxima. We used one hidden 422 

layer with a randomly generated number of neurons. We used supervised training with multilayer 423 

perceptron and feedforward architecture. All values of the input and output layers were 424 

normalized so that all values ranged between 0 and 1.  The hyperbolic tangent activation function 425 

was considered in the hidden layer. We used the same four models proposed in the ANOVA 426 

analysis to perform the ANN analysis.  The dataset partitioning was performed with SPSS-ANN 427 
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to divide the data into training and testing datasets. However, through generation of random 428 

numbers within SPSS-ANN, the partitioning values of training and testing will swing around the 429 

70% and 30% marks for each run of many runs performed for each model. The values of training 430 

partitioning ranged between 60% and 80% affecting the testing portion and providing a new 431 

relative error value for both training and testing parts. Accordingly, the smallest relative error 432 

provides the best results for the ANN model (IBM, 2012).  Therefore, our approach was to use 433 

an initial 70% of the dataset for training and the rest for testing, and then rerun the model until 434 

obtaining the minimum possible relative errors across the training and testing data. 435 

 436 

4.3 Uncertainty from hydrologic modeling 437 

Additional uncertainty from the future hydrologic balance and its simulation were also 438 

quantified as part of our study.  Future projections of net radiation, vapor pressure and wind 439 

speed were tested in simulation for the study region with the premise that decreases in wind 440 

speed and net radiation and an increase in relative humidity could decrease future 441 

evapotranspiration and in turn increase streamflow maxima while at the same time increase 442 

uncertainty of forecasts.  Future projections that consider hydrologic model fit and hydrologic 443 

parameter uncertainty were also tested to assess the potential to increase the variability of 444 

projected streamflow maxima. 445 

Future climate change of wind speed, net radiation, and relative humidity were tested 446 

within hydrologic simulation by considering projected shifts reported in the literature. The 447 

average monthly wind speed in the study site ranges between 3 and 5 m/s.  According to 448 

McVicar et al. (2012), the possible stilling in the middle of the current century is approximately 449 

0.5 m/s for the study site region when assuming a linear trend of their observations reported 450 

therein.  In turn, the percent climate change of wind speed is between -10% and -17% for the 451 

future period in the study region.  Wild (2009) indicates that the surface solar radiation has a 452 

decadal variation and that the absolute trend was observed as -6 W m-2 per decade and 8 W m-2 453 

per decade for the periods of 1961-1990 and 1995-2007, respectively, over the United States.  454 

We recognized that increasing radiation would offset decreasing wind speed when estimating 455 

evapotranspiration, and therefore we considered the decreasing trend of -6 W m-2 per decade for 456 

the future period, in order to test its sensitivity.  The mean daily solar radiation ranges throughout 457 

the year between 81 W m-2 (1.9 kW h m-2d-1) and 300 W m-2 (7.2 kW h m-2d-1).  Considering the 458 
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mentioned net decrease produces a change in the solar radiation reaching the surface to be 459 

between -4% and -15%.  Regarding the relative humidity, Willett et al. (2008) shows data that 460 

suggests an increase in the relative humidity for the northern hemisphere.  The net increase 461 

shown was 0.07% for the 10 year period of investigation.  We assumed the same change for the 462 

future period, which resulted in a range between +0.4% and +0.5% for the study region.  463 

Donohue et al. (2010) showed that the Penman equation produced the most reasonable 464 

estimation of evaporation demand, and this method is included within the hydrologic model used 465 

in the present study.  Therefore, we considered a number of scenarios in hydrologic modeling 466 

that test the mentioned ranges of wind speed, net radiation, and relative humidity concurrently to 467 

see their added impact on streamflow maxima.  We also tested the variables independently to see 468 

their individual sensitivity upon the streamflow maxima. 469 

Future projections that consider hydrologic model fit and hydrologic modeling 470 

uncertainty were also tested with the hydrologic model to investigate their impact on forecasted 471 

streamflow maxima.  Recent literature results have marginalized the importance of model fit 472 

when forecasting the relative change in future mean streamflow (Niraula et al., 2015), and we 473 

tested this concept for future streamflow maxima.  The future streamflow maxima produced from 474 

the calibrated hydrologic model simulation for a set of GCM realizations was compared against 475 

the future streamflow maxima produced using the un-calibrated (i.e., default) parameterization of 476 

the hydrologic model for the same climate realizations.  Additionally, the impact of hydrologic 477 

model uncertainty was considered by carrying forward uncertainty projections from the 478 

hydrologic model parameterization to the extreme value methods and thereafter to compute the 479 

relative change in future streamflow.  The SWAT-CUP software provides parameter sets and 480 

solutions used to  create uncertainty bounds during the model simulation.  Realizations of all 481 

parameter sets that meet the objective function criteria were chosen and extreme value methods 482 

were performed for hindcast and forecast global climate pairs to compute the relative change in 483 

streamflow maxima.   484 

 485 

4.4 Forecast of streamflow maxima for wet temperate regions 486 

 After quantifying the climate, hydrologic, and extreme modeling factors controlling 487 

variability of the projections, an ensemble was created to forecast the relative change in the 488 

streamflow maxima for the wet temperate study region (Al Aamery et al., 2016).  The extreme 489 
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forecasts for this study calculated the net effect on the mean and variance of the balanced 490 

ensemble from variation of climate modeling factors and extreme modeling factors, the added 491 

uncertainty from hydrologic model parameterization, and the added mean shift and its variance 492 

from climate change shifts in net radiation, vapor pressure and wind speed.  Results were 493 

compared with other studies reported in the literature of streamflow maxima (see Table 1) that 494 

fell within wet temperate regions.   495 

 496 

5 RESULTS AND DISCUSSION 497 

5.1 Modeling simulations and evaluation 498 

Results from the model evaluation showed that the hydrologic model performed within 499 

an acceptable range, and simulated streamflow well.  Thethe simulated and observed daily 500 

streamflow signals showed close agreement (see Figure 6).  The four quantitative matrics 501 

including coefficient of determination (R2), percent bias (PBIAS%), Nash-Sutcliff Efficiency 502 

(NS), and the ratio of the root mean square error to the standard deviation of measured data 503 

(RSR) showed results within the acceptable range (Moriasi et al., 2007, Donigan, 2002, Gassman 504 

et al., 2007) in both calibration and validation periods for the majority of the four observation 505 

sites for which the model was compared against (see compiled metrics in Table 2), although one 506 

of the four sites showed values just below or equal to the acceptable range boundary during 507 

validation.  Overall, 53 out of the 56 metrics that compared observations with model results were 508 

above the acceptable range showing that the model simulated streamflow well.  According to 509 

Moriasi et al. (2007) the monthly time step model performance is considered satisfactory if the 510 

NS>0.5, RSR<0.7, and PBIAS <±25%.  The model performance on finer time steps (e.g. daily) is 511 

usually poorer than the coarser time steps model (e.g. monthly) in terms of the statistical 512 

matrices (e.g. NS, RST, PBIAS) (Moriasi et al., 2007, Engel et al., 2007).  For instance, while the 513 

monthly NS was 0.656 for the calibration period in Fernandez et al. (2005), the daily one was 514 

0.395. Moreover, Moriasi et al. (2007) indicated that when reviewing previous studies, NS and 515 

PBIAS were “as expected” lower in the validation period than the calibration period for 516 

streamflow. Note that the Midway station was our primary calibration, since all of the model’s 517 

streamflow forecasts occurred from this location. The model we established for South Elkhorn 518 

watershed showed results for the Midway gage station to have NS values equal to 0.9 and 0.66 519 

for the monthly and daily time steps, respectively, for the calibration period; and NS values equal 520 
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to 0.88 and 0.46 for the monthly and daily time steps, respectively, for the validation period.  In 521 

summary, the metrics showed adequate performance considering the above information and 522 

results. 523 

<Figure 6 here please> 524 

<Table 2 here please> 525 

Results from fitting both the AM and POT extreme series methods to the streamflow 526 

results showed that in general the extreme series results had little mean trend and were 527 

dominated by the two parameter probability distributions (see Supplementary On-line Table).  528 

The Mann-Kendall test results showed that only 2% of the AM series included a mean trend that 529 

required removal and only 4% of POT series results had a mean trend that required removal.  A 530 

regression approach was also carried out and provided identical results as the Mann-Kendall 531 

tests.  The results highlight that although non-stationarity is exhibited when comparing extremes 532 

from the hindcast to the forecast periods, little significant non-stationarity is exhibited within the 533 

simulation periods.  Statistical results showed that 91% of the AM series best followed the two-534 

parameter Gumbel distribution while 85% of the POT series best followed the exponential 535 

distribution.  The results tend to agree with the results of Dankers and Feyen (2008) who also 536 

found that a two parameter distribution was most adequate when fitting distributions from 537 

extreme value theory to streamflow results derived from global climate modeling.  Additional 538 

results from the extreme value analyses is also compiled in the Supplemental On-line Table and 539 

includes: threshold selections, the value of the extremal index θ before de-clustering, the value of 540 

r required to make the extremal index θ equal to unity, the p-value of Mann-Kendall non-541 

parametric test, and the resultant sample size (n).   542 

We found less than 10% difference between observed and simulated maxima for all 543 

return periods (i.e., 2, 20 and 100 year return periods) for both AM and POT methods.  Both 544 

observed and simulated maxima followed exponential distributions for the POT method; and 545 

both followed the Gumbel distribution for the AM method.  Donigan (2002) indicates that an 546 

absolute hydrologic model calibration/validation target of less than 10% difference between the 547 

simulated and the observed hydrology flow is considered a very good target; and that the range 548 

of such target should be applied on the mean and the individual events may show larger 549 

differences while still acceptable.  With this criteria in mind, our SWAT evaluation results for 550 

the extremes were deemed adequate.  551 
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Extreme quantiles for 2-, 20-, and 100-year maxima streamflow levels showed that 552 

forecast results were in general greater than hindcast results for simulation pairs with the same 553 

climate modeling factors, highlighting the non-stationarity of extremes mentioned previously.  554 

Figure 7 illustrates hindcast simulations corresponding to POT extreme series method, and all 555 

simulation results are shown in the Supplementary On-line Table.  Statistical downscaling of the 556 

hindcast GCM realizations in general under-predicted hydrologic model results analyzed with 557 

the extreme series method; and the under-prediction was especially true for streamflow levels 558 

from the 100-year return period.  Results from the dynamical downscaling hindcast realizations 559 

better bound the observed extremes.  The result supports the idea that regional climate models 560 

can capture small-scale climate features, e.g., strong fronts, and realistically simulate extreme 561 

events (Fowler et al., 2007, Warner, 2010), which would suggest a better choice for extreme 562 

streamflow forecasting.  Fowler et al. (2007) pointed out that the statistical downscaling methods 563 

poorly represent the extreme events and underestimate variance, which reflects the fact that both 564 

BCSD and BCCA methods use the distribution of precipitation from historical climate records to 565 

create the future distributions.  Warner (2010) compared the statistical and dynamical 566 

downscaling with respect to their advantages and disadvantages, and he indicated that dynamical 567 

downscaling methods could better capture extreme events and variance. Sunyer et al. (2015) 568 

shows that the RCM-GCM projections are the main source of variability in their results, and 569 

between 30-50% of the total variance is explained by statistical downscaling in several 570 

catchments in their study. Trayhorn and DeGaetano (2001) compared several different 571 

downscaling methods for rainfall extremes over the Northeastern United States; and their results 572 

suggest that regional climate models overestimate the observed extremes.  Aside from the 573 

Trayhorn and DeGaetano (2001) results, literature results and this study generally support the 574 

idea that hindcast extremes from dynamic downscaling agree better with observed extremes as 575 

compared to statistical downscaling results. 576 

<Figure 7 here please> 577 

We also examined specific results of individual climate models and downscaling methods 578 

in order to provide insight on how climate model structure may be impacting forecasted 579 

streamflow maxima.  The four GCMs from CMIP3 all illustrate differences when comparing 580 

across the 2, 20 and 100 year return periods (Figure 7).  The result was not surprising given that 581 

GCM has been found as a significant factor in studies of forecasted mean streamflow and 582 
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precipitation, and climate scientists highlight variability of GCMs due to the differences in the 583 

models’ structures and parameterizations (Randall et al., 2007; Weart, 2010; Mearns et al., 2013; 584 

Melillo et al., 2014; Al Aamery et al., 2016).  Given the many differences between the four 585 

GCMs, it is difficult to discern specific processes represented within the climate models that 586 

might be controlling the extreme streamflow forecasts, however, direct comparison of CMIP3 587 

and CMIP5 model versions provided some discussion. 588 

Figure 7 reveals that CCSM has a pronounced difference between CMIP3 and CMIP5 589 

forecasted streamflow maxima while the other GCMs (Had, GFDL and CGCM) do not show 590 

differences between model versions for our analyses.  The reason is perhaps attributed to the 591 

newer version CCSM4 that produces El Nino-Southern Oscillation (ENSO) variability in a more 592 

realistic frequency distribution than CCSM3 by changing the deep convection scheme.   593 

The Had, GFDL and CGCM models also made changes from CMIP3 to CMIP5 but these 594 

tend to have little differences in terms of streamflow extremes (Figure 7).  The HadGEM2 of 595 

CMIP5 improved the performance of ENSO, northern continent land-surface temperature biases, 596 

SSTs, and wind stress compared to the previous models; however, Collins et al. (2008) suggests 597 

that the power spectrum of El Nino was not a substantial improvement.  GFDL version 3 (CM3) 598 

used in CMIP5 made minimal changes to the ocean and sea ice models compared to those used 599 

in CM2.1 version of CMIP3; however, the newer version is extensively developed the 600 

atmosphere and land model components (Griffies et al., 2011).  CanESM2 of CMIP5 combines 601 

the fourth generation atmospheric general circulation model (CanCM4) with terrestrial carbon 602 

cycle model (CTEM). Compared to the third generation of CanCM3 that was used in CGCM3.1 603 

of CMIP3, CanCM4 is different in many aspects such as the finer resolution and the addition of 604 

new schemes such as shallow convection scheme (see Chylek et al., 2011).   605 

Taken together, of all the changes to the four different GCMs between CMIP3 and 606 

CMIP5, only augmenting ENSO within the GCM seems to have a substantial impact on 607 

forecasted streamflow maxima.  The suggestion is reasonable given that ENSO has been 608 

suggested to show significant impacts on precipitation in this region of North America (Gabler et 609 

al., 2009).  Results suggest that the El Nino-Southern Oscillation and its representation within 610 

climate modeling may exhibit a substantial control on forecasting streamflow maxima for the 611 

wet temperate study region; and additional emphasis upon oscillations when forecasting 612 

streamflow maxima in wet temperate regions may be fruitful. 613 
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 614 

5.2 Uncertainty from climate and extreme modeling factors 615 

Variance analysis results determined via ANOVA showed that the variance structure of 616 

forecasted streamflow maxima exhibits some dependence on all of the climate modeling 617 

considered factors but does not exhibit dependence upon the extreme value method applied (see 618 

Figure 8).  The results are interesting due the fact that previous variance analysis of mean 619 

streamflow forecasted from GCMs only showed dependence on a subset of the climate modeling 620 

factors while debate in the literature suggests that AM and POT methods would give different 621 

results (Scarrott and MacDonald, 2012; Bezak et al., 2014; Al Aamery et al., 2016).  622 

Specifically, results of the ANOVA (Figure 8) show that variance of the 2 year and 20 year 623 

streamflow maxima are significantly dependent upon GCM type, downscaling method, emission 624 

scenario, GCM project phase, and bias implementation; and variance of the 100 year streamflow 625 

maxima is significantly dependent upon GCM type, GCM project phase, and bias 626 

implementation.  For reference, results of forecasted mean streamflow are included in Figure 8 627 

and show dependence on GCM type and phase and downscaling.   628 

<Figure 8 here please> 629 

The climate modeling factors that significantly influenced the forecasted streamflow 630 

maxima variances were ranked using the weighted F-value according to their variance 631 

contribution (see Figure 8) as GCM type, downscaling method, bias implementation, GCM 632 

version associated with the climate project phase, and the emission scenario input to the GCM.  633 

Results of the ANN non-linear variance analysis compared well with linear analysis via ANOVA 634 

(see comparisons in Figure 9) providing further confidence in our ranking results.   635 

<Figure 9 here please> 636 

In addition to the variance breakdown, the total variance of the forecasted extremes also 637 

displays pertinent information.  The total variance of streamflow extremes increased 638 

substantially with return period—a result most easily observed with the standard error bars in 639 

Figure 10.  In addition, the proportion of the variance that was predictable with the climate 640 

modeling factors tended to decrease with return period.  The result suggests a propagation of 641 

unexplainable variance throughout the analysis that becomes more pronounced with the higher 642 

order extremes associated with higher return periods. 643 

<Figure 10 here please> 644 
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We at least partially attribute the pronounced growth of uncertainty with return period to 645 

fitting the extreme value distributions to the hydrologic results.  The 100 year return period falls 646 

at the tail end of the GEV and GP distributions (i.e., f=0.99) and therefore uncertainty introduced 647 

in fitting the distributions will be most pronounced for the highest return periods.  To illustrate 648 

the point, we performed sensitivity of the extreme value parameterization method by assuming a 649 

known parent Gumbel distribution for Mn, drawing sets of realizations consistent with the years 650 

of data in our analyses, and fitting the extreme value distribution consistent with the maximum 651 

likelihood method of our analyses as well as typically performed by others (e.g., Gilleland and 652 

Katz, 2006).  Results from the sensitivity show that the variance associated with the 100 year 653 

streamflow is about five times greater than that of the 2 year streamflow event (see Table 3).  654 

The result highlights one reason for pronounced increases in unexplainable variance within 655 

forecasted streamflow maxima.   656 

<Table 3 here please> 657 

 On the other hand, factorial comparison between the AM and POT series fitted by the 658 

General Extreme Value (GEV) and General Pareto (GP) distributions did not show significance 659 

within the analysis of variance results.  The result is surprising given recent debate and critique 660 

of each method, e.g., AM is criticized for its neglect of multiple extremes per annum while POT 661 

has been criticized for subjectivity of threshold selection (Svensson et al., 2005; Scarrott and 662 

MacDonald, 2012; Bezak et al., 2014; Fischer and Schumann, 2016).  However, further 663 

investigation of the literature suggests that the variance analysis result is consistent with 664 

fundamental theory and that the methods might be used interchangeably, as needed, so long as 665 

care is taken in their application.  Fundamentally, Coles (2001) shows that the GEV distribution 666 

provides the base that can be used to derive the GP distribution so long as the threshold point is 667 

sufficiently large and the events are independent and random.  In this manner, we recommend 668 

that future coupled hydrologic and climate research studies that apply the POT method should 669 

strive for relatively high threshold values that fall within the Rules of Thumb outlined by 670 

Scarrott and MacDonald (2012) and ensure that the extremal index is not less than one (see 671 

Figure 3).   672 

One noteworthy comparison of the present study’s results with previously published 673 

results is that the variance of forecasted streamflow maxima is even more sensitive to climate 674 

modeling factors as compared to the variance of mean forecasted streamflow.  Specifically, the 675 
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variance of streamflow maxima showed significant dependence upon the choice of emission 676 

scenario and bias correction approach (see Figure 8) while the variance of mean streamflow did 677 

not exhibit significant dependence upon emission and bias (see Al Aamery et al., 2016 and 678 

results summarized in Figure 8).  The streamflow maxima’s dependence upon emission scenario 679 

is worthy of mentioning given that the mean atmospheric CO2 concentration projected for the 680 

emission scenarios varies by just ±50 ppm for 2050 (IPCC, 2001; Meinshausen et al., 2011).  681 

Further, the mean annual temperature has a total range of just 1.5°C for 2050 across emission 682 

scenarios projected within the GCMs applied in this study and the mean streamflow study of Al 683 

Aamery et al. (2016).  The subtle mean changes in CO2 and MAT for 2050 appear to mask 684 

temporal anomalies captured within the GCMs.  The potential of emissions to help control 685 

streamflow maxima is somewhat corroborated by the work of Mantua et al. (2010) where they 686 

show streamflow maxima differences among two emission scenarios.  Significance of emission 687 

scenario within variance analysis of forecasted streamflow maxima suggests that hydrologic and 688 

climate research is needed that examines how models might be coupled at a higher temporal 689 

resolution, rather than the more prevalent emphasis on mean coupling (e.g., see review Table 1 690 

in Al Aamery et al., 2016).  Similarly, the significance of bias correction upon the variance of 691 

forecasted streamflow maxima reflects the boundary between climate and hydrologic models that 692 

has emphasized mean coupling and thus linear shifts in rainfall and temperature data to show 693 

agreement with observations (Lenderink et al., 2007).  More sophisticated bias correction 694 

methods are available (Teutschbein and Seibert, 2012) but typically come with the added 695 

conundrum of forcing functional constraints on climate model results that are sought after due to 696 

their non-stationarity.  Surely, research might consider higher resolution model coupling to 697 

understand anomalies that control maxima streamflow. 698 

 699 

5.3 Uncertainty from hydrologic modeling 700 

Future climate change of wind speed, net radiation, and relative humidity were tested 701 

within hydrologic simulation by considering projected shifts reported in the literature.  Results 702 

suggest that the net impact of wind speed, net radiation, and relative humidity could provide an 703 

additional 1 to 5% increase in streamflow maxima for 2, 20 and 100 year return periods for the 704 

wet temperate study region and future period considered (see Table 4).  Average daily change in 705 

evapotranspiration ranged from 0.5 to 5% decreases.  Streamflow maxima increases and standard 706 
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error associated with the wind speed, radiation and relative humidity shifts were +3.2(±1.7), 707 

+2.2(±1.6) and +1.9(±1.6)% for 2, 20 and 100 year events.  Relative to the increases of 708 

+27(±21), +36(±34) and +49(±85)% for streamflow maxima associated with GCM-projection of 709 

precipitation and temperature from ensemble analysis (see Figure 10), the effect of wind speed, 710 

net radiation and relative humidity were small for this region.  Nevertheless, the effect is non-711 

zero; and the variables may be more substantial in other regions or for forecasting to 2100.   712 

<Table 4 here please> 713 

Future projections that considered hydrologic model fit and hydrologic modeling 714 

uncertainty were also tested to investigate their impact on the relative change of streamflow 715 

maxima.  The future streamflow maxima produced from the calibrated hydrologic model 716 

simulation was compared against the future streamflow maxima produced using the un-717 

calibrated (i.e., default) parameterization of the hydrologic model for the realization pairs for the 718 

AM extreme value analysis method (n=74).  Results for the uncalibrated hydrologic analysis of 719 

the relative change in streamflow maxima were +19(±28), +20(±35) and +24(±59)% for 2, 20 720 

and 100 year events in comparison to the calibrated model results equal to +27(±23), +35(30) 721 

and +49(±92)% for 2, 20 and 100 year events.  Results show that the uncalibrated model gives a 722 

much lower increase in future streamflow maxima compared to the calibrated model results, 723 

especially for the 100 year extreme.  Note that the default model simulations tended to under-724 

predict streamflow during peak events.  The simulation bias is carried forward to the extreme 725 

modeling results and is not removed when considering the relative change.  In this manner, the 726 

variance of the streamflow maxima was dependent on hydrologic model parameterization.  727 

These results contrast the work of Niraula et al. (2015) where we showed that the relative change 728 

in mean forecasted streamflow was not dependent on parameter selection during calibration.  The 729 

results further highlight the variance structure’s sensitivity when forecasting streamflow 730 

extremes.   731 

Given the dependence on hydrologic calibration, the hydrologic uncertainty realizations 732 

were also performed.  Results suggest that hydrologic model parameter sets generated during 733 

uncertainty analysis also impart variance upon relative changes in streamflow maxima.  We 734 

calculated the error associated with the relative change in streamflow maxima using the 735 

parameter sets within SWAT-CUP that met model objective function criteria.  Standard error 736 

was 3.1, 3.3 and 3.6% for the relative change of 2, 20 and 100 year events.  Standard error is 737 
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small in comparison to the error produced from climate and extreme modeling factors.  738 

Nevertheless the error is nonzero and may be larger for other regions.  We also calculated the 739 

standard error from absolute forecasted streamflow maxima and found values of 11, 21, and 27 740 

cms for 2, 20 and 100 year events.  We compared these values with the standard error from direct 741 

bias-correction of the streamflow maxima via the relative change approach, and the standard 742 

error was 3, 6 and 9 cms for 2, 20 and 100 year events.  The results highlight that the delta 743 

method applied to the direct observed streamflow via the relative change does reduce hydrologic 744 

uncertainty relative to the absolute forecasts. 745 

 746 

5.4 Forecast of streamflow maxima for wet temperate regions 747 

One corollary of variance analysis is inclusion of significant factors impacting prediction 748 

and thus forecasting of future streamflow.  The relative change in streamflow maxima were 749 

increases of +30(±21), +38(±34) and +51(±85)% for the study region for 2, 20 and 100 year 750 

events.  The increases are substantially larger than the 11% increases found for mean streamflow 751 

and mean precipitation for the study region (Al Aamery et al., 2016).  Additionally, streamflow 752 

maxima increases as a function of return period.  The variability of the projections is 753 

pronounced, and the uncertainty from climate and extreme model factors dominates the variance 754 

(see Table 5). 755 

<Table 5 here please> 756 

The forecasted results of increased maxima streamflow in 2050 for the wet temperate 757 

region of North America (1120 mm y-1) is in agreement with scientific sentiment and forecasting 758 

that wet regions will get wetter and wet time periods will be wetter (Melillo et al., 2014).  We 759 

performed analysis of published maxima streamflow forecasts in wet regions of Europe and their 760 

comparison corroborated the finding that maxima streamflow increases as a function of return 761 

period.  Analysis of the results from Lawrence and Hisdal (2011) show an increase of maxima 762 

streamflow as a function of return period for Norway (760-2250 mm y-1).  Also, analysis of the 763 

results from Dankers and Feyen (2008) show an increase of maxima streamflow as a function of 764 

return period for their European sites studied where the mean annual precipitation was greater 765 

than 500 mm per year and is projected to be less in the end of this century.  766 

The finding that forecasted maxima streamflow may show further increases as a function 767 

of return period further supports general scientific agreement that the most extreme flooding 768 
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events will get even more extreme for wet temperate climates (Melillo et al., 2014).  This 769 

concept is reflected in the timing of streamflow increases and extremities in the present study, 770 

and Table 6 shows that the months of the year with the highest future changes in mean 771 

precipitation and streamflow tend to also account for the majority of forecasted streamflow 772 

maxima events during the study period.  The results also reflect the fundamental scientific 773 

consequences of climate change.   That is, increased precipitation in wet regions is expected due 774 

to higher amounts of moisture in the atmosphere due to warmer atmospheric temperatures and 775 

expansion of the high Sub-tropical Belt as the air temperature increases and moist air is 776 

transported to higher and lower latitudes (Gabler et al., 2009; Melillo et al., 2014).  In turn, 777 

climate change in wet temperate region may increase precipitation, temperature, and relative 778 

humidity while decreasing wind speed and net radiation, and the net effect both individually and 779 

cumulatively of all these shifts is an increase in streamflow maxima.  780 

<Table 6 here please> 781 

 782 

6 CONCLUSION 783 

 The main conclusions of our work are described as follows: 784 

(1) Model simulation and evaluation results from comparison of different global climate model 785 

downscaling methods suggests that dynamic downscaling results more closely align with 786 

observations, presumably due to the explicit simulation of small-scale features such as strong 787 

fronts.  Comparison of streamflow maxima forecasted with paired climate models from 788 

CMIP3 versus CMIP5 projects suggest that the El Nino-Southern Oscillation representation 789 

within modeling exhibits a control on forecasting streamflow maxima for the wet temperate 790 

region studied.   791 

(2) Uncertainty from climate and extreme modeling factors was evaluated and showed that the 792 

relative change of streamflow maxima was not dependent on systematic variance from the 793 

annual maxima versus peak over threshold method applied.  We find that the variance of 794 

streamflow maxima is an increasing function of the return period, which is at least partly 795 

attributed to fitting the extreme value distributions to the hydrologic model results.  The 796 

variance of the relative change in streamflow maxima is dependent upon global climate 797 

model, emission scenario, project phase, downscaling, and bias correction.   798 
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(3) Uncertainty from hydrologic modelling was analyzed and unlike results from previous 799 

research focused on the relative change of mean streamflow, the relative change of 800 

streamflow maxima was dependent on hydrologic model fit and modeling uncertainty.  The 801 

streamflow maxima also showed some dependence on climate projections of wind speed, net 802 

radiation and relative humidity.   803 

(4) Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced 804 

forecast standard error, including +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year 805 

events for the wet temperate region studied.  The variance of maxima projections was 806 

dominated by climate model factors and extreme value analyses with lesser control from 807 

hydrologic inputs and hydrologic model parameterization. 808 
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