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Abstract

The very nearby Type Ia supernova 2014J in M82 offers a rare opportunity to study the physics of thermonuclear
supernovae at extremely late phases (=800 days). Using the Hubble Space Telescope, we obtained 6 epochs of
high-precision photometry for SN 2014J from 277 days to 1181 days past the B-band maximum light. The
reprocessing of electrons and X-rays emitted by the radioactive decay chain 3’Co — 37Fe is needed to explain the
signiﬁcant flattening of both the F606W-band and the pseudo-bolometric light curves. The flattening confirms
previous predlctlons that the late-time evolution of type Ia supernova luminosities requires additional energy input
from the decay of °’Co. By assuming the F606W-band luminosity scales with the bolometric luminosity at ~500
days after the B-band maximum light, a mass ratio 3’Ni/ ONi ~ 0.06570:93 is required. This mass ratio is roughly
~3 times the solar ratio and favors a progenitor white dwarf with a mass near the Chandrasekhar limit. A similar fit
using the constructed pseudo-bolometric luminosity gives a mass ratio 3’Ni/ NG ~ 0.0660:%05. Astrometric tests
based on the multi-epoch HST ACS/WFC images reveal no significant circumstellar light echoes in between 0.3
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and 100 pc from the supernova.
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1. Introduction

The astronomical community widely agrees that luminous
hydrogen-poor Type Ia supernovae (SNe) explosions are
powered by the thermonuclear runaway of (=1 M) carbon/
oxygen white dwarfs (WDs, Hoyle & Fowler 1960). The
accretion-induced explosion fuses ~0.1-1.0 M, of radioactive
*°Ni. Type Ia SNe cosmology uses these SNe as the most
accurate distance indicators at redshifts out to z ~ 2 (Riess
et al. 1998; Perlmutter et al. 1999; Riess et al. 2016).
Amazingly, this accuracy is achieved without knowing the
exact nature of the progenitors.

Prior to maximum luminosity, the light curve of Type Ia SNe
is powered by the energy generated by the decay of explosion-
synthesized radioactive nuclei. The reprocessing in the ejecta
converts the energy to longer wavelengths. The decay chain of
Nj — Co — Fe provides the main source of energy
deposition into the ejecta of Type I SNe (Arnett 1982). During
the early phases, the optically thick ejecta trap the energy. The
dominant process is Compton scattering of +-rays produced by
the decay **Ni + e~ — 3Co + v + 1, (t;2~6.08 days),
which allows energy to escape as an X-ray continuum or be
absorbed by the material in the ejecta via the photoelectric
effect (see Milne et al. 1999; Penney & Hoeflich 2014 for
comprehensive reviews). The produced *°Co decays to stable
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3Fe, and the *°Co decay process, with a half-life 7, 2~
77 days, dominates after ~200 days, when the expanding ejecta
become more and more optically thin, and the column density
decreases as 12 (e.g., Amett 1979; Chan & Lingenfelter 1993;
Cappellaro et al. 1997; Milne et al. 1999). Eighty-one percent of the
%Co decays via electron capture (°Co + e~ — Fe + v + 1,,),
and the remainder decays through annihilation of high-energy
positrons in the ejecta (*°Co — Fe + e* + v + 1,,).
Observations at extremely late phases provide unique
opportunities to examine various models exploring the effects
of a magnetic field. As long as energy deposition is dominated
by positrons being completely trapped by the magnetic field,
the slope of the bolometric light curve should match the 56Co
decay rate. On the other hand, Milne et al. (1999) suggested a
“radially combed” magnetic field, or even a magnetic-field-free
situation (as no magnetic field in radial directions will lead to
an increasing fraction of positron escape), would cause the light
curve to decline faster than the rate of °Co decay. The
discrepancy between the “trapping scenario” with a confining
magnetic field and the case without a magnetic field can be as
significant as 2 mag in the photometric light curves from
400-800 days (see Figure 9 of Milne et al. 1999). Similar
variations of the late-time light curves have been found by
Penney & Hoeflich (2014) based on measuring positron
transport effects and their dependency on the magnetic field
with late-time line profiles. As the SN envelope undergoes
homologous expansion, the morphology of the magnetic field
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remains but the Larmor radius increases linearly with time,
such that the fraction of escaped photons would exhibit a time-
dependence due to the variations of the magnetic field and the
light curve should decline faster than the rate of **Co decay.

Additionally, different effects of nucleosynthesis can be
testable through the very late photometric evolution of Type Ia
SNe and may be used to discriminate between different
explosion models. Two of the most favorable explosion
channels: a delayed detonation in a Chandrasekhar-mass WD
(Khokhlov 1991) and a violent merger of two carbon-oxygen
WDs (Pakmor et al. 2011, 2012), will result in late-time light
curves behaving differently due to different amounts of ejecta
heating from >’Co and >°Fe (Ropke et al. 2012). The decline
rate of the light curve at extremely late times provides a unique
opportunity, therefore, to test the enigmatic explosion mechan-
isms of Type Ia SNe.

Increasing evidence shows the flattening of Type Ia SN light
curves around 800-1000 days, i.e., SN 1992A (~950 days;
Cappellaro et al. 1997), SN 2003hv (~700 days; Leloudas
et al. 2009), and SN 2011fe (~930 days; Kerzendorf et al.
2014). This flattening cannot be explained even by complete
trapping of the °Co positrons. Seitenzahl et al. (2009)
suggested that additional heating from the Auger and internal
conversion electrons, together with the associated X-ray
cascade produced by the decay of 'Co — Fe (11, ~
272 days) and 3Fe — 3Mn (f2 ~ 1000 days), will signifi-
cantly slowdown the decline of the light curve.

Recently, Graur et al. (2016) carried out an analysis of the
light curve of SN2012cg as late as ~1055 days after the
explosion and excluded the scenario in which the light curve of
SN 2012cg is solely powered by the radioactive decay chain
3Ni — 3%Co — °Fe, unless there is an unresolved light echo
~14 mag fainter than the SN peak luminosity. Another very
careful study on the late-time evolution of SN 2011fe has already
extended the observing effort to an unprecedented 1622 days past
the B-band maximum light (Shappee et al. 2016). This analysis
has clearly detected the radioactive decay channel powered by
57Co, with a mass ratio of log(¥7Co/*°Co) = —1.62*43S. This
abundance ratio is strongly favored by double degenerate models
that require a lower central density. The detection of *Fe is still
unclear at these late epochs (Shappee et al. 2016). Another study
based on the pseudo-bolometric light curve for the SN 201 1fe has
measured the mass ratio of >’Co to *°Co to be 1.3-2.5 times the
solar value, which is broadly consistent with the ratios predicted
for the delayed-detonation models (Dimitriadis et al. 2017).
Additionally, spectroscopic information on the nearby SN 201 1fe
has been obtained at 981 days (Graham et al. 2015) and 1034 days
(Taubenberger et al. 2015). Strong energy input from the
radioactive decay of °’Co is required, without which the optical
spectrum would be underproduced by a factor of ~4 (Fransson &
Jerkstrand 2015). The produced mass ratio of >’Ni to *°Ni , which
gives a strong constraint on the Type Ia SN explosions, is found to
be roughly 2.8 and 2 times the solar ratios for SN 2011fe and
SN 2012cg, respectively (Fransson & Jerkstrand 2015; Graur
et al. 2016).

Recently, Graur et al. (2017) proposed a new model-
independent correlation between the stretch of SNe and the
shapes of their late-time light curves based on the shapes of
the light curve of four type Ia SNe measured at > day 900,
i.e.,, SN2012cg (Graur et al. 2016), SN 2011fe (Shappee
et al. 2016), SN2014J (this work) and SN 2015F (Graur
et al. 2017). They indicated that ’Co may be underproduced
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in subluminous type Ia SNe. This correlation provides a
novel way to test various physical processes driving the
slowdown of the type Ia SN light curves ~900 days after
explosion.

SN 2014J was first discovered on January 21.805 UT by
Fossey et al. (2014) in the very nearby starburst galaxy M82
(3.53 £ 0.04 Mpc, Dalcanton et al. 2009). Later observations
constrained the first light of the SN to January 14.75 UT
(Goobar et al. 2014; Zheng et al. 2014). This date is consistent
with the early rising recorded by the 0.5 m Antarctic Survey
Telescope (AST) during its test observations (Ma et al. 2014),
as well as with other pre-discovery limits reported by various
groups (Denisenko et al. 2014; Gerke et al. 2014; Itagaki et al.
2014). SN 2014J reached its B-band maximum on February 2.0
UT (JD 2,456,690.5) at a magnitude of 11.85 £ 0.02 (Foley
et al. 2014). Follow-up photometric and spectroscopic
observations have been made by various groups (Lundqvist
et al. 2015; Bonanos & Boumis 2016; Srivastav et al. 2016;
Johansson et al. 2017). The strength of ~-ray lines (Churazov
et al. 2014; Diehl et al. 2015) and an analytic model fit to the
pseudo-bolometric light curve (Srivastav et al. 2016) of
SN 20147 suggest that ~0.5-0.6 M., of *°Ni was synthesized
in the explosion. In this paper, we present our late-time Hubble
Space Telescope (HST) photometric observations of SN 2014J
and fit both the F606W (broad V') band and an estimate of the
pseudo-bolometric luminosity evolution with the Bateman
equation considering the luminosity contributed by the decay
of 56Co, 57Co, and *Fe. In addition to following a similar
approach to that presented in Graur et al. (2016), we provide a
careful astrometric analysis of the time evolution of the
position and profile of the SN 2014J point source at very late
epochs.

2. Observations and Data Reduction

We imaged SN 2014]J with the HST Advanced Camera for
Surveys/Wide Field Channel (HST ACS/WFC) during six
visits (V1-V6) under multiple HST programs: GO-13717 (PL
Wang), GO-14139 (PI: Wang), and GO-14663 (PI: Wang), i.e.,
V1 ~ day 277, V2 ~ day 416, V3 ~ day 649, V4 ~ day 796,
V5 ~ day 983, and V6 ~ day 1181 relative to its B-band
maximum at a magnitude of 11.85 + 0.02 on February 2.0 UT
(JD 2,456,690.5, Foley et al. 2014). Figure 1 shows the field
around SN 2014J. A log of observations is presented in
Table 1. Exposures obtained with different ACS visual
polarizers and in different filter combinations and visits have
been aligned through Tweakreg in the Astrodrizzle package
(Gonzaga et al. 2012).

The throughput of each ACS/WFC polarizer being used by
the Synphot'' synthetic photometry does not match the values
determined from on-orbit calibrations. We corrected the
polarizers’ throughput with the values deduced by on-orbit
calibrations (i.e., Table 12 of Cracraft & Sparks 2007; also see
Biretta et al. 2004). Following the three polarizer cases
described in earlier works by Sparks & Axon (1999), we
deduced the Stokes vectors from the observations. In this work,
we only discuss the observed flux from SN 2014J, and the
intensity maps (Stokes I) are the only required input parameter

' hitp://www.stsci.edu/institute /software_hardware /stsdas/synphot
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Figure 1. HST ACS/WFC F606W (upper panels) and associated FO06W—-F555W (lower panels) images of SN 20147 obtained in six different visits as labeled. Each
square measures 3”2 = 54 pc along its sides (oriented such that north is up, east is left). The distance between tick marks corresponds to 0 1. Resolved light echoes
arising from interstellar dust clouds are observed at large foreground distances (2100 pc) from the SN. A luminous arc is visible in the lower left quadrant and a
radially diffuse ring can be seen over a wide range in position angle. See Yang et al. (2017) for more details.

for this analysis.
1= %[r(POLO) + r(POL60) + r(POL120)], €))

where r (POLOQ), etc. are the count rates in the images obtained
through the three polarizers. The polarimetric properties of
SN 2014J at different late phases will be discussed in a
future work.

After ~600 days past maximum light, the SN became
sufficiently dim and the count rates at the central pixels of the
SN point-spread function (PSF) became comparable to the
bright part of the nebulosity close to the SN. The field shows
that the SN lies at one end of a dark lane, and just west of a
bright patch of nebulosity. A background subtraction procedure
significantly diminishes the time-invariant signals and
improves the photometry of evolving faint sources. Unfortu-
nately, we found no pre-SN Hubble images, either with or
without the polarizers, showing the same region using filters
compatible with our observations. Images obtained on 2006
March 29 (program #10776; PI:Mountain) with HST ACS/
WEC in the F435W, F555W, and F814W were used as
background templates for our F475W, F606W, and F775W
exposures, respectively. For each band, the background
templates have been scaled and subtracted from the intensity
map. The templates have been scaled according to the average
flux of four local bright sources [(R-A. = 9:55:40.98, decl. =
4+69:40:27.16); (R.A. = 9:55:41.99, decl. = +69:40:21.60);
(R.A. = 9:55:42.84, decl. = +69:40:31.42); (R.A. = 9:55:
43.95, decl. = +69:40:35.47)].

Photometry of SN2014] was conducted with a circular
aperture of 0715 (3 pixels in the ACS/WFC FOV) with
aperture corrections according to Hartig (2009) and Sirianni
et al. (2005). The photometry was performed using the IRAF'?
APPHOT package. The residual of the background was
estimated by the median pixel value of an annulus around the
SN. Compromising between determining the local background
residual with nearby pixels and excluding the contamination
from resolved interstellar light echoes (Yang et al. 2017), we

'2 IRAF is distributed by the National Optical Astronomy Observatories, which
is operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation (NSF).

choose the inner and outer radii as 172 (24 pixels) and 175
(30 pixels) for V1 and V2, and 0”45 (9 pixels) and 0775
(15 pixels) for V3, V4, V5, and V6. Table 2 presents the AB
magnitudes of SN 20147 at the six late epochs.

This photometry strategy has been carried out considering
that extremely nonuniform background structures dominate the
error budget in the late phases of the SN 2014J photometry,
especially after V4. For the scientific consideration of this
study, which is testing the models for the light curve evolution
at very late phases, the major concern in the data reduction
procedure is to obtain the correct decline rate of the SN light
curves. We conducted a sanity check to test the reliability of
our measurement by performing photometry on differenced
images from our observations obtained at different epochs.
Observations on V3 ~ day 649 were subtracted from the
observations on V4, V5, and V6. This directly measures the
differential fluxes and therefore the light curve decline rate. The
divergence of magnitude between this estimation and the
photometry on scaled and background subtracted images are
most significant in V6 when the SN is faintest, which gives
~0.01, 0.04, and 0.05 mag differences in F475W, F606W, and
FT75W, respectively. This difference is <0.01 in V4 and V5.
We conclude that our photometry is reasonable based on the
agreement between these two approaches, and the differences
represent the systematic uncertainties introduced in the use of
subtraction templates acquired with different filters. The
photometric uncertainties we quote include this difference,
the Poisson noise of the signal, the photon noise of the
background, the readout noise contribution (3.75 electrons/
pixel for ACS/WFC), and the uncertainties in the aperture
corrections. These quantities were added in quadrature. The
decline rates between all the epochs, calculated from photo-
metry shown in Table 3 and measured using this sanity check,
agree within ~2% and are smaller than the photometric
uncertainties.

We correct our measurements for both the interstellar dust
extinction in the SN host galaxy and the Galactic extinction
toward SN 2014J. In fact, any imperfection in the extinction
correction will only affect the individual magnitudes but not the
decline rates of the light curves. A peculiar extinction law
Ry ~ 1.4 toward the SN 2014] line of sight has been suggested
by many studies (Amanullah et al. 2014; Foley et al. 2014;
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Table 1
Log of Observations of SN 2014J with HST ACS/WFC POLV

Filter Polarizer Date Exp Phase® Exp Phase® Date Exp Phase®

(UT) O] (Days) (s) (Days) UT) (s) (Days)
F475W POLOV 2014 Nov 06 3 x 130 276.5 2015 Mar 25 3 x 400 415.6 2015 Nov 12 4 x 1040 648.5
F475W POL120V 2014 Nov 06 3 x 130 276.5 2015 Mar 25 3 x 400 415.6 2015 Nov 12 4 x 1040 648.7
F475W POL60V 2014 Nov 06 3 x 130 276.5 2015 Mar 25 3 x 400 415.7 2015 Nov 12 4 x 1040 648.8
F606W POLOV 2014 Nov 06 2 x 40 276.6 2015 Mar 27 3 x 60 417.9 2015 Nov 12 4 x 311 649.0
F606W POL120V 2014 Nov 06 2 x 40 276.6 2015 Mar 27 3 x 60 418.0 2015 Nov 13 4 x 311 649.0
F606W POL60V 2014 Nov 06 2 x 40 276.6 2015 Mar 27 3 x 60 418.0 2015 Nov 13 4 x 311 649.1
F775W POLOV 2014 Nov 06 2 x 30 276.6 2015 Mar 27 3 x20 418.0 2015 Nov 12 4 x 100 648.5
F775W POL120V 2014 Nov 06 1 x55 276.6 2015 Mar 27 3 x20 418.0 2015 Nov 12 4 x 100 648.7
F775W POL60V 2014 Nov 06 1 x 55 276.6 2015 Mar 27 3 %20 418.0 2015 Nov 12 4 x 100 648.9
F475W POLOV 2016 Apr 08 4 x 1040 796.2 2016 Oct 12 4 x 1040 983.1 2017 Apr 28 4 x 1040 1181.3
F475W POL120V 2016 Apr 08 4 x 1040 796.4 2016 Oct 12 4 x 1040 983.3 2017 Apr 28 4 x 1040 11814
F475W POL60V 2016 Apr 08 4 x 1040 796.6 2016 Oct 12 4 x 1040 983.4 2017 Apr 28 4 x 1040 1181.5
F606W POLOV 2016 Apr 08 4 x 311 796.8 2016 Oct 14 3 x 360 985.1 2017 Apr 28 3 x 360 1181.7
F606W POL120V 2016 Apr 08 4 x 311 796.8 2016 Oct 14 3 x 360 985.1 2017 Apr 28 3 x 360 1181.7
F606W POL60V 2016 Apr 08 4 x 311 796.9 2016 Oct 14 3 x 360 985.1 2017 Apr 28 3 x 360 1181.7
F775W POLOV 2016 Apr 08 4 x 100 796.2 2016 Oct 12 4 x 202 983.1 2017 Apr 28 4 x 202 1181.3
F775W POL120V 2016 Apr 08 4 x 100 796.4 2016 Oct 12 4 x 202 983.3 2017 Apr 28 4 x 202 1181.4
F775W POL60V 2016 Apr 08 4 x 100 796.6 2016 Oct 12 4 x 202 983.4 2017 Apr 28 4 x 202 1181.5
Note.

“ Days since B maximum on 2014 February 2.0 (JD 245 6690.5).

Goobar et al. 2014; Brown et al. 2015; Gao et al. 2015). In this
study, we adopt Ry = 1.44 £+ 0.03 and Ay = 2.07 & 0.18 mag
from Foley et al. (2014) for the extinction from the host galaxy
and Ry = 3.1 and E(B — V) = 0.054 mag for the Galactic
extinction following Foley et al. (2014) based on Dalcanton
et al. (2009) and Schlafly & Finkbeiner (2011). Extinction in
the FA75W, F606W, and F775W bands has been calculated for
each component using a reddening law from Cardelli et al.
(1989) with the corresponding Ry value. Both components are
added to account for the total extinction toward SN 2014]J for
each HST ACS bandpass.

3. Analysis

In this section, we will test different mechanisms powering
the late-time light curve, and whether the light curve behavior
is consistent with the prediction for the delayed-detonation and
the violent merger scenarios following a similar procedure to
Graur et al. (2016) for SN 2012cg. We assume that the ejecta
do not interact with any circumstellar material.

3.1. Pseudo-bolometric Light Curve

The pseudo-bolometric light curve for SN2014J was
calculated over a wavelength range from 3500 to 9000 A
based on our multi-band optical photometry. We briefly
summarize the steps as follows:

(1) Based on the lack of significant spectral evolution of
SN 201 1fe compared to a spectrum at 593 days (Graham
et al. 2015), we assume the MODS/LBT spectrum of
SN2011fe at 1016 days (Taubenberger et al. 2015)
represents the major spectral features of SN 2014J on
V3 ~ day 649, V4 ~ day 796, V5 ~ day 983, and
V6 ~ day 1181. The spectrum was retrieved from the
WISeREP archive.'?

'3 hitp://wiserep.weizmann.ac.il

(2) We then perform synthetic photometry on this spectrum
for the F475W, F606W, and F775W bands.

(3) We calculate the differences between the synthetic
photometry of the SN 2011fe spectrum and our extinc-
tion-corrected, observed photometry of SN 2014]J.

(4) We calculate the scale factors between the observed and
synthetic magnitudes in each filter.

(5a) We warp the spectrum using a second-order polynomial
fit to the scale factors determined at the effective
wavelength for each filter.'*

(5b) Alternatively, for each epoch, we fit a single wavelength-
independent grayscale across all wavelengths.

(6) We iterate steps (2)—(5) until the synthetic and observed
photometry match to better than 0.02 mag in each filter
for (5a), or the mean difference between the synthetic and
the observed photometry converges to its minimum value
for (5b), for which the standard deviation among the three
filters is 0.11 mag.

The pseudo-bolometric luminosity for each epoch was
obtained by integrating the scaled spectrum returned from
(5a) or (5b) over the wavelength range 3500-9000 A. The
errors on the pseudo-bolometric light curve were computed
through a Monte Carlo re-sampling approach using the
photometric errors. The warping in (5a) aims at iteratively
producing spectra consistent with the photometry, which
follows a procedure very similar to that described in Shappee
et al. (2016), while the scaling in (5b) is less sensitive to the
extrapolation of the polynomial correction to the spectrum. The
pseudo-bolometric luminosities calculated from (5a) are on
average 13% higher than those from (5b). This discrepancy
results from the construction of pseudo-bolometric light curves.
For the scientific consideration of our study, this systematic
difference does not affect the measurement of the abundance
ratio affecting the decline rate of the SN luminosity. After

4 hep: //pysynphot.readthedocs.io/en/latest/properties.html#pysynphot-
formula-efflam



THE ASTROPHYSICAL JOURNAL, 852:89 (10pp), 2018 January 10 Yang et al.
Table 2

HST ACS/WFC Late-time Photometry of SN 2014J
Filter FAT5W F606W F115W log I
Visit Phase® AB Magnitude Phase® AB Magnitude Phase® AB Magnitude (ergs M
1 276.5 17.363 £ 0.003 276.6 17.429 + 0.003 276.6 16.742 + 0.004 40.279 + 0.017
2 415.6 19.464 + 0.003 418.0 19.602 + 0.004 418.0 18.276 + 0.005 39.482 + 0.018
3 6438.7 22.363 £ 0.004 649.0 21.962 + 0.005 6438.7 21.427 £ 0.007 38.346 + 0.030
4 796.4 23.266 + 0.007 796.8 22917 + 0.013 796.4 22.492 + 0.012 37.968 + 0.023
5 983.3 24.169 £ 0.016 985.1 23.936 £ 0.032 983.3 23.294 £+ 0.016 37.592 £ 0.019
6 1181.4 24.765 + 0.026 1181.7 24.695 + 0.060 1181.4 24.234 + 0.057 37.308 + 0.039
Notes.

 Approximate days after B maximum, 2014 February 2.0 (JD 245 6690.5).
® Phases in F475W have been used.

correcting this discrepancy, the pseudo-bolometric luminosities
calculated from these two approaches agree within 8% at all
epochs, compatible with the uncertainties of the Monte Carlo
approach. The error used in fitting the ratio of the isotopes has
been estimated by adding this difference to the uncertainties
obtained from the Monte Carlo approach in quadrature. The
pseudo-bolometric luminosity of SN 20147 is listed in Table 2.
The optical pseudo-bolometric luminosity at ¢ ~ 277 days after
the B-band maximum (log L =~ 40.28) is roughly consistent
with the UVOIR bolometric luminosity at ¢ ~ 269 days
(log L ~ 40.35) estimated from Figure 8§ of Srivastav et al.
(2016). Our analysis of the bolometric evolution of SN 20147 is
based on the bolometric luminosity obtained with (5b).
Qualitatively similar results have been obtained by duplicating
the entire analysis based on (5a) as follows.

In Figure 2 we present the spectra constructed using the
warping procedure (left panel) and with grayscaling (right
panel). For comparison, in each upper panel, we overplot the
bandpass monochromatic flux calculated as the product Total
Counts x PHOTFLAM, "’ where PHOTFLAM is the inverse
sensitivity (in erg cm = LA~ ") representing a signal of 1
electron per second. The lower panels g)resent the total
bandpass throughput curve (HST + ACS)'® for our F4A75W,
F606W, and F775W observations. The spectra on the left panel
are iterated to agree quantitatively with the photometry. Visual
differences between the monochromatic bandpass flux and the
spectra arise because the PHOTFLAM used for the SED
assumes a smooth AB spectrum, which differs from the SN
spectrum (see Brown et al. 2016 for a comprehensive
discussion).

3.2. Radioactive Decay

In the left panels of Figure 3, we present the F475W, F606W,
and F775W-band luminosities of SN 2014J after correction for
extinction. In addition to fitting the pseudo-bolometric light
curve after ~650 days with the contribution from three decay
chains: ®Co — %Fe, 57Co — 37Fe, and %Fe — 3Mn (an “all
isotopes” model), we also fit the same model to our F606W-
band observations. Here, we have assumed that after ~500
days the F606W-band, which is centered at wavelength
5888.8 A and with a w1dth17 of 2570 A, captures the dominant
Fe features ([Fe1r] around 4700 and 5300A blended [Fe11]

'S This can be obtained with the ACS Zeropoints Calculator at https://
acszeropoints.stsci.edu/.

16 http: //www.stsci.edu/hst/acs/analysis/throughputs
17 Where the filter throughput is larger than 0.05%.

A7155 and [NillJA7378 around 7200 ;\; Taubenberger
et al. 2015), and is proportional to the bolometric light curves
as V-band observations (Milne et al. 2001).

Limited by a small number of visits, we approximate the “all
isotopes” model with two free parameters: the mass ratio
M (®’Co) /M (°°Co), and a scale factor to match the F606W
photometry (or the pseudo-bolometric luminosity) with the
model-calculated values. Using the solution to the Bateman
equation that describes the abundances and activities in a decay
chain as a function of time (following Seitenzahl et al. 2014),
and by counting the decay energy carried by charged leptons
and X-rays, the luminosity contribution from a single decay
chain gives:

La(t) = 2. i E_ M M@ 6%+ exp( Aate)
Aday s7! M, keV
x 10¥ erg s71, 2)

where C is a scaling factor, A gives the corresponding atomic
number, )\, is the inverse mean lifetime (A4 = 721 =
In(2)/ti ;2,4), M(A) is the total mass of a certain decaying
element, ¢4 and g are the average energies per decay carried by
charged leptons and X-rays, respectively, and 7, is the time since
explosion. Due to the limited data points in our late-time
photometry, we used a ratio of M (*’Co) /M (*Fe) ~ 0.8 (model
rpc32; Ohlmann et al. 2014). The values of A4, q/i and q/f used
here are sourced from Table 1 of Seitenzahl et al. (2009) and
Table 2 of Seitenzahl et al. (2014). We justify our assumptions
as follows. (1) The total deposition function is determined by
both the net deposition functions for ~-rays and positrons. The
~-rays produced by the annihilation of the positrons are subject
to both deposition functions. By simply assuming the radioactive
source is confined to the center of a spherical distribution of
ejecta yields a fraction 1 — e~™ of the energy produced by
~y-rays would be left behind in the ejecta (Swartz &
Wheeler 1991). The ~-ray optical depth 7, drops significantly as
r and we neglect contributions from ~-rays because the SN
ejecta became transparent to 4-rays at ¢t = 500 days (Milne
et al. 2001). (2) Limited by a small number of photometric
points, we begin by fitting Equation (2) assuming full trapping of
positrons/electrons. In other words, we assume positrons,
electrons, and X-rays are fully trapped, instantaneously
deposited, and radiate their energy. One should also note that
very recently, Dimitriadis et al. (2017) found that the late-time
bolometric light curve of SN 2011fe is consistent with both
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Table 3
HST Late-time Light Curve Decline Rate of SN 2014J

Period™\ Filter F475W F606W FT175W Pseudo-bolometric
(Days) (Amag/100 days) (Amag/100 days) (Amag/100 days) (Amag/100 days)
277-416 1.511 4+ 0.003 1.532 + 0.004 1.079 + 0.004 1.432 + 0.044
416-649 1.245 4+ 0.002 1.024 + 0.003 1.370 4+ 0.003 1.219 4+ 0.038
649-796 0.611 £ 0.006 0.646 + 0.009 0.721 4+ 0.009 0.640 £+ 0.064
796-983 0.483 + 0.009 0.540 + 0.018 0.429 + 0.011 0.503 + 0.040
983-1181 0.301 4+ 0.015 0.387 + 0.035 0.474 + 0.030 0.358 4+ 0.055
Note.

# Approximate days after B maximum, 2014 February 2.0 (JD 245 6690.5).

models: either a model that allows for positron/electron escape,
or a model that has complete positron/electron trapping but
allows for redistribution of flux to the mid-far-IR.

The luminosity contribution from each decay channel is
shown in Figure 3. The total luminosity given by these decay
chains is represented by the pink dashed line. In the left panel,
we show that a mass ratio of M (*’Co) /M (*°Co) = 0.065:3:303
gives the best fit to the “all isotopes” model based on the
F606W-band observations after ¢ ~ 500 days (V3-V6). The
dot-dashed gray lines show the model including the luminosity
from *°Co decay and possible reflections from an unresolved
! light echo (see Graur et al. 2016). In the right panel, we
show the same trend in a similar fitting based on the pseudo-
bolometric light curve, with the mass ratio given as
M (57Co) /M (*°Co) = 0.0667050. We also tested the same
abundance ratio, using a fit based on the pseudo-bolometric
light curve constructed with the warped spectrum (procedure Sa
in Section 3). A similar mass ratio of M (°*’Co)/M (°°Co) =
0.078091) was obtained.

3.3. Light Echoes?

If light echoes dominate the late time signal from the SN, we
may expect a significant profile change or centroid drift if the
circumstellar matter is distributed at sufficiently large distances
from the SN. Light scattered by dust at such distances can
produce measurable distortions to the image profiles if the
scattered light dominates the total observed flux. At the
distance of SN 20147, 1 lt-yr corresponds to 0.17 HST ACS/
WEC pixels. Depending on the dust distribution, we may
expect the stellar profiles to become non-point-like, or the
centroid of the stellar profile to drift at late times. We have
checked the stellar profiles and found no significant deviations
from a point source at all epochs of our observations. In the
following, we provide a comprehensive check on the centroid
position of the SN.

The barycenters of the stars and HI regions around
SN 2014J were measured to estimate a possible change in the
relative position of the light emission of the SN. The precision
is limited by the scarcity of stars in the immediate vicinity of
the SN, as well as the uncharacterized field distortions caused
by ACS/WEC polarizers (see, i.e., Section 5.3 of Gonzaga
et al. 2012). Figure 4 presents the apparent shift in position
measured from our observations in F475W and F606W. The R.
A. and decl. were calculated using the image from V3, with the
SN at the origin of the coordinates. The gray arrows show
the vector difference of the originally measured positions of
the source on two different epochs. The black arrow shows the
same vector after a 2D linear regression to remove the

dependence on R.A. and decl., which may be caused by
residual errors of astrometric calibrations. The linear regression
was found to be able to reduce the shift significantly in all
cases. The reference objects for astrometric comparisons were
selected within a radius of 500 pixels of the position of the SN.
The FWHM of the objects was restricted to be less than 8
pixels. Only a small number objects in the earliest epoch V1
satisfy these criteria, due to the relatively short exposure time.

In Figure 4, the upper panels present the measurements
based on the highest S/N F475W-band exposures, and the
lower panels present the same figures for F606W. For V5 and
V6, when the the SN became sufficiently dim, to minimize the
effect of the local background, the centroid of the SN was
determined based on scaled and background subtracted images.
For instance, in the upper row, the first panel presents the
comparison between V3 and V1. The SN (red dot) exhibits an
apparent motion of 0”079 (gray arrow); after linear regression
with the R.A. and decl., this reduces to 07029 (black arrow).
This is in agreement with all the other objects in the field,
which show an average distance shift of 07022 and an rms of
0”014. The second panel presents the comparison between V3
and V2. The SN exhibits an apparent drift in position of 0”020;
after linear regression this reduces to 0.016. The field objects
exhibit an average drift of 07036 and an rms of 0”023. This
implies that the position drift of the SN is significantly lower
than the average of the field objects. The third to the fifth panels
present the comparison between V3 and V4, V3 and V5, V3
and V6, respectively. After linear regression with R.A. and
decl., using the stars around the SN, the drift of the SN
compared to the average drift +rms gives: 07015 versus
0.024 + 07016, 07008 versus 0.021 + 07016, and 07031
versus 0.027 £ 0”017, respectively. An upper bound on the
centroid position drift of the SN between V3 and another epoch
is thus observed to be the sum of the SN drift and the rms of the
drift measured from field objects. In each of these cases, this
upper bound has been found to be larger than the average drift
of the field objects, which implies that there is no apparent
position drift of the SN. Similar results were obtained for
F606W-band exposures. In all cases, we have not observed a
significant position drift of the SN. The only exception is the
0”077 versus 07031 £ 0”018 in V3 compared to V6, F606W.
Considering no drift was found in the same epoch of F475W
and the low signal-to-noise ratio of the F606W observation, we
do not consider significant drift of the SN in V6. The absence
of such drift sets a strong constraint on the nature of the late-
time emission from SN 2014J. If the significant flattening in
F606W-band and pseudo-bolometric light curves is due to light
echoes, the dust must lie within 0”017 of the SN.
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Figure 2. Constructed late-time SED for SN 2014J. The dots show the bandpass monochromatic flux from HST observations at their effective wavelengths. The solid,
dashed, dashed—dotted, and triple-dotted—dashed lines show the spectra constructed with the warping procedure (left panel) and with grayscaling (right panel) as
described in Section 3, from V3 to V6, respectively. The lower panels present the total bandpass throughput curve (HST + ACS) for our F475W, F606W, and F775W
observations, showing the spectral response corresponding to the monochromatic fluxes calculated from the observed photometry.

Here, we address the possibility of an unresolved light echo
within the PSF of the late-time source at the SN position. Our
photometry allows us to measure the F475W-F606W and
F606W—FT75W colors at very late phases. We also compared
the late-time color evolution of SN 2014J with SN 2011fe,
which does not exhibit evident flux contribution from the light
echoes. Light-echo flux is dominated by the light of the SN
around its peak, and scattering by dust favors blue light. At
extremely late phases, when light from the SN may no longer
dominate over the scattered light echoes, the color of the
integrated flux can appear to be bluer by a few tenths of a
magnitude (Rest et al. 2012; Graur et al. 2016). A redder color
measured at a very late time, therefore, would suggest the
absence of a light echo. In Figure 5, we present a comparison of
the late-time color evolution of SN 2014J and SN 2011fe. The
B- and V-band AB magnitudes of SN 2014]J were calculated
with PYSYNPHOT using the grayscaled spectrum introduced in
(5b) in Section 3. Systematic differences between the synthetic
photometry in F475W and F606W on the grayscaled and the
HST photometry were included when calculating the error in
the B — V color of SN 2014]J.

The B — V color of SN 2014J from ¢t ~ —8 to 269 days has
been calculated based on the photometry of Srivastav et al.
(2016). The B — V color curves of SN 2011fe at early (Zhang
et al. 2016) and at late (Shappee et al. 2016) phases are shown
for comparison. We note that from days ~140 to 500, the
B — V color of SN 2014J appears to be bluer than it was
around the maximum light (see, i.e., Figure 5). A similar effect
can be expected if SN 2014J was contaminated by light echoes.
The color of SN2014J at days ~650 to 1200 is redder,
however, in B — V by ~0.3 mag, and the color evolution of
SN 20147 also shows a similar trend to that of SN 2011fe at the
same phase. Spectra of SN 2011fe at day ~1000 detected no
trace of a light echo (Graham et al. 2015; Taubenberger
et al. 2015). Thus, the similarity in the late-time color
evolutions of SN2014J and SN201l1fe, together with our
astrometric analysis, lead us to argue that the luminosity

measurement of SN 2014J was not contaminated by a light
echo at days ~650 to 1200.

4. Discussion and Summary

Table 3 shows the decline rate of the light curves at different
epochs. Before ¢ ~ 600 days, the SN dims more rapidly than the
light curve powered solely by the **Co decay. The ~-ray energy
deposition becomes no longer significant after ~200 days,
therefore a substantial fraction of the flux may be shifting out of
the optical bands into the infrared. Similar behavior has been
discussed in the case of SN 2011fe (Kerzendorf et al. 2014)
and SN 2003hv (Leloudas et al. 2009). After ¢t ~ 600 days, a
slower decay can be identified in all the F475W, F606W, and
FT775W-bandpasses.

Some observations of nearby type Ia SNe show that their
bolometric light curves at late phases follow the °Co decay
channel (Cappellaro et al. 1997; Sollerman et al. 2004; Lair
et al. 2006; Stritzinger & Sollerman 2007; Leloudas
et al. 2009). These observations suggest that a turbulent,
confining magnetic field traps the positrons, resulting in local
energy deposition (see Chan & Lingenfelter 1993; Milne
et al. 1999, 2001; Penney & Hoeflich 2014). In contrast, 36Co
positron escape has been suggested in some cases (Milne
et al. 1999, 2001). As the ejecta expand over time, the pre-
configured magnetic field weakens to the point that the Larmor
radius exceeds the size of the turbulence (see Penney &
Hoeflich 2014).

The late-time pseudo-bolometric decline rate of SN 2014J
during day 277 to day 416 (1.432 4+ 0.044 mag per 100 days)
and day 416 to day 649 (1.219 £0.038) is larger than the
predicted decay rate of radioactive *°Co (0.98 mag per 100
days). This may be caused by the positron escape, which would
produce a faster decay rate. A similar decline rate can also be
seen in the quasi-bolometric light curve of SN 2014J at ~days
238-269 (i.e., ~1.3 mag per 100 days; Srivastav et al. 2016).
Qualitatively speaking, at these intermediate epochs, the
contributions from ~-rays may still be non-negligible since
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plus a faint, unresolved light echo.

the SN ejecta may not have become transparent to ~y-ray
photons.

We fit both the F606W-band and a “pseudo-bolometric” light
curve using Bateman’s equation for the luminosity contribution
of the >°Co, 3’Co, and >Fe decay channels. The best fit to the
pseudo-bolometric light curve and the F606W-band light curve
give mass ratios of M (*’Co)/M (*°Co) = 0.0651000; and
0.06620:003, respectively. Assuming the same mass ratio yields
for isotopes of the same iron-group elements (see Graur
et al. 2016, based on Truran et al. 1967 and Woosley
et al. 1973), our measurements correspond to ~3 times the
M (°"Fe) /M (°°Fe) ratio of the Sun (i.e., ~0.0217, see Table 3 of
Asplund et al. 2009). This is higher than the solar ratio of ~1.8
predicted for the W7 model (calculated from Table 3 of Iwamoto
et al. 1999), and the solar ratio of ~1.7 predicted for the
near-Chandrasekhar-mass 3D delayed-detonation model N1600
(calculated from Table 2 of Seitenzahl et al. 2013). The
M (°'Fe) /M (°°Fe) ratio in our measurements is also higher
compared to the ratios of ~2 and ~1.1 suggested by the
late-time quasi-bolometric light curve analysis on SN 2012cg
(Graur et al. 2016) and SN 2011fe (Shappee et al. 2016). A
higher-metallicity progenitor could decrease the production of
%6Ni and result in a higher M (5'Ni) /M (36Ni) ratio (Seitenzahl
et al. 2013). An enhancement of neutron excess due to electron
captures in the deflagration wave could lead to the same effect.

It has been suggested that beyond ~500 days in the ejecta,
energy is shifted from the optical and near-infrared to the
mid- and far-infrared (referred to as the infrared catastrophe;
Axelrod 1980, and see Fransson et al. 1996; Fransson &
Jerkstrand 2015). The V or optical luminosity may not
represent the actual behavior of the bolometric light curves.
This has never been observed so far in any type Ia SNe (e.g.,
Sollerman et al. 2004; Leloudas et al. 2009; Kerzendorf et al.
2014; McCully et al. 2014; Graur et al. 2016; Shappee

et al. 2016). However, Dimitriadis et al. (2017) suggested that
the evolution of SN201lfe, around 550 to 650 days, is
consistent with both a model that allows for positron/electron
escape and a model allowing for a redistribution of flux from
the optical to the mid-far-infrared. In our study, we fitted the
F606W-band and optical bolometric luminosity after ~650 days
and did not consider the infrared catastrophe. Future studies
based on a larger sample will be able to help distinguish these
two possible scenarios.

As suggested by Kerzendorf et al. (2017), although the
flattening of the late-time light curves of SN 2014J can be
explained by additional energy input from the decay of >’Co,
we concede that one cannot draw strong conclusions from the
current observation due to the uncertain physical processes.
The determination of a precise isotopic abundance requires
detailed modeling of the processes. Another mechanism that
may plausibly explain the late-time luminosity-flattening is
the survival of the donor WD after the explosion. A small
amount of *®Ni-rich material synthesized by the primary WD’s
explosion at low velocities might remain gravitationally bound
and captured by the surviving WD companion (Shen &
Schwab 2017). The lack of electrons on the surface of the
donor WD significantly reduces the decay rates of *°Ni and
36Co more than electron capture (Sur et al. 1990; da Cruz
et al. 1992). The radioactive decay is delayed, thus the
surviving WD can be another source of late-time type la SN
luminosity. Future observations of type Ia SNe at extremely
late phases will be important for understanding the physical
processes at this late stage and further testing the explosion
mechanisms of type Ia SNe.

In summary, our multi-band photometry of SN 2014J out to
1181 days past the B-band maximum light clearly detected the
flattening due to extra luminosity contributions other than the
decay of °Co. We conclude that the high M (S7Ni) /M (°Ni)
ratio estimated from the late-time luminosity evolution of
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Figure 5. Comparison of the color evolution of SN 2014J and SN 201 Ife until
very late phases to address the possibility of an unresolved light echo within the
PSF. The top panel presents the B — V color calculated with PYSYNPHOT based
on the grayscaled spectrum of SN 20147 at late epochs and the B — V color of
SN 2014J from t ~ —8 to 269 days (Srivastav et al. 2016). The B — V color
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lines indicate the color at the SN maximum. The fact that SN 2014J has
become redder than it was at both its peak and SN 2011fe at similar epochs,
limits the flux any light echo could be contributing. The bottom panel gives the
evolution of the F606W—F775W color of SN 2014J and the V — R color of
SN 201 1fe for comparison.

SN 2014J favors a near-Chandrasekhar-mass explosion model
such as W7 of Iwamoto et al. (1999). Any significant
circumstellar light echoes beyond 0.3 pc on the plane of the
sky can be excluded by our astrometric analysis. The
observations strongly suggest additional heating from internal
conversion and Auger electrons of 3’Co — >’Fe; however, one
should be cautious on the high mass ratio of >’Ni to “°Ni.
Systematic uncertainties from the SED construction procedure,

especially the missing information from NIR observations and
the interpolation of the SED based on limited bandpass
coverage should not be ignored (i.e., see Brown et al. 2016).
Additionally, the reliability of approximating the bolometric
luminosity evolution after ¢t ~ 650 days with the F606W-band
emission requires more careful justification.
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