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Abstract  

The amyloid cascade hypothesis of Alzheimer’s disease (AD) proposes amyloid- β (Aβ) 

is a chief pathological element of dementia. AD therapies have targeted monomeric and 

oligomeric Aβ peptides.  However, alternative APP proteolytic processing produces a 

complex roster of Aβ species. In addition, Aβ peptides are subject to extensive 

posttranslational modification (PTM).  We propose that amplified production of some 

APP/Aβ species, perhaps exacerbated by differential gene expression and reduced 

peptide degradation, creates a diverse spectrum of modified species which disrupt brain 

homeostasis and accelerate AD neurodegeneration.   We surveyed the literature to 

catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may 

phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We 

speculate that accumulation of these alterations induce drastic changes in secondary 

and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in 

sporadic AD.  Additionally, amyloid-β peptides with a pyroglutamate modification at 

position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid 

deposits. The intrinsic physical properties of these species including resistance to 

degradation, fast aggregation rate, increased neurotoxicity, and association with 

behavioral deficits suggest their emergence are linked to dementia. The generation of 

specific 3D-molecular conformations of Aβ impart unique biophysical properties and a 

capacity to seed the prion-like global transmission of amyloid through the brain. The 

relentless accumulation of rogue Aβ ultimately contributes to the destruction of vascular 

walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ 

PTM and a probing correlation of their toxicity may help create essential biomarkers to 
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more precisely stage AD pathology, design countermeasures and gauge the impacts of 

interventions.    
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Introduction 

Alzheimer’s disease (AD) is characterized by the deposition of amyloid plaques and 
neurofibrillary tangles (NFT) in the brain.  The main component of extracellular amyloid 
plaques is the amyloid- β peptide (Aβ), an approximately 4 kDa fragment derived from the 
larger amyloid precursor protein (APP) by the concerted action of β- and ɣ-secretases [1]. 
The Aβ peptides polymerize into insoluble ~10 nm filaments which accumulate in senile 
plaques and the walls of cerebral blood vessels. The NFT are aberrant aggregates mainly 
composed of tau, a phosphorylated microtubule-associated protein that aggregates into 
insoluble intraneuronal paired helical filaments  [2].  While recognizing the importance of 
NFT as potential co-pathogenic species in AD, in this critical review we focus specifically on 
the role of Aβ.  
 
The evolutionary conservation of Aβ suggests this molecule has an adaptive value and 
important function(s) in the maintenance of CNS homeostasis. Of all 30 mammalian 
orders, which began to diverge about 90 million years ago, rodents are the only known 
species harboring amino acid substitutions deviating from the ancestral Aβ sequence. In 
sharp contrast with humans and many other mammals, with the exception of the 
brush tailed rat (Roychaudhuri R. Zheng X. Lomakin A. Maiti P. Condron MM. 
Benedek GB. Bitan G. Bowers MT. and Teplow DB. Role of species-specific primary 
structure differences in Aβ42 assembly and neurotoxicity. ACS Chem. Neurosci. 2015,  
6, 1941-55), age-associated amyloid deposits do not accumulate in rodents in vivo [3], 
even though synthetic rodent Aβ peptides produce congophilic filaments in vitro [4,5].  
Animal and cellular models are necessary for ascertaining disease mechanisms and 
promoting drug discovery efforts. However, there are still considerable challenges in 
translating scientific findings from these models into effective clinical interventions.  

The amyloid cascade hypothesis is currently the most widely accepted general theory to 
explain the pathophysiology and clinical evolution of AD. The hypothesis posits Aβ40 
and Aβ42 peptides are the critical elements in AD pathogenesis, through their intra- or 
extracellular neuropil and vascular accumulation. Notwithstanding the genetic evidence 
suggesting a crucial role for Aβ, considerable controversy still exists over the precise 
role(s) of amyloid in AD pathogenesis and pathophysiology [6-8]. Amyloid plaques 
correlate weakly with the clinical progression of AD and are preceded by tau 
neurodegeneration and brain atrophy in limbic brain regions [9-18]. To account for 
discrepancies between amyloid deposition and AD dementia some investigators 
suggest that soluble oligomeric Aβ are the most toxic species. The literature pertaining 
to the role of oligomeric Aβ in the pathogenesis and pathophysiology of AD is extensive 
[19-22] with almost 5,000 articles listed under “oligomeric A-beta” in PubMed. Excellent 
reviews on these topics can be found in references [1,22,25-28] However, no 
consensus exists regarding the molecular form(s) of Aβ ultimately responsible for the 
neurological decline associated with AD, the form(s) which should be therapeutically 
targeted or the optimal time to commence treatment.  The timing of the initial Aβ 
accumulation and its propagation during the course of disease remains controversial 
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[23]. Likewise, whether Aβ accumulation in the CNS is influenced by Aβ pools 
originating from peripheral tissues and/or the systemic circulation is unclear [24-27].  

The hallmark of AD amyloid found in demented subjects is its immense complexity.  
Commonly presumed to be composed of Aβ40 and Aβ42 species, extensive 
posttranslational modifications (PTM) produce a wide array of molecules differing in 
physical size and chemical/conformation properties.   Analogous to the situation 
observed with other proteinopathies, some of these potentially toxic modified Aβ 
conformers may promote the proliferation of highly organized amyloid filaments [28-30]. 

We hypothesize that in late onset AD (LOAD), specific Aβ-related species with shorter 
or longer sequences and /or altered by PTM enhance noxious amyloid deposition and 
neurotoxicity.  Based on these assumptions, we review experimental evidence revealing 
the physicochemical nature of potentially neurotoxic amyloid species linked to AD.  We 
consider neglected factors such as covalent modifications of Aβ and its aggregation 
states that may influence AD pathophysiology and have important implications for the 
design of immunotherapies.  We consider APP proteolysis fragments and peripheral Aβ 
sources as potential factors influencing neurodegeneration and cognitive dysfunction. In 
addition, we propose tactics to aid the search for prospective Aβ biomarkers and 
therapeutic targets. 

Amyloid-β posttranslational modifications and AD pathophysiology.   

Structural alterations in the peptide backbone of Aβ could account for the differential 
deposition and stability of these molecules in AD [31]. Detailed analyses have revealed 
that the species present in AD brains are modified extensively [32]. Furthermore, the Aβ 
peptides isolated from amyloid plaque cores possess a heterogeneous array of N- and 
C-termini and variable quantities of water soluble and water insoluble Aβ [31,33]. The 
fundamental chemical characteristics of the Aβ polypeptides are dictated by the 
amphipathic nature of these molecules, the presence of non-polar and polar domains 
and an abundance of charged amino acid residues which impose a diverse array of 
secondary and tertiary structures. Amyloid-β peptides ending in residues 38 to 49, a 
part of the transmembrane domain of the APP molecule, are progressively more 
hydrophobic due to the enrichment of non-polar amino acids which decrease solubility 
and increase aggregation propensity. The removal of charged amino acid residues at 
the N-terminal region of Aβ by aminopeptidases, endopeptidases or modification by 
glutaminyl cyclase will also have critical consequences for the intermolecular ionic 
interactions of the Aβ peptides since this region contains Asp and Glu at positions 1, 3, 
7 and 11, and Arg, Lys and His at positions 5, 6, 13, 14 and 16. Deletions or additions in 
the Aβ sequence will result in differences in molecular folding patterns and 
intermolecular reactivity. The central domain of Aβ from Leu17 to Lys28 also contains a 
conserved hydrophobic domain (Leu17-Val18-Phe19-Phe20-Ala) and the negatively 
charged residues Glu22 and Asp23. In the following section we give an account of the 
most important PTM present in the Aβ peptides. 

Aspartyl isomerization 

Aspartic acid and asparagine residues are particularly subject to non-enzymatic 
degradation reactions that covalently alter the structure of the polypeptide chain. 
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The proximity of the side chain carbonyl group of Asp/Asn to the adjacent residue amide 
nitrogen induces the formation of a five-membered succinimide ring intermediate [34] 
which is subject to enhanced racemization [35]. Spontaneous hydrolysis of the L- and 
D-succinimide intermediates generate a mixture of L- and D-aspartyl and L- and D-
isoaspartyl residues [34]. The presence of the isoaspartyl residue distorts the peptide 
chain to give a kinked polypeptide conformation that resembles a C-terminal substituted 
Asn residue.  Racemization may also occur via radical reactions [36].  L-isoaspartyl 
residues (and to a lesser extent D-aspartyl residues) can be recognized intracellularly 
by the protein L-IsoAspartyl (D-aspartyl) O-methyltransferase (PIMT) which converts 
them to L-aspartyl and D-isoaspartyl residues [37]. Tryptic digestion and reverse-phase 
HPLC separation of AD Aβ peptides yielded several isoforms comprising residues Aβ1-
5 and Aβ6-16 [31]. Amino acid composition, amino acid sequence analysis, mass 
spectrometry, enzymatic methylation and stereoisomer determinations demonstrated 
structural rearrangements of Asp residues at positions Aβ1 and Aβ7. L-isoAsp was the 
predominant form with D-isoAsp, L-Asp and D-Asp present as minor components, as 
would be expected for succinimide-mediated degradation. Approximately 75% of the Aβ 
peptides in the AD brain parenchymal amyloid plaque cores contain isoAsp at position 
Aβ7 with the amount of isoAsp at position Aβ1 more difficult to estimate due to the 
variable degree of N-terminal degradation. A third Aβ isoAsp site at position 23 has 
been reported to accelerate the in vitro aggregation kinetics of synthetic Aβ1-42 [38-40]. 
Interestingly, the Aβ mutation at position 23 AspAsn (Iowa) produces heavy vascular 
amyloidosis associated with dementia and intracerebral hemorrhages. In this form of 
familial AD, an isoAsp at position 23 is produced by deamidation of the mutant Asn 
residue to Asp followed by isomerization, again via a succinimide intermediate [41-43].  
The structural resemblance of isoAsp and Asn residues described above may provide 
some insight into the pathology associated with the Aβ23 Iowa mutation. Another Aβ 
mutation reported at position Aβ7 AspAsn (Tottori) alters the conformational dynamics 
of Aβ, accelerates the rate of oligomerization and affects metal interactions [44-47].  

While immunohistochemical studies suggest that the isoAsp at position 23 is mainly 
associated with the vascular amyloid deposits, the isoAsp at position 7 appears to be 
abundant in both parenchymal plaque and vascular related amyloid [42,43,48]. These 
studies also confirmed that in AD subjects the Asp residues at position 1, 7 and 23 are 
partially isomerized. The preferential localization of isoAsp at position 23 in vascular 
deposits of Aβ suggests the isomerization event occurs prior to its vascular deposition, 
soon after Aβ formation. Alternatively, the physicochemical conditions in the vascular 
compartment may favor the isoAsp23 modification. Conversion of Asp23 to isoAsp alter 
the kinetics of polymerization and may promote propagation of amyloid in the AD brain 
[41].  Recent cryo-electron microscopy (cryo-EM) observations permitted the 3D-
structural reconstruction of the Aβ42 amyloid filaments [49]. The model predicts that the 
negatively charged Cβ carboxyl group of Asp23 hinders a more advantageous packing 
in the stacking of Aβ42 dimer interfaces. Decreasing electrostatic repulsion between 
adjacent Asp residues will result in a more stable filamentous structure. The formation 
of IsoAsp may mimic the Asn23 Iowa mutation by displacing the Cβ side chain 
carboxylate to the 23Cα.  
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We propose that Aβ isoAsp at positions 7 and 23 in the AD brain may induce 
conformational changes analogous to the Tottori and Iowa Aβ mutations which are 
localized at the same positions of the Aβ peptide and associated with early onset AD.  
These alterations cause drastic changes in secondary and tertiary structure of the Aβ 
that may facilitate toxicity, seeding and propagation, perhaps by serving as templates 
converting unmodified Aβ species into self-transmissible amyloid species. It has been 
reported that reversion of isoAsp into Asp occurs in Aβ in the presence of PIMT and the 
methyl donor S-adenosyl methionine, resulting in the partial blockade of Aβ 
fibrillogenesis [50]. IsoAsp PTM are undetectable by routine mass spectrometry, since 
the Aβ peptides with IsoAsp alterations have an atomic mass identical to native Aβ-
containing Asp residues. However, estimation of isoAsp can be performed by the 
enzymatic methods published by Dai et al. [57], Tomidokoro et al. [43] or by electron 
capture dissociation combined with Fourier transform mass spectrometry [51]. In 
addition, using a combination of HPLC and mass spectrometry, it is possible to 
simultaneously determine both racemization and isomerization in Aβ [52]. The 
conformational changes induced by Aβ PTM, alone or in combination, could also mimic 
the stereochemical disturbances elicited by known deleterious familial AD amino acid 
substitutions such as Ala21Gly (Flemish), Glu22Gln (Dutch), Glu22Gly (Artic), 
Glu22Lys (Italian), in addition to the Asp23Asn (Iowa) and Asp7Asn (Tottori), 
mutations described above. The transition of the peptide bonds from Cα-Cα to Cβ-Cα 
carbons, drastically reorients the carboxylate and amino groups which alters the 
conformation of Aβ peptides and their isoelectric points.  This facilitates the generation 
of β-pleated sheets [53-56] thereby rendering these molecules more stable and 
resistant to enzymatic degradation [57,58]. Interestingly, while the isoAsp at position 
Aβ1 blocks BACE-1 β-secretase hydrolysis, cathepsin B activity efficiently hydrolyzes 
peptides with isoAsp at this position [57]. Additionally, it has been reported that a 
membrane bound β-secretase can cleave in the presence of a D-Asp residue [59]. 
IsoAsp modifications disrupt the ordered assembly of the α-helix by affecting the 
stability of the intra- and inter-molecular interactions such as hydrogen bonding, salt 
bridges and hydrophobic interactions, in turn accelerating rates of Aβ oligomerization 
and fibril formation [41,43,46]. These observations strengthen the contention that Aβ 
isoAsp isomerization is a potential triggering mechanism for AD amyloidosis and Aβ 
neurotoxicity.  

Pyroglutamate modification 

Amyloid-β species containing pyroglutamate at position 3 (Aβ3pE) have been identified 
in parenchymal plaques, vascular deposits [60,61], presynaptic sites [62] and 
lysosomes [63]. About 50% of the Aβ peptides present in purified amyloid plaque cores 
and about 11% of the total Aβ mass in isolated vascular amyloid deposits have N-
terminal Aβ3pE [64]. The formation of Aβ3pE requires the removal of the first two N-
terminal Aβ amino acid residues followed by the action of the enzyme glutaminyl 
cyclase [65]. Numerous investigations have revealed the presence of this peptide in Aβ 
deposits, its intrinsic physical properties such as resistance to degradation, fast 
aggregation rate, increased neurotoxicity, association with behavioral deficits, capacity 
to form hybrids with other Aβ species as well as its potential role in AD pathogenesis 
[65-86]. Antibodies against the Aβ3pE modified peptide tested in transgenic (Tg) mouse 
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models decreased Aβ deposits, inhibited Aβ aggregation and reduced behavioral 
dysfunction [87-89]. It has been proposed that the Aβ3pE peptide could be a potential 
seeding template of highly neurotoxic Aβ [69,81,90]. Of the many Aβ PTM, only one, 
Aβ3pE, has been targeted by immunotherapy and is currently in phase-1 clinical testing 
by Eli Lilly. Unfortunately, this antibody apparently evoked an undesirable immunogenic 
response in immunized individuals (see: Fagan T. Alzforum News, AAIC-Toronto, 2016, 
August 24, 2016).   

Phosphorylation 

Phosphorylation of Aβ at Ser8 by protein kinase-A [91,92] enhances aggregation and 
toxicity. Phosphorylation of Aβ at Ser26 by human cyclin-dependent kinase-1 has also 
been reported to increase Aβ toxicity [93,94]. It is possible that Ser phosphorylation has 
been overlooked because the often employed solubilization process utilizes formic acid 
which readily hydrolyzes esterified phosphate groups. In addition, several studies have 
suggested that in the AD brain Aβ L-Ser26 can be converted to D-Ser. This 
racemization apparently produces toxic Aβ fragments that may play a role in 
neurodegeneration [95-97]. 

Oxidation 

Oxidation of Aβ at Met35 to sulfoxide (S=O) and sulfone (O=S=O) forms has been the 
object of intense examination. In AD and mild cognitive impairment, oxidative stress 
mediated by free radicals instigate protein oxidation, lipid peroxidation and reactive 
oxygen species (ROS) production conducive to synaptic damage with neuronal and glial 
demise [98]. Met35 appears to regulate copper-catalyzed oxidation and aid in the 
generation of noxious hydrogen peroxide [99]. Electron spin resonance studies have 
confirmed that Met35 intervenes in free radical production. Substitution of Met35 with 
Val or Leu residues eliminates free radical production, oxidative stress and hippocampal 
toxicity of Aβ [98,100,101]. Furthermore, induction of Met-sulfoxide reductase in Tg 
mouse models protected neurons from Aβ toxicity [102]. Circular dichroism, thioflavine-
T and atomic force microscopy methods indicated that AβMet35-sulfoxide impedes fibril 
formation [103-105]. Apparently, the presence of oxidized Met35 favors monomers and 
dimers over larger oligomers and enhances neurotoxicity [106]. Molecular dynamics 
simulations of Aβ suggest that Met35 oxidation decreases the β-strand content of the C-
terminal hydrophobic domain of Aβ, specifically at the Aβ33-35 structural domain and 
that this configuration hinders Aβ polymerization [107]. 

Nitrosylation 

Nitration at Tyr10 accelerates Aβ aggregation and has been detected in the amyloid 
plaques of both APP/PS1 mice and AD brains [108]. In a more recent study Aβtyr10 
was found to significantly decrease Aβ aggregation and cytotoxicity [109].  

The intriguing role of dimeric Aβ in AD pathology.  

In the 1990s the hypothetical cause of AD pathogenesis shifted from the insoluble 
fibrillar amyloid plaques to soluble oligomeric forms of Aβ. Substantial work has been 
dedicated to understanding the physicochemical properties of Aβ aggregates ranging 
from dimers to large conglomerates [110-114]. In 1996, our group isolated detergent-
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free, water-soluble Aβ (n-40 and n-42) from normal and AD brains [111] in which the 
most prevalent and stable fraction was dimeric Aβ [112]. Amyloid-β dimers derived from 
AD amyloid plaques and vascular deposits were tested for toxicity in cultures of rat 
hippocampal neurons and glial cells [112]. Intriguingly, Aβ dimers elicited neuronal 
killing only in the presence of microglia. Amyloid-β dimers with PTM, including isoAsp1 
and isoAsp7, cyclization of Glu3 to pyroglutamyl and oxidation of Met35, exhibit 
increased insolubility and stability. Amyloid-β1-42, with IsoAsp at positions 1 and 7, 
demonstrated the fastest rate of oligomerization, followed by Aβ3pE-42 and Aβ1-42. 
Amyloid-β1-40 showed a slower dimerization rate while Aβ1-28 did not dimerize [58]. 
Furthermore, tryptic digestion resistance progressively increases from Aβ1-40 
monomer, Aβ1-42 monomer, Aβ3pE-42 monomer, Aβ1-42 (1,7 isoAsp) monomer, Aβ1-
42 (1,7 isoAsp) dimer and Aβ17-42. Amyloid-β1-42 with oxidized Met35 to either Met 
sulfone or sulfoxide, was ~50% more resistant to digestion than non-oxidized Aβ1-42 
[58]. These experiments suggest that the length of the Aβ peptides and PTM induce 
structural changes which impart unique physicochemical properties and functional 
effects.   

Several dimeric and oligomeric Aβ models have been investigated in recent years 
(reviewed in reference [1]). Dimeric Aβ based on FASTA and BLAST SwissProt data 
using the PredictProtein and TOPITS algorithms yielded a Greek-key Aβ motif 
conformation in which four antiparallel β-strands generate a compact Aβ dimer with a 
hydrophobic core to shelter non-polar residues from the surrounding water [115]. In this 
model, the hydrophobic C-terminal domains of the Aβ dimer are thermodynamically 
shielded since they are partially buried along the dimer crevices, but can be extended to 
form the core of antiparallel β-sheets (see below).  This model was further refined by 
molecular dynamics simulations [115]. Atomic force microscopy of purified dimers from 
amyloid plaques revealed the Aβ dimer as a compact globular hydrated structure ~35-
38 Angstroms in diameter [112,115]. A series of studies suggests the importance of the 
stable soluble Aβ oligomers in AD cognitive dysfunction [115-118], conformational-
dependent mechanisms of neurotoxicity [119], ability to induce tau 
hyperphosphorylation and neuronal degeneration [120] as well as stability in SDS 
solutions [33]  with the latter property implicated in the generation of concentration-
dependent dimers [121]. However, dimers have been purified in our laboratory in the 
absence of detergents [111]. Amyloid-β dimers isolated from the human brain impair 
synaptic plasticity and are detrimental to memory by inhibiting long-term potentiation, 
enhancing long-term depression and decreasing dendritic spine density in animal 
models [122]. Moreover, the degree of neurotoxicity is apparently dependent on the 
amount of Aβ dimers/trimers [123]. Recent experiments suggest that the binding of 
interstitial fluid Aβ oligomers to GM1 gangliosides produces destabilizing structural 
changes in membranes [124]. Synthetic dimeric Aβ inhibits mitochondrial cytochrome 
C-oxidase in the presence of copper [125]. Single-molecule atomic force microscopy 
experiments indicate that aggregation of Aβ is modulated by local environmental 
conditions and that Aβ42 dimerization is an extremely rapid process. In addition, the 
drastic structural differences between Aβ40 and Aβ42 may play a key role in 
dimerization propensity [126,127]. Amyloid-β dimers have also been proposed as the 
molecular unit in the polymerization of amyloid fibrils. In this model based on cryo-EM, 
two opposing monomeric Aβ molecules comprising Aβ residues 25-41 generate a face-
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to-face antiparallel β-sheet by adopting an S-shape zipper-like hydrophobic core ‘C-
domain’ while leaving the N-terminal regions, mostly composed of polar amino acids 
(residues 1-24), to make two opposing ‘P-domains’. The subsequent stacking of these 
dimeric structures creates coiled two-stranded amyloid filaments [49]. It has been 
estimated that Aβ dimers are a million-fold more thermodynamically stable than 
disordered unstructured Aβ monomers [126].  

The role of soluble oligomeric Aβ peptides 

In recent years oligomers have been assumed to be the ultimate cause for synaptic 
dysfunction, neuroinflammation, neurovascular compromise and neuronal/glial 
degeneration, making them the target of intense research and immunotherapy 
interventions [19,21,128-133]. However, the notion of soluble oligomeric Aβ toxicity still 
deserves further scrutiny and comprehensive validation. One major problem is that the 
enormous diversity of the Aβ peptides influenced by PTM and peptide length also 
affects the size, biochemistry and biophysical properties of oligomers. Although Aβ 
dimers appear to be stable, larger Aβ oligomers have been isolated from mice and 
human brains using a variety of purification techniques. Oligomers might assume a very 
large number of conformational structures with a correspondingly huge diversity of 
epitopes. This complexity may explain why immunotherapies with antibodies assumed 
to be reacting with oligomers in the human brain have yielded poor results in clinical 
trials (reviewed in ref: [134]. There is no doubt that variable amounts of soluble 
monomeric and oligomeric Aβ exist in the human brain because metastable monomeric 
Aβ is continuously generated from APP by the action of secretases. There is also proof 
that, at least under controlled experimental conditions, oligomers are neurotoxic in cell 
culture and experimental animals [135-140]. However, the definition of Aβ oligomers is 
vague since different laboratories in academia and commercial settings produce their 
own unique varieties based on synthetic peptides and in vitro aggregation conditions. In 
most instances these oligomers, primarily built on unmodified full-length synthetic Aβ40 
or Aβ42 amino acid sequences, have been assumed to be a faithful representation of 
what is present in the far more complex AD brain environment.  In addition, Aβ 
oligomers have been extracted from animal or human brains using techniques that 
employ a diversity of mechanical homogenizing stresses. These extracted species may 
include artifacts from dispersed fibrillar Aβ which may not be present in the AD brain. 
Oligomer with variable states of aggregation may incorrectly indicate a higher 
concentration of oligomers than actually present. 

 

The complicated catalog of APP/Aβ-related peptides and AD amyloidosis      

The profusion of amyloid plaques and their multiple morphological presentations 
suggests an underlying complexity in chemical compositions. A substantial mass of the 
amyloid plaque core is composed of a complex mixture of glycoproteins, glycolipids, 
lipids and proteins other than APP/Aβ [141,142]. Among the best characterized 
molecules are a variety of glycosaminoglycans, gangliosides, cholesterol, fatty acids, 
triglycerides, α1-antichymotrypsin and apolipoprotein E [143-151] and a large number of 
proteins identified by mass spectrometry [142,152]. Approximately 35% of the mass of 
AD amyloid cores is composed of non-Aβ molecules [31] enmeshed within an array of 
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10 nm fibrillar Aβ peptides. The biological function of the non-Aβ molecules in the 
context of plaque pathology and dementia has never been investigated in detail. Based 
on the conventional notion that in AD amyloid plaques are mainly composed of 
unmodified Aβ1-40 and Aβ1-42 peptides, several therapeutic antibodies have been 
synthesized against short consecutive amino acid sequences of the intact N-terminal, 
C-terminal and middle domains of these peptides. Biochemical analyses of AD purified 
amyloid plaque cores have shown that the N-termini of Aβ are highly variable, probably 
resulting from aminopeptidase activity that is associated with degradation pathways of 
Aβ. In addition, BACE1, that normally cleaves APP to generate the amino terminus of 
Aβ1-40/42, can also cleave APP at residue Aβ11 to generate Aβ11-40/42 [153]. The 
proteolytic activity of the α-secretase on APP produces the “non-amyloidogenic” Aβ17-
40/42, recognized as P3, which is abundant in diffuse amyloid plaques in cortical and 
cerebellar deposits [154-156]. These plaques have been deemed “non-fibrillar” but are 
known from thioflavine-S staining and EM studies to contain a low density of amyloid 
fibrils [157]. Due to its overall hydrophobic composition and insolubility P3 is very 
difficult to test in cell and animal models leaving the function of this peptide still 
unknown. However, because it is associated with diffuse plaques and may not elicit 
adjacent inflammatory reactions, P3 has been assumed to be an innocuous molecule. 
The potential ability of P3 to disrupt membrane lipids and form ionic channels implies 
this peptide may induce pathological changes in membrane permeability [158-160].  

The Aβ C-termini are also variable [161]. It has been proposed that the ɣ-secretase 
primarily cleaves APP at residues Aβ48 and Aβ49, known as ε-sites, producing Aβ1-48 
and Aβ1-49, and corresponding intracellular domains (AICD) 49-99 and 50-99 
[162,163]. In addition, the ɣ-secretase can hydrolyze APP at residues Aβ46-47, the ζ-
site [164], thus generating longer Aβ peptides [165-167]. The sequential hydrolysis of 
APP by ɣ-secretase in AD apparently generates a step-wise series of Aβ peptides 
terminating in residues 49, 48, 46, 45, 43, 42, 40, 39, 38 and 37 [162,163]. These Aβ 
forms have not been quantified in the AD brain. It is likely that the ratios of these Aβ 
peptides will vary from individual to individual. Interestingly, in the PSEN1 EOAD 
mutation E280A (paisa) the Aβ C-termini are also heterogeneous with peptides ending 
at every position from residue 42 to residue 55 [168]. 

The traditional view that concerted processing of APP by the α, β and ɣ secretases 
produces Aβ amyloidogenic and non-amyloidogenic peptides is complicated by the 
recognition of alternative APP cleavage sites [169]. Some elongated Aβ-related 
peptides have been isolated and rigorously characterized by amino acid sequencing. 
Amyloid precursor protein hydrolysis at the δ- position Thr584 (APP695) yields a product 
with an additional 12 amino acid residues extending from the N-terminus of the Aβ 
peptide [170]. More recently, two additional APP/Aβ peptides produced by an 
asparagine endopeptidase have been identified.  Cleavage of APP695 at Asn373 creates 
an APP N-terminal neurotoxic peptide, and at Asn585 yields an APP C-terminal peptide, 
composed of residues 586-695 that serves as a preferred substrate for BACE1 [171]. It 
was further suggested that this latter peptide increases amyloid production, highlighting 
the potential importance of the δ-site in AD pathogenesis [171].  Another APP 
hydrolysis site, defined as the η-site, was discovered between residues 504-505 
(APP695). The η-peptide is further processed by the β- and α-secretases to create the 
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Aη-β and Aη-α APP fragments. The latter peptide inhibited neuronal activity in the 
hippocampus by lowering long-term potentiation [172]. It has been suggested that 
cathepsin-L degrades the η-C-terminal fragment of APP [173]. In addition to these APP-
derived peptides, the APP C-terminal fragment containing the last 100 amino acids of 
APP (emulating β-secretase hydrolysis and absence of ɣ-secretase cleavage) induces 
neurodegeneration in transgenic mice [174,175]. Moreover, the AICD fragment can be 
further hydrolyzed to yield the Jcasp and the C31 peptides that have been found to 
induce apoptosis and have neurotoxic activity [176-179]. Lastly, APP-derived peptide 
carrying the N-terminal sequence of amino acid residues 18-286 was found to produce 
axonal pruning and neuronal death by interacting with the death receptor-6 (DR6) via 
the activation of caspases [180].  

The evolutionary conservation of the APP and the redundancy generated by the 
amyloid precursor like-proteins (APLP1 and APLP2A) molecules is a testimony to its 
importance in modulating the function and fate of cells. The increased expression of 
APP is likely to generate an overproduction of specific peptides that may influence AD 
pathogenesis and development [181]. 

Implications of the AN-1792 active vaccination clinical trial 

Neuropathological and biochemical examination of the brains of individuals actively 
vaccinated with aggregated synthetic Aβ1-42 + adjuvant (AN-1792) revealed neuritic 
and cored plaques were apparently disrupted while diffuse plaques and cerebrovascular 
amyloid were unaffected [182-186]. The cerebral cortex of vaccinated individuals 
showed a distinctive patchy distribution of neuritic and cored plaques with intercalation 
of adjacent plaque-poor and plaque-rich areas. In some individuals, the amyloid plaques 
left remnants suggestive of ‘collapsed plaques’ or ‘moth-eaten plaques’ that were 
reminiscent of the putative original plaque outline [182-186]. In some other instances, 
remnant structures exhibited a minuscule central deposit of amyloid surrounded by a 
clear area devoid of amyloid and a thin peripheral ‘halo’ of amyloid positive material  
[186]. ELISA analyses revealed the levels of water-soluble Aβ40 and Aβ42 were 
dramatically increased compared to a non-vaccinated AD population. In addition, 
vaccinated subjects had increased amounts of formic acid/guanidine hydrochloride-
extractable Aβ40 coupled with a decrease in Aβ42 levels [187]. 

The above data suggest that, in some vaccinated individuals with high serum antibody 
titers, the anti-Aβ antibodies effectively crossed the blood-brain barrier (BBB) and 
reached their targets. These antibodies were capable of removing amyloid from plaque 
neuritic haloes and cores, probably from those mainly containing Aβ42. The interrupted 
pattern of plaque loss, however, indicates either variability in vascular antibody 
permeability or of their action on subtypes of amyloid deposits.  Additionally, the patchy 
plaque elimination could be a consequence of treatment cessation since the trial was 
discontinued after some patients developed aseptic meningoencephalitis. Interestingly, 
Holmes et al. [188] reported that some cases exhibited an almost complete absence of 
histologically visible amyloid deposits.  However, it is likely that some subjects never 
harbored amyloid deposits in the first place.  For instance, case #14, described in 
reference [187], reported as having a complete absence of plaques had the lowest 
levels of Aβ formic acid extracted Aβ40 and Aβ42 and no soluble amyloid by 
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immunoassays. However, this subject was Braak stage VI and likely an instance of a 
primary tauopathy such as progressive supranuclear palsy or corticobasal 
degeneration. 

AN-1792 active vaccination was apparently far more effective at plaque disruption than 
passive immunizations with monoclonal antibodies. In the former case, multiple 
polyclonal antibodies recognized a large number of epitopes generated by different Aβ 
aggregated conformations. However, in most cases, the clearance of Aβ deposits was 
incomplete since diffuse plaques rich in Aβ17-42 (P3) and vascular-associated amyloid 
in cerebral cortex and leptomeningeal vessels, composed primarily of Aβ40, were 
unaffected. Despite the apparent effectiveness of AN-1792 in disrupting at least some 
amyloid plaques, this therapy notably failed to halt cognitive impairment progression 
[188]. 

Peripheral Aβ  

Amyloid precursor protein is expressed in most human cells suggesting peptides 
derived from this molecule, including Aβ, exist in most tissues and compartments of the 
body. In addition to the uncertainty over the temporal pace of Aβ deposition and the 
sequential location of brain affected sites, the role of Aβ in circulating plasma and CSF 
in the development of AD remains enigmatic. Circulating Aβ is predominately bound to 
albumin and other plasma molecules [189-191]. Amyloid-β has been detected in 
peripheral tissues [192]. For example, in skeletal muscle the levels of Aβ42 and total Aβ 
are significantly elevated in AD when compared to non-demented controls. Like the 
brain, skeletal muscle, which represents about one-third of the body mass, also 
generates a diverse array of Aβ peptides [193]. Furthermore, the aortas of elderly 
individuals with severe atherosclerotic deposits contain twice the amount of total Aβ40 
and Aβ42 than subjects with minimal atherosclerotic vascular disease [194]. Another 
important source of peripheral Aβ are the platelets. Quiescent platelets contain more 
Aβ40 than activated de-granulated ones [192]. The administration of anti-Aβ antibody 
infusions are likely to have some effect on the levels of circulating Aβ generated in 
peripheral tissues. Hence, any therapeutic interventions against AD amyloidosis relying 
only on the levels of circulating Aβ levels to measure their efficacy may lead to 
erroneous interpretations. Whether or not circulating Aβ contributes to the brain pool of 
these molecules remains to be answered with certainty. The physiologic and health 
implications of perturbing peripheral Aβ pools on a chronic basis are unknown. 

Future biomarker discovery and immunotherapy tactics  

While many studies have confirmed the role of Aβ in AD pathology, there is 
considerable confusion as to which of its myriad forms will provide effective diagnostic 
markers and therapeutic targets. Numerous lines of evidence have implicated various 
Aβ species including soluble, oligomeric, globular or annular aggregates [195-202] as 
critical players in synaptic demise and early memory loss of AD. Likewise, there is no 
consensus regarding the form(s) of covalently modified Aβ most intimately involved in 
neurological decline. There is also considerable uncertainty over where Aβ 
accumulation first occurs in the brain and whether the deposited molecules are 
generated within the brain exclusively or augmented by peripheral pools. Under normal 
circumstances Aβ is proteolytically degraded in brain or cleared by the liver and kidneys 
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[203-205], but very little is known about the catabolism of the PTM Aβ peptides. Adding 
to these complexities, a variety of homogeneous or heterogeneous aggregated Aβ 
species could be stochastically generated in brain tissue.  In some regions of the AD 
brain up to 12 copies of the APP gene have been found in some neurons.  Expression 
of all or some of these APP genes may participate the pathogenesis of AD [206,207]. 
Different Aβ peptide species may play distinct roles that are dictated by their specific 
molecular conformations. 

 
Identification of Aβ related antibodies that selectively recognize conformational epitopes 
in different AD patients is an ideal approach for the development of biomarkers and 
therapeutic agents. Antibodies against Aβ oligomers have been utilized to confirm the 
existence and role of oligomeric Aβ species [117,196,197,208-210]. The most useful Aβ 
antibodies for biomarker discovery might be those targeting specific epitopes on 
molecules known to be widely distributed in AD subjects. Novel methods have 
achieved this goal by combining the imaging capabilities of atomic force microscopy 
with phage display antibody technology which enables the identification of specific 
protein variants and isolation of reagents that selectively bind the target protein [211]. 
These technologies permit the generation of antibody based (nanobody) reagents that 
preferentially differentiate toxic-disease associated variants of key neuronal proteins 
including Aβ, tau, TDP43 and α-synuclein [211-220]. In the case of Aβ, nanobodies 
revealed three conformationally distinct oligomeric variants that differentiate postmortem 
AD brain specimens from healthy or Parkinson’s disease cases [219,221-223]. These 
observations indicate that detection of disease related protein variants may be a 
powerful blood or CSF based biomarker tool for AD and related neurodegenerative 
diseases. Since Aβ is such a complex protein and AD is a heterogeneous disease, 
detection of specific Aβ variants and other related deviant proteins have great promise 
as individualized biomarkers for AD and great potential for precision-personalized 
medicine. 
 
Conclusions 
At the center of the AD-amyloid conundrum is the unresolved observation that in the 
absence of genetic mutations Aβ peptides spontaneously aggregate into amyloid 
plaques and the walls of the cerebral vasculature. We contend this apparently 
spontaneous change is enhanced by alterations gene expression and PTM of the Aβ 
peptide structures, increasing their stability and propensity to polymerize.   

It is unclear whether the widely accepted assumption that unmodified, full length 
Aβ40/Aβ42/Aβ43 and their soluble/oligomeric/fibrillary forms are the main culprits 
responsible for the pathology and clinical manifestations of late-onset AD.  Experimental 
investigations reveal the Aβ molecules harbored by AD subjects are structurally diverse 
with different conformations and biological properties. However, to date most passive 
Aβ immunotherapies, with the exception of aducanumab, have targeted relatively 
short linear Aβ1-42 amino acid sequences rather than specifically folded tertiary 
structures.   
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Mounting evidence suggests that pathologic prions derived from normal proteins 
underlie several neurologic diseases including AD.  Prion strains exhibit unique 
biochemical properties imparted by specific toxic molecular conformations. 
These strain-specific pathologic conformations are faithfully replicated (Watts JC,  
Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, 
Prusiner SB. Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease 
patients (2014), 111, 10323-10328).  Conformational alterations induced by PTM of 
Aβ to yield unique amyloid strains may partially account for the clinical and 
pathological heterogeneity of LOAD (Watts JC,  Condello C, Stohr J, Oehler A, Lee 
J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB. Serial propagation of 
distinct strains of Aβ prions from Alzheimer’s disease patients (2014), 111, 10323-
10328).  Analogous to situations in which transmissible prions cross species 
barriers, the Aβ molecules of AD subjects would be induced to adopt and 
faithfully propagate the specific toxic conformation of spontaneously emerging 
pathologic seeds.  Self-transmissible Aβ strains capable of inducing distinct 
pathologic manifestations have been isolated from AD subjects (Watts JC,  
Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, 
Prusiner SB. Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease 
patients (2014), 111, 10323-10328).   
 
To date, Aβ physical diversity and functional significance of 3D conformations to 
dementia and toxicity have been disregarded. In addition to these differing biophysical 
features among Aβ species, quantitative differences in the proclivity to accumulate may 
also contribute to their pathological oligomerization and deposition in the aging brain. It 
can be assumed that some of these Aβ-related molecules have positive adaptive 
functions while others may be detrimental to brain homeostasis. Several lines of 
circumstantial and experimental evidence have suggested that under damaging 
conditions such as brain trauma, microbial invasion, a leaky blood-brain barrier and 
hypertensive crisis, sustained overproduction of some Aβ peptides may have a rescue 
function. This assumption is supported by the molecular conservation of the Aβ amino 
acid sequence along mammalian evolution that suggests important adaptive values for 
these peptides. It is still unclear which Aβ alternatives, including PTM peptides, are 
involved in the onset and progression of AD and thus might represent the best 
therapeutic targets, or, alternatively, which may have a salvage function. 

We propose that amplified production of some Aβ species, probably complicated by 
reduced degradation occurring during aging, creates a diverse spectrum of molecules 
which ultimately disrupt brain homeostasis and contribute to AD neurodegeneration. We 
postulate that the generation of some specific 3D-peptide conformations of Aβ impart a 
unique array of biophysical properties with deleterious as well as protective effects. 
Proteolytic processing of the highly evolutionarily-conserved multifunctional APP 
molecule is capable of creating over a dozen of proteolytically-derived peptides 
which are involved in a large number of brain functions, some of them with 
deleterious properties.  The APP dynamics must be finely tuned through transcription 
and translation and closely regulated in terms of proteolytic processing and degradation. 
In addition to Aβ, the excessive production of multiple neurotoxic peptides derived from 
the proteolysis of APP may play important roles in the development of late-onset AD. 
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Some of these APP peptides may be involved in the initial stages of AD and could have 
profound effects in subsequent neurodegeneration. 

One factor confounding interpretation of previous clinical trials is the observation that a 
large fraction of elderly dementia cases, even those clinically thought to have AD, are 
not associated with conventionally defined AD neuropathology based on threshold 
densities and distributions of plaques and tangles [224]. The A/T/N classification 
scheme of Jack et al. [225] proposes to integrate additional markers of 
neurodegeneration into the nosological partition of AD and other dementias, helping to 
define clinical subgroups.  Coupled with imaging methods capable of revealing amyloid 
and tangle deposits in living subjects and correlated with clinical signs and symptoms, 
this more nuanced view of dementia may aid in the design and interpretation of future 
clinical trials.    

 
Advances in imaging techniques, genetics and neurochemistry will further enable 
investigators to classify demented subjects on the basis of amyloid or tau deposition 
patterns with unprecedented precision. Sophisticated, minimally-invasive biopsy 
methods [226], coupled with innovative analytical techniques would help clarify the 
effects of Aβ molecular diversity on pathogenesis and aid in the identification of 
additional pathologies including tau, α-synuclein and TDP-43. Longitudinal studies 
combining imaging, molecular fingerprinting and cognitive function exams may reveal if 
the kinetics assumed for the amyloid cascade hypothesis holds for the majority or only a 
limited number of AD demented subjects.  Clarifying which of the structurally altered Aβ 
peptides are responsible for neurotoxicity will help in the design of specific therapeutic 
interventions. Reagents that selectively recognize and target different Aβ conformational 
variants will be powerful tools to assist in the individual diagnosis and personalized 
treatment of AD patients. Detailed examinations of the non-demented oldest-old 
subjects retaining cognitive function while harboring the neuropathologic lesions of AD 
may help reveal which amyloid species are inimical to neuronal and vascular function 
and which may be comparatively less toxic or non-toxic. 
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