Caching at the Web Scale

Victor Zakhary

Divyakant Agrawal

Amr El Abbadi

UC Santa Barbara
Santa Barbara, CA 93106

{victorzakhary,agrawal,amr}@cs.ucsb.edu

ABSTRACT

Today’s web applications and social networks are serving
billions of users around the globe. These users generate bil-
lions of key lookups and millions of data object updates per
second. A single user’s social network page load requires
hundreds of key lookups. This scale creates many design
challenges for the underlying storage systems. First, these
systems have to serve user requests with low latency. Any
increase in the request latency leads to a decrease in user
interest. Second, storage systems have to be highly avail-
able. Failures should be handled seamlessly without affect-
ing user requests. Third, users consume an order of mag-
nitude more data than they produce. Therefore, storage
systems have to be optimized for read-intensive workloads.
To address these challenges, distributed in-memory caching
services have been widely deployed on top of persistent stor-
age. In this tutorial, we survey the recent developments in
distributed caching services. We present the algorithmic
and architectural efforts behind these systems focusing on
the challenges in addition to open research questions.

Keywords

Distributed caching, Memcached, Replacement policy, Con-
tention

1. INTRODUCTION

During the past decade, social networks have attracted
hundreds of millions of users [4,8]. These users share their
relationships, read news [16], and exchange images and videos
in a timely personalized experience [10]. To enable this real-
time personalized experience, the underlying storage sys-
tems have to provide efficient, scalable, highly available ac-
cess to big data. Social network users consume an order of
magnitude more data than they produce [9]. In addition,
a single page load requires hundreds of object lookups that
should be served in a fraction of a second [10]. Therefore,
traditional disk-based storage systems are not suitable to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12

Copyright 2017 VLDB Endowment 2150-8097/17/08.

2002

handle requests at this scale due to the high access latency
of disks and I/O throughput bounds [24].

To overcome these limitations, distributed caching ser-
vices have been widely deployed on top of persistent storage
in order to efficiently serve user requests at scale. Akamai
and other CDNs use distributed caching to bring data closer
to the users and to reduce access latency. Memcached [5]
and Redis [7] are two distributed open source cache imple-
mentations that are widely adopted in the cloud and so-
cial networks. The default implementations of memcached
and Redis use the Least Recently Used (LRU) cache re-
placement policy. Although LRU is simple and easy to im-
plement, it might not achieve the highest cache hit rates
for some deployments. Increasing the hit rate by 1% can
save up to 35% of the average read latency [12]. There-
fore, much effort has focused on developing better caching
policies that achieve higher cache hit rates [14, 17,19, 22].
Teams in Facebook [10,15,21] and Twitter [3] have focused
on the architectural challenges of distributed caching at dat-
acenter scale. Sharding, replication, request batching, load
balancing, hierarchical caching, data access skewness, geo-
replication, replica consistency, data updates, and cache in-
validation are examples of the architectural challenges for
distributed caching and current implementations address
some of these challenges.

In Section 2.1, we present the data access model. Then, we
summarize the recent efforts on cache replacement policies
at a single server level in Section 2.2. Finally, we present
real deployed systems at a datacenter scale in Section 2.3.

2. TUTORIAL OUTLINE
2.1 Data Access Model

We assume millions of end-users sending streams of page-
load and page-update requests to hundreds of stateless ap-
plication servers as shown in Figure 1la. Application servers
hide the storage details from the clients and reduce the num-
ber of connections handled by the storage system. Each
request is translated to hundreds of key lookups and up-
dates. As traditional disk-based systems cannot efficiently
handle user requests at scale, caching services have been
widely used to enhance the performance of web applications
by alleviating the number of requests sent to the persis-
tent storage. The ultimate objective of caching services is
to achieve a high hit-rate because the latency of a cache
miss is usually few orders of magnitude more than a cache
hit. Therefore, designing a caching service to serve a very
large key space using commodity machines introduces many



Millions of Hundreds of Stateless
end-users Application Servers Millions of
end-users
Page-load
and page-
update
stream Persistent Storage update
=
o
o
a
o
@
o
-
0
i

(a) System model without caching

Page-load
and page-

stream

Cache hit

Hundreds of Stateless Tens of caching
Application Servers SErvers

]

Cache miss

H Persistent Storage

Shards

120ue|eg peo

(b) System model with caching

Figure 1: System model

challenges. First, the key space is very large and serving
the whole key space using a single machine violates cache
locality and increases the miss-rate. To overcome this prob-
lem, designers shard the key space into multiple partitions
using either range or hash partitioning and use distributed
caching servers to serve different shards. Second, the key
space, even after sharding, is too large to fit in memory
of commodity servers. Therefore, a cache replacement pol-
icy has to be carefully designed to achieve high hit-rates
without adding a significant bookkeeping overhead. Also,
policies should avoid using shared datastructures between
threads to reduce contentions. Third, commodity machines
can fail and replication is needed to distribute the workload
and achieve high availability. Figure 1b shows an abstract
model for a distributed caching service where each caching
server is serving a specific shard and each shard is served by
multiple replicas.

2.2 Replacement policy-base solutions
Memcached [5] and Redis [7] are two widely adopted open

source implementations for distributed caching services. Mem-

cached provides a simple Set, Get, and Delete interface for
only string keys and values while Redis extends the interface
to handle other datatypes. Cloud providers have adopted
memcached and Redis and provide customized versions of
both as services for their clients [1,2,6]. Both memcached
and Redis use the LRU cache replacement policy which only
tracks the time of access of each key in the cache. Other ef-
forts enhance the performance by introducing more tracking
per key access or by sharding the hash table and the track-
ing datastructures to reduce the contention between threads
and avoid global synchronization. Adaptive Replacement
Cache ARC [19] tracks the recency and the frequency of
access in addition to the recency of key eviction to decide
which key should be evicted next. To reduce thread con-
tention, memcached divides the memory into slabs for dif-
ferent object sizes and each slab maintains its tracking infor-
mation independently. CPHASH [20] introduces a concur-
rent hash table for multi-core processors. Message passing is
used to transfer lookups and inserts between slabs. Request
batching and locks avoidance allows CPHASH to achieve
1.6x better throughput than a hash table with fine-grained

locks. Sharding the memory between slabs uniformly can
lead to under utilization for some slabs and high miss-rate
for others. Therefore, Cliffhanger [12] dynamically shards
the memory between slabs to achieve the highest overall
hit rate. Dynacache [11] dynamically profiles the appli-
cations’ workload, shards the memory resources, and de-
cides the replacement policy that achieve the highest cache-
hit rate for the profiled workload. To avoid slab under-
utilization, other solutions suggest mapping keys to multiple
slabs. Cuckoo hashing [22] defines two hash functions that
map every key to two memory slabs. An insertion might
trigger a sequence of insertions or an eviction if the mem-
ory slabs of the inserted key are full. Lookups require to
check the key in its corresponding two buckets. To opti-
mize the lookup cost, MemC3 [14] uses tags for fast lookups
optimizing cuckoo hashing for read-dominated workloads
and allows multi-reader single-writer concurrent accesses.
Li et al. [17] introduces fast concurrent cuckoo hashing to
support high throughput multiple writers. Other solutions
reduce the miss-rate by increasing the effective cache size.
zExpander [23] achieves this by representing data objects in
compact and compressed formats. Recent in-memory dis-
tributed key/value stores exploits RDMA to increase through-
put and reduce latency. MICA [18] enables parallel access to
partitioned data to optimize the performance for multi-core
architectures. Also, client requests are directly mapped to
a specific CPU core at the server NIC level bypassing the
kernel communication overhead. In addition, MICA uses
circular logs, concurrent hash indexes, and bulk chaining.
FaRM [13] uses RDMA to achieve a per-machine through-
put of 6.3 million operations per second.

2.3 Real deployed systems

Facebook [21] and Twitter [3] have built their own dis-
tributed version of memcached. Facebook scaled memcached
[21] by partitioning the key space into different pools. Each
pool is served by multiple replicas to tolerate failures and
distribute the lookup workload. Both Twitter and Facebook
implementations batch requests in a client proxy to reduce
the number of requests sent to the server. Invalidation mes-
sages are sent from the persistent storage to the cache replica
to invalidate the stale values. Facebook and Twitter use

2003



memcached as a lookaside cache. However, memcached is
not optimized to capture a graph storage model. Therefore,
Facebook built Tao [10], a distributed caching service op-
timized for graph storage models. In Tao, nodes and their
associations are served from the same caching server. Tao
uses storage and caching geo-replication to overcome a dat-
acenter scale outage. Updates go to the master storage
replica through a cache leader server which is responsible
for all the updates and the invalidation messages for all the
data items in its shard. In Tao, heavy hitters (hot data ob-
jects) are handled by introducing hierarchical caching where
heavy hitters are cached in the upper hierarchy. Both Tao
and memcached at Facebook support eventual consistency
between the replicas.

The current systems have addressed many of the
distributed caching challenges. However, challenges like 1)
data access skewness, 2) dynamical changes in access pat-
tern, 3) providing stronger guarantees of replica consistency,
and 4) providing consistency between multiple data repre-
sentations are still open research questions that require in-
novative algorithmic and architectural solutions to provide
these guarantees at scale.

3. TUTORIAL INFORMATION

This tutorial targets researchers, designers, and practi-
tioners interested in systems and infrastructure research for
big data management and processing. We present the per-
formance and the consistency trade-offs of these caching
systems and recent distributed in-memory key/value stores.
The target audience with basic background about cache
replacement policies, sharding, replication, and consistency
would benefit the most from this tutorial. For general au-
dience and newcomers, the tutorial introduces the design
challenges that arise when caching services are designed at
the web scale. For researchers, algorithmic and architectural
efforts in distributed caching are presented together show-
ing the spectrum of recent solutions side by side with their
unhandled challenges. Our goal is to enable researchers to
develop designs and algorithms that handle these challenges
at scale.

4. BIOGRAPHICAL SKETCHES

Victor Zakhary is a PhD student at the University of
California at Santa Barbara. His current research work is in
the areas of data placement for geo-replicated databases and
for distributed caching services to achieve low access latency
and dynamically handle data access skewness.

Divyakant Agrawal is a Professor of Computer Science
at the University of California at Santa Barbara. His current
interests are in the area of scalable data management and
data analysis in cloud computing environments, security and
privacy of data in the cloud, and scalable analytics over big
data. Prof. Agrawal is an ACM Distinguished Scientist
(2010), an ACM Fellow (2012), and an IEEE Fellow (2012).

Amr El Abbadi is a Professor of Computer Science at
the University of California, Santa Barbara. Prof. El Ab-
badi is an ACM Fellow, AAAS Fellow, and IEEE Fellow. He
was Chair of the Computer Science Department at UCSB
from 2007 to 2011. He has served as a journal editor for sev-
eral database journals and has been Program Chair for mul-
tiple database and distributed systems conferences. Most
recently Prof. El Abbadi was the co-recipient of the Test of

2004

Time Award at EDBT/ICDT 2015. He has published over
300 articles in databases and distributed systems and has
supervised over 30 PhD students.

S. ACKNOWLEDGEMENTS

This work is supported by NSF grant CSR 1703560 and
a gift from Oracle Research.

6. REFERENCES

[1] Amazon elasticache in-memory data store and cache.
https://aws.amazon.com/elasticache/.

Azure redis cache. https:
//azure.microsoft.com/en-us/services/cache/.
Caching with twemcache. https://blog.twitter.
com/2012/caching-with-twemcache/.

Facebook company info.
http://newsroom.fb.com/company-info/.
Memecached. a distributed memory object caching
system. https://memcached.org/.

Memcachier. https://www.memcachier.com/.

Redis. http://redis.io/.

Twitter: number of active users 2010-2016.
https://www.statista.com/statistics/282087/
number-of-monthly-active-twitter-users/.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 53—64. ACM,
2012.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,

P. Dimov, H. Ding, J. Ferris, A. Giardullo,

S. Kulkarni, H. Li, et al. Tao: Facebooks distributed
data store for the social graph. In Presented as part of
the 2018 USENIX Annual Technical Conference
(USENIX ATC 13), pages 49-60, 2013.

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Dynacache: Dynamic cloud caching. In 7th USENIX
Workshop on Hot Topics in Cloud Computing
(HotCloud 15), 2015.

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling performance cliffs in web memory
caches. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
379-392, Santa Clara, CA, Mar. 2016. USENIX
Association.

A. Dragojevié, D. Narayanan, O. Hodson, and

M. Castro. Farm: Fast remote memory. In Proceedings
of the 11th USENIX Conference on Networked
Systems Design and Implementation, pages 401-414,
2014.

B. Fan, D. G. Andersen, and M. Kaminsky. Memc3:
Compact and concurrent memcache with dumber
caching and smarter hashing. In Presented as part of
the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages
371-384, 2013.

Q. Huang, K. Birman, R. van Renesse, W. Lloyd,

S. Kumar, and H. C. Li. An analysis of facebook
photo caching. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 167-181. ACM, 2013.

(10]

(14]

(15]



[16]

[17]

[18]

H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In
Proceedings of the 19th international conference on
World wide web, pages 591-600. ACM, 2010.

X. Li, D. G. Andersen, M. Kaminsky, and M. J.
Freedman. Algorithmic improvements for fast
concurrent cuckoo hashing. In Proceedings of the
Ninth European Conference on Computer Systems,
page 27. ACM, 2014.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
Mica: a holistic approach to fast in-memory key-value
storage. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages
429-444, 2014.

N. Megiddo and D. S. Modha. Arc: A self-tuning, low
overhead replacement cache. In FAST, volume 3,
pages 115-130, 2003.

7. Metreveli, N. Zeldovich, and M. F. Kaashoek.
Cphash: A cache-partitioned hash table. In ACM
SIGPLAN Notices, volume 47, pages 319-320. ACM,

2005

21]

(22]

23]

24]

2012.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at facebook. In
Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 385—398, 2013.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122-144, 2004.

X. Wu, L. Zhang, Y. Wang, Y. Ren, M. Hack, and

S. Jiang. zexpander: a key-value cache with both high
performance and fewer misses. In Proceedings of the
Eleventh European Conference on Computer Systems,
page 14. ACM, 2016.

H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and

M. Zhang. In-memory big data management and
processing: A survey. IEEE Transactions on
Knowledge and Data Engineering, 27(7):1920-1948,
2015.



