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A B S T R A C T

Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme
combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9–5.7 Å-
resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5.
This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the
LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T = 7 icosahe-
dron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite
distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct
bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop
that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted
tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with
other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005 bp with 357 bp direct
terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the
DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different
lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from
previously-described short-DTR-generating packaging machines and does not fit into any of the established
phylogenetic groups.

1. Introduction

Nitrogen-fixing rhizobial bacteria that form species-specific mutu-
alisms with host legume plants are among the most important bacteria
in soils. The interaction between rhizobia and plant hosts has been
actively studied for over a century, however, the interaction between
these bacteria and the bacteriophages that prey upon them has received
less attention until recently. New genome sequences and structural
analyses have shown that many rhizophages are quite novel (Brewer
et al., 2014; Crockett et al., 2015; Deak et al., 2010; Dziewit et al.,
2014; Ganyu et al., 2005; Halmillawewa et al., 2015, 2014a,b; Henn

et al., 2013a,b; Hodson et al., 2015; Johnson et al., 2015; Restrepo-
Cordoba et al., 2014; Santamaria et al., 2014; Schouten et al., 2015;
Schulmeister et al., 2009; Stroupe et al., 2014). Many sequenced rhi-
zophages do not fit well into established phage taxonomy, which is
dominated by phages that infect a limited diversity of hosts, mostly
gammaproteobacteria, cyanobacteria, Staphylococcus, Bacillus and My-
cobacteria (Adams et al., 2016). The majority of characterized rhizobial
phages are Myoviruses, while only a few rhizobial Podoviruses have
been studied in detail (Halmillawewa et al., 2014a; Santamaria et al.,
2014; Schouten et al., 2015). Until now, no rhizobial Podoviruses have
been analyzed at the structural or proteomic level. Here we report the
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T = 7 capsid structure at 4.9 Å resolution of Sinorhizobium meliloti
phage ΦM5, the first capsid structure of a Podovirus infecting a rhi-
zobial bacterium. We have also determined the virus particle proteome
and the 44,005 bp genome sequence.

When originally characterized, ΦM5 was found to infect Sinorhizobium
SU47-derived strains and to be incapable of efficient generalized trans-
duction (Finan et al., 1984). Subsequently,ΦM5 infection of S. meliloti 1021
was found to be dependent upon an intact lipopolysaccharide (LPS) core
(Campbell et al., 2002, 2003), and on the presence of amino acids 204–205
of the outer membrane protein RopA1 (Crook et al., 2013). Our initial ex-
amination of ΦM5 by transmission electron microscopy (TEM) showed that
it has a short non-contractile tail and is thus a member of the Podovirus
family (Adriaenssens et al., 2017). However, the high level of genomic
mosaicism and diversity within this group makes more precise classification
of new Podoviruses a perpetual challenge (Grose and Casjens, 2014; Lavigne
et al., 2008; Lawrence et al., 2002). Podoviruses vary based on capsid
morphology (Suhanovsky and Teschke, 2015), DNA packaging strategy
(Grose and Casjens, 2014), DNA replication enzymes (Weigel and Seitz,
2006), and lysis/lysogeny genes (Howard-Varona et al., 2017). The modular
nature of phage genomes, due to interphage recombination, means that
gene cassettes encoding proteins that accomplish these separable functions
are often found in unexpected combinations (Botstein, 1980; Iranzo et al.,
2016; Krupovic et al., 2011; Veesler and Cambillau, 2011; Weigel and Seitz,
2006). There are a growing number of examples of phages with extreme
genomic mosaicism combining modules from surprisingly different genetic
lineages (Glazko et al., 2007; Zhan et al., 2016). Sinorhizobium meliloti phage
ΦM5 is a prime example of this type of extreme bacteriophage genomic
mosaicism.

2. Materials and methods

2.1. Bacterial strains, phage isolates, and growth conditions

S. meliloti 1021 (Meade et al., 1982) was grown at 30 °C in LBMC
medium (Glazebrook and Walker, 1991) or tryptone yeast medium (0.5%
tryptone, 0.3% yeast extract, 10 mM CaCl2) supplemented with 500 μg/mL
streptomycin. Optimal production of ΦM5 virions was obtained by in-
oculating 10 μL of crude phage preparation into 25 mL of S. meliloti 1021 at
an optical density at 600 nm (OD600) of 0.1–0.2. The infected culture was
incubated at 30 °C overnight or until lysis was apparent, at which point it
was centrifuged at 3800×g for 30 min to remove cellular debris. The su-
pernatant was extracted twice with chloroform (Finan et al., 1984). The
phage lysate was stored over 1/5 vol of chloroform at 4 °C until further
purification. Phage titers were monitored by plaque assay (Finan et al.,
1984).

2.2. Phage purification for genomic DNA sequencing

Chloroform-extracted phage ΦM5 was concentrated and washed in an
Amicon concentrator (Millipore, Billerica, MA) with a 50-kDa molecular
mass cutoff. Concentrated phages were suspended in 10 mL of buffer EX
from the Large Construct kit (Qiagen, Valencia, CA) and treated twice with
DNase by using 1 U (80 μg) of ATP-dependent exonuclease (Qiagen) to
remove S. meliloti genomic DNA (Johnson et al., 2015). Prior to capsid
lysis, the ATP was removed to inactivate the exonuclease by washing in an
Amicon concentrator with a 50-kDa molecular mass cutoff. Phages were
lysed at 65 °C for 1 h in phage buffer with 0.5 M EDTA, 0.5% SDS, and
25 mg/mL proteinase K. Phage DNA was isolated by standard methods
(Sambrook and Russell, 2001). After resuspension, phage DNA was treated
with 1 mg of RNase A (Qiagen), and repurified by standard methods
(Sambrook and Russell, 2001).

2.3. Illumina sequencing of the ΦM5 genome and genome assembly

Sequencing was performed as previously described (Johnson et al.,
2015). Briefly, two separate ΦM5 DNA samples, each from a plaque-

purified phage sample, were sheared to an ∼860-bp average size with a
Diagenode Bioruptor. Indexed libraries were constructed with an NEBNext
Ultra DNA Library Prep kit for Illumina (NEB, Ipswich, MA) in accordance
with the manufacturer’s instructions. For each library, 1 μg of DNA was end
repaired and ligated to NEBNext adapters. Fragments of ∼860 bp were
isolated by electrophoresis on Bio-Rad Low Range Ultra Agarose and am-
plified for 8–10 cycles with NEB High-Fidelity 2×master mix and NEBNext
multiplex oligonucleotides. Library size distribution was measured on an
Agilent Bioanalyzer high-sensitivity chip, and quantity was determined with
the KAPA Biosystems Library Quantification kit. Paired-end 300-base se-
quence reads were generated on an Illumina MiSeq with a 600-cycle MiSeq
v3 Reagent kit. Genome assembly from MiSeq reads was performed with
Lasergene SeqMan Pro v. 11.2.1.25 (DNAStar, Madison, WI). Plaque isolate
1 produced a major contig of 47,408 bp with a 3760 bp circular permuta-
tion, whereas isolate 2 produced a major contig of 45,218 bp with a circular
permutation of 1570 bp. Position 1 of the major contig of isolate 2 matched
position 19,538 of the major contig from isolate 1. In analyzing the se-
quence assembly, we found a region of higher than average Illumina read
coverage at the ends of the 5.1 assembly, which can be indicative of direct
terminal repeats (DTRs). The sequences of genome ends were determined
by restriction mapping with the enzymes HindIII, XbaI, BlpI, and AlwNI
(New England Biolabs, Ipswich, MA), and direct Sanger sequencing of
purified phage DNA.

2.4. ORF and sequence motif prediction and analysis

Open reading frames (ORFs) were predicted with GeneMark.hmm
for prokaryotes (version 2) (Lukashin and Borodovsky, 1998), and the
NCBI ORF Finder (Sayers et al., 2011). The genome was searched for
tRNA sequences with tRNAScan-SE (Lowe and Eddy, 1997). Searches
for promoters predicted to be recognized by S. meliloti 1021 sigma
factors were performed using the promoter sequence motif data from
Schlüter et al. (2013) and the PhiSite promoter hunter (http://www.
phisite.org/main/index.php?nav=tools&nav_sel=hunter) (Klucar
et al., 2010; Stano and Klucar, 2011).

2.5. Construction of genomic alignments, amino acid sequence alignments,
and phylogenetic trees

The best homolog of the ΦM5 genome in public databases is a
prophage found integrated into the chromosome of Rhizobium favelukesii
LPU83 chromosome from positions 1,667,000–1,710,000. To determine
the degree of genomic synteny between these sequences, theΦM5 genome
and the Rhizobium favelukesii LPU83 prophage were aligned with the
Mauve (Darling et al., 2004) plugin in Geneious version 10 (https://www.
geneious.com) (Kearse et al., 2012). For phylogenetic trees, MUSCLE
multiple amino acid sequence alignments were performed in Geneious
(Edgar, 2004; Kearse et al., 2012). The maximum number of iterations
selected was eight, with the anchor optimization option. The trees from
iterations 1 and 2 were not retained. The distance measure for iteration 1
was kmer6_6, and that for subsequent iterations was pctid_kimura. The
clustering method used for all iterations was UPGMB (which is based on a
combination of both the unweighted-pair group method using average
linkages and neighbor joining). Un-rooted PhyML trees were constructed
from the MUSCLE alignments with the PhyML plugin within Geneious
(Guindon and Gascuel, 2003; Lefort et al., 2012). PhyML was performed
with the LG amino acid substitution matrix (Le and Gascuel, 2008) with
the proportion of invariable sites fixed and four substitution rate cate-
gories. The fast nearest-neighbor interchange tree topology search (Desper
and Gascuel, 2002) was used, and 100 boot-straps were performed.

2.6. Phage purification for cryo-EM and proteomic analysis

ΦM5-infected cell lysate was prepared by inoculating 0.25 mL of
fresh lysate into 375 mL of S. meliloti 1021 culture at an approximate
OD600 of 0.2 and allowing lysis to proceed overnight. The lysate was
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centrifuged at 3800×g for 20 min to remove cellular debris. The su-
pernatant was extracted once with chloroform, precipitated twice in
10% polyethylene glycol (PEG) 8000/0.5 M NaCl, and further chloro-
form extracted to remove PEG (Yamamoto et al., 1970). The PEG-
purified phage was further concentrated on a 30 kDa MWCO con-
centrator (Pall Corporation, Port Washington, NY, USA). Concentrated
phage was layered onto a continuous density gradient of 10–50% Op-
tiPrep density gradient medium (Sigma-Aldrich) in gradient buffer
(20 mM Tris-HCl, pH 7, 100 mM KCl, 5 mM MgSO4) and centrifuged at
41,000×g for 8 h in an SW-41 rotor in a Beckman Coulter Optima L-
100 XP ultracentrifuge. Fractions were collected on a Brandel BR-188
Density Gradient Fractionation System with a 1.5 mL/min flow rate and
10 s per fraction. At each step, the phage was titered to monitor re-
covery. Fractions containing high concentrations of phage were assayed
for capsid integrity by EM of samples negatively stained with 1% uranyl
formate. Selected fractions were further concentrated on a 30 kDa
MWCO concentrator at low speed (≤2000×g) to prevent phage rup-
ture.

2.7. Proteomic analysis of phage particles

ΦM5 phage was prepared as described above. The titer of infective
phage was quantified and the total protein concentration was de-
termined using Bio-Rad Protein Assay Dye Reagent (Bio-Rad, Hercules,
CA). Approximately 2 × 1009 phage particles were prepared for
shotgun proteomics as previously described (Brewer et al., 2014) using
a Filter-Aided Sample Prep (FASP) kit (Expedeon USA, San Diego) and
trypsin from porcine pancreas (Sigma-Aldrich, St. Louis), according to
the manufacturer's instructions (Wisniewski et al., 2009). The shotgun
proteome analysis was performed at the Florida State University
Translational Science Laboratory, as previously described (Brewer
et al., 2014).

Tandem mass spectra were extracted, charge state deconvoluted and
deisotoped by Protein Discoverer (version 1.4) (Thermo-Scientific). All
MS/MS samples were analyzed using SequestHT (version 1.4.0.288,
Thermo-Scientific), X! Tandem (The GPM, thegpm.org; version
CYCLONE (2010.12.01.1), and the Percolator peptide validator.
Sequest and X! Tandem were used to search a list of all 199 ORFs ori-
ginally predicted for ΦM5 (database file PhageM5formatted.fasta).
Scaffold (version Scaffold_4.0.5, Proteome Software Inc., Portland, OR)
was used to validate MS/MS based peptide and protein identifications.
The peptide identification threshold was a false discovery rate of 0.1%
established by the Scaffold Local FDR algorithm. Protein identification
threshold was 1% FDR with a minimum of 2 identified peptides. Protein
probabilities were assigned by the Protein Prophet algorithm
(Nesvizhskii et al., 2003). The full Scaffold protein report is in
Supplemental Table 1.

The protein abundance index (PAI) for each identified phage protein
was calculated as PAI = number of observed exclusive unique pep-
tides/theoretical peptides per identified phage protein (Rappsilber
et al., 2002). Unique theoretical peptides were calculated for all de-
tected ΦM5 proteins using the MS-Digest function in the Protein Pro-
spector program at the website http://prospector.ucsf.edu/prospector/
cgi-bin/msform.cgi?form=msdigest (Chalkley et al., 2005), with the
settings trypsin digest, 2 maximum missed cleavages; peptide mass:
350–5000; minimum peptide length 6; constant modification: Carba-
midomethyl (C); variable modifications: Oxidation (M) and Phospho
(STY); and report multiple charges. The calculation of protein content
weight percent for each identified phage protein was emPAI × MW/
Σ(emPAI × MW) of all identified phage proteins × 100 (Ishihama
et al., 2005). emPAI is the exponentially modified protein abundance
index = 10PAI − 1 (Ishihama et al., 2005).

2.8. Cryo-EM sample preparation and data collection

Purified phage particles were applied to glow-discharged EM grids

(Quantifoil 2/2), and rapidly blotted and plunged into liquid ethane
using a Vitrobot (FEI, Hillsboro, OR) plunging apparatus, set to 4 °C and
100% relative humidity. Data collection was performed on a Titan Krios
TEM (FEI) equipped with a DE20 direct electron detector (Direct
Electron, San Diego, CA), via the Leginon automation package
(Carragher et al., 2000; Shrum et al., 2012; Suloway et al., 2005).
Images were recorded at 22,500x nominal magnification, with a de-
focus values varying from −3.5 to −1.0 μm, and a total electron dose
of 60 e−/Å2.

2.9. Image processing and three-dimensional (3D) reconstruction

Early processing tasks were performed within the Appion package
(Lander et al., 2009). Particles were picked with the reference-free
application Dogpicker, and defocus estimation for contrast transfer
function (CTF) correction was performed using Ace2 and CTFFind
functions (Mallick et al., 2005; Mindell and Grigorieff, 2003). This
single particle data set (15,895 particles total) was aligned and re-
constructed within the Relion package (Scheres, 2012), followed by
Frealign (Grigorieff, 2007). After 17 rounds of icosahedrally-symme-
trized frequency refinement using Frealign, the reconstruction (thre-
sholded to include only the highest-scoring 12,129 particles) reached a
resolution of 4.9 Å at a Fourier Shell Correlation (FSC) of 0.143, and
5.7 Å at a Fourier Shell Correlation (FSC) of 0.5, as measured between
the Frealign-generated half maps (Supplemental Fig. 1). Three-dimen-
sional classification did not improve the resolution of the reconstruc-
tion. The final map was sharpened by applying a B-factor of −339.19,
as calculated by EM-BFACTOR (Fernandez et al., 2008).

3. Results and discussion

3.1. The structural genes of ΦM5 are similar to those of LUZ24 phages of
Pseudomonas and Φeco32 phages of Escherichia coli

Initial genome sequence analysis of ΦM5 showed only short islands
of DNA sequence homology and limited overall open reading frame
(ORF) synteny with characterized phages (data not shown). Although
ΦM5 does not have conserved overall synteny with other characterized
phages, genes predicted to be involved in related functions are arranged
in modules from separate identifiable lineages. One of these modules on
the sense strand of the chromosome (positions 2671–9973) contains
structural ORFs that have very good homology to the LUZ24 phages
that infect species of Pseudomonas (ORFs: M5_04 [portal/head-tail
connector protein]; M5_09 [putative scaffolding protein]; M5_11 [major
capsid protein]; M5_15; and M5_16 [tail tubular protein A]) (Altschul
et al., 1997; Ceyssens et al., 2008; Drummond et al., 2012; Edgar,
2004). The three ORFs encoding the predicted portal, capsid and tail
tubular A proteins are also similar to those of the ΦEco32 viruses that
infect E. coli (Mirzaei et al., 2014; Savalia et al., 2008). The major
capsid protein of ΦM5 (M5_11) is 37% identical to that of LUZ24 and
30% identical to ΦEco32. Fig. 1A shows an unrooted phylogenetic tree
constructed by aligning a conserved internal segment of the ΦM5 major
capsid protein with its orthologues from other Podoviruses (sequence
information in Supplemental Table 2A). In the phylogenetic tree shown
in Fig. 1A, the low bootstrap percentages at the nodes separating ΦM5
from the LUZ24 phages and the ΦEco32 phages reflect low confidence
in these branch points obtained from randomized replicate phylogenies
(Felsenstein, 1985). Thus, it is difficult to discern the proper relation-
ship between ΦM5 and the LUZ24 phages and ΦEco32 phages. Mor-
phologically, ΦM5 (Fig. 2A) resembles the C1-morphology, icosahedral
LUZ24 phages (Ceyssens et al., 2008) much more strongly than it re-
sembles the C3-morphology, elongated ΦEco32 phages (Mirzaei et al.,
2014; Savalia et al., 2008). Since ΦM5 morphology and structural gene
synteny suggest a closer relationship to the LUZ24 phages than to the
ΦEco32 phages, a second tree was constructed to elucidate these re-
lationships. Internal segments of the 5 conserved ORFs in genome
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Fig. 1. An unrooted phyML tree based on major structural proteins. A) A conserved internal segment of the ΦM5 major capsid protein (M5_11, amino acids 16–318) was aligned in
MUSCLE with orthologous sequences from other phages. The major capsid protein of ΦM5 (M5_11) is 37% identical to that of LUZ24 and 30% identical to ΦEco32. (See Supplemental
Table 2A for protein sequence information). B) To further define the relationships between ΦM5 ORFs in the structural region of the genome and those of the LUZ24-like phages, the
following sequences were concatenated and aligned with orthologous sequences from other LUZ24-like phages: M5_11, capsid; M5_04, portal protein; M5_16, tail tubular protein A;
M5_09, scaffolding protein; M5_15, conserved LUZ24 phage protein). The proteins of the structural region of the ΦM5 genome are most closely related to those of Methylophilales phage
HIM624-A (Brown et al., 2013). Other closely-related phages are Sulfitobacter phage ΦCB2047-C (Ankrah et al., 2014), EPBR Podovirus 2 (Skennerton et al., 2011), Vibrio phage VPp1
(Peng et al., 2013), Synechococcus phage S-CBP2 (Dekel-Bird et al., 2013; Huang et al., 2015) and Cronobacter phage vB_CsaP_Ss1 (Endersen et al., 2015). The bootstrap percentage shown
for each branch reflects the degree of confidence in the placement of that node in the phylogenetic reconstruction. The bar indicates branch distance. (See Supplemental Table 2B for
protein sequence information).
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segment 2671–9973 (Supplemental Table 2B) were concatenated,
aligned, and used to produce the unrooted tree shown in Fig. 1B. This
tree shows that the ΦM5 structural region genes are most similar to
those of Methylophilales phage HIM624-A. This phage is known from a
partial genome sequence obtained from a metagenomic community
associated with Trichodesmium marine cyanobacteria (Brown et al.,
2013). No information about phage morphology is available for this
phage or any close relatives of ΦM5 except the LUZ24 phages and
Cronobacter phage vB_CsaP_Ss1, which has also been observed to be a
Podovirus (Endersen et al., 2015). This phylogeny based on multiple
conserved predicted structural proteins and assembly proteins suggests
that the ΦM5 structural module has a common ancestor with the LUZ24
phages.

The absence of structural information for many groups of phages
leaves serious gaps in our knowledge of the links between capsid
morphology and structural protein phylogeny. The majority of the po-
doviral structures that have been deposited in the EMDataBank
(Lawson et al., 2016) are for phages in a relatively small number of
subfamilies and genera, with a third of them in the T7 supergroup. The
cryo-EM structures of T7, epsilon 15, and P22 reveal that all these
Podoviruses have T = 7 icosahedral symmetry despite the highly di-
verged protein sequences of their major capsid proteins (Suhanovsky
and Teschke, 2015). An important goal of modern comparative mor-
phology is to use structural and phylogenetic data to understand how
highly diverged protein sequences assume common secondary and
higher order structure. The tree shown in Fig. 1A suggests that the
major capsid proteins of ΦM5, the LUZ24 phages, and the ΦEco32
phages are highly diverged from the well-characterized Podoviruses
such as T7, epsilon 15, and P22. No capsid structure of a LUZ24 phage
or a ΦEco32 phage has yet been solved. Therefore, this structure of the
ΦM5 capsid is the first from this highly-diverged branch of the Podo-
virus capsid phylogenetic tree.

3.2. Cryo-EM structure of the ΦM5 capsid

In ΦM5, seven HK97-like coat proteins form the characteristic
T = 7 hexamer-plus-one asymmetric unit that lock together to com-
plete the icosahedron (Fig. 3). The coat is relatively smooth with a small
turret that sits about 5 nm above the plus-one monomer that forms the
fivefold axis of symmetry (Fig. 3, upper inset). Each of the five subunits
that form the turret presents four columns of density that have a right-
hand twist. Each column of density is about 1 nm in diameter and fits a
generic alpha helix of 20 amino acids, suggesting that the pentamer cap
is made up of a protein that contains a four-helix bundle. This dis-
tinctive morphology that runs vertically up from the pentamer contrasts
with the immunoglobulin-like (Ig-like) fold-containing protein ob-
served at the pentamer of Vibrio phage SIO-2 where the central beta

barrel of one pentamer decoration protein points to the next symmetric
position (Lander et al., 2012). The identity of this turret decoration
protein is not obvious from the ΦM5 proteome (Table 1), but possible
candidates are M5_25 and M5_14 (see below). Despite extensive efforts
at asymmetric reconstruction, the tail was not visible in the raw images
and did not provide sufficient contrast to break the icosahedral sym-
metry. The lack of high contrast features in the tail is also evident in the
negative-stained TEM shown in Fig. 2A.

ΦM5-specific coat protein features of the capsid protein account for
all of the structural features of the capsid, which suggests there is no
external structural accessory protein to stabilize the 75 nm-diameter
capsid. In contrast, another phage of S. meliloti, ΦM9, appears to have
an accessory protein that stabilizes the hexamer from the larger
112 nm-diameter, T = 16 capsid (Johnson et al., 2015). The ΦM5
capsid contains a G-loop between α3 and α4 (residues 130–149) fol-
lowed by a 30 amino acid insertion to the A domain between the first β-
strand of its central five-stranded 15,423 β sheet and α5 (residues
165–185). A distinct bridge of density that could be filled by the A
domain insertion reaches down from the β hinge of the A domain to the
hairpin of the E loop within the same monomer (Fig. 3, lower inset).
The A-domain insertion, G loop, and the E loop (residues 55–78) are
three of the most variable regions of homologous capsid proteins. A
host of examples of species-specific modifications work in a variety of
ways to stabilize the HK97 central fold (Suhanovsky and Teschke,
2015). For example, in P22, a domain insertion called the I domain sits
between the third and fourth strand of the A domain’s central β-sheet
(Hryc et al., 2017). In ΦM5, perhaps the A-domain bridge stabilizes the
capsid by rigidifying the structurally important β-hinge after matura-
tion (Teschke and Parent, 2010) through its interaction with the E loop,
which then reaches into the neighboring member of the hexamer. This
A-domain bridge may represent a novel method of capsid stabilization
distinct from those observed in other T = 7 phages.

3.3. The ΦM5 virion proteome provides clues to the identity of several phage
ORFs

The major capsid protein M5_11 is the most highly-represented
protein in the ΦM5 proteome in total mass spectrum counts (Table 1).
This, along with 14 other ORFs were detected in the phage particle
proteome (Table 1). Three of these ORFs have>25% identity to phage
LUZ24 proteins: the major capsid protein; the portal (head-tail-con-
nector) protein M5_04; and a scaffolding protein M5_09, which is re-
quired for proper capsid assembly in many phages (Aksyuk and
Rossmann, 2011). A schematic of how these proteins would fit into a
generic Podovirus is shown in Fig. 2C. There are an additional 3 LUZ24-
like ORFs in the phage particle: M5_25; M5_16, tail tubular protein A;
and M5_27 (Table 1, Fig. 2C). ΦM5 ORF M5_25 has moderate overall

Fig. 2. TEM of the ΦM5 phage particle and predicted location of structural proteins. A) The ΦM5 capsid has C1 icosahedral morphology and is approximately 75 nm in diameter with a
nearly featureless tail of 12–18 nm in length and 10–12 nm in diameter. Bar corresponds to 100 nm. B) A ΦM5 virion from which the internal phage tail proteins have been ejected in the
absence of a host cell. C) Predicted positions of the structural proteins of ΦM5 shown on a schematic of a generic Podovirus.
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similarity to LUZ24 protein gp56 (Table 1), but the function of this
protein is not known. Despite its location in the genome far from the
capsid and portal proteins, M5_25 is one possible candidate for the
pentamer decoration protein (Fig. 3). It has a short region similar to an
immunoglobulin beta-sandwich fold (amino acids 316–391) (Kelley and
Sternberg, 2009), a fold that has previously been observed in a smaller
pentamer decoration protein (Lander et al., 2012). This fold partially
overlaps with the region of homology M5_25 shares with LUZ24 protein
gp56 (amino acids 212–501). However, M5_25 lacks the alpha-helical
domains predicted in the pentamer decoration protein, and its position
in the phage particle cannot be assigned with confidence. ΦM5 protein
M5_16 is similar to LUZ24 gp60 and was matched by HH-PRED (Soding
et al., 2005) to model 3j4b_A (Cuervo et al., 2013), T7 tail tubular
protein A. This is also called the adapter or gatekeeper protein, which
connects the portal protein to the “nozzle” or “hub” protein at the tip of
a Podovirus tail (Fig. 2C) (Hardies et al., 2016). The identity of this
nozzle protein in ΦM5 is not certain (see below). The side tail fibers of
Podoviruses also attach to tail tubular protein A (Hardies et al., 2016).
A candidate for these side fibers in ΦM5 is M5_27 (Tables 1 and 2,
Figs. 2C and 5 A). M5_27 is not conserved in LUZ24 itself, but does
share a short region of N-terminal homology with the related phage
Pseudomonas phage tf (Fig. 4A) (Glukhov et al., 2012). At the C-terminal
end of M5_27 is a region with similarity to S. meliloti phage ΦM9_134, a
predicted tail fiber protein (Johnson et al., 2015), and to proteins from
several Brucella Podoviruses (Hammerl et al., 2016; Tevdoradze et al.,
2015). Like ΦM5, S. meliloti phage ΦM9 requires an intact LPS core on
the outer membrane for host infection (Campbell et al., 2002; Campbell
et al., 2003). The LPS of S. meliloti has also been demonstrated to be
very similar to that of the closely-related bacterium Brucella abortus
(Ferguson et al., 2004). This suggests a possible role for M5_27 in at-
tachment to host cell LPS. In the middle of this conserved region in
M5_27 is a peptidase S74/chaperone of endosialidase domain (amino
acids 391–441), which was identified in E. coli phage K1F as a self-
cleaving component of the tailspike (Stummeyer et al., 2006). HHPRED
and PHYRE (Kelley and Sternberg, 2009; Soding et al., 2005) predic-
tions also show similarity between the C-terminal 1/5th of M5_27 and
the neck appendage protein of Bacillus phage ga-1 (3gud_A) (Schulz
et al., 2010), the L-shaped tail fiber protein of phage T5 (4uw8_A)

(Garcia-Doval et al., 2015), and the endosialidase of K1F (3gw6_A)
(Schulz et al., 2010). However, M5_27 does not have the extensive beta-
helix domain of most L-shaped tailspike proteins (Parent et al., 2014).
Taken together, these predictions would be consistent with M5_27
serving as a side-tail fiber in which the C-terminus makes contact with
the host cell and the N-terminus interacts with a protein in the proximal
region of the tail.

The remaining 9 proteins in the ΦM5 proteome are not similar to
LUZ24 proteins, but 3 of these (M5_17, M5_19 and M5_14) have regions
of similarity to rhizophages (Table 2 and Fig. 4B–C). M5_17 has overall
similarity to Sinorhizobium phage PBC5 protein 10 and is annotated as a
minor tail protein in some Mycobacteriophages (Pope et al., 2015).
M5_19 (Fig. 4B) does not have good matches to any conserved struc-
tural domains of phages, but it does have regions of similarity to ORFs
in 4 different rhizophages (Fig. 4B and Supplemental Fig. 2). As with
the protein M5_27, M5_19 has its best rhizophage match to a protein
from the LPS-dependent Sinorhizobium meliloti phage ΦM9. This is
consistent with M5_19 being an external virion protein that makes
contact with the host cell surface. Based on its position in the genome
relative to tail tubular protein A (M5_16), it is possible that M5_19 is the
‘nozzle’ or tail tubular protein B that caps the tip of the tail (Fig. 2C).
M5_14 is the last of the proteins detected in the ΦM5 proteome that has
significant homology with rhizophage proteins. By far the best match to
a rhizophage is to the Podovirus Mesorhizobium loti phage vB_Mlo-
P_Lo5R7ANS (Halmillawewa et al., 2014a) (Fig. 4C). The C-terminal
end of M5_14 contains a GDSL/SGNH hydrolase domain (Kelley and
Sternberg, 2009; Soding et al., 2005), which is highly-conserved (Akoh
et al., 2004) in many bacterial and eukaryotic proteins, but is not often
found in phage (Altschul et al., 1997). The function of M5_14 is un-
known, but PHYRE predictions suggest that it has extensive alpha-he-
lical regions (Kelley and Sternberg, 2009), and HHPRED (Soding et al.,
2005) detects structural similarity to 4QNL, a tail fiber from E. coli
phage G7C (Riccio et al., 2015). However, the tail of the N4-like phage
G7C (Kulikov et al., 2012) has a double-ringed structure visible by TEM
that does not resemble the tail of ΦM5. Alternatively, the alpha-helical
character of M5_14 and its ORF position close to the ORF encoding the
major capsid protein introduce the possibility that it could encode the
pentamer decoration protein. Although the position of M5_14 in the

Fig. 3. cryo-EM structure of the ΦM5 capsid. The
T = 7 capsid is about 75 nm in diameter, colored
radially from the center. The capsid is smooth,
with turrets at each pentamer that appear to be
helical in nature (upper inset). A bridge of den-
sity, circled in yellow, joins the A domain to the
E-loop (lower inset).
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overall structure cannot be predicted, it, along with the other con-
stituents of the ΦM5 proteome with rhizophage-like domains (M5_27,
M5_17 and M5_19) are candidates for external phage particle proteins
that make contact with the host S. meliloti.

Three of the remaining abundant proteins in the ΦM5 proteome are
encoded by ORFs (M5_28, M5_29, and M5_31) adjacent to the predicted
tailspike protein M5_27. These ORFs are similar to neither LUZ24
phages, nor to rhizophages, and do not have obvious homologs in any
well-characterized phages (Altschul et al., 1997). M5_28 is a 514 amino
acid protein that has a 4XP8 lysozyme domain at its N-terminus (Moak
and Molineux, 2004), but no other conserved domains. M5_29 is similar
to 5DZZ, an eukaryotic intermediate filament binding domain of des-
moplakin (Biasini et al., 2014; Kang et al., 2016). M5_31 is also 514
amino acids and has a 2P4V GreB transcript cleavage domain at its C-
terminus (Kelley and Sternberg, 2009; Soding et al., 2005; Vassylyeva
et al., 2007). Based on their abundance in the proteome, the location of
the ORFs next to the endosialidase-containing tailspike gene
(Stummeyer et al., 2006), the presence of a lysozyme domain in one of
the proteins (Moak and Molineux, 2004) and the somewhat large pre-
dicted size of the proteins (Hardies et al., 2016; Lavigne et al., 2006) it
is possible that they are internal virion tail proteins that are injected
into the host at the time of infection to form a transient tail tube
(Hardies et al., 2016). The internal virion proteins that the short-tailed
Podoviruses inject into host cells have highly diverged primary se-
quence and are difficult to recognize in phage genomes (Hardies et al.,
2016). Some of these podoviral injected proteins with known functions
include lysozyme, channel-forming proteins that allow the viral DNA to
enter the host cell and effector proteins that can manipulate the host
physiology (Hardies et al., 2016). Fig. 2B shows an electron micrograph
of ΦM5 that has ejected its internal tail proteins in the absence of a host
cell, and Fig. 2C show schematically how internal tail proteins are
positioned in intact particles of some Podoviruses (Hu et al., 2013; Liu
et al., 2010; Wu et al., 2016; Zhao et al., 2016).

Unusually, the ΦM5 phage structural gene region in the genome is
interrupted by a set of ORFs that are not found in the phage particle
proteome. These are M5_22, M5_23 and M5_24, which may be a host-
cell lysis cassette, encoding respectively, an endolysin, a holin and a
spanin. A phage holin is a membrane protein that begins the host lysis
process by permeabilizing the inner membrane of a Gram negative host
bacterium (Young, 2014). M5_23 is predicted by HH-PRED (Soding
et al., 2005) to encode a colicin E1 (2i88_A), which can create holes in
cell membranes (Elkins et al., 1997). M5_22 is a predicted N-acet-
ylmuramidase (Altschul et al., 1997), which can function as a phage
endolysin when a holin has provided access to the peptidoglycan cell
wall within the Gram negative bacterial periplasm (Young, 2014). The
identity of M5_24 is less obvious, but given its position next to an en-
dolysin and holin, and the presence of a predicted transmembrane
helix, it is a possible candidate for a spanin (Young, 2014). Spanins are
responsible for membrane-fusion events that open the Gram-negative
outer membrane, permitting release of progeny phage (Young, 2014).
The C-terminal location of the transmembrane domain of M5_24 would
be consistent with a u-type spanin, however some other features of the
ORF are atypical of u-spanins (Young, 2013, 2014) making the function
of this ORF uncertain.

3.4. The ΦM5 genome does not have overall synteny with characterized
phages

Although many of the structural genes of ΦM5 are similar to those
of the LUZ24 phages, other modules of the genome have no similarity to
this phage genus, and the genome is not syntenic with any previously
characterized phages. The ΦM5 genome sequence is 44,005 bp, of
which 357 bp on either end are direct terminal repeats (DTRs)
(Fig. 5A). In the initial Illumina read assemblies of two separate,
plaque-purified isolates of ΦM5, the genome appeared to be circularly
permuted with random breakpoints (data not shown). However, aTa
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region of higher Illumina read coverage was observed, which can be
indicative of DTRs (Merrill et al., 2016). The true genome ends, in-
cluding the 357 bp DTRs were mapped by restriction enzyme digestion
(Supplemental Fig. 3) and by direct Sanger sequencing of the DNA from
purified phage particles (Fig. 5B and Supplemental Fig. 3).

The genome contains 58 unique ORFs, with a copy of ORF 1 in each
of the DTRs (ORFs 1.1 and 1.2) (Fig. 5A). Twenty-five of these ORFs are
on the plus strand on the left arm of the genome (bases 1–21,823).
Thirty-four are on the right arm (bases 21,854–44,005), with 31 of
these on the minus strand and three on the plus strand (Fig. 5A). The
only tRNA gene detected in the ΦM5 genome is a tRNA-Met from bases
7352 to 7426 on the plus strand.

ΦM5 does not have an ORF for its own RNA polymerase, so it is

expected to be dependent upon the host transcription machinery.
Searches for promoters predicted to be recognized by S. meliloti 1021
sigma factors were performed using the promoter sequence motif data
from Schluter et al., 2013 and the PhiSite promoter hunter (http://
www.phisite.org/main/index.php?nav=tools&nav_sel=hunter)
(Klucar et al., 2010; Schlüter et al., 2013; Stano and Klucar, 2011).
There are high scoring promoters spaced within 100 bp of start codons
of only two ΦM5 ORFs. One of these is the plus-strand ORF M5_48
encoding a predicted HTH XRE family DNA binding protein. It has 2
overlapping sigma 70 and sigma H1 promoters spaced 21–45 bases
upstream of its start codon. This protein is predicted by HH-PRED to
share structural homology with the phage P22 c2 repressor protein,
which is required for lysogeny of phage P22 (Watkins et al., 2008). The

Fig. 4. ΦM5 structural proteins with extensive regions of homology with other rhizophages. A) M5_27, the predicted tailspike protein, has a C-terminal region of homology with the
ΦM9_134 predicted tail fiber protein and with proteins from other phages of alphaproteobacteria. Within this region, it has a peptidase S74/chaperone of endosialidase domain similar to
cleavage domains found in phage tailspike proteins. It also shares homology near the N-terminus with Pseudomonas phage tf, a LUZ24-like phage. This is consistent with a protein in which
the C-terminus contacts a rhizobial host while the N-terminus interacts with other LUZ24-like proteins in the phage. B) M5_19 shares extensive homology with predicted tail fiber proteins
of S. meliloti phages ΦM9 and ΦM12, and more limited regions of homology with proteins from additional rhizophages. (see Supplemental Fig. 2 for full alignment.) The most note-worthy
matches to rhizophages in M5_19 are 260 amino acids that are similar to ΦM9 predicted tail fiber 136; 159 amino acids that are similar to the phage tail collar protein of ΦM12, and 103
amino acids that are similar to Sinorhizobium phage PBC5 protein 14. The similarity to tail fiber proteins of other rhizophages and the position of the M5_19 ORF relative tail tubular
protein A (M5_16) in the ΦM5 genome, would be consistent with M5_19 serving as the ‘nozzle’ or tail tubular protein B that caps the tip of the tail. C) M5_14 shares extensive homology
with protein 62 from the M. loti Podovirus vB_MloP_Lo5R7ANS. It also has regions with similarity to ΦM12_398 and a protein from the R. gallicum Siphovirus vB_RglS_P106B. M5_14 has a
GDSL/SGNH hydrolase domain, but these proteins can have many different functions and the role of M5_14 in the phage particle is unclear.

Fig. 5. Map of the features of ΦM5 genome. A) Top: The 44,005 bp genome of ΦM5, showing direction of transcription and ORF numbers with their genome position. The directions of
transcription are shown in black arrows. ORF products detected in the ΦM5 proteome and most likely to be structural are shown in solid dark blue. ORF products that may be structural
are shown in patterned dark blue. The boxes representing ORF products that share no regions of similarity between ΦM5 and LPU83 are drawn at half-height. Direct terminal repeats from
ΦM5 genome positions 1–357 and 43,649–44,005 are shown with the repeated ORF 1.1 and 1.2. Bottom: Bases 1,667,000–1,710,000 of the chromosome of Rhizobium favelukesii LPU83,
showing the two inverted blocks homologous to ΦM5, aligned in MAUVE. The left half of ΦM5, containing the terminase and the structural genes is 36.2% identical to LPU83 at the
nucleotide level, while the right half, containing replicative functions and integrase is 33.4% identical. Candidate att sites for integration of the prophage into the LPU83 genome are
CTGCTGGCGGAG at positions 1,667,176–1,667,188 and 1,710,460–1,710,472, and GCTACAAGCAGTTGAT at positions 1,667,238–1,667,253 and 1,710,952–1,710,967. There is partial
homology of ΦM5 bases 318–357 of the first DTR to 1,688,823–1688783 of the LPU83 genome. B) The ends of the ΦM5 genome were determined by Sanger sequencing with multiple
primers. The sequence chromatogram from one primer at each end of the genome is shown. The height of the chromatogram peaks is greater for reads from DNA that was packaged in the
purified phage particles, and lower for reads from the residual prepackaging concatamer intermediate. The spiked T peaks at the ends of the phage DNA are from the sequencing of the
terminal A base added to the 3′ end by Taq polymerase in the sequencing reaction.
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other ORF with a closely-spaced, strong promoter is the minus-strand
M5_38 ORF encoding a predicted DNA polymerase A, which has a
predicted sigma 70 promoter 46–70 bases from the start codon. Other
predicted strong promoters are located further from their potential
target ORFs. A strong minus-strand sigma 70 promoter is predicted
256–331 bases from the start of ORF M5_61, which is predicted to
encode a DUF3846 protein. Upstream of a predicted plus-strand Hol-
liday-junction resolvase (RuvC, ORF M5_62) there are two predicted
plus-strand promoters: a sigma 70 promoter at 157–183 bases upstream
and a sigma E2 promoter at 128–149 bases upstream. In at least one
phage, a RuvC resolvase is required for replication restart during theta-
type DNA replication (Zecchi et al., 2012). Other predicted promoters
in the ΦM5 genome have much lower PhiSite promoter hunter scores.
The ORFs with predicted strong S. meliloti promoters are candidates for
early genes involved in a lysis/lysogeny decision and in phage re-
plication.

3.5. ΦM5 has strong overall homology to a prophage within the R.
favelukesii LPU83 genome

While ΦM5 is difficult to place phylogenetically among character-
ized free-living phages, it does have good homology over most of its
genome to a prophage found in the chromosome of Rhizobium favelu-
kesii LPU83 (Wibberg et al., 2014) at positions 1,667,000–1,710,000 bp
(Altschul et al., 1990). The synteny of the ΦM5 genome with the R.
favelukesii LPU83 prophage (Fig. 5A) suggests that a phage very similar
to ΦM5 integrated into the LPU83 genome at some point in its history.
Segments of the ΦM5 genome are also similar to other bacterial pro-
phages and environmental metagenomic sequences (data not shown).
The presence of a very similar prophage in LPU83, and ΦM5′s posses-
sion of an integrase gene and an ORF similar to the P22 c2 repressor
suggested the possibility that it might form lysogenic infections. ΦM5
plaques are clear, rather than turbid, which is characteristic of lytic
phages (Echols, 1972), but occasionally, S. meliloti colonies arise within
plaques. To determine whether these colonies are lysogens or phage-
resistant mutants, they were streaked multiple times to remove con-
taminating phage and then inoculated onto lawns of wild type S. meliloti
1021. The formation of plaques when a lysogenic strain is exposed to
the naïve parent strain is indicative of spontaneous activation of pro-
phages and infection of the indicator strain (Miller et al., 1998). No
plaques arose on these lawns (data not shown). The lack of plaque
formation suggests that either ΦM5 is not able to form lysogens on S.
meliloti 1021, or that if lysogens are formed, they are quite stable.

Phage integrases are enzymes that catalyze the recombination of
temperate phages into the host chromosome (Groth and Calos, 2004).
The predicted integrase of ΦM5 (ORF M5_34) is a member of the XerC
tyrosine recombinase INT_ICEBs1_C_like family, and, among char-
acterized phages, is most similar to that of the Siphovirus Myco-
bacterium phage Giles (30% identity) (Morris et al., 2008). Giles is a
highly mosaic phage and the close homologs of its integrase, like those
of ΦM5, are more commonly observed in prophages than in char-
acterized lytic phages (Morris et al., 2008). The ΦM5 integrase is
shorter than that of Giles, lacking a 66N-terminal amino acid segment.
ΦM5 does not have an ORF similar to the Giles excisionase/re-
combination directionality factor (RDF). RDFs are small, usually posi-
tively-charged proteins that are required for prophage excision in most
phages (Lewis and Hatfull, 2001). There is no ORF with clear homology
to known RDFs in the ΦM5 genome, but these proteins are notoriously
difficult to identify (Lewis and Hatfull, 2001). Though its closest
homolog is a prophage within a rhizobial genome, ΦM5 has not been
observed to form lysogenic infections on S. meliloti 1021, and it is un-
clear if it has the capacity to do so.

3.6. The ΦM5 terminase large subunit is highly diverged from characterized
terminases and may be a novel type

Phage terminases function in one of the last steps in a lytic phage
infection: the cleavage of phage genomic DNA and the concomitant
packaging of the DNA into phage capsids (Merrill et al., 2016). The
terminase large subunit is the ATP-driven packaging motor, and the
small subunit is the DNA recognition protein (Rao and Feiss, 2008).
Although the ΦM5 terminase large subunit (ORF M5_02) is located
close to the LUZ24-like structural genes in the genome, it appears to be
from a different lineage. The packaging strategy of a phage (e.g. headful
packaging, cohesive ends, short DTRs, etc.) can often be predicted
based on the amino acid sequence of the terminase large subunit
(Merrill et al., 2016; Rao and Feiss, 2008). However, the ΦM5 termi-
nase large subunit is quite dissimilar from characterized phage termi-
nases and this approach would not have predicted the presence of short
DTRs at the genome ends in ΦM5. Among phages with a terminase
large subunit similar to ΦM5 for which a packaging strategy has been
determined, the headful-packaging Podovirus epsilon 15 is most similar
to ΦM5 (21% identity) (Kropinski et al., 2007; Mcconnell et al., 1992).
Some of the other characterized phages possessing a terminase with
similarity to ΦM5 are Clostridium phage ΦCD27 (29% identity) (Mayer
et al., 2008), Pseudomonas phage AF (25% identity) (Cornelissen et al.,
2012), Pseudomonas phage vB_PaeP_Tr60_Ab31 (22% identity) (Latino
et al., 2014), and Xanthomonas citri phage CP2 (22% identity) (Ahmad
et al., 2014). Defined genome ends could not be detected for Pseudo-
monas phages AF and Ab31 (Latino et al., 2014) or Clostridium phage
ΦCD27 or its close relatives (Mayer et al., 2008; Rashid et al., 2016)
suggesting these phages are also headful packaging phages. (A phylo-
genetic tree showing the relationships between the terminase large
subunit ORFs of these phages is shown in Supplemental Fig. 4, sequence
information in Supplemental Table 2D). Better matches to the ΦM5
terminase large subunit are found in prophages within bacterial gen-
omes and in environmental metagenomic sequences than among char-
acterized phages (Supplemental Fig. 4). A phage terminase from the
G18 group of deep water Mediterranean phages (41% identity) (Mizuno
et al., 2013) and the R. favelukesii LPU83 terminase (68% identity)
(Wibberg et al., 2014) have the greatest similarity to the ΦM5 termi-
nase large subunit (Fig. 5A, Supplemental Fig. 4, Supplemental
Table 2D). The Candidatus Liberibacter asiaticus prophages SC1 (24%
identity) and SC2 (25% identity) (Zhang et al., 2011) also have a ter-
minase large subunit ORF similar to that of ΦM5. These prophages are
found within the genome of Ca. L. asiaticus, the Huanglongbing/citrus-
greening disease bacterium that is related to the rhizobia (Zhang et al.,
2011). SC1 has been detected as an excised, linear phage genome and
has been observed by electron microscopy in infected periwinkle plants
(Zhang et al., 2011). Deepening the mystery surrounding the ΦM5
terminase, the SC1 and SC2 prophages have cos sites and the cos sites
are found at the ends of the excised linear form of SC1 (Zhang et al.,
2011). Thus, terminases related to the ΦM5 terminase package DNA by
a cohesive-end mechanism or a headful mechanism, but no others are
known to form short DTRs.

A terminase small subunit ORF is usually located adjacent to the
large subunit ORF, but the adjacent ORFs in ΦM5 have no similarity to
terminase small subunit genes. Despite multiple attempts to identify a
terminase small subunit by comparing ΦM5 ORFs with the predicted
small subunit from phages and prophages with a similar large subunit,
no ORF with similarity to a known terminase small subunit could be
identified. Directly upstream of the ΦM5 terminase large subunit, in the
DTR, is an ORF (M5_01.1) with structural similarity to the DNA-binding
1baz_A ARC repressor domain of P22 (Schildbach et al., 1999; Soding
et al., 2005). One possibility is that this predicted DNA-binding protein
functions in DNA recognition in packaging in ΦM5, but there is no
evidence for this aside from proximity to the large subunit ORF. The
fact that ΦM5 has direct terminal repeats, but its terminase large sub-
unit is quite dissimilar from those of other phages known to employ this
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packaging strategy, suggests the possibility that the ΦM5 terminase is a
novel type.

3.7. The DNA polymerase ORF of ΦM5 appears to derive from a different
lineage than the virion structural ORFs, the integrase, or the terminase

The right arm of ΦM5 contains 34 ORFs, with the majority of these
of unknown function. A few of these ORFs have clear similarity to re-
plication proteins and other DNA-binding proteins (Altschul et al.,
1997; Soding et al., 2005). DNA polymerase A, encoded by ORF M5_38,
is located adjacent to a predicted, strong S. meliloti sigma 70 promoter
(discussed above). This polymerase appears to be from a completely
different phage lineage than the LUZ24-like structural ORFs, the Giles-
like integrase, or the novel terminase. The phylogenetic tree shown in
Fig. 6A shows that the ΦM5 DNA polymerase A is related to those of the
Siphoviruses Pseudomonas phage KPP23 (33% identity) (Yamaguchi
et al., 2014) and the Pseudomonas phage PaMx74/PaMx28 group
(∼35% identity) (Altschul et al., 1997; Sepulveda-Robles et al., 2012).
The tree shows that this type of DNA polymerase A is found mostly in
Siphoviruses, but also in a few lineages of Podoviruses and Myoviruses.
A striking common link between the DNA polymerase A lineage
(Fig. 6A) and the terminase large subunit lineage of ΦM5
(Supplemental Fig. 4) is made by the SC1 prophage of Ca. L. asiaticus
(Zhang et al., 2011). The SC1 DNA polymerase A is 29% identical to
that of ΦM5. The terminase large subunit and the DNA polymerase A
ORFs are at nearly opposite ends of the genome, and it is difficult to
speculate about the genomic history that might have derived these
modules from a common lineage.

To understand how large a genome segment surrounding the DNA
polymerase A ORF might come from a common lineage, ORFs across the
right arm of the ΦM5 genome were compared to the ORFs from the
phages shown in the tree in Fig. 6A (Altschul et al., 1997). Of the
phages that have a DNA polymerase A similar to ΦM5, a small number
also share the marker ORFs M5_35, a predicted primase/polymerase;
M5_39, a predicted DUF2815 domain protein; and M5_41, a predicted
Cas4-like exonuclease. The region of the ΦM5 genome containing these
4 ORFs extends for 8.5 kb across the right arm of the genome (positions
23,196–31,644). There does not appear to be a clear pattern of con-
servation of these ORFs among phages, but the DNA polymerase A and
the Cas4-like exonuclease are most commonly found together, in-
cluding in the Ca. L. asiaticus SC1 prophage (data not shown). Two of
these ORFs, the primase/polymerase and the Cas4-like exonuclease,
also have short regions of similarity to ORFs in rhizophages (Table 2).
Only 7 phages have all 4 of these ORFs and a phylogenetic tree showing
the relationships among them is shown in Fig. 6B. The similarity be-
tween the Siphoviruses Salmonella phage chi and Xylella phages Sano
and Salvo has been noted previously (Ahern et al., 2014; Hendrix et al.,
2015), but these ORFs are also shared with the Siphoviruses PaMx28
and AAT-1 and the Podovirus Bordatella phage BPP-1 (Liu et al., 2004).
An additional ORF, M5_45, encoding a predicted helicase, is also shared
by ΦM5, PaMx28 and AAT-1, extending this conserved region an ad-
ditional 2.3 kb (to position 33,939). It appears that this genome seg-
ment has traveled as a module, but there is not strong pressure for co-
conservation of individual ORFs.

The segment of the right arm of the ΦM5 genome between the
predicted helicase (M5_45) and the Holliday junction resolvase (M5_62)
contains 15 ORFs, 10 of which are not conserved in the closely-related

prophage of R. favelukesii LPU83 or any of the phages with which ΦM5
shares other genome modules. Most of these ORFs appear to be either of
bacterial origin or to have very poor matches to anything currently in
the database (Altschul et al., 1997). This segment does not appear to
form a coherent functional module like the structural genes or to come
from an identifiable lineage like the DNA polymerase and its associated
ORFs. It is possible that this is a genomic region that is permissive for
the acquisition of new sequences. Such permissiveness would be con-
sistent with the highly mosaic character of the ΦM5 genome.

4. Conclusions

Although the primary amino acid sequence of the ΦM5 major capsid
protein is highly diverged from those of the distantly-related
Podoviruses T7, P22, and epsilon 15, it has the T = 7 capsid geometry
that is common to all of those phages. The most interesting feature of
the ΦM5 capsid is the capsid protein’s distinctive A-domain bridge that
may stabilize the mature capsid by a novel interaction between its beta
hinge and the E loop hairpin. The capsid-associated structural ORFs of
ΦM5 appear to be from the same lineage as those of the LUZ24-like
phages of Pseudomonas. Since this is the first-reported structure of a
LUZ24-like phage, it is unknown if this novel stabilization interaction is
common to other phages in this lineage. The other ΦM5 ORFs found in
the proteome have extensive similarity to ORFs of previously-char-
acterized rhizophages and are candidates for host-recognition proteins
of the tail.

The genome of ΦM5 is highly mosaic with the structural genes, the
integrase, the DNA polymerase and the terminase each deriving from a
separate lineage. The integrase is similar to that of Mycobacterium
phage Giles, which also has a highly mosaic genome. The DNA poly-
merase and an associated genome module appear to derive from the
same lineage as that of the siphoviral phage PaMx74. The ΦM5 ter-
minase is unlike previously-described terminases. The phages with the
closest homologs of the terminase large subunit have<30% identity
with the terminase of ΦM5 and have headful packaging or cohesive
ends rather than short DTRs. Thus, the ΦM5 terminase may define a
new type of short-DTR-packaging terminase.

Nucleotide sequence and cryo-EM reconstruction accession numbers:
The S. meliloti phage ΦM5 genome has been deposited in GenBank
(http://www.ncbi.nlm.nih.gov/nuccore) with the accession number
MF074189.1. The cryo-EM reconstruction has been deposited in the
online Electron Microscopy Data Bank (http://www.ebi.ac.uk/pdbe/
emdb/) under accession no. EMD-8689.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the

Fig. 6. Phylogenetic trees based on DNA polymerase A and nearby conserved proteins. A) A conserved internal segment of ΦM5 DNA polymerase A (M5_38, amino acids 57–686) was
aligned with orthologous sequences from other phages. Among characterized phages, the ΦM5 DNA polymerase A is most similar to that of the siphovirus Pseudomonas phage KPP23. The
best tree places ΦM5 DNA polymerase A in a monophyletic group with DNA polymerase A proteins from very diverse phages (Siphoviruses, Podoviruses and Myoviruses). (See
Supplemental Table 2E for protein sequence information). B) A tree was constructed in which the ΦM5 DNA polymerase A ORF and 3 nearby ORFs (DNA primase/polymerase, M5_35;
DUF2815 protein, M5_39; and Cas4-like exonuclease, M5_41) were concatenated and aligned with orthologs from other phages that possess the same DNA polymerase A. Only 7 phages,
ΦM5, Pseudomonas phages PaMx28 and AAT-1, Bordetella virus BPP1, Salmonella phage chi, and Xylella phages Sano and Salvo have orthologs for all 4 of these ORFs. The bootstrap
percentage shown for each branch reflects the degree of confidence in the placement of that node in the phylogenetic reconstruction. The bar indicates branch distance. (See Supplemental
Table 2F for protein sequence information.)
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