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Abstract

We study spectral properties of convolution operators L and their perturbations
H = L+ v(x) by compactly supported potentials. Results are applied to determine
the front propagation of a population density governed by operator H with a com-
pactly supported initial density provided that H has positive eigenvalues. If there
is no positive spectrum, then the stabilization of the population density is proved.
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1 Introduction

In this paper we study the spectral properties of the Hamiltonian H in L2(Rd) given by

H = L+ v(x), Lψ(x) = χ

∫
y∈Rd

(ψ(x+ y)− ψ(x))a(y)dy, x ∈ Rd, (1)

where

a(y) = a(−y), a ≥ 0,

∫
Rd

a(y)dy = 1, (2)

and v(x) ≥ 0 is continuous and compactly supported.
The operator L is the generator of a symmetric random walk on Rd with the intensity

of jumps equal to χ > 0. Function a(y) is the density of transition from x to x + y at
the moment of the jump. Operators H of the form (1) appear in many applications,
such as models of population dynamics that include the KPP type processes (where the
offspring start at the location of the parent particle [9], [4], [5], [6]) and contact processes

∗Fakultat fur Mathematik, Universitat Bielefeld, 33615 Bielefeld, Germany, kondrat@math.uni-
bielefeld.de. The work was partially supported by the DFG through SFB 701, Bielefeld University.

†Dept of Mathematics and Statistics, UNC at Charlotte, NC 28223 and National Research Univ.,
Higher School of Economics, Russian Federation, smolchan@uncc.edu. The work was partially supported
by the NSF grant DMS-1410547 and by the DFG through SFB 701, Bielefeld University.

‡Dept of Mathematics and Statistics, UNC at Charlotte, NC 28223, brvainbe@uncc.edu. The work
was partially supported by the NSF grant DMS-1410547; corresponding author.

1



(where the locations of the new particles are randomly distributed around the location
of the parent [10], [12]). Another area of application is the theory of phase transitions
for homopolymers, [2], [3]. The central object of investigation in both applications is the
solution u(t, x) of the parabolic problem

∂u

∂t
= Hu = (L+ v(x))u, u(0, x) = u0(x). (3)

In the population dynamics models, u(t, x) is the first correlation function, i.e., the
density of the population. The potential v(x) in these models is the difference between
the birth and death rates: v(x) = β(x) − µ(x). In the KPP type models, χ, β and µ are
unrelated, while in the contact models, β = χ =const., µ ≤ β (see [12]). In the theory of
homopolymers, the solution of (3) is the partition function of the Gibbs distribution.

If v(x) ≡ 0 (i.e., the birth and death rates are equal), then the homogeneous equation
(3) has a solution u(t, x) ≡const. In the presence of a non-negative potential, the problem

∂u

∂t
= (L+ v(x))u, u(0, x) = C = const., (4)

may exhibit two significantly different types of large time behavior. If operator H has a
positive eigenvalue λ0 (the largest eigenvalue has a positive eigenfunction, ground state,
ϕ0(x)), then the solution of the problem (4) grows exponentially in time on any fixed
bounded domain D ⊂ Rd. This is a manifestation of an instability under local perturba-
tion (by the potential v). If the spectrum of H belongs to (−∞, 0], then in many cases
the density u(t, x) remains bounded as t → ∞, and one can expect the existence of a
steady state for the perturbed problem.

The fundamental difference between the classical Schrödinger operator and the Hamil-
tonian H under consideration is that the potential term in the Schrödinger operator is
a relatively compact perturbation of the Laplacian, but now this term is not relatively
compact with respect to the operator L. In order to overcome this difficulty, an essential
restriction on v will be imposed: in majority of cases we will assume that 0 ≤ v(x) < χ. In
the context of population models, this condition precludes the scenario where the growth
of the population in a single point overwhelms the ability of the population to spread. It
automatically holds in the case of the contact models.

The problem of the existence of a ground state energy λ0(v) > 0 was discussed in
the recent paper [11]. The central idea of the approach in [11] is similar to ideas used in
[2], [3], but the setting is different. Let us stress that the results in the paper [11] were
based solely on the Perron-Frobenius theory. Here we impose additionally the symmetry
condition a(y) = a(−y) that leads to the self-adjointness of L and allows us to provide a
detailed spectral analysis of L or H.

In this paper we will study:
a) The a.c. spectrum of L and H. Conditions for the spectrum to be pure a.c..
b) Examples of operators L with the point spectrum imbedded into the a.c. one.
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c) The discrete spectrum outside of the a.c. one; in particular, the difference in
the properties of this spectrum for operators H with recurrent and transient underlying
random walks (an analogue of the properties that hold for the standard Schrödinger
operators).

d) The asymptotic behavior at infinity of the ground state ϕ0(x).
e) The propagation of the population front when the ground state exists and conver-

gence of the solution of (4) to a bounded solution as t → ∞ in the case of absence of
positive spectrum.

Certain results for operator H on the lattice Zd (where the situation is similar and
simpler) can be found in [13], [14], [15].

2 Spectral analysis of operator L
After the Fourier transform, operator L becomes the operator of multiplication by function
χ(â(k)− 1), where â = â(k) is given by

â(k) =

∫
Rd

e−i(k,y)a(y)dy =

∫
Rd

cos(k, y)a(y)dy. (5)

From (2) it follows that function â is real-valued and

â(0) = 1; |â(k)| < 1, k ̸= 0; â(k) → 0 as k → ∞. (6)

We will assume that function â satisfies the following condition:

â ∈ L1(Rd), (7)

which is natural to guarantee the continuity of the jump distribution density a(y).

Consider a more general operator than L̂. Let B : L2(Rd) → L2(Rd) be an operator of
multiplication by a smooth real-valued function β = β(k), i.e., Bϕ(k) = β(k)ϕ(k). Denote
the λ-level set of the function β by βλ, i.e.,

βλ = {k ∈ Rd : β(k) = λ}. (8)

If S is a set in Rd, then its Lebesgue measure will be denoted by m(S), and m1(S) will
be used instead of m(S) when d = 1 (notation µ is preserved for the spectral measure of
operator B).

Lemma 2.1. Operator B has the following properties.
(1) The spectrum of B coincides with the closure of the range of function β.
(2) The point spectrum of B consists of points λ for which m(βλ) > 0. All the eigen-

values have infinite multiplicity.
(3) If for some open interval ∆ ⊂ SpB,

m(S∆) = 0 where S∆ = {k ∈ Rd : β(k) ∈ ∆,∇β(k) = 0}, (9)

then SpB is absolutely continuous on ∆.
4) If β is analytic and not constat, then the spectrum of B is absolutely continuous.
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Proof.1 The first statement is obvious. The second one is also trivial. Indeed, each
function with the support in the set βλ is an eigenfunction of B with the eigenvalue λ.
Conversely, if (β(k) − λ)f(k) = 0, then f(k) = 0 for k /∈ βλ, and therefore f = 0 as an
element of L2(Rd) if m(βλ) = 0. Let us prove the third statement. One needs only to
show that the spectral measure µf of an arbitrary element f ∈ L2(Rd) does not have a
singular continuous component in ∆.

Let Pδ be the spectral projection of operator B on an arbitrary interval δ ⊂ ∆. Then
µf (δ) =< Pδf, f >. Since ∆ does not contain eigenvalues, by the Stone formula, the
following relation holds for each smooth compactly supported function f :

Pδf(k) = lim
ε→+0

1

π

∫
δ

εf(k)dλ

(β(k)− λ)2 + ε2
= χδ(k)f(k),

where χδ is the indicator function of the set {k : β(k) ∈ δ}. Thus the same relation is
valid for arbitrary f ∈ L2(Rd). Hence

µf (δ) =

∫
Rd

χδ(k)|f(k)|2dk,

and therefore, for each Borel-measurable set γ ⊂ ∆,

µf (γ) =

∫
Rd

χγ(k)|f(k)|2dk, χγ(k) = 1 if β(k) ∈ γ, χγ(k) = 0 if β(k) /∈ γ.

It remains to show that µf (γ) = 0 if m1(γ) = 0.
Assume that there exists a set γ ⊂ ∆ of Lebesgue measure zero such that

µf (γ) =

∫
Rd

χγ(k)|f(k)|2dk = ε > 0.

Using an approximation of f in L2(Rd) by bounded functions with compact supports, one
can find r <∞ and ε1 > 0 such that∫

|k|<r
χγ(k)dk ≥ ε1 > 0. (10)

We split the support of χγ in the ball |k| < r into two parts: b1(σ) is the subset of
the support of χγ where |∇β(k)| ≥ σ > 0 and b2(σ) is the subset where |∇β(k)| < σ.
Obviously m(b1(σ)) = 0 and m(b2(σ)) → 0 as σ → 0. Thus the support of χγ in the ball
|k| < r has Lebesgue measure zero. This contradicts (10) and completes the proof of the
third statement of the lemma.

The last statement follows from the previous one and the Weierstrass preparation
theorem. Indeed, let ∇β(k0) = 0. We choose i such that ∂β

∂ki
does not vanish identically

in a neighborhood of k = k0. Then there is a unitary transformation U in Rd such that

1The proof uses P. Kuchment’s ideas suggested in our conversation.
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the function ∂β
∂ki

does not vanish identically on the z1-axis, where z = U(k − k0). Hence

the Weierstrass preparation theorem implies that the equation ∂β
∂ki

= 0 is equivalent to

W (z) = 0 in a small neighborhood of z = 0, where W (z) = zN1 + g1(z
′)zN−1

1 + ...+ gN(z
′)

is a Weierstrass polynomial in z1 whose coefficients are analytic functions with respect to
the remaining variables z′ ∈ Rd−1. For each fixed value of z′, the polynomial W (z) has
N roots in z1. Thus the set {k : ∂β

∂ki
= 0, |k − k0| < δ}, where δ > 0 is small enough, has

zero measure. This implies (9) and allows one to apply statement 3 of the lemma.

The following three classes of densities a(y) will be considered.
1. Processes with light tails for which |a(y)| < Ce−δ|y|, and therefore â = â(k) is

analytic in k when |Imk| < δ with some δ > 0.
2. Moderate tails are defined by the condition

a(y) =
a0(ẏ)

|y|d+γ
(1 +O(|y|−ϵ)), y → ∞, ẏ =

y

|y|
, γ > 2, (11)

where a0 is assumed to be continuous and positive.
In both cases of the light tails and the moderate tails, the density a(y) has second

moments, and therefore â ∈ C2. We assume that the the covariance matrix B is not
degenerate:

detB ̸= 0, B = [−∂
2â(k)

∂ki∂kj
]|k=0. (12)

3. Processes with heavy tails are defined by (11) with γ ∈ (0, 2). Thus the second
moments do not exist in this case. We will assume that â(k) ∈ C1 when k ̸= 0. This
assumption holds [1] if γ > 1 or 0 < γ ≤ 1, a0(ẏ) is smooth and a two term asymptotic
expansion is valid instead of (11).

Relations (6) imply that the closure of the range of the function χ(â(k)− 1) is [−a, 0],
where χ ≤ a ≤ 2χ.

Theorem 2.2. The spectrum of operator L coincides with the segment [−a, 0]. The
spectrum of L is pure a.c. in the case of light tails. It is a.c. in a neighborhood of the
origin in the case of moderate tails. It may contain a countable set of embedded eigenvalues
of infinite multiplicity in the case of moderate and heavy tails.

Remark. An example with embedded eigenvalues will be constructed when â ∈ C∞
0 ,

and therefore, a(y) is analytic and decays at infinity faster than any power.
Proof. The first two statements are proved in Lemma 2.1. Let us prove that the

spectrum is a.c. in a neighborhood of the origin in the case of moderate tails. Note
that â ∈ C2. Since â(0) = 1 and ∇â(0) = 0 (due to the symmetry of a(y)), we have
â(k) = 1 − 1

2
(Bk, k) + o(|k|2), k → 0, where the covariance matrix B is non-degenerate.

Therefore ∇â(k) = −Bk + o(|k|), k → 0, and function â does not have critical points in
a δ-neighborhood of the origin other than k = 0.
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The strict inequality â(k) < 1 holds if k ̸= 0, since otherwise∫
Rd

(1− cos(k0, y))a(y)dy = 0

for some k0 ̸= 0. The latter implies cos(k0, y) = 1 on an open set where a(y) > 0. This
contradicts the analyticity of cos(k0, y). Since â(k) < 1 for k ̸= 0 and â(k) → 0 as k → ∞,
there exists ε > 0 such that â(k) < 1− ε when |k| > δ. Thus item (3) of Lemma 2.1 can
be applied to the interval ∆ = (−χε, 0), i.e., the spectral measure is a.c. there.

In order to complete the proof of the theorem, we need to construct an example of an
operator with embedded eigenvalues. First we will construct a one-dimensional operator

a( k )

1

h

1 2 3

k

Figure 1: Function â(|k|).

with at least one eigenvalue of infinite multiplicity. Consider the function â = â(|k|), k ∈
R1, whose graph is given in Fig 1. We will make it smoother later. The inverse Fourier
transform gives

a(x) =
1

πx2
[(1− cos x)(1− h) + (cos 2x− cos 3x)h].

If we put s = sin2 x/2 here, then we will obtain that

πx2a(x) = 2(1− h)s+ 2hs(5− 20s+ 16s2) = 2s(1 + 4h− 20hs+ 16hs2).

For each h > 0, the quadratic polynomial in s in the right hand side has the minimum at
s = 5/8, and the minimum value equals 1− 9h/4. We choose h ≤ 4/9. This implies that
a(x) is a density (i.e., a(x) ≥ 0,

∫
a(x)dx = â(0) = 1).

After the Fourier transform, operator L acts as multiplication by χ[â(|k|)−1]. Thus, L
has a continuous spectrum [−χ, 0] and two embedded eigenvalues λ0 = χ(h−1), λ1 = −χ.
Each L2-function supported on [1, 2] ([3,∞)) is a Fourier representation of an eigenfunc-
tion of L with the eigenvalue λ0 (λ1, respectively.)

In order to obtain an operator with infinitely many embedded eigenvalues, consider
the function (we will show below that it is a density)

a(x) =
1

πx2

∞∑
j=0

hj(cos 2jx− cos(2j + 1)x),
∑

hj = 1, x ∈ R1\{0}, (13)
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where hj > 0 are chosen in such a way that

h0 >
∞∑
j=1

hje
3j, (14)

i.e., h0 is large enough and hj decay fast enough. From (14) it follows that a(x) can be
extended by continuity at x = 0 and that series (13) with complex x converges uniformly
on any bounded region of the complex plane. Hence, a(x) is an entire function.

The Fourier image â = â(|k|) of a(x) resembles the function in Fig 1. It is a continuous
piece-wise linear function with constant values cm =

∑∞
j=m hj on the intervals [2m −

1, 2m], m ≥ 1, and the straight line segments with the slopes −hm on the intervals
[2m, 2m + 1], m ≥ 0. The heights of the latter segments are chosen by the continuity
condition. Note that â(0) = c0 =

∑
hj = 1.

Let us rewrite (13) in the form

a(x) =
1

πx2

∞∑
j=0

hj sin
x

2
sin

(4j + 1)x

2
=

1

πx2
sin2 x

2
[h0 +

∞∑
j=1

hj
sin(4j + 1)x/2

sinx/2
].

The ratio of the sine functions on the right does not exceed 4j + 1. Thus (14) implies
that a(x) ≥ 0. Since

∫
a(x)dx = â(0) = 1, function a(x) is a density.

Since the Fourier image â = â(|k|) of a(x) has a constant value cm on the interval
[2m− 1, 2m], it follows that λm = χcm, m ≥ 1, are eigenvalues of L of infinite multiplic-
ity. The corresponding eigenspaces contain all L2-functions whose Fourier transforms are
supported on [2m− 1, 2m].

The constructed density a(x) satisfies all the requirements of the theorem except the
smoothness of its Fourier transform â(k). In order to satisfy the latter requirement, we

replace a(x) by a(1)(x) = cβ2(x)a(x) where the Fourier transform β̂(k) of β is a non-
negative function with the support on |k| ≤ δ < 1/5. We choose c from the condition∫
a(1)(x)dx = 1. Then, obviously, a(1)(x) is a density, is an entire function, and its Fourier

transform â(1)(k) = cβ̂(k)∗β̂(k)∗â(k) is infinitely smooth. Since the support of cβ̂(k)∗β̂(k)
belongs to the interval |k| ≤ 2δ < 2/5, function â(1)(k) has constant values bm = bcm on
intervals lm = [2m− 1 + 2δ, 2m− 2δ], m ≥ 1. Here |lm| ≥ 1/5 and

b = c

∫
R

β̂(k) ∗ β̂(k)dk = c(

∫
R

β̂(k))2 > 0.

Hence λm = χbcm, m ≥ 1, are eigenvalues of L of infinite multiplicity, and the correspond-
ing eigenspaces contain all the L2-functions whose Fourier transforms are supported on
lm.

The transition from d = 1 to arbitrary d > 1 is simple. If x = (x1, ..., xd), then one
can take a(x) =

∏
i a

(1)(xi).
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3 On the random walk with generator L.
The transition density p(t, x) = Px{x(t) = x; x(0) = 0} of the random walk with genera-
tor L satisfies the equation

pt = Lp, p(0, x) = δ(x).

We will assume (without loss of generality) that the coefficient χ in the definition of
L is equal to one. One can reduce the problem to this case by simple rescaling t →
χt, v(x) → χv(x).

Using the Fourier transform, we obtain that

p(t, x) =
1

(2π)d

∫
Rd

ei(k,x)+t(â(k)−1)dk. (15)

Condition (2) implies that the closure of the range range of the function â(k)− 1 is a
segment [−α, 0], where 1 ≤ α ≤ 2. When λ ∈ C\[−α, 0], the Green function Gλ(x − y)
(the integral kernel of the negative resolvent Gλ := −(L − λ)−1) has the form

Gλ(x− y) =
1

(2π)d

∫
Rd

ei(k,x−y)

1 + λ− â(k)
dk. (16)

Integrals in both formulas above must be understood as the inverse Fourier transforms
in the sense of distributions, but they also can be reduced to convergent integrals. In
particular, the integrand in (16) does not decay at infinity, but we can rewrite the symbol
of the operator Gλ as

1

1 + λ− â(k)
=

â(k)

(1 + λ− â(k))(1 + λ)
+

1

1 + λ
.

We denote the operator with the symbol â(k)
(1+λ−â(k))(1+λ) by Tλ (it acts as multiplication by

the symbol in the Fourier images). Then Gλ = 1
1+λ

I + Tλ, where the integral kernel of
operator Tλ has the form

Tλ(x− y) =
1

(2π)d

∫
Rd

â(k)ei(k,x−y)

(1 + λ− â(k))(1 + λ)
dk, λ /∈ [−α, 0]. (17)

The latter integral converges uniformly in x, y due to (6), (7). Similarly,

p(t, x) = e−tδ(x) +
e−t

(2π)d

∫
Rd

ei(k,x)[etâ(k) − 1]dk, (18)

where the integral converges.
The random process x(t) with the generator L is called transient if

lim
λ→+0

∫
|y|<r

Gλ(x− y)dy exists for all x ∈ Rd, r > 0, (19)
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and it is called recurrent in the opposite case. Obviously, the kernel of the operator
Gλ = 1

1+λ
I + Tλ in (19) can be replaced by the kernel of Tλ. After that, one can easily

(using (6), (7)) show that the process x(t) is transient if and only if∫
Rd

| â(k)

â(k)− 1
|dk <∞. (20)

From here it also follows that∫
|y|<r

Gλ(x− y)dy → ∞, r > 0, as λ ↓ 0, (21)

uniformly on each compact in x ∈ Rd if the process is recurrent. Note that in both cases
the integrals (19), (21) over the whole space aproach infinity as λ→ 0 since∫

Rd

Gλ(x− y)dy =

∫ ∞

0

∫
Rd

e−λtp(t, x− y)dydt =
1

λ
.

It was shown in the proof of Theorem 2.2 that â(k) < 1 when k ̸= 0. Thus the validity
of (20) depends only on behavior of â(k)− 1 near the origin. It follows from (12) that the
processes x(t) in the cases of light and moderate tails are recurrent in dimensions d = 1, 2
and are transient if d ≥ 3. If a slightly stronger version of expansion (11) is valid in the
case of heavy tails, then (see [1]) â(k) − 1 ∼ |k|γ as k → 0, and therefore the processes
with heavy tails are recurrent when d = 1, γ ≥ 1, and are transient in all the other cases.

The following lemma will be needed for the spectral analysis of operator H.

Lemma 3.1. Functions p(t, x)− e−tδ(x) for t > 0, Tλ(x) for λ > 0, and T0(x) when the
process x(t) is transient are strictly positive.

Proof. From (7) it follows that function a(x) is uniformly continuous and bounded:
|a(x)| ≤ A := 1

(2π)d

∫
Rd |â(k)|dk. Put

an(x) = (a ∗ a ∗ ... ∗ a)(x), (22)

where there are exactly n convolution factors on the right. Using the last relation in
(2), one can easily justify by induction that all the functions an(x) are continuous and
bounded by the same constant A. The latter is useful to justify the convergence of the
series (23) below.

Due to the symmetry of a(x), we have

a2(0) =

∫
Rd

a(y)a(−y)dy =

∫
Rd

a2(y)dy > 0.

Thus there exists δ > 0 such that a2(x) > 0 when |x| < δ. Since a(x) ≥ 0, from the
definition of the convolution it follows that an(x) ≥ 0 for all n, x, and a2n(x) > 0 when
|x| < nδ. The latter two facts together with (18) immediately imply that

p(t, x)− e−tδ(x) = e−t
∞∑
n=1

tn

n!
an(x) > 0, t > 0. (23)
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The positivity of the first function in the statement of the lemma is proved. The
positivity of the second one could be proved similarly. Another option is to note that

Tλ(x) =

∫ ∞

0

[p(t, x)− e−tδ(x)]e−λtdt, λ > 0. (24)

The formula above follows from (17), (18) and the uniform boundedness of p(t, x)−e−tδ(x),
which is one of the consequences of (23). The positivity of the integrand in (24) implies
that Tλ(x) > 0 when λ > 0. Moreover, the right-hand side in (24) increases monotonically
when λ→ +0. Hence, if the limiting function T0(x) exists, it is also positive.

4 Spectral analysis of operator H

We will continue to assume that χ = 1.
Operator H = L+v(x) is a sum of a convolution operator and an operator of multipli-

cation by a compactly supported potential. There is a duality between these two terms.
If H is rewritten in the form H = (L+ 1) + (v(x)− 1), then after the Fourier transform,
the first term becames an operator of multiplication by function â(k) decaying at infinity
(see (6)) and the second term becomes a convolution operator. If v is smooth, then the
spectrum of the second term is given by Lemma 2.1, and it coincides with the segment
[−1,max v(x)− 1]. These arguments lead to the following statement.

Theorem 4.1. Let the potential v be continuous. Then the essential spectrum of operator
H contains segments [−a, 0] and [−1,max v(x)− 1].

Proof. Let λ0 ∈ [−1,max v(x)− 1] and v(x0)− 1 = λ0. Let

ψε(x) = (πε)−d/4e−
|x−x0|

2

2ε .

Then ∥ψε(x)∥L2 = 1 and ∥(v(x)− 1)ψε(x)∥L2 → 0 as ε→ 0. Moreover,

|ψ̂ε(k)| = (4πε)d/4e−
ε|k|2

2 .

Hence ∥âψ̂ε∥L2 → 0 as ε→ 0 due to the decay of â(k) at infinity, i.e.,

∥(L+ 1)ψε(x)∥L2 → 0 as ε→ 0.

Thus ψε(x) is a Weyl sequence, and therefore λ0 belongs to the essential spectrum of H.
The segment [−a, 0] is treated similarly due to the duality discussed above.

We would like to consider operators where the potential can produce only discrete
spectrum on positive semiaxis. Thus we will assume that v(x) ≤ 1, and often that
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v(x) < 1. As it was mentioned in the introduction, this restriction appears naturally in
contact models. On the other hand, we would like to introduce a sequence of potentials
vR(x) whose action becomes stronger as R → ∞. Thus we will consider vR(x) = v(x/R).
We do not need for the potential to be smooth. It can be only measurable (and bounded),
but in some cases we assume that it has a positive limiting value at the origin or is
continuous.

Theorem 4.2. Let the potential v be continuous, 0 ≤ v(x) ≤ 1− δ with some δ > 0, and∫
Rd v(x)dx > 0. Then the following statements are valid.
(1) The spectrum of the operator H = L + v(x) on the positive semi-axis consists of

at most a countable set of eigenvalues of finite multiplicity with the only possible limiting
point at λ = 0. These eigenvalues are located on the interval (0, 1− δ].

(2) If the underlying process is recurrent, then operator H = L+ v(x) has at least one
positive eigenvalue.

(3) Let
H = H(R) = L+ v(x/R), (25)

and let underlying process be transient. Then H does not have positive eigenvalues when
R is small enough. If, additionally, v(0) > 0, then positive eigenvalues exist for large
enough R.

(4) In all the cases, the largest positive eigenvalue λ0(R) of operator (25) (if positive
eigenvalues exist) is simple and the corresponding eigenfunction is positive. Function
λ0(R) is a monotone function of R if v(x) depends monotonically on |x|.

Proof. In all the cases, we will assume that the operator H has form (25). One can
choose R = 1 in the proof of the first two statements.

Formula ψ =
√
vRu establishes a one-to-one correspondence between the eigenfunc-

tions u of H with positive eigenvalues λ = λi > 0 and the solutions of the problem

(I −
√
vRGλ

√
vR)ψ = 0, ψ ∈ L2

com, λ > 0. (26)

We put here Gλ =
1

1+λ
I + Tλ and arrive at

((1− vR
1 + λ

)I −
√
vRTλ

√
vR)ψ = 0, ψ ∈ L2

com,

or, equivalently,

(I −
√
wTλ

√
w)ψ1 = 0, w =

(1 + λ)vR
1 + λ− vR

≥ 0, ψ1 =
√
wu ∈ L2(D), (27)

where D is the support of w(x).

We will consider
√
wTλ

√
w as an operator in L2(D). Since the symbol â(k)

(1+λ−â(k))(1+λ)
of Tλ is integrable, its inverse Fourier transform is bounded and the integral kernel of
the operator

√
wTλ

√
w is bounded and compactly supported. Thus operator

√
wTλ

√
w

11



is compact (this is the reason to consider (27) instead of (26)). Obviously,
√
wTλ

√
w

depends analytically on λ when λ > 0, and

∥Tλ∥L2 → 0 as λ→ ∞. (28)

Thus the operator in the left-hand side of (27) is invertible when λ ≫ 1. The analytic
Fredholm theorem implies the validity of the first statement of the theorem except the
assertion that the eigenvalues belong to (0, 1 − δ]. The latter follows from the fact that
L ≤ 0 (and therefore H ≤ sup v(x)).

For a more detailed analysis of the set {λi}, consider the eigenvalues {µj(λ,R)}, λ >
0, R > 0, of the operator

√
wTλ

√
w. Since Tλ(x−y) is strictly positive (due to Lemma 3.1),

the Perron-Frobenius theorem implies that, for each λ,R > 0, the operator
√
wTλ

√
w has

the largest positive simple eigenvalue µ0 (the ground energy) with a positive eigenfunction
(the ground state), and |µj| < µ0, j > 0. Obviously, µj(λ,R) → +0 as j → ∞. Equation
(27) implies that the eigenvalues λi > 0 of H are defined by the equations

µj(λ,R) = 1, j ≥ 0. (29)

From (23) and (24) it follows that

Tλ(x) =
∞∑
n=1

an(x)

(1 + λ)n+1

is a strictly decaying function of λ when λ > 0. From (27) it follows that w = 1+ vR
1+λ−vR

is
a strictly decaying function of λ when vR ̸= 0 and that w → v(0) monotonically as R → ∞
if v(x) is monotone in |x|. The positivity of the integral kernel of operator

√
wTλ

√
w and

the positivity of the ground state together with the monotonicity properties discussed
above imply that the ground state

µ0(λ,R) = min
ψ:∥ψ∥=1

(
√
wTλ

√
wψ, ψ)

is a strictly decaying function of λ, λ > 0, and that it is increases with R if v(x) is
monotone in |x|.

Recall that µ0(λ,R) → 0 as λ → ∞ (due to (28)). The monotonicity of µ0(λ,R) in
λ implies the existence of the limit µ0(+0, R) = limλ→+0 µ0(λ,R). From (29) it follows
that H has positive eigenvalues if and only if µ0(+0, R) > 1, and the largest eigenvalue
λ0(R) > 0 of H is defined by the equation

µ0(λ,R) = 1. (30)

Hence from the Perron-Frobeneus theorem and the monotonicity of µ0 it follows that
the eigenvalue λ0(R) > 0 is simple and monotone in R when v(x) is monotone in |x|.
Moreover, the eigenfunction u of H with the eigenvalue λ0(R) satisfies the equation (L−
λ0 + vR)u = 0, and ψ1 =

√
wu is the the ground state for

√
wTλ

√
w. Thus u = Gλψ1 > 0

12



since ψ1 ≥ 0 and since the integral kernel of operator Gλ = 1
1+λ

+ Tλ is strictly positive
due to Lemma 3.1. This completes the proof of the last statement of the theorem. It
remains to prove statements two and three. Prior to starting the proofs, let us note that
the Perron-Frobeneus theorem implies that µ0(λ,R) = ∥

√
wTλ

√
w∥. In particular, H has

positive eigenvalues if and only if

lim
λ→+0

∥
√
wTλ

√
w∥ > 1. (31)

Assume that the process x(t) is recurrent. Then (21) implies that ∥
√
wTλ

√
w∥ → ∞

as λ→ 0. This proves the second statement of the theorem.
Let the underlying random process be transient, i.e., (20) holds. The latter relation

implies that the integral kernel Tλ(x− y) of the operator Tλ is continuous and converges
uniformly in x, y to a continuous function T0(x − y) as λ → +0. Then the operators√
wTλ

√
w converge in the operator norm to the integral operator Q with the kernel√
vR(x)

1− vR(x)
T0(x− y)

√
vR(y)

1− vR(y)
, T0(x− y) =

1

(2π)d

∫
Rd

â(k)eik(x−y)

1− â(k)
dk ∈ C.

Due to (31), H has positive eigenvalues if and only if ∥Q∥ > 1.
Since function |T0(x)| is bounded due to (20), the integral kernel Q(x, y) of operator

Q has the estimate |Q(x, y)| <
√

vR(x)
1−vR(x)

√
vR(y)

1−vR(y)
. Hence

∥Q∥2 ≤
∫

|Q(x, y)|2dxdy ≤ C(

∫
v(x/R)

1− v(x/R)
dx)2 → 0 as R → 0.

Thus H does not have positive eigenvalues when R is small enough.
In order to prove that the eigenvalues exist when R is large enough, we need to show

that ∥Q∥ > 1 for R ≫ 1. Consider ψε(x) = εd/4π−d/4e−ε|x|
2/2. Then ∥ψε∥ = 1 and

ψ̂ε(k) = (επ)−d/4e−|x|2/2ε. Obviously, ψ̂2
ε → δ(k) as ε→ +0 and

(T0ψε, ψε) = (2π)−d
∫
Rd

â(k)

1− â(k)
ψ̂2
ε(k)dk → ∞ as ε→ +0

since â(0) = 1. We assume that v(0) > 0 and choose ε = ε0 > 0 such that the left-hand
side above exceeds 2v−2(0) when 0 < ε ≤ ε0. We have

(Qψε0 , ψε0) = (2π)−d
∫
Rd

â(k)

1− â(k)
|v̂Rψε0 |

2(k)dk,

where v̂Rψε0 is the Fourier transform of v(x/R)ψε0(x). The latter product converges to

v(0)ψε0(x) in L1 as R → ∞, and therefore v̂Rψε0 → v(0)ψ̂ε0 uniformly as R → ∞. Hence
(20) implies that

(Qψε0 , ψε0) → v2(0)(T0ψε0 , ψε0) > 2 as R → ∞.

This proves the existence of the eigenvalues when R ≫ 1.

13



5 Asymptotics of the Green function at infinity

We will obtain here the asymptotics of the Green function Gλ(x), λ > 0, |x| → ∞, for
processes with ultra light tails, i.e., under the assumption that

a(x) ≤ Ce−|x|α , α > 1. (32)

We will also assume that the same estimate is valid for the gradient of a(x):

|∇a(x)| ≤ Ce−|x|α . (33)

From (16), (17) it follows that Gλ(x), λ > 0, can be rewritten in the form (compare
to (23))

Gλ(x) =
δ(x)

1 + λ
+

∞∑
n=1

an(x)

(1 + λ)n+1
, (34)

where an is the convolution of n copies of a(x), see (22). The asymptotics of Gλ at infinity
will be expressed in terms of the moment generating function

Ee(ν,Y ) :=

∫
Rd

e(ν,y)a(y)dy, (35)

where Y is a random variable with the density a(·). From (32) it follows that the function
(35) is analytic in ν and positive when ν ∈ Rd. Thus it can be rewritten as∫

Rd

e(ν,y)a(y)dy = eH(ν), ν ∈ Rd, (36)

where H(ν), ν ∈ Rd, is analytic and real-valued.

Lemma 5.1. Function H(ν) has the following properties: H(0) = 0, H(ν) is even
(H(ν) = H(−ν)), and it is strictly convex with

B(ν) := HessH(ν) = [
∂2H(ν)

∂νi∂νj
] > 0. (37)

Proof. Relation (2) implies that H(0) = 0. The symmetry of H is a consequence of
the symmetry of a. Let us show (37). Consider the density

aν(y) = e−H(ν)a(y)e(ν,y), ν ∈ Rd. (38)

Obviously, aν(y) ≥ 0 and
∫
Rd aν(y)dy = 1, i.e., aν(y) is a density. Since∫

Rd

aν(y)e
(k,y)dy = eH(ν+k)−H(ν),

14



we have ∫
Rd

yaν(y)dy = ∇k[e
H(ν+k)−H(ν)]k=0 = ∇H(ν). (39)

Similarly, ∫
Rd

[yiyj]aν(y)dy = [
∂H(ν)

∂νi

∂H(ν)

∂νj
] + [

∂2H(ν)

∂νi∂νj
].

The last two relations imply that B(ν) is the covariance of the process with the density
aν(y), and therefore B(ν) > 0.

Denote by H∗(p) the Legendre transform of the function H(ν), i.e.,

H∗(p) = max
ν

[(p, ν)−H(ν)], (40)

where the maximum can be equal to infinity. If a finite maximum exists, then

H∗(p) = (p, ν∗(p))−H(ν∗(p)), (41)

where ν∗(p) is the solution of the equation

∇H(ν) = p ∈ Rd. (42)

Let us describe the set {p} where the critical point ν∗(p) exists and function H∗(p) is
finite.

Denote by S0 the set of points y ∈ Rd where a(y) > 0. Recall that Y is symmetric
(see (2)), and therefore the set S0 is symmetric. Let F be the convex hull of the set S0,
i.e.,

F =
∩
ν̇

L(ν̇), ν̇ =
ν

|ν|
∈ Sd−1,

where L(ν̇) = {y : |(y, ν̇)| < s+(ν̇)} is the minimal layer containing S0 and orthogonal
to ν̇. Obviously, vectors ν for which s+(ν̇) = ∞ combined with the zero vector form a
linear subspace M ⊂ Rd. The set F is a cylinder: it is translation invariant with respect
to vectors from M , and the cross-section of F orthogonal to M is a convex bounded set.

Lemma 5.2. The following statements are valid:
1) For each p ∈ F , equation (42) has a unique solution ν = ν∗(p), and function (40)

is finite. Its values are given by (41).
2) H∗(p) = ∞ if p /∈ F .
3) H∗(p) → ∞ as p approaches the boundary of F or goes to infinity. Moreover,

H∗(p)
|p| → ∞ as |p| → ∞.

Remark. This lemma is not valid in the lattice case.
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Proof. We rewrite (36) in the form

H(ν) = ln

∫
Rd

e|ν|(ν̇,y)a(y)dy = ln

∫ s+

−s+
e|ν|τaν̇(τ)dτ, where aν̇(τ) =

∫
(ν̇,y)=τ

a(y)dy′,

(43)
and where dy′ is the volume element in Rd−1. Here s+ = s+(ν̇), aν̇(τ) = 0 when |τ | > s+,
and s+ is a limiting point of the set {τ : aν̇(τ) > 0}. The latter property of aν̇ and
(43) imply that H(ν) > s′|ν| for each s′ < s+ if |ν| is large enough. On the other hand,
|(p, ν̇)| < s+ for p ∈ F . Thus

(p, ν)−H(ν) → −∞ (44)

when |ν| → ∞ and p ∈ F is fixed. Hence, function (40) is finite. Relations (44) and (37)
imply that equation (42) has a unique solution ν = ν∗(p) when p ∈ F and that (41) is
valid.

If p /∈ F , then there is a unit vector ν̇0 such that s+ = s+(ν̇0) < ∞ and (p, ν̇0) ≥ s+.

On the other hand, (37) implies that H(σν̇0) < ln Ces
+σ

σ
, where C is an upper bound for

|aν̇(τ)|. Thus

(p, σν̇0)−H(σν̇0) ≥ s+σ − ln
Ces

+σ

σ
= ln σ − lnC → ∞ as σ → ∞,

and therefore the right-hand side in (40) is infinite. It remains to prove the last statement
of Lemma 5.2.

Let p→ p′ ∈ ∂F . As above, there is ν̇0 such that s+ = s+(ν̇0) <∞ and (p′, ν̇0) = s+.
Then

H∗(p) ≥ max
σ≥1

[(p, σν̇0)−H(σν̇0)] = max
σ≥1

[(p− p′, σν̇0) + s+σ −H(σν̇0)]

≥ max
σ≥1

[−εσ + ln σ − lnC],

where ε = ε(p) = (p − p0, ν̇0). The last maximum goes to infinity as ε → 0. Thus,
H∗(p) → ∞ as p→ p0.

Let |p| → ∞ and ν ′ = np/|p|, n > 1. From (40) it follows that

H∗(p) ≥ (p, ν ′)−H(ν ′) ≥ n|p| − C(n), where C(n) = max
|ν|≤n

H(n).

Since n is arbitrary, the latter estimate implies that H∗(p)
|p| → ∞ as |p| → ∞.

Consider the “phase” function

S = S(τ, θ, λ) = τ [H∗(
θ

τ
) + ln(1 + λ)], 0 < τ <∞,

where θ = x
|x| , ε ≤ λ ≤ 1/ε. Due to Lemma 5.2, this function is smooth in (τ, θ, λ) when

1
τ
< s+(θ) and is equal to infinity if 1

τ
≤ s+(θ) < ∞. Moreover, in both cases, S → ∞
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as 1
τ
→ s+(θ). Note also that S → ∞ as τ → ∞. Thus, for each θ and λ, function S

achieves its minimum value. This value is positive since S is strictly positive. Note also
that direct calculations imply that

Sττ =
1

τ
< HessH∗(p)p, p >, p =

θ

τ
, |p| < s+(θ),

and therefore Sττ > 0. Thus for each θ and λ, there is a unique positive point τ = τ 0(θ, λ)
where S has the absolute minimum value, and this point depends smoothly on θ and λ.
Let

φ = φ(θ, λ) := S|τ=τ0(θ,λ) > 0. (45)

Theorem 5.3. There exists a smooth function f = f(θ, λ) > 0 such that for each λ′ > 0,

Gλ(x) = f(θ, λ)|x|(1−d)/2e−|x|φ(θ,λ)(1 + o(1)), 0 < λ′ ≤ λ ≤ 1/λ′, |x| → ∞, (46)

where φ is defined in (45).

In order to prove the theorem, we will need the following two lemmas.

Lemma 5.4. The following asymptotics holds uniformly in y when |y|
n
≤ b <∞:

an(y) =
e−nH

∗( y
n
)

(2πn)d/2
√

detB(ν∗( y
n
))
(1 + o(1)), n→ ∞. (47)

Remark. Logarithmic asymptotics for an(y) and local asymptotics for small |y|
n

can
be found in [16], [8].

Proof. Consider the sum Sn,ν = X1,ν + ... +Xn,ν of i.i.d.r.v. with the density aν(y)
(see (38)). Due to the CLT,

Sn,ν − EX1,ν√
n

law
−→ N(0, B(ν)), n→ ∞.

In fact we need the asymptotics of the density an,ν(y) of the sum Sn,ν . Due to the local
CLT [7],

an,ν(nEX1,ν) =
1

(2πn)d/2
√

detB(ν)
(1 + o(1)), n→ ∞,

uniformly in ν in every ball |ν| ≤ β < ∞. The local limit theorem for densities holds
under the condition that

|âν |m ∈ L1(Rd)

for some m > 0. This condition holds in our case due to (32), (33). We combine the local
limit theorem for an,ν(nEX1,ν) with (39) and obtain

an,ν(n∇H(ν)) =
1 + o(1)

(2πn)d/2
√
detB(ν)

, |ν| ≤ β, n→ ∞.
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Function an,ν is the convolution of n copies of (38), and therefore

an,ν(y) = e−nH(ν)an(y)e
(ν,y).

Thus,

an(n∇H(ν)) = enH(ν)−(ν,y)an,ν(n∇H(ν)) =
enH(ν)−(ν,y)

(2πn)d/2
√

detB(ν)
(1 + o(1)),

where |ν| ≤ β, n→ ∞. It remains only to choose ν = ν∗( y
n
).

Lemma 5.5. There exists a constant c such that

|an(y)| ≤ en(c−
1
2
(
|y|
n
)α) when

|y|
n

≥ 1. (48)

Remark. This estimate shows that an(y) decays at infinity somewhat slower, but

similarly to a(y) (see (32)). The estimate will be used when |y|
n

is large enough.

Proof. We write a(y) in the form a(y) = e−
1
2
|y|αb(y), Then b ∈ L1 due to (32).

Consider the integrand in the convolution of n copies of a(y). We combine together all
the exponents and all the factors with function b. Then we estimate the product of the
exponents by its maximum value. This implies that

|an(y)| ≤ (max e−
L
2 )|bn(y)|, L = |y − y(1)|α + |y(1) − y(2)|α + ...+ |y(n−1)|α,

where bn is the convolution of n copies of the function b. It is obvious that L has the
minimum value when all its terms are equal, i.e., L ≥ n( |y|

n
)α. It remains to note that

|bn(y)| ≤ Cn = enc, where C = ∥b∥L1 , c = lnC.

Proof of Theorem 5.3. We represent Gλ(x), x ̸= 0, as the sum Gλ(x) = G1 +G2 +
G3, x ̸= 0, where G1 contains terms from the right-hand side of (34) with small values
of n, G2 contains terms with large values of n, and G3 contains terms with intermediate
values of n. We do not need to worry about the delta-function in the right-hand side of
(34) since we assume that x ̸= 0. To be more exact, the splitting of Gλ(x) depends on
the values of x and λ, and is defined as follows.

Let s ≥ 1 be an arbitrary number such that

1

2
tα − 2φt− c+ ln(1 + λ) > 0 for t ≥ s, (49)

where φ = φ(θ, λ) and c > 0 are defined in (45) and Lemma 5.5, respectively. Function G1

is the sum of terms from (34) with n such that |x|
n
≥ s. Function G2 consists of terms with

|x|
n

≤ s1, where s1 is an arbitrary number from the interval (0, ln(1+λ)
φ

). The inequalities
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s1 <
|x|
n
< s hold for the terms in G3. Let us show that G1 and G2 do not contribute to

the asymptotics of Gλ(x).
Since s ≥ 1, from Lemma 5.5 and (49) it follows that

G1 ≤ C
∑

n≤|x|/s

en[c−
1
2
(
|x|
n
)α−ln(1+λ)] ≤ C

∑
n≤|x|/s

e−n(2φ
|x|
n
) = C

∑
n≤|x|/s

e−2φ|x| ≤ C1|x|e−2φ|x|.

This term is exponentially smaller than the right-hand side in (46).

Lemmas 5.4 and 5.1 imply that an(x) are uniformly bounded when |x|
n
≤ s1. Hence

G2 ≤ C
∑

n≥|x|/s1

e−n ln(1+λ) ≤ C1e
−|x| ln(1+λ)/s1 ≤ C1e

−|x|(φ+γ),

where γ > 0 since s1 <
ln(1+λ)

φ
. Hence G2 is also exponentially smaller than the right-hand

side in (46).
Let us evaluate G3 now. We have

G3 =
∑

n: s1<
|x|
n
<s

an(x)

(1 + λ)n+1
=

∑
n: s1<

|x|
n
<s

n−d/2g(
x

n
)e−n[H

∗( x
n
)+ln(1+λ)](1 + o(1)),

where g(x
n
) = C[detB(ν∗(x

n
)]−1/2. We introduce τn = n

x
and rewrite the last formula in

the form
G3 =

∑
n: 1/s<τn<1/s1

|x|−d/2h(τn)e−|x|S(τn,θ,λ)(1 + o(1)),

where h(τ) := τ−d/2g( 1
τ
) is infinitely smooth on the segment [1/s, 1/s1]. Since n > |x|/s

here, the remainder terms o(1) in the formula above vanish uniformly in n when |x| → ∞
(see Lemma 5.4). Besides, all the terms in the right-hand side are positive. Hence, it is
enough to prove the statement of the theorem for

u :=
∑

n: 1/s<τn<1/s1

|x|−d/2h(τn)e−|x|S(τn,θ,λ). (50)

Recall that S has the absolute minimum value φ(θ, λ) when τ = τ (0). We fix an
arbitrary ε > 0 and choose a δ > 0 such that |Sτ | < ε when |τ − τ (0)| ≤ δ. Since
S(τ, θ, λ) − φ(θ, λ) > γ1 > 0 when |τ − τ (0)| ≥ δ and the number of terms in (50) has
order O(|x|), formula (50) can be rewritten as follows

u =
∑

n: |τn−τ (0)|<δ

|x|−d/2h(τn)e−|x|S(τn,θ,λ) +O(e−|x|[φ(θ,λ)+γ1]). (51)

In order to obtain the asymptotics of u, we will show that function (51) is close to the
integral

I = |x|(2−d)/2
∫
|τ−τ (0)|<δ

h(τ)e−|x|S(τ,θ,λ)dτ
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when |x| → ∞. Then we will apply the Laplace method to get the asymptotics of I as
|x| → ∞.

Let ln = [τn, τn+1], and let l be the union of ln for all n such that |τn− τ (0)| < δ. Since
the interval [τ (0) − δ, τ (0) + δ] of integration in I differs from l by two small intervals near
points τ (0) ± δ, and S − φ > γ2 > 0 there, we have

I = |x|(2−d)/2
∫
l

h(τ)e−|x|S(τ,θ,λ)dτ +O(e−|x|[φ(θ,λ)+γ2]), |x| → ∞.

We represent the integral over l as the sum of the integrals over ln, and then write each
of the latter integrals as the value of the integrand at an intermediate point τn + σn, 0 ≤
σn ≤ 1/|x|, multiplied by |ln| = 1/|x|. This implies

I =
∑

n: |τn−τ (0)|<δ

|x|−d/2h(τn + σn)e
−|x|S(τn+σn,θ,λ) +O(e−|x|[φ(θ,λ)+γ2]), |x| → ∞.

Since
|S(τn + σn, θ, λ)− S(τn, θ, λ)| ≤ max

|τ−τ (0)|<δ
|Sτ |σn ≤ ε/|x|,

and ε is small, we have

e−|x|S(τn+σn,θ,λ) = e−|x|S(τn,θ,λ)(1 + ηn), |ηn| < 2ε.

The function h is smooth and bounded from above and below by positive constants. Hence
h(τn+ σn) = h(τn)(1+O(1/|x|)). The last two relations allow us to rewrite I in the form

I =
∑

n: |τn−τ (0)|<δ

|x|−d/2h(τn)e−|x|S(τn,θ,λ)(1+ξn)+O(e
−|x|[φ(θ,λ)+γ2]), |ξn| < 3ε, |x| → ∞.

Hence

Î

1 + 3ε
≤

∑
n: |τn−τ (0)|<δ

|x|−d/2h(τn)e−|x|S(τn,θ,λ) ≤ Î(1 + 3ε), |x| → ∞, (52)

where Î = I +O(e−|x|[φ(θ,λ)+γ2]). To complete the proof of the theorem, it remains only to
replace I by its asymptotics as |x| → ∞ given by the Laplace method, and then combine
(52) (where ε is arbitrary small) with (51).

6 Propagation of the front

Let u = u(t, x) be the density of a population with initial density u0(x) being a non-
negative continuous function with a compact support. It satisfies the equations

∂u

∂t
= (L+ v(x))u, u(0, x) = u0(x). (53)
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We assume that the potential v is non-negative, continuous and has a compact support.
If the Hamiltonian H = L+ v has a positive ground state energy, then the expected total
population

∫
Rd u(t, x)dx grows with time, and an important question is to describe the

location of the propagating front F (t) := {u(t, x) : u = 1}. This problem will be studied
in this section when the transition density a(y) has an ultra light tail, i.e., (32) holds.
However, in the supplementary lemmas below we assume only that the transition density
a(y) has a light tail, i.e., |a(y)| < Ce−δ|y| with some δ > 0, and therefore â(k) is analytic
in k when |Imk| < δ. We also will extend assumption (7) somewhat by requiring that

∥â(k + iτ)∥L1(Rd
k)
≤ C, |τ | ≤ ε0, (54)

for some ε0 < δ.
The following lemma can be proved by repeating the standard arguments used to show

that Fourier transforms of L1-functions decay at infinity.

Lemma 6.1. Let a(y) have a light tail. Then the function |â(z)|, z = k + iτ, decays
uniformly in τ in each region |τ | ≤ δ1 < δ when |k| → ∞.

The next lemma provides an estimate for the transition density p given by (15).

Lemma 6.2. Let a(y) have a light tail and (54) hold. Then there exist constants α <∞
and C <∞ such that the following estimate holds

p(t, x) ≤ Cteαε
2t−ε|x|, x ̸= 0,

for small enough ε ≥ 0.

Proof. We write p in the form (18) and omit the first term on the right since we
assume that x ̸= 0. From Lemma 6.1 it follows that Rd in the second term in the right-
hand side of (18) can be replaced by Rd + iτ, |τ | < δ. Thus

p(t, x) =
e−t

(2π)d

∫
Rd

w(t, z)ei(z,x)dk, z = k + iτ, |τ | < δ, w := etâ(z) − 1, x ̸= 0. (55)

Note that
|w(t, z)| ≤ t|â(z)|, z = k + iτ,

if t|â(z)| ≤ 1 or t|â(z)| > 1 and Reâ(z) ≤ 0. If t|â(z)| > 1 and Reâ(z) > 0, then

|w(t, z)| ≤ 2etReâ(z) ≤ 2t|â(z)|etReâ(z) ≤ Ct|â(z)|et supReâ(z), z = k + iτ, (56)

where the supremum is taken over k ∈ Rd. Since â(0) = 1 (see (6)), we have that
supReâ(z) > 1/2 when |τ | is small enough. Then (56) is valid in all the cases. We will
take τ = εx/|x|, ε ≤ ε0 with small enough ε0 > 0. Then (55), (56) and (54) imply that

p ≤ Ctet(supReâ(z)−1)−ε|x|, z = k + iτ, ε ≤ ε0.

21



In order to complete the proof of Lemma 6.2, it remains to show the existence of an
α such that

Reâ(k + iτ)− 1 ≤ αε2, k ∈ Rd, (57)

if ε ≥ 0 is small enough. Due to Lemma 6.1, there exists R < ∞ such that (57) holds
with α = 0 when |k| ≥ R. Estimate (57) with |k| ≤ R and ε ≥ 0 is small enough follows
from the Taylor expansion since â(z) is smooth (analytic), â(k) is real, and Reâ(k) ≤ 1.

The asymptotics of the Green function Gλ(x), λ > 0, as |x| → ∞, will be used below
(see Theorem 5.3) and therefore, it will be assumed that a(y) has an ultra light tail, i.e.,
(32) holds.

Theorem 6.3. Let u be the solution of the problem (53), where the transition density
a(y) has an ultra light tail, (54) holds, and operator H = L + v(x) has a unique positive
eigenvalue λ = λ0.

Then the front F (t) has the form |x| = λ0t+
1−d
2

ln t

φ(θ,λ0)
+O(1), t→ ∞, where φ is defined

in (45). The density u grows (decays) exponentially in time uniformly in x in any region
inside (outside, respectively) the front whose distance from the front exceeds γt with some
γ > 0.

Remark. In the case of light tails, the total number of positive eigenvalues of operator
H is at most finite. This will be proved elsewhere. If there are several positive eigenvalues,
then each of them generates its own front. Since it is not clear which of them propagates
faster, the total front of the population can be obtained as the maximum of the fronts
generated by individual eigenvalues.

Proof of Theorem 6.3. The spectrum of the operator H = L + v consists of the
interval [−a, 0] and a point λ0 > 0. Using the spectral decomposition theorem, we obtain
that

u(t, x) =

∫ 0

−a
eλtdEλu0dλ+ c0ϕ0(x)e

λ0t, (58)

where Eλ is the spectral projection operator, ϕ0 is a normalized eigenfunction with the
eigenvalue λ0, and c0 = (u0, ϕ0). Denote by w the first term in the right-hand side above.
Obviously, ∥w∥L2 ≤ ∥u0∥L2 for all t ≥ 0. We will show that the front is defined mostly by
the second term in (58). An estimate on w is needed to justify this fact.

Function w satisfies the relations

∂w

∂t
− Lw = −v(x)w, u(0, x) = u0(x)− c0ϕ0(x),

and therefore w = u1 + u2, where

u1 =

∫ t

0

∫
Rd

p(t− τ, x− y)v(y)w(τ, y)dydτ, u2 =

∫
Rd

p(t, x− y)[u0(y)− c0ϕ0(y)]dy.
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Since ∥vw∥L1 ≤ C∥w∥L2 ≤ C, from Lemma 6.2 it follows that

|u1| ≤ C

∫ t

0

teαε
2t−ε|x|dτ = Ct2eαε

2t−ε|x| (59)

when x does not belong to the support of v and ε ≥ 0 is small enough. We write u2 as
the sum u21 + u22 by separating the terms in the square brackets in the expression for
u2. Obviously, an estimate similar to (59) (with the factor t2 replaced by t) is valid for
u21 when x does not belong to the support of u0 and ε ≥ 0 is small enough. In order to
estimate u22, we note that equation (L+ v)ϕ0 = −λ0ϕ0 implies that ϕ0 = −Gλ0(vϕ0) has
the same asymptotics at infinity as Gλ0 , which is given by Theorem 5.3, i.e.,

ϕ0 = g(θ, λ0)|x|(1−d)/2e−|x|φ(θ,λ0)(1 + o(1)), |x| → ∞. (60)

From (18), Lemma 6.2, and (60), it follows that

|u22 + c0e
−tϕ0(x)| ≤ C

∫
Rd

teαε
2t−ε|x−y|e−γ|y|dy

with some γ > 0. Thus,
|u22| ≤ C(1 + t)eαε

2t−ε|x|.

By combining estimates for u1, u21, u22, we obtain that

|w| ≤ C(1 + t2)eαε
2t−ε|x| (61)

when x does not belong to the supports of v and u0, and ε ≥ 0 is small enough.
In order to complete the proof of the theorem, we split Rd in the following regions

that depend on time. The central region D0 ⊂ Rd is defined by inequalities

1

2
< c0ϕ0(x)e

λ0t < 2.

Asymptotics (60) implies that the solution of the equation c0ϕ0(x)e
λ0t = c has the form

|x| = λ0t+
1−d
2

ln t

φ(θ,λ0)
+ O(1), t → ∞. We denote the remainder term by O1(1), O2(1) when

c = 1/2, 2, respectively. Here O1(1) > O2(1), and D0 can be rewritten, for large t, as
follows

λ0t+
1−d
2

ln t

φ(θ, λ0)
+O2(1) < |x| <

λ0t+
1−d
2

ln t

φ(θ, λ0)
+O1(1), t→ ∞.

By D1 ⊂ Rd we denote the region where one of the following inequalities hold as t→ ∞:

(λ0 − γ)t

φ(θ, λ0)
≤ |x| ≤

λ0t+
1−d
2

ln t

φ(θ, λ0)
+O2(1) or

λ0t+
1−d
2

ln t

φ(θ, λ0)
+O1(1) ≤ |x| ≤ (λ0 + γ)t

φ(θ, λ0)
,

where γ is arbitrary small. Finally, let

D2 = {x : |x| < (λ0 − γ)t

φ(θ, λ0)
}, D3 = {x : |x| > (λ0 + γ)t

φ(θ, λ0)
}, t→ ∞.
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Since c0ϕ0(x)e
λ0t grows exponentially in t when x ∈ D2, estimate (61) with ε =

0 implies that u, x ∈ D2, grows exponentially as t → ∞. Since c0ϕ0(x)e
λ0t decays

exponentially in t when x ∈ D3, estimate (61) with small enough ε > 0 implies that
u, x ∈ D3, decays exponentially as t → ∞. Thus front F (t) belongs to D1

∪
D0. From

(61) with small enough ε = 0 it follows that w decays exponentially when x ∈ D1, t→ ∞.
Hence u > 3

2
or u < 3

4
when x ∈ D1 and t is large enough, i.e., F (t) ⊂ D0 as t→ ∞.

7 Limit of the population density as t→ ∞.

Assume now that the Hamiltonian H = L + w does not have positive spectrum. Then
one can expect that the total population does not grow with time and the population
density has a limit as t → ∞. We will prove the latter facts under a somewhat stronger
assumption than the absence of the positive spectrum. Recall (see Theorem 4.2) that the
absence of the positive spectrum requires the underlying process with the generator L
to be transient. Moreover, the potential has to be small enough. Additionally, we will
assume that the norm of the operator G0v in the space C = Cb(R

d) of continuous bounded
functions (∥u∥C = supx|u|) is less than one. Here G0 is the operator defined in (16) and
G0vψ := G0(vψ). At the end of the section, we will provide an estimate on v that implies
∥G0v∥ < 1. We do not impose any restrictions on the tail of the transition density a(y).

We will consider the population with a constant initial distribution, i.e., the density
u = u(t, x) ∈ C ′ =

∩
T>0C

T is the solution of the problem

∂u

∂t
= (L+ v(x))u, u(0, x) = 1. (62)

Here T is arbitrary and CT is the space of functions that are continuous in (t, x) and
bounded when x ∈ Rd, 0 ≤ t ≤ T , with ∥u∥CT = sup(t,x)|u|. We are not going to discuss
the uniqueness in the space C ′. Instead we study a specific solution in C ′ that can be
obtained from the corresponding integral equation (see more details in the proof of the
theorem below).

Theorem 7.1. Let H = L + v not have positive spectrum and ∥G0v∥C < 1. Then the
solution u = u(t, x) ∈ C ′ of problem (62) has a limit in the space C ′ as t → ∞ and
limt→∞ u = (1−G0v)

−11.

We will need the following analogue of Lemma 6.2. Denote by Ptf solution u = u(t, x)
of the unperturbed problem

ut = Lu, t > 0, u(0, x) = f(x) ∈ Ccom,

that is obtained by convolution with the fundamental solution (15):

u = Ptf =

∫
Rd

p(t, x− y)f(y)dy.
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Lemma 7.2. Let p(t, x) be the transition density of a transient random walk with the
generator L. Then for each f ∈ C with the support in the ball |x| < R and each T < ∞,
the function Ptf belongs to CT , and

∥Ptf∥CT ≤ C(R, T )∥f∥C .

Proof. From (18) it follows that Ptf = e−tf + e−tF−1w, where the second term is the

inverse Fourier transform of w = [etâ(k)−1]f̂(k). It is enough to prove the statement of the

lemma for the term F−1w. Since |f̂(k)| ≤ C(R)∥f∥C and ∥etâ(k) − 1∥L1 ≤ C∥T â(k)∥L1 =
CT (due to (7)), it follows that F−1w is continuous in x and |F−1w| ≤ C(R, T ), t ≤
T. Obviously, w as element of L1, depends smoothly on t. This implies that F−1w is
continuous in (t, x).

Proof of Theorem 7.1. From the Duhamel’s principle, it follows that every solution
u ∈ C ′ of (62) satisfies the equation

u = 1 +

∫ t

0

Pt−s(vu(s, ·))ds. (63)

Equation (63) is uniquely solvable in CT , and its solution satisfies (62). Theorem 7.1
concerns this solution u. Indeed, the unique solvability of (63) follows immediately from
the facts that equation (63) is of the Volterra type and the operator Ptv : C → C is
bounded uniformly in t ∈ [0, T ]. Moreover, solution u ∈ CT can be obtained by iterations:

u =
∞∑
0

(Qt)
n1, Qtf =

∫ t

0

Pt−s(vf(s, ·), t ≤ T. (64)

It remains to find the limit of u as t→ ∞.
Assume that f(s, x) has the following properties: f ≥ 0, f(s1, x) ≥ f(s2, x) when

s1 > s2, and there is a limit f0(x) := lims→∞ f(s, x) ∈ C. Then Qtf has the same
properties as f and

Qtf ↑ G0(vf0) as t→ ∞. (65)

Indeed,

Qtf =

∫ t

0

p(s, x− y)v(y)f(t− s, y)dyds. (66)

The latter relation and Lemma 3.1 imply that Qtf ≥ 0 and Qtf is monotone in t. An
upper bound for Qtf can be obtained by putting t = ∞ in the right-hand side of (66).
Since the process with the transition density p(t, x) is transient, it follows that∫ ∞

0

p(s, x− y)ds = G0(x− y),

25



and therefore Qtf ≤ G0(vf0). Thus Qtf has a limit as t→ ∞ and limt→∞Qtf ≤ G0(vf0).
The lower bound for limt→∞Qtf is the same, as also follows from (66):

Qtf ≥
∫ t/2

0

p(s, x− y)v(y)f(t− s, y)dyds ≥
∫ t/2

0

p(s, x− y)v(y)f(t/2, y)dyds.

By passing to the limit in the last inequality as t → ∞, we obtain that limt→∞Qtf ≥
G0(vf0). Hence, (65) is proved.

Using (65), one can easily show by induction that (Qt)
n1 ↑ (G0v)

n1. This and (64)
complete the proof of the theorem.

We will conclude this section by providing a sufficient condition for the estimate
∥G0v∥ < 1.

Lemma 7.3. The following estimate holds

∥G0v∥C ≤ ∥v∥C +
1

(2π)d

∫
Rd

|ã(k)ṽ(k)|
1− a(k)

dk.

The statement follows immediately from the relation G0 = I + T0, where T0 is given
by (17).
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