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Abstract

We consider inverse potential scattering problems where the source of the inci-
dent waves is located on a smooth closed surface outside of the inhomogeneity of
the media. The scattered waves are measured on the same surface at a fixed value
of the energy. We show that this data determines the bounded potential uniquely.
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1 Introduction

Consider a potential scattering problem

−∆usc − λn(x)usc = λ[n(x)− 1]uinc, x ∈ Rd, λ = k2 > 0, (1)

where the support of n(x)−1 belongs to a bounded domain O, n(x) is uniformly bounded
in O, and the solution usc satisfies the radiation condition:

usc = usc∞(k, θ)
eikr

r
d−1
2

+O
(
r−

d+1
2

)
, θ =

x

r
, r = |x| → ∞. (2)

Here uinc is an incident wave that satisfies the Helmholtz equation in Rd\S where S is
a set, where sources are distributed. We assume that S is a smooth surface that is a
boundary of a bounded domain B located outside of O. To be more exact,

uinc(x) =

∫
S

e−ik|x−y|

|x− y|
φ(y)dSy, φ ∈ L2(S), x ∈ Rd. (3)
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There are many results on recovering information on the scatterer from the backscat-
tering data. For example, results on the uniqueness of the solution of the inverse prob-
lem can be found in [4],[5],[6],[13],[14] and recovering of singularities was studied in
[19],[12],[16]. In all the papers above, it was assumed that the echo data are available for
incident waves coming from all the directions.

There are important applications when an observer has an access to the support of
the potential only from one side. Additionally, the incident waves can be often emitted
only from a bounded region, and not from infinitely remote points as in the classical
backscattering problem. Recently, such a non-stationary potential scattering problem
(with a potential that is smooth in R3) has been studied by Rakesh and Uhlmann [15].
They assumed that the incident waves were emitted from points x varying in some sphere.
They show the uniqueness for potentials with some restrictions on angular derivatives. In
[9] we considered the scattering problem (1) when the incident waves were emitted from
surface S and the receivers are also distributed over the same surface S, i.e., the following
data are available: {

usc|S : uinc emitted from S
}
. (4)

We have shown that data (4) allows one to determine the interior eigenvalues of the
scatterer. In this article, we prove a uniqueness result. Namely, let us fix λ > 0 that is
not a Dirichlet Laplacian eigenvalue for the domain B bounded by S. We show that data
(4) for a fixed value of λ > 0 determines the potential n(·) uniquely. We also will assume
that λ is not an eigenvalue of the Dirichlet problem for the equation (−∆− λn(x))u = 0
in O. Since the support of n is bounded, the latter requirement can be enforced by a
slight extension of O. Without loss of the generality, we can assume that the boundary
of O is infinitely smooth and the support of n(x)− 1 is located strictly inside of O.

Note also that the problem we consider is different from the problem of recovering of
the potential from partial Cauchy data (see e.g. [3]). In the latter problem, it is assumed
that Cauchy data are available for all sufficiently regular solutions of the wave equation.
The situation is different in the problem under consideration. Here only the fields on S
are known that are produced by waves emitted from S.

Acknowledgments. The authors are thankful to Rakesh, Eemeli Bl̊asten, Uwe
Kähler and Lassi Päiv̈arinta, David Colton and Armin Lechleiter for useful discussions.

2 The main result

From now on, for the sake of simplicity of notations, we assume that d = 3. Define
operator

L : L2(S) → L2(∂O), L∗ : L2(∂O) → L2(S),

(Lφ)(x) =
∫
S

e−ik|x−y|

|x− y|
φ(y)dSy, (L∗µ)(x) =

∫
∂O

eik|x−y|

|x− y|
µ(y)dSy, k =

√
λ > 0. (5)
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Lemma 2.1. Suppose that λ > 0 is not an eigenvalue of the negative Dirichlet Laplacian
in either of the domains O or B (with the boundary S). Then operators L,L∗ have dense
ranges.

Remark. An outline of this proof can be found in [9]. Note also the integral kernels
of operators L,L∗ are infinitely smooth, and the arguments below prove that their ranges
are dense in any Sobolev space Hs, s ≥ 0, not only in L2.

Proof. Let us prove that the range of L is dense. Obviously, it is enough to show
that the kernel of the operator L∗ is trivial. Assume that the opposite is true. Then there
exists µ ∈ L2(∂O) such that µ ̸≡ 0 and function

u :=

∫
∂O

eik|x−y|

|x− y|
µ(y)dSy, x ∈ R3, k =

√
λ > 0,

which is defined on R3 and coincides with L∗µ on S, vanishes on S. Since

(−∆− λ)u = 0, x /∈ ∂O,

and λ is not an eigenvalue of the Dirichlet problem in B, u ≡ 0 on B. Then from the
equation above it follows that u ≡ 0 on R3 \ O.

If µ is continuous, the proof can be completed in a couple of lines using the potential
theory. Indeed, u is continuous in R3 in this case. Thus u satisfies the Helmholtz equation
and the homogeneous Dirichlet boundary condition in O. Since λ is not an eigenvalue, it
follows that u ≡ 0 in O, i.e., u ≡ 0 in R3. The latter contradicts the fact that the jump
of the normal derivative of u on ∂O is equal to −4πµ ̸≡ 0.

If µ ∈ L2(∂O), then we approximate µ in L2(∂O) by smooth functions µn. Consider

un =

∫
∂O

eik|x−y|

|x− y|
µn(y)dSy, x ∈ R3. (6)

If we restrict un to ∂O, then operator (6) becomes a pseudo-differential operator on ∂O of
order −1, and therefore un|∂O has a limit in H1/2(∂O) as n→ ∞ (as well as in H1(∂O)).
Functions un satisfy the Helmholtz equation outside of ∂O, and they satisfy the radiation
conditions. Thus the convergence of un|∂O and standard a priori estimates in H1 for the
solutions of the Helmholtz equation imply that functions un converge in H1(O) and in
H1

loc(R
3\O). Obviously, they converge to u ≡ 0 in H1

loc(R
3\O). Thus

un|∂O → 0 in H1/2(∂O) as n→ ∞.

Hence un converge in H1(O) to a solution of the homogeneous Dirichlet problem. Since
λ is not an eigenvalue of the Dirichlet problem in O, this implies that un → 0 in H1(O).

Since µn is smooth, the jump on ∂O of the normal derivative of the potential un
defined by (6) is equal to −4πµn ̸≡ 0. On the other hand, the normal derivatives of weak
(in H1) solutions of the Helmholtz equation are well defined, and from the weak (in H1)
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convergence of un to zero it follows that this jump (which is equal to µn) tends to zero in
H−1/2(∂O). Since µn approximates µ in L2(∂O), it follows that µ = 0. This contradicts
the assumption made in the first lines of the proof. Thus the density of the range of the
operator L is proved. Similar arguments are valid for L∗.

Definition. Consider the near-field operator

FS = FS(λ) : L2(S) → L2(S), FSφ = usc|S , φ ∈ L2(S),

where usc is the solution of (1) with uinc given by (3).
Note that formula (3) represents waves coming to S, while waves emitted from S

have the different sign in the exponent. Thus FSφ is not the scattered wave produced by
sources on S with the density φ. However, usc|S = FSφ can be obtained (and measured)
as a scattered field on S produced by some waves emitted from S. Namely, the following
lemma holds (see [9]).

Lemma 2.2. Suppose that λ > 0 is not an eigenvalue of the negative Dirichlet Laplacian
in either of the domains O or B. Then for each φ ∈ L2(S), one can construct a sequence
ψn ∈ L2(S) of the source densities such that FSφ = limn→0 u

sc
n |S , where the limit is taken

in the space L2(S) and uscn is the solution of (1) with

uinc(x) =

∫
S

eik|x−y|

|x− y|
ψn(y)dSy, ψn ∈ L2(S), x ∈ Rd.

One can determine the source densities ψn without a priori knowledge of O except a value
of an ε > 0 such that O is located inside of the ball |x| < 1/ε.

Proof. Consider a bounded domain Õ that contains O and such that dist(B, Õ) > 0.

For example, one can take Õ = (Rd\Bε)
∩
{|x| < 1/ε}, where Bε is the ε-extension of B

and ε > 0 is small enough. Without loss of generality, we can assume that the boundary
of Õ is infinitely smooth and λ is not an eigenvalue of the negative Dirichlet Laplacian in
Õ.

From Lemma 2.1 it follows that the range of the operator

(L̃φ)(x) =
∫
S

e−ik|x−y|

|x− y|
φ(y)dSy, x ∈ ∂Õ, φ ∈ L2(S),

is dense in H3/2(∂Õ). Then the same is true for L̃. Hence for every φ ∈ L2(S), there
exists a sequence ψn ∈ L2(S) such that L̃ψn → L̃φ in H3/2(∂Õ). Below we consider

functions L̃ψn, L̃φ,Lψn,Lφ defined by the corresponding integrals for all x ∈ R3. The

standard a priory estimate (e.g., [10]) for the solution u = L̃ψn − L̃φ of the Helmholtz

equation in Õ implies that

∥L̃ψn − L̃φ∥H2(Õ) ≤ C(λ)∥L̃ψn − L̃φ∥H3/2(∂Õ) → 0 as n→ ∞.
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Since O ⊂ Õ, we have that

∥Lφ− Lψn∥H3/2(∂O) → 0 as n→ ∞

and
∥Lφ− Lψn∥H2(O) → 0 as n→ ∞.

The statement of the lemma is an immediate consequence of the last two relations and a
priory estimates (e.g., [10]) for the solutions of the problem (1) (with radiation condition
at infinity).

Theorem 2.3. Consider two real-valued bounded potentials n1 and n2 and their backscat-
tering far-field operators FS,i, i = 1, 2. If λ = λ0 is not a Dirichlet eigenvalue for the
domain S, then the equality FS,1φ = FS,2φ, λ = λ0, on a dense set {φ} in L2(S) implies
that ∥n1 − n2∥L∞ = 0.

The following lemma will be needed to prove the theorem above.
Denote by F0(λ), F

out(λ) Dirichlet-to-Neumann maps for the Helmholtz equation in
the interior and exterior of O, respectively. The solutions are assumed to satisfy the
radiation condition when F out is defined. Let Fn be the Dirichlet-to-Neumann map for
the equation (∆ + λn)u = 0 in O. The normal vector in all the cases is assumed to
be directed outside of O. Each of the Dirichlet-to-Neumann operators introduced above
is a pseudo-differential operator of the first order and can be considered as a bounded
operator from a Sobolev space Hs(∂O) into Hs−1(∂O), s ∈ R.

Lemma 2.4. The near field operator FS has the following representation:

FS =
1

4π
L∗(F0 − F out)(Fn − F out)−1(F0 − Fn)L. (7)

Remark. These formulas are direct analogues of the formulas for the scattering
amplitude in the problem of scattering of the plane waves (see [8, Th.2.3] in the case of
the transmission problem). The only difference is that a plane wave is defined by the
direction ω of the incident wave, and S is replaced by the unit sphere S2 = {ω : |ω| = 1}
in this case. The operators L,L∗ are also slightly different in the case of the plane waves.
In particular,

L : L2(S
2) → L2(∂O), Lφ(x) =

∫
S2

eikω·xφ(ω)dSω. (8)

Proof. Let us prove (7). Note that uinc|∂O = Lφ. We will look for usc outside of O
in the form of the potential usc = L∗µ with an unknown density µ, i.e.,

usc =

∫
∂O

eik|x−y|

|x− y|
µ(y)dSy, x ∈ R3\O. (9)
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More over, function µ must be chosen in such a way that usc allows an extension in O
that satisfies (1).

Every solutions of the Schrödinger equation with a bounded potential belongs to
H2(O′) for any bounded domain O′. Therefore functions usc, uinc and their normal deriva-
tives are well defined on ∂O. We reduce the scattering problem (1),(2) to the following
equation on ∂O for unknown µ:

Fn(u
sc|∂O + uinc|∂O) = F out(usc|∂O) + F0(u

inc|∂O). (10)

This equation follows from the fact that usc + uinc satisfies (1) in O, and usc, uinc are
solutions of the Helmholtz equation in R3\O and O, respectively.

We note that operator Fn is symmetric, and the imaginary part of the quadratic form
of operator F out coincides with the total cross section, and therefore is positive (see [8,
Lemma 2.1]). Thus, operator Fn − F out is invertible, and equation (10) implies that

usc|∂O = (Fn − F out)−1(F0 − Fn)(u
inc|∂O) = (Fn − F out)−1(F0 − Fn)Lφ. (11)

From (9) it follows that µ = 1
4π
(F0−F out)(usc|∂O)). It remains only to substitute (11)

for usc in the latter equation for µ and note that FSφ = usc|S = L∗µ.

Proof of Theorem 2.3. We will reduce the statement of the theorem to the Gelfand-
Calderon problem, which is solved in [11, Th.1] when d = 3 and in [2, Th.2.1] when d = 2.

We preserve notations F0, F
out for the Dirichlet-to-Neumann maps for the Helmholtz

equation in the interior and exterior of O, respectively, and we denote by Fn1 , Fn2 the
Dirichlet-to-Neumann maps for the Schrödinger equations in O with potentials λn1 and
λn2, respectively.

Operators

(F0 − F out)(Fni
− F out)−1(F0 − Fni

) : L2(∂O) → L2(∂O), i = 1, 2, (12)

are bounded (and also compact). Indeed, each of the Dirichlet-to-Neumann operators
introduced above is a pseudo-differential operator of the first order (non-smoothness of
the potential does not play any role here, since the support of the potential is strictly inside
of the domain). Their full symbols were calculated in [7, Sect.3]. From this calculation it
follows that operator F0 − F out has order one, operator (Fni

− F out)−1 has order −1, and
a couple of the first terms of the full symbol of operator F0 − Fni

vanish, i.e., the latter
operator is compact. Thus (12) is compact.

Assume that data (4) for n1 and n2 coincide on a dense set {φ} in L2(S). Then from
Lemma 2.1 it follows that operators (12) are equal. The first factor from the left in (12)
is an invertible operator (see the justification of the transition from (10) to (11)). Hence,
the equality of operators in (12) implies that

(Fn1 − F out)−1(F0 − Fn1) = (Fn2 − F out)−1(F0 − Fn2)
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as operators in L2(∂O). Adding and subtracting F out in the right factors, we get

(Fn1 − F out)−1(F0 − F out) = (Fn2 − F out)−1(F0 − F out)

as operators in L2(∂O). Hence, operators

(Fn1 − F out)−1, (Fn2 − F out)−1 : H−1(∂O) → L2(∂O),

are equal, and therefore,

Fn1 − F out, Fn2 − F out : L2(∂O) → H−1(∂O)

are equal. Thus
Fn1φ = Fn2φ

for every φ ∈ L2(∂O).
Now uniqueness follows from [2],[1] if d = 2 and [11] if d = 3.
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