Uniqueness in potential scattering with reduced data
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Abstract

We consider inverse potential scattering problems where the source of the inci-
dent waves is located on a smooth closed surface outside of the inhomogeneity of
the media. The scattered waves are measured on the same surface at a fixed value
of the energy. We show that this data determines the bounded potential uniquely.
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1 Introduction
Consider a potential scattering problem
— AU — Mn(x)u*® = An(z) — 1Ju™, zeRY N=k*>0, (1)

where the support of n(z) —1 belongs to a bounded domain O, n(x) is uniformly bounded
in O, and the solution u* satisfies the radiation condition:
sC sC eZkT —d+l T
u :uoo(k’,ﬁ)ﬁ—i-()(r 2), 0=—, r=|z| = occ. (2)
T2 r
Here u™ is an incident wave that satisfies the Helmholtz equation in R?\S where S is
a set, where sources are distributed. We assume that & is a smooth surface that is a
boundary of a bounded domain B located outside of O. To be more exact,

, —ik|z—y|
wi(@) = [ oS, € L), weR 3)
S \x—y\
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There are many results on recovering information on the scatterer from the backscat-
tering data. For example, results on the uniqueness of the solution of the inverse prob-
lem can be found in [4],[5],[6],[13],[14] and recovering of singularities was studied in
[19],[12],[16]. In all the papers above, it was assumed that the echo data are available for
incident waves coming from all the directions.

There are important applications when an observer has an access to the support of
the potential only from one side. Additionally, the incident waves can be often emitted
only from a bounded region, and not from infinitely remote points as in the classical
backscattering problem. Recently, such a non-stationary potential scattering problem
(with a potential that is smooth in R*) has been studied by Rakesh and Uhlmann [15].
They assumed that the incident waves were emitted from points x varying in some sphere.
They show the uniqueness for potentials with some restrictions on angular derivatives. In
[9] we considered the scattering problem (1) when the incident waves were emitted from
surface S and the receivers are also distributed over the same surface S, i.e., the following
data are available:

{w*ls: u™ emitted from S} . (4)

We have shown that data (4) allows one to determine the interior eigenvalues of the
scatterer. In this article, we prove a uniqueness result. Namely, let us fix A > 0 that is
not a Dirichlet Laplacian eigenvalue for the domain B bounded by §. We show that data
(4) for a fixed value of A > 0 determines the potential n(-) uniquely. We also will assume
that A is not an eigenvalue of the Dirichlet problem for the equation (—=A — An(x))u =0
in O. Since the support of n is bounded, the latter requirement can be enforced by a
slight extension of O. Without loss of the generality, we can assume that the boundary
of O is infinitely smooth and the support of n(x) — 1 is located strictly inside of O.

Note also that the problem we consider is different from the problem of recovering of
the potential from partial Cauchy data (see e.g. [3]). In the latter problem, it is assumed
that Cauchy data are available for all sufficiently regular solutions of the wave equation.
The situation is different in the problem under consideration. Here only the fields on S
are known that are produced by waves emitted from S.

Acknowledgments. The authors are thankful to Rakesh, Eemeli Blasten, Uwe
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2 The main result

From now on, for the sake of simplicity of notations, we assume that d = 3. Define
operator

L : Ly(S) = Le(00), L* : Ly(00) — Ly(S),
efik|zfy| el’k|1*y|
(W)dS,, (L7u)(x) = /

(Lo)(x) = wy)dSy, k=vA>0. (5)
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Lemma 2.1. Suppose that A\ > 0 is not an eigenvalue of the negative Dirichlet Laplacian
in either of the domains O or B (with the boundary S). Then operators L, L* have dense
ranges.

Remark. An outline of this proof can be found in [9]. Note also the integral kernels
of operators £, L* are infinitely smooth, and the arguments below prove that their ranges
are dense in any Sobolev space H®, s > 0, not only in L.

Proof. Let us prove that the range of L is dense. Obviously, it is enough to show
that the kernel of the operator £* is trivial. Assume that the opposite is true. Then there
exists p € Ly(00) such that p # 0 and function

ik|z—y| .
u = / e—u(y)dsy, reR k=vVA>0,
20 [T — Yl

which is defined on R? and coincides with £*; on S, vanishes on S. Since
(A =XNu=0, z¢090,

and A is not an eigenvalue of the Dirichlet problem in B, v = 0 on B. Then from the
equation above it follows that u =0 on R*\ O.

If i is continuous, the proof can be completed in a couple of lines using the potential
theory. Indeed, u is continuous in R® in this case. Thus u satisfies the Helmholtz equation
and the homogeneous Dirichlet boundary condition in O. Since A is not an eigenvalue, it
follows that u = 0 in O, i.e., u = 0 in R®. The latter contradicts the fact that the jump
of the normal derivative of u on 00 is equal to —4mp # 0.

If u € Ly(00), then we approximate u in Ly (00O) by smooth functions p,. Consider

[ s, e w (©)
Up = T He\Y ;T e R
80 |=’U - y| Y

If we restrict u,, to 0O, then operator (6) becomes a pseudo-differential operator on 0O of
order —1, and therefore u,|go has a limit in H/?(00) as n — oo (as well as in H'(90)).
Functions u,, satisfy the Helmholtz equation outside of 0O, and they satisfy the radiation
conditions. Thus the convergence of u,|so and standard a priori estimates in H! for the

solutions of the Helmholtz equation imply that functions u, converge in H'(Q) and in
H} (R*\O). Obviously, they converge to v = 0 in H}_(R*\©). Thus

Unloo — 0 in HY2(00) as n — oo.

Hence u,, converge in H'(O) to a solution of the homogeneous Dirichlet problem. Since
A is not an eigenvalue of the Dirichlet problem in O, this implies that u, — 0 in H*(O).

Since u, is smooth, the jump on 0O of the normal derivative of the potential wu,
defined by (6) is equal to —4mu,, # 0. On the other hand, the normal derivatives of weak
(in H') solutions of the Helmholtz equation are well defined, and from the weak (in H*')
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convergence of u,, to zero it follows that this jump (which is equal to u,) tends to zero in
H=12(00). Since i, approximates u in Ly(00), it follows that y = 0. This contradicts
the assumption made in the first lines of the proof. Thus the density of the range of the
operator L is proved. Similar arguments are valid for £*.
O
Definition. Consider the near-field operator

Fyg = Fs()\) : LQ(S) — L2(8)7 Fsp = USC|3, (NS LQ(S),

where u is the solution of (1) with 4™ given by (3).

Note that formula (3) represents waves coming to S, while waves emitted from S
have the different sign in the exponent. Thus Fgy is not the scattered wave produced by
sources on S with the density ¢. However, u*|s = Fsp can be obtained (and measured)
as a scattered field on S produced by some waves emitted from §. Namely, the following
lemma holds (see [9]).

Lemma 2.2. Suppose that A > 0 is not an eigenvalue of the negative Dirichlet Laplacian
in either of the domains O or B. Then for each ¢ € Lo(S), one can construct a sequence
y € La(8S) of the source densities such that Fsp = lim,,_,ous¢|s, where the limit is taken
in the space Lo(S) and u:t is the solution of (1) with

ik|z—yl
inc( €

Vn(¥)dS,, ¥, € La(S), x€R%

u(x) =

s|$—y|

One can determine the source densities 1, without a priori knowledge of O except a value
of an € > 0 such that O is located inside of the ball |x| < 1/e.

Proof. Consider a bounded domain O that contains @ and such that dist(B, (5) >0

For example, one can take O = (R?\B.) {|z| < 1/¢}, where B. is the e-extension of B
and & > 0 is small enough. Without loss of generality, we can assume that the boundary
of O is infinitely smooth and A is not an eigenvalue of the negative Dirichlet Laplacian in

0.

From Lemma 2.1 it follows that the range of the operator

e_ik|m_y|

(Lo)(z) = (y)dS,, €00, ¢ LyS),

T 0%
s lz—yl
is dense in H*2(80). Then the same is true for L. Hence for every ¢ € Lo(S), there
exists a sequence v, € Ly(S) such that Lip, — Lo in H32(00). Below we consider
functions Ewn, Cgp, L), Lo defined by the corresponding integrals for all z € R3. The

standard a priory estimate (e.g., [10]) for the solution u = L1, — L of the Helmholtz
equation in O implies that

||Z@/Jn - ZSOHHz(é) < C()‘)”E@Z}n - ESOHH?’/?(aﬁ) —+0 as n— oo,
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Since O C (5, we have that
Lo — anHH?’/Q(BO) —0 as n— oo

and B
Lo — L] m20) =0 as n — oo.

The statement of the lemma is an immediate consequence of the last two relations and a
priory estimates (e.g., [10]) for the solutions of the problem (1) (with radiation condition
at infinity).

m

Theorem 2.3. Consider two real-valued bounded potentials ny and no and their backscat-
tering far-field operators Fs;,i = 1,2. If X = Ao s not a Dirichlet eigenvalue for the
domain S, then the equality Fs10 = Fsap, A= Ao, on a dense set {¢} in Lo(S) implies
that |[ny — na||L= = 0.

The following lemma will be needed to prove the theorem above.

Denote by Fy()), F°**(\) Dirichlet-to-Neumann maps for the Helmholtz equation in
the interior and exterior of O, respectively. The solutions are assumed to satisfy the
radiation condition when F°“ is defined. Let F}, be the Dirichlet-to-Neumann map for
the equation (A + An)u = 0 in O. The normal vector in all the cases is assumed to
be directed outside of O. Each of the Dirichlet-to-Neumann operators introduced above
is a pseudo-differential operator of the first order and can be considered as a bounded
operator from a Sobolev space H*(00) into H*~*(90), s € R.

Lemma 2.4. The near field operator Fs has the following representation:
1
Fs = —L°(Fo - FoY(F, — F*) ™Y (F, — F,)L. (7)
™

Remark. These formulas are direct analogues of the formulas for the scattering
amplitude in the problem of scattering of the plane waves (see [8, Th.2.3] in the case of
the transmission problem). The only difference is that a plane wave is defined by the
direction w of the incident wave, and S is replaced by the unit sphere S? = {w : |w| = 1}
in this case. The operators £, L* are also slightly different in the case of the plane waves.
In particular,

L : Ly(S?) — Ly(00), Lop(z) = /52 e*rT o (w)dS,. (8)

Proof. Let us prove (7). Note that u™¢|s0 = L. We will look for u*® outside of O
in the form of the potential u* = £*u with an unknown density pu, i.e.,

eik‘w_yl
wi— | W(1)dS,, @ € ROO. (9)
90 | =yl



More over, function g must be chosen in such a way that «*¢ allows an extension in O
that satisfies (1).

Every solutions of the Schrodinger equation with a bounded potential belongs to
H?(QO') for any bounded domain (’. Therefore functions u*, u™* and their normal deriva-
tives are well defined on 0O. We reduce the scattering problem (1),(2) to the following
equation on 0O for unknown u:

Fn<usc|80 +Umc|8(9) — Fout<usc|ao> +F0(Umc’60)- (10)

This equation follows from the fact that u* + u™ satisfies (1) in O, and u*®, u'™ are
solutions of the Helmholtz equation in R*\O and O, respectively.

We note that operator Fj, is symmetric, and the imaginary part of the quadratic form
of operator F°“' coincides with the total cross section, and therefore is positive (see [8,
Lemma 2.1]). Thus, operator F,, — F°“ is invertible, and equation (10) implies that

u*loo = (Fn — F™) 7 (Fo = Fo)(u"™a0) = (Fo — F™) " (Fo — Fu) Lo, (11)

From (9) it follows that = +=(Fy — F°"*)(u*|90)). It remains only to substitute (11)

for u*® in the latter equation for p and note that Fgp = u*|s = L*p.
m

Proof of Theorem 2.3. We will reduce the statement of the theorem to the Gelfand-
Calderon problem, which is solved in [11, Th.1] when d = 3 and in [2, Th.2.1] when d = 2.

We preserve notations £y, F°% for the Dirichlet-to-Neumann maps for the Helmholtz
equation in the interior and exterior of O, respectively, and we denote by F,,, F;,, the
Dirichlet-to-Neumann maps for the Schrodinger equations in O with potentials An; and
Ang, respectively.

Operators

(Fy — FOY(F,, — F*)Y"YFy — F,,) : Ly(00) = Ly(00), i=1,2, (12)

are bounded (and also compact). Indeed, each of the Dirichlet-to-Neumann operators
introduced above is a pseudo-differential operator of the first order (non-smoothness of
the potential does not play any role here, since the support of the potential is strictly inside
of the domain). Their full symbols were calculated in [7, Sect.3]. From this calculation it
follows that operator Fy — F°“! has order one, operator (F,, — F°“)~! has order —1, and
a couple of the first terms of the full symbol of operator Fy — F),, vanish, i.e., the latter
operator is compact. Thus (12) is compact.

Assume that data (4) for ny and ns coincide on a dense set {¢} in Ly(S). Then from
Lemma 2.1 it follows that operators (12) are equal. The first factor from the left in (12)
is an invertible operator (see the justification of the transition from (10) to (11)). Hence,
the equality of operators in (12) implies that

(Fm - FOUt)_l(FO - Fnl) = (Fm - FOUt)_l(FO - an)



as operators in Ly(00). Adding and subtracting F°* in the right factors, we get

(Fn1 - Fout)fl(FO o Fout) — (an o Fout)fl(FO - Fout)

as operators in Ly(00). Hence, operators

(Fp, — FO"Y7L (Fy, — FOY™ HH(00) — Ly(00),

are equal, and therefore,

F,, — Fo" F,, — F: Ly(00) — H™(80)

are equal. Thus

FmQO:FmQO

for every ¢ € Ly(00).
Now uniqueness follows from [2],[1] if d = 2 and [11] if d = 3.
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