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ABSTRACT 
Our recently published papers reporting results of Direct 

Numerical Simulation (DNS) of forced convection flows in 
porous media suggest that in a porous medium the size of 
turbulent structures is restricted by the pore scale. Since the 
turbulent kinetic energy is predominantly contained within large 
eddies, this suggests that turbulent flow in a porous medium may 
carry less energy that its counterpart in a clear fluid domain.  

We use this insight to develop a practical model of turbulent 
flow in composite porous/fluid domains. In such domains, most 
of the flow is expected to occur in the clear fluid region; 
therefore, in most cases the flow in the porous region either 
remains laminar or starts its transition to turbulence even if the 
flow in the clear fluid region is fully turbulent. This conclusion 
is confirmed by comparing appropriate Reynolds numbers with 
their critical values. Therefore, for most cases, using the 
Forchheimer term in the momentum equation and the thermal 
dispersion term in the energy equation may result in a 
sufficiently good model for the porous region. However, what 
may really affect turbulent convection in composite domains is 
the roughness of the porous/fluid interface. If particles or fibers 
that constitute the porous medium (and the pores) are relatively 
large, the impact of the roughness on convection heat transfer in 
composite porous/fluid domains may be much more significant 
than the impact of possible turbulence in the porous region. We 
use the above considerations to develop a practical model of 
turbulent flow in a composite porous/fluid domain, 
concentrating on the effect of interface roughness on turbulence. 

 
INTRODUCTION 

Turbulence in porous media is an extensively studied subject, 
please see a recently published book on convection in porous 
media [1]. The book by de Lemos [2] specifically addresses 
convection in porous media. This topic was also addressed in 
many review chapters [3-6]. The importance of this topic is 
related to its relevance to many applications, such as forestry 
(forest fires), chemical reactor design, agricultural engineering, 
catalytic converters, bio-filters, crude oil extraction, 
biomechanics of porous organs, and many others [7]. 

The first physically-based turbulence model was developed 
in a classical paper by Antohe and Lage [8]. This paper started 
the field of turbulence modeling in porous media. Currently, 
there are two approaches to modeling turbulence in porous 

media. According to the first approach, expressed in [9, 10], true 
macroscopic turbulence in a dense porous medium is impossible 
because of the limitation on the size of turbulent eddies imposed 
by the pore scale. This limitation prevents the transfer of 
turbulent kinetic energy from larger to smaller turbulent eddies. 
For this reason, one can only talk about turbulence within the 
pores. 

The second approach simulates macroscopic turbulence. 
Representative models of this type are those developed in [8, 
11-13]. Turbulence models of this type (macroscopic models) 
have also been used to simulate flow in a porous matrix 
represented by a periodic array of square cylinders [14, 15]. A 
similar approach was developed in [16], where a large-scale 
model of turbulence in porous media was developed utilizing 
the renormalization group method. 

It should also be noted that a large number of turbulence 
models combine the above two approaches, simulating both 
pore-scale turbulence and large-scale turbulence. Representative 
models are those developed by M. de Lemos and colleagues [17-
34]. 

We recently investigated whether macroscopic turbulence is 
possible in a porous medium by conducting a series of DNS 
studies of turbulent flow in a specially designed porous matrix 
[35-37]. The advantage of our approach is that DNS avoids any 
kind of turbulence modeling. The results that we obtained 
suggest that the size of turbulent structures is restricted by the 
pore scale. We used three methods to prove this result, utilizing 
three independent techniques of analyzing turbulent length 
scales (two-point correlations, integral length scales, and pre-
multiplied energy spectra). Two different DNS methods, which 
complement and verify each other, were utilized in [35-37]: (i) 
the finite volume method (FVM); this methods directly solves 
the Navier-Stokes equations and (ii) the Lattice-Boltzmann 
method (LBM); this method indirectly corresponds to solving 
the Navier-Stokes equations. Both DNS methods have second 
order accuracy in space and time. 

We also investigated what implications our findings have on 
turbulence modeling. Our preliminary results suggest that the 
effect of turbulence in porous media can be approximately 
modeled by the Forchheimer term [38]. This is in line with the 
model proposed by Masuoka and Takatsu [39]. 

There is also considerable interest in turbulent flows in 
composite porous/fluid domains. In such domains, most of the 
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flow is expected to occur in the clear fluid region. In most cases 
the flow in the porous region either remains laminar or starts its 
transition to turbulence even if the flow in the clear fluid region 
is fully turbulent. Based on our DNS results, we propose that 
using the Brinkman-Forchheimer equation for modeling flow in 
a porous region is an acceptable approximation. Thus our 
approach is to use the turbulent model in the clear fluid region 
and the Brinkman-Forchheimer model in the porous region, and 
then match the solutions at the porous/fluid interface. 

We developed this approach in [40-47]. Our purpose here is 
to review this approach, concentrating on modeling the effect of 
roughness of the porous/fluid interface. If particles or fibers that 
constitute the porous medium are large, the impact of interface 
roughness on convection heat transfer in composite porous/fluid 
domains may be more significant than the impact of possible 
turbulence in the porous region. 

 

NUMERICAL METHOD 
In Fig. 1 we show a composite circular duct whose central 

portion, 0 r R  , is occupied by a clear fluid and peripheral 
potion, R r R   , is occupied by an isotropic fluid-saturated 
porous medium of uniform porosity. The wall of the duct is 
subject to either uniform heat flux or uniform wall temperature. 
We divided the flow domain into two regions. The first region is 
the central region, where the flow is turbulent. The second region 
is the peripheral porous region, where the flow is assumed to be 
laminar or, even if it is turbulent, to be adequately simulated by 
the Brinkman-Forchheimer equation. We assume 
hydrodynamically and thermally fully developed flow. We 
closely follow the approach that we developed in [42]. 

 

 
Figure 1  Schematic diagram of the problem. 
 

Modeling Momentum Transport in the Clear Fluid Region 
Turbulent flow in the clear fluid region can be computed by 

using the following equation [48]: 

1 1
1 T

du y
dy R 

 

  

 
    

     (1) 

Here u  is the dimensionless velocity, /u u ; u is the 
longitudinal velocity; u  is the friction velocity at the 

porous/fluid interface, /i f  ; i  is the shear stress at the 

porous/fluid interface (at r R ); f  is the fluid density; R  
is the dimensionless radius of the duct, / fu R  ; R is the duct 
radius; f  is the fluid kinematic viscosity; y  is the 
dimensionless distance from the porous/fluid interface towards 
the duct center, R r   ; r   is the dimensionless radial 
coordinate, / fu r  ; r is the radial coordinate; T

  is the 
dimensionless eddy viscosity, /T f  ; f  is the fluid kinematic 
viscosity; and T  is the eddy diffusivity of momentum. 

We followed the proposal by Durbin et al. [49] and used a 
combination of k-l (in the vicinity of the interface) and k   (in 
the rest of the domain) models to account for the roughness of 
the interface. 

In the central part of the clear fluid region, matchy y R     
( matchy  is defined later on), we utilized the following k   
model  

 
2

1 1 0T T
u kr
r r r r

  
 

   
   

     
           

  (2) 

where 
2 4/ , /fk k u u          (3) 

We used the following equation to model the dissipation rate 
equation of turbulence kinetic energy: 

 22

1 2
1 1 0T

T
uC C r

k r k r r r 


  


   
 

     

     
             

 

        (4) 

We found the dimensionless eddy viscosity from the 
following equation: 

 2

T

k
C






       (5) 

We used the following values of modeling constants: 

1 21.44, 1.92, 1.3, 0.09C C C         (6) 

In the region close to the fluid/porous interface (on the fluid 
side of the interface), we used the following k-l model: 

 3/2
k

l





        (7) 

where 

u
l l 
  
         (8) 

Eq. (7) replaces Eq. (4) for 0 matchy y   , and Eq. (5) is 
replaced with the following equation: 
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 1/2

T C k l           (9) 

where 

u
l l 
  
         (10) 

We used the Van Driest form of length scales: 

 /1 yR A
l effl C y e 


        (11) 

and 

 /1 yR A
l effl C y e 


        (12) 

where 

eff eff
f

u
y y 


         (13) 

and 

 1/ 21/2 /y eff f effR y k y k        (14) 

The parameter effy  in Eqs. (11)-(14) is the modified 
dimensionless distance from the interface: 

0effy y y          (15) 

Here 0y  is the dimensionless hydrodynamic roughness. We 
related this parameter to the dimensionless equivalent sand-grain 
roughness parameter, sk   ( /s fk u  ), by the equation given in 
[50]: 

0 0y   if 4.535sk        (16a) 

 0 0.9 exp / 6s s sy k k k         if 4.535sk    (16b) 

The average diameter of a solid particle that constitutes the 
porous medium was estimated by using the Carman-Kozeny 
equation [1]: 

  1/2

3/2

180 1
p

K
d





      (17) 

where K is the permeability and   is the porosity. 
Assuming that the equivalent sand-grain roughness 

parameter, sk , can be estimated as / 2pd , the following 

equation for sk   is obtained: 

   1/2 1/ 2
3/2 3/ 2

180 1 6.70 1
Da

2s s
u u

k k K R   
   

  
     

        (18) 

Here Da is the Darcy number, 2/K R . 
The modeling constants in the k-l model are 

 0 02.5, 5.0, 62.5, max 1, 1 / 90l sC A A A A k   
        

        (19) 

The dimensionless distance from the interface where the k-l 
model must be switched to k   model is [49]: 

   1/2
log 20 /matchy A k

       (20) 

The k and  equations are solved subject to the following 
boundary conditions: 

   210 min 1, / 90sk k
C

     
    (21) 

Here sk   is given by equation (18). In the center of the pipe 
the following conditions are utilized: 

/ 0k r     and / 0r         (22) 

In the matching point k  and    must be continuous. 
 
Modeling Momentum Transport in the Porous Region 

We used the Brinkman-Forchheimer equation [1] to model 
flow in the porous region. We used the same dimensionless 
variables as in the clear fluid region: 

 
 2

2 1/2

2 1 0
DaDa

eff F

f

cd du ur u
R r dr dr RR




 
 

    

   
          

 

        (23) 

Here Fc  is the Forchheimer coefficient, f  is the fluid 
dynamic viscosity, and eff  is the effective dynamic viscosity in 
the porous region. 

 
Modeling Thermal Energy Transport in the Clear Fluid 
Region 

We used a model which is based on a constant turbulent 
Prandtl number approximation. For the uniform wall heat flux 
case, the energy equation can be presented as: 

 2

1 Pr 11
PrT

t m

d d ur
r dr dr UR




 
   

  
    

   
  (24) 

Here Pr is the Prandtl number, /f fa ; fa  is the fluid 
thermal diffusivity; Prt  is the turbulent Prandtl number,  

/T Ta ; and Ta  is the eddy diffusivity of heat. The mean fluid 
velocity in the duct, mU  , is defined as: 

 2
0

2 R

mU u r dr
R



   


       (25) 

In Eq. (24),   is the dimensionless temperature for the 
uniform heat flux case, which is defined as: 
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    1/ Nu /W m WT T T T        (26) 

Here T is the temperature, WT  is the wall temperature (at 
r R  ), mT  is the mean temperature in the duct: 

2
0

2 R

m
m

T uTrdr
R U

        (27) 

where Nu is the Nusselt number: 

 Nu 2 / 2 /f f W mh R k Rq k T T         (28) 

and h is the heat transfer coefficient. 
For the uniform wall temperature case the thermal energy 

equation is: 

 2

1 Pr 11 Nu
PrT

t m

d d ur
r dr dr UR

 


 
   

  
    

   
  (29) 

where 

   /W m WT T T T         (30) 

is the dimensionless temperature for the uniform wall 
temperature case. 
 
Modeling Thermal Energy Transport in the Porous Region 

For the uniform wall heat flux case, we used the following 
form the thermal energy equation in the porous region: 

 2

1 1Pr Rem
p

f m

kd d uC u r
kr dr dr UR

 
 

   

  
        

  

        (31) 

Here C is the dimensionless experimental constant in the 
correlation for thermal dispersion; fk  is the fluid thermal 
conductivity; mk  is the stagnant thermal conductivity of the 
porous medium (when 0u  ); Re /p p fu d   is the Reynolds 
number based on the average particle diameter, pd , and the 
friction velocity at the porous/fluid interface, u . 

For the uniform wall temperature case we used the following 
form of the thermal energy equation for the porous region: 

 2

1 1Pr Re Num
p

f m

kd d uC u r
kr dr dr UR

 


 
   

  
        

  (32) 

 
Compatibility Condition 

After we determined the velocity and temperature 
distributions, the Nusselt number was found utilizing a 
compatibility condition [51]. For the uniform wall heat flux case 
the compatibility condition is 

 2

0

Nu / 2
R

mU R u r dr


    
 

  
  
     (33) 

For the uniform wall temperature case the compatibility 
condition takes the following form: 

Nu 2 m

r Rf

k dR
k dr


 






       (34) 

 
Boundary Conditions 

At the wall of the pipe, r R  , we used the no-slip 
condition: 

0u         (35) 

The definitions of the dimensionless temperatures require 
that for the uniform wall heat flux case at r R  : 

0          (36) 

and for the uniform wall temperature case at r R  : 

0          (37) 

From the definition of u  and r   we obtained that 

0

1
1 Tr R r R

u
r  

   



 
  


 

 
    (38) 

The jump in the shear stress condition suggested in [52, 53] 
leads to the following equation: 

1/ 2
0 0 Da

eff
i

f T r R r Rr R

u u u
r r R 

 
      

 


  
   

      
    

 

        (39) 

Here iu  is the dimensionless filtration velocity at the 
interface, and  is the dimensionless adjustable coefficient [35, 
36]. 

The substitution of Eq. (38) into Eq. (39) gives the following 
equation: 

1/2
0

/ 1
Da1 1

eff f
i

T TRR R

u u
r R 

  
  




  


     
   
 

   

        (40) 

In addition to Eq. (40), we imposed the continuity of the 
filtration velocity, temperature, and heat flux at the interface, 
r R  : 

0 0 ir R r R
u u u

    

  

   
      (41) 

For the uniform wall heat flux case we required that at the 
interface: 
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0 0r R r R 
       

 , 
0 0

eff

r R r Rf

k
kr r 

 
   

 
   

 


 
 

        (42) 

For the uniform wall temperature case we required that at the 
interface: 

0 0r R r R 
       

 , 
0 0

eff

r R r Rf

k
kr r 

 
   

 
   

 


 
 

        (43) 

In addition, for the uniform wall heat flux case we required 
that in the center of the duct, 0r  : 

0
r







       (44) 

Also, for the uniform wall temperature case we required that 
at 0r  : 

0
r







       (45) 

RESULTS AND DISCUSSION 
We discretized the governing equations by using a finite-

difference method. The obtained linear equations with 
tridiagonal matrices were solved by the Gauss-Siedel iterations. 
We used relaxation to improve convergence. We used the 
following parameter values: 0.55Fc  , C = 0.1, / 1m fk k  , Pr 

= 1, 1tPr  , 310R  , 0  , / 1eff f   , 0.5  ,  
0.95  . 

In Fig. 2 we show velocity distributions in the duct computed 
for -1Da 10  and -3Da 10 . We present results for rough or 
hydraulically smooth interface. For a large Darcy number  
( -110 ) the velocity in the clear fluid region for the case of rough 
interface is significantly smaller than for the smooth interface. 
This is explained by larger eddy viscosity in the clear fluid region 
for the case of a rough interface. For a smaller Darcy number  
( -310 ) the difference between the velocity profiles for the 
situations with rough and smooth interface is much smaller. This 
is because for a smaller Darcy number the interface is less rough 
(the equivalent sand-grain roughness of the interface is 
proportional to the square root of the Darcy number, see Eq. 
(18)). 

 

 
(a) 

 
(b) 

 
Figure 2  Distributions of the dimensionless velocity for 

various Darcy numbers, for the situations with smooth and 
rough interface. (a) -1Da 10 , (b) -3Da 10 . 

 
In Fig. 3 we displayed the dimensionless temperature 

distributions for both uniform wall heat flux and uniform wall 
temperature cases. We used -1Da 10  and -3Da 10  and 
presented the results for rough or hydraulically smooth interface. 
The results for the uniform wall heat flux and temperature are 
significantly different because the dimensionless temperature for 
these two cases is defined differently, by Eqs. (26) and (30), 
respectively. 
 

 

13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics



6 
 

 
(a) 

 
(b) 

 
Figure 3  Distributions of the dimensionless temperature 

for the situations with a constant wall heat flux and a constant 
wall temperature, for smooth and rough interface, for various 
Darcy numbers. (a) -1Da 10 , (b) -3Da 10 . 

 
In Fig. 4 we show the effect of the Darcy number on the 

Nusselt number. Both situations (with a uniform wall heat flux 
and uniform wall temperature) are simulated. The rough 
interface leads to a stronger turbulence and larger Nusselt 
number. The difference between Nusselt number values for the 
rough and smooth interface cases becomes larger for larger 
values of the Darcy number. This is explained by the increase of 
the equivalent sand-grain roughness of the interface with the 
increase of the Darcy number. 

 

 
 
Figure 4  The effect of the Darcy number on the Nusselt 

number for the situations with a constant wall heat flux and a 
constant wall temperature, for smooth and rough interface. 

 

CONCLUSIONS 
We reviewed approaches of modeling turbulence in 

composite porous/fluid domains. Based on our recently obtained 
DNS results, due to the limitation of the size of turbulent eddies 
by the size of the pore, it is possible to model momentum 
transport in the porous region by the Brinkman-Forchheimer 
equation. The problem of modeling convection flow in a 
porous/fluid domain is then reduced to matching solutions of the 
Brinkman-Forchheimer equation in the porous region to the 
solution of an appropriate turbulence model at the interface 
between porous and fluid regions. 
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