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PERIODIC-COEFFICIENT DAMPING ESTIMATES,
AND STABILITY OF LARGE-AMPLITUDE ROLL WAVES
IN INCLINED THIN FILM FLOW*
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Abstract. A technical obstruction preventing the conclusion of nonlinear stability of large-
Froude number roll waves of the St. Venant equations for inclined thin film flow is the “slope condi-
tion” of Johnson, Noble, and Zumbrun, used to obtain pointwise symmetrizability of the linearized
equations and thereby high-frequency resolvent bounds and a crucial H* nonlinear damping estimate.
Numerically, this condition is seen to hold for Froude numbers 2 < F' < 3.5 but to fail for 3.5  F.
As hydraulic engineering applications typically involve Froude number 2.5 5 F' T 20, this issue is
indeed relevant to practical considerations. Here, we show that the pointwise slope condition can
be replaced by an averaged version which holds always, thereby completing the nonlinear theory in
the large-F' case. The analysis has potentially larger interest as an extension to the periodic case of
a type of weighted “Kawashima-type” damping estimate introduced in the asymptotically constant
coefficient case for the study of stability of large-amplitude viscous shock waves.
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1. Introduction. The St. Venant equations of inclined thin film flow, in nondi-
mensional Lagrangian form, are

T — Oyu =0,
(1.1) il 2 -2
Oyu + Oy 272 ) = 1—71u” +vd: (7 "0zu),

where 7 = 1/h is the reciprocal of fluid height h, u is tangential fluid velocity averaged
with respect to height, x is a Lagrangian marker, F is a Froude number given by the
ratio between a chosen reference speed of the fluid and speed of gravity waves, and
v = RZ!, with R, the Reynolds number of the fluid. The terms 1 and Tu? on the
right-hand side of the second equation model, respectively, gravitational force, and
turbulent friction along the bottom. Roughly speaking, F' measures inclination, with
F = 0 corresponding to horizontal and F — oo to vertical inclination of the plane.

An interesting and much-studied phenomenon in thin film flow is the appearance
of roll waves, or spatially periodic traveling waves corresponding to solutions

(1.2) (ryu)(z,t) = (7,0)(z — ct)

of (1.1). These are well-known hydrodynamic instabilities, arising for (1.1) in the
region F' > 2 for which constant solutions, corresponding to parallel flow, are unstable,
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with applications to landslides, river and spillway flow, and topography of sand dunes
and sea beds [BM04].

Nonlinear stability of roll waves themselves has been a long-standing open prob-
lem. However, this problem has recently been mostly solved in a series of works by the
authors together with Barker, Johnson, and Noble; see [JZN11, BJRZ11, BJN*10,
JNRZ14, BIN*15]. More precisely, it has been shown that, under a certain techni-
cal condition having to do with the slope of the traveling-wave profile (7, %), spectral
stability in the sense of Schneider [Sch98, Sch96, JZN11, INRZ14], implies linear and
nonlinear modulational stability with optimal rates of decay, and, moreover, asymp-
totic behavior is well-described by a system of second-order Whitham egquations ob-
tained by formal WKB expansion.

In turn, spectral stability has been characterized analytically in the weakly un-
stable limit F' — 2 and numerically for intermediate to large F' in terms of two simple
power-law descriptions, in the small- and large-F regimes, respectively, of the band of
periods X for which roll waves are spectrally stable, as functions of F' and discharge
rate ¢ (an invariant of the flow describing the flux of fluid through a given reference
point) [BJN*15]. That is, apart from the technical slope condition, there is at this
point a rather complete theory of spectral, linear, and nonlinear stability of roll wave
solutions of the St. Venant equations. However, up to now it was not clear whether
failure of the slope condition was a purely technical issue or might be an additional
mechanism for instability.

Precisely, this slope condition reads, in the Lagrangian formulation (1.1)—(1.2), as

(1.3) Wiy < F2,

where @ is the velocity component of traveling wave (1.2). It is seen numerically to
be satisfied for F 5 3.5 but to fail for F Z 3.5 [BIN*15]. For comparison, hydraulic
engineering applications typically involve Froude numbers 2.5 5 F < 20 [AeM91,
Bro69, Bro70]; hence (1.3) is a real physical restriction. From the mathematical
point of view, the distinction is between small-amplitude, slowly varying waves for
which (1.3) is evidently satisfied and large-amplitude, rapidly varying waves, such as
appear in the spectrally stable regime for small and large F', respectively [BIN*15].

The role of condition (1.3) in the stability analysis is to obtain pointwise sym-
metrizability of the linearized equations and thereby high-frequency resolvent bounds
and a crucial nonlinear damping estimate used to control higher derivatives in a non-
linear iteration scheme. The purpose of the present brief note is to show, by a refined
version of the energy estimates of [JZN11, BJRZ11], that the pointwise condition (1.3)
can be replaced by an averaged version that is always satisfied, while still retaining
the high-frequency resolvent and nonlinear damping estimates needed for the nonlin-
ear analysis of [JZN11, INRZ14], thus effectively completing the nonlinear stability
theory.

The remainder of this paper is devoted to establishing the requisite weighted en-
ergy estimates, first, in sections 2-3, in the simplest, linear time-evolution setting,
then, in sections 4.1 and 4.2, respectively, in the closely related high-frequency resol-
vent and nonlinear time-evolution settings. The estimates so derived may be seen to be
periodic-coefficient analogues of weighted “Kawashima-type” estimates derived in the
asymptotically constant coeflicient case for the study of stability of large-amplitude
viscous shock waves [Zum04, Zum07, GMWZ06], to our knowledge the first examples
of such estimates specialized to the periodic setting. We discuss this connection in
sections 5 and 6. Moreover, this seems to be the first instance of a proof of hypoco-
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ercive! decay where periodicity is used in a crucial way. We note, finally, the relation
between these weights and the “gauge functions” used for similar purposes in short-
time (i.e., well-posedness) dispersive theory [LP02, BGDDO06, Miel5], a connection
brought out further by our choice of notation in the proof. This indicates perhaps a
potential for wider applications of these ideas in the study of periodic wave trains.

2. Preliminary observations. Making the change of variables © — = — ¢t to
co-moving coordinates, we convert (1.1) to

T — CTg — Uy = 0,
(2.1) B ov—1_-2y a2 =5
u —ecugy + (2F°) 77 %) =1 —7u” +v(7 “ug)s,

and the traveling-wave solution to a stationary solution U(z,t) = (7(z,1),u(z,t)) =
(7(x),@(z)) convenient for stability analyis.
We note for later that the traveling-wave ODE becomes

(2.2) —CTp— iy =0, —cig+ (2F) 172, =1 —7a® + v(T 2itg)e,
yielding the key fact that
(23) [(T)ag = —cf(T)7e

is a perfect derivative for any function f(-), hence zero mean over one period. We
note also as in [JZN11] that ¢ # 0, else u = const and the equation for 7 reduces to
first order, and hence does not admit nontrivial periodic solutions. Linearizing about
U = (7, ) gives the linearized equations

Ty — €Ty — Uy =0,

2.4

24) ug — cug — (aT)y = v(’F_QuI)I — 2T — 2uTu,
where

(2.5) =7 3F? - u,).

With this notation, the slope condition of [JZN11] appears as 7°a > 0. We note
that, by (2.3), the mean over one period of g(7)a is positive for any positive g:

(2.6) (9(T)a) = (g(T)T°F %) > 0.

That is (any reasonable version of) the slope condition holds always in an averaged
sense.” An approximate asymptotic diagonalization in the large spectrum regime—
see [BIRZ11, BINt15], in particular [BINT15, Appendix A]—reveals that the sharp?
relevant averaged conditions is

&) 5 0.

‘We shall show in the rest of the paper that this averaged condition is in fact sufficient
for the nonlinear analysis of [JZN11, JNRZ14].

1The reader interested in placing Kawashima-type estimates in the more general context of
hypocoercive decay estimates is referred to [Vil09, Remark 17] and references in [Rod13, Appendix A],
especially [BZ11].

2 Here and elsewhere we use (h) to denote mean over one period of a function h.

3In the sense that there exist curves of spectrum for the operator L—defined below—that are
going to infinity and whose real parts converge to —(a72) /v.
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3. Linear damping estimate. We now introduce “gauge” functions ¢1, ¢s,
and ¢3 and define for U = (7, u) the energy

(31) £©) = [ (072 + boaud + darus),

where here and elsewhere the domain of integration is implicitly assumed to be the
real line R. Note, however, that all computations remain unchanged when replacing
the real line with a torus, a fact that turns out to be crucial when carrying out these
estimates at the spectral level. Moreover for the purpose of our stability analysis it
is sufficient to look for weights ¢1, &2, and ¢3 depending merely on the profile itself
and in particular independent of both the time variable ¢ and—even when going back
to the nonlinear level—of the solution U under consideration.
A brief computation yields that solutions U of (2.4) satisty
(3:2)

%E(U(t)) = / ( = (%(¢1)1 =+ 014153) T:E == (fiquz) uiz =k (ﬁbl — gy — 1;24153) T:rux:n)

+O((lellaz + I7lle) (lullar + I7]lz2))-
The original gaugeless strategy that works when « is positive may be achieved by
choosing ¢1 = 1, ¢2 = ¢1 /v, and 0 < ¢35 = const < 1. The possibility of choosing
¢2 = @1/ while keeping both ¢ and ¢2 positive is a direct manifestation of the fact
that in this case the first-order part of system (2.4) is symmetrizable. For the general
case, of interest here, we instead take

(& af? at?
(33) Coet (- —0,  p0)>0,
(3.4) qf)l—aqbg—f—z;qf)gzo, 0 < ¢ = const < 1,

so that ¢3 is chosen to kill the indefinite cross-term, and the fact that ¢; is not
constant and thus does not commute with the generator of system (2.4) is used to

average and cancel the “bad” oscillating part of “sz through the arising nontrivial
commutator.
With these choices, we obtain after another brief computation,

d - rfa) ;0P\ 2 (w2
GEU®) == [ [(52201 - 2 00) 72 + (H5n) 2]
+O((ullzs + iz )l + 122))
< —mi(lugalZa + relZ2) + Ca(lullsa + lrllrn) Qs + )
]/2”’&”1/2

for some positive 7; and C1, whence, by interpolation inequality ||u g1 < [|u| ;> 2
and the fact that £(U) ~ (||uz||%2 + ||72]|%2) modulo ||7|2.,

(3.5)

d
(3.6) 7EW®) < —ne(U() + CIlU@®)|I72
for some positive i and C, a standard linear damping estimate.
Note that in the step E(U) ~ (||uz||2z + ||7z||22) modulo L?, we have used in a

critical way that
/ : (i“‘ _ WZ))
v v /)’

hence ¢ and 1/¢;, remains bounded, a consequence of periodicity plus zero mean.
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To derive a first corollary from the key estimate (3.6), one may combine it with
the standard L? bound

d
& [ (72 +32) = = [z + O((ulln + Irllea)(luls + rl22)

to obtain the following lemma.

LEMMA 3.1. There ezist positive @ and C such that any U solving (2.4) satisfies
for any t >0

t
U@l < Ce?HUO) ]| + C/O e U (s)||z2ds.

4. Applications. Lemma 3.1 by itself is not of much direct practical use. How-
ever, as we will now show, we can readily adapt its proof, and especially estimate (3.6),
to obtain various useful forms of high-frequency damping estimates. The reader unfa-
miliar with these considerations may benefit from first having a look at [Rod13, Ap-
pendix A] for a terse introduction to this approach. Indeed, what follows stems
directly from the mere introduction in the classical strategy described there of gauges
leading to (3.6). See also [Zum04, ZumOT] for related estimates in the shock wave
case.

4.1. High-frequency resolvent bound. An important part of the proofs in
[JZN11, JNRZ14] is dedicated to estimates of semigroups generated by linearization
around a given wave, to be used in an integral formulation of the original nonlinear
systems. These estimates are deduced from spectral considerations and the noncritical
part of the linearized evolution is directly controlled by an abstract spectral gap
argument that only requires uniform bounds on certain resolvents. Our claim is that
a spectral version of Lemma 3.1 does provide these uniform bounds.

To be more specific let L denote the operator generating the linearized evolu-
tion around U, that is, such that system (2.4) reads U; — LU. The operator L is
a differential operator with periodic coefficients but acting on functions defined on
the full line. We do not apply directly spectral considerations to L but rather to its
operator-valued Bloch symbols L¢, associated with the Floquet-Bloch transform—
see [JNRZ14, Rod13], for instance. Explicitly, if Z denotes the fundamental period
of U, for any Floquet exponent ¢ in the Brillouin zone [~ /E, 7 /E), the operator L
acts on functions of period E by L¢ := e~ % Le''.

The operator 9, itself has Bloch symbols 8, + i£. As a result, when dealing
with Lg, the (equivalent) norm of interest on Hy,.(0,E) is ||flln; = O reo l(8z +

i)k f I|izw,3))1/ 2, Consider now the resolvent equation
(4.1) (A=Lg)U = F.

Letting (-, -) denote complex inner product, we find by computations essentially iden-
tical to those in section 3, substituting AU for U; and 8, + i€ for 8;, defining ¢; as in
(3.3)(3.4), and

Ee(U) = 5(61(0z +i8)7, (8x +i&)T) + 5(¢2(0s +i&)u, (O +i6)u) +R{dsT, (O +if)u),
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that
(42)
2R(N) & (U) = RRAE(D)
= R((¢1(0z + i&)7, (O + 1£)(AT)) + (#2(0z + i€)u, (Oz +i&)(Au))

+ (g7, (B + i) (M) + (b3(Bs + &), Ar))
== [(5602+ 0600 + €17 — [ (a2)|@s + il

+ /(@1 —ag + H¢3)R (M (0 + i£)2u)

+0((lullzz + 7l )l + i7lz2)) + O Ly 1l )
< —1&(U) + C(IU 3= + |IFI%;)

for some positive 7 and C' uniform with respect to A and &.
Combining (4.2) with the easy estimate

WUIZ2 = o7 UMD < CIATH (U1 Z, + IFIIZ2),

T
A
for some C, we obtain for R\ > —n/4 and |)\| sufficiently large the estimate
1Vl < CIFIE:

for some uniform C. Incidentally, since L¢ has compact resolvents, hence a discrete
spectrum composed entirely of eigenvalues, the above estimate also implies that such
A do not belong to the spectrum of Le.

More generally, by adapting the previous computations to higher-order estimates,
along the lines of the method expounded in the next subsection, one proves the fol-
lowing result required in the analysis of [JZN11, JNRZ14].

ProprosiTION 4.1 (resolvent bounds). For any positive integer s, there exist
posttive 5, C, and R such that if A € C is such that |\| > R and R(\) > —n, then,

for any £ € [-w/E,n/E), we have
Agom ol and (- Lo Mmm < C.

This offers a direct replacement for [JZN11, Appendix B] without assuming any
condition on the background wave U.

4.2. Nonlinear damping estimate. The other place where high-frequency es-
timates play a role in the arguments of [JZN11, JNRZ14] is in providing a nonlinear
slaving bound that shows that high-regularity norms are controlled by low-regularity
ones and enable us to close in regularity a nonlinear iteration. With the strategy
implemented above we are also able to reproduce this bound without assuming the
slope condition (1.3).

To be more specific let us first warn the reader that, because of the complex
spatio-temporal dynamics that take place around periodic waves, the appropriate
notion of stability is neither the standard one nor the simpler orbital stability but
rather space-modulated stability, as recalled in the next subsection. For this reason,
following [JZN11, JNRZ14], instead of directly estimating U — U, where U = (7,4) is
a solution of (2.1), we need to introduce (V, 1) such that

(4.3) V(z,t) = Uz — (=, 1),t) — U(z),
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intending to prove that V and the derivatives of ¢/ remain small provided that they
are sufficiently small initially. Note that even if % is initially zero, as assumed in
[JZN11], one may not achieve the latter goal while imposing ¥» = 0. In other words,
a modulation in space, encoded by a space-time-dependent phase, is in any case
needed in the argument. See the detailed discussions in [JNRZ14, Rod13]. Our
new unknowns, which have to be determined together in a nonlinear way, are then
V = (7,u) and %, and a specific educated choice, which we shall not detail here, is
then needed to obtain concrete equations for those. However, let us at least mention
that in constructions of [JZN11, JNRZ14] the phase shift 1’ is always slow so that
only high-regularity control on V' remains to be proved. This is what we provide now.

To do so in a precise but concise way, we set f(r) = (2F?)~1772, g(7) = v172,
and h(r,u) = 1 — 7u2. Then U in (4.3) solves (2.1) provided that V = (7,u) and v
satisfy

(44) (1 —4a)Vi =LV

— 'ﬁbr(U—i—V):z 3= (_"b:z: h(U—l—V)) + (1f.;,: g(r +T)('ﬁ+u)m)$

+ ; )
(9(7+7)—9(P)ue + (9(T+7)—9(T) —¢'(T)7)8 ] _

ren-fn-o). + -1
fE+7)—f@) @)/, h(U +V)—=h(U) - dh(U)(V))
Defining the modified energy

(45) EoV) i= [(1=a) (3172 + hoaud + burus)

repeating the argument of section 3, absorbing nonlinear terms into the linear ones,
and separating out 7 terms using Sobolev’s embeddings in Gagliardo—Nirenberg form
and Young’s inequality, we obtain, in analogy to (3.6), that solutions to (4.4) satisfy
the nonlinear estimate

d
ZE (V) < =n&(V) + C(IVIIZa + (1, ¥a)lln)

for some positive C' and 7, provided that we know in advance some sufficiently small
upper bound on ||(V, ¥, %s)|| 2 and thus are allowed to use Lipschitz bounds for
f, g, and h and their derivatives on a fixed neighborhood of U. Differentiating the
equations and performing the same estimate on 9%V, with higher-order interpolation
inequalities, we obtain likewise when k is a positive integer

d
(4.6) ESq.(@jV) < —nEy(0zV) + C(IIVIZ2 + (e, Yo)lIFe)
so long as |V||z and ||(¢x, ¥¢)|| g+ remain sufficiently small.

Applying Gronwall’s inequality and recalling that £,(95V) ~ ||05V||2. modulo
lower-order terms, with constants uniform with respect to 1, satisfying constraints

above, we obtain the following key estimate showing that higher Sobolev norms ||V|| g«
are slaved to ||V||z2 and ||(4¢,%4)| &, the final nonlinear estimate needed for the
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analysis of [JZN11, JNRZ14]. This provides a result analogous to [JNRZ14, Propo-
sition 2.5] and directly replacing [JZN11, Appendix A], without making any use of a
pointwise symmetrization, hence dropping the slope constraint (1.3).

PROPOSITION 4.2 (nonlinear damping). For any positive integer s there exist
positive constants 6, C, and € such that if V and ¢ solve (4.4) on [0,T] for some
T >0 and

sup ||(V: let: ?j}m)(f)"Ha S g,
te[0,T]

then, for all0 <t <T,
(47)

IV @©)liF. < Ce™®|[V(0)[IF. + C'/O e (IV(0)IZ2 + 1 (e, %2) (0) e ) o

4.3. Asymptotic stability. As discussed with great detail in [JNRZ14, Ap-
pendix D], uniform resolvent bounds of Proposition 4.1 and nonlinear slaving esti-
mates of Proposition 4.2 are the only structural conditions needed to apply almost
word-by-word the arguments of [JNRZ14] to a periodic wave of a given “parabolic”
system. Our foregoing analysis shows that system (1.1) satisfies those around any
given wave so that all conclusions of [JNRZ14] apply to any spectrally stable periodic
wave of (1.1). In particular, any spectrally stable roll wave is also nonlinearly stable,
provided that one uses definitions of stability adapted to periodic waves of parabolic
systems, as we now briefly recall.

A given periodic wave solution to (1.1) U, of period Z, is said to be diffusively
spectrally stable provided that the generator L of the linearized evolution and its Bloch
symbols L, as defined in subsection 4.1, satisfy the following conditions.

(D1) (L) c {A | RA < 0} U {0}.

(D2) There exists # > 0 such that for all £ € [—n/E,n/E) we have o(L¢) C
(0| RA < —0lE12).

(D3) A =0 is an eigenvalue of Ly with generalized eigenspace of dimension 2.

(H) With respect to the Floquet exponent £, derivatives at 0 of the two spectral

curves passing through zero are distinct.

From the pioneering work [Sch98, Sch96] to the recent [JNRZ14], conditions (D1)—
(D3) have slowly emerged as essentially sharp spectral stability conditions for periodic
waves of dissipative systems. Some form of (H) is also needed but the present form
could well be slightly relaxed in the near future; see a precise discussion in [Rod13,
Chapter 5]. All together, conditions (D1)—(D3) and (H) express that the spectrum of
L is as noncritical and nondegenerate insofar as allowed by the presence around U of
a two-dimensional family of periodic waves.

The spatial complexity of the periodic background U precludes any hope for a
simple notion of nonlinear stability. Over the years there has arisen the concrete
remedy implemented in (4.3), consisting of introducing a space-time-dependent phase
shift, though with various possible strategies in the prescription of separate—but
coupled—equations for V and . One obvious inspiration for introducing a phase in
the nonlinear study comes from classical analysis of simpler, asymptotically constant
patterns such as fronts, kinks, solitary waves, or shock waves, for which the relevant
notion of stability—orbital stability—already requires the introduction of a time-
dependent phase. As formalized in [JNRZ14] the corresponding notion of stability for

periodic waves—space-modulated stability—is obtained by measuring proximity of a
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function u from a function v in a given functional space X with
ox(u,v) = i%f luo¥ —v||lx + [|0-(¥ —1Id)||x

and not with ||u — v|]|x. At a given time this allows for a space-dependent phase
synchronization provided that the synchronization differs from the identity by a suf-
ficiently slow phase shift. The interested reader is again referred to [JNRZ14, Rod13]
for a detailed discussion of this concept. However, we stress again here that there
is no hope for a better notion of stability unless the original system exhibits some
nongeneric null conditions, denoted “phase uncoupling” in [JNRZ14].

With these definitions in hand, our analysis combined with the arguments of
[INRZ14] yield the following stability result.

THEOREM 4.3 (nonlinear stability). For any integer K, K > 4, a diffusively spec-
trally stable periodic wave of (1.1) is nonlinearly asymptotically stable from L'(R) N
HX(R) to HX(R) in a space-modulated sense.

More explicitly, if U satisfies (D1)—(D3) and (H) then, for any K > 4, there erist
positive € and C' such that any Uy such that Srinax (Uo,U) < € generates a global
solution U to (1.1) such that

VieRy, Ogx(U(,1),0)< C dpanpx(Uo,U)

and

i—roo

Sux(U(-1),0) =5 0.

The actual proof provides a much more precise statement including, for instance,

a bound of 5Lp({}(-,t), U) by C(1+ t)_%(l_llp) similar to those for LP-norms of a
heat kernel or of self-similar solutions of viscous Burgers’ equations. The reader is
referred to [INRZ14, Theorem 1.10] for such a precise statement. Once Theorem 4.3
is proved, the second part of the analysis [JNRZ14] may also be applied to (1.1).
This yields a very precise description of the large-time asymptotic behavior in terms
of a slow modulation in local parameters varying near constant parameters of the
original wave, and obeying some averaged system of partial differential equations, as
derived to various orders of precision in [Whi74, Ser05, NR13, JNRZ14]. For the
sake of conciseness, we do not state such a result here but rather refer the reader
to [INRZ14, Theorem 1.12] and accompanying discussions in [JNRZ14, Rod13].

5. The shock wave case. As a sample of the potential wider use of the strategy
expounded here, we next turn to the connection with viscous shock theory, showing
that the same linear damping estimate (3.6) may be obtained by essentially the same
argument in the asymptotically constant, viscous shock wave case, thus recovering
the bounds established in [Zum04, Zum07, GMWZ06] by related but slightly differ-
ent weighted Kawashima-type energy estimates.? The equations of isentropic gas
dynamics in Lagrangian coordinates, expressed in a comoving frame, are

Oy — Oy — Ozu =0,

(5.1) i
Oru — edpu+ Opp(T) = w02 (77 Opu),

where 7 is specific volume, u is velocity, and p is pressure.

4The weights used in [Zum04, Zum07, GMWZ06] are effectively ¢1 = ¢2 > ¢3, (¢1)e = —C(2L—
1(57))61, C > 1.
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Traveling waves (7, u)(z,t) = (7, @)(z) satisfy the profile ODE
—e%r— p(T) + ¢ =7 /7, q = const.

We note as in the periodic case that ¢ # 0, else @, p(7) = const, yielding 7 = const,
a trivial solution. Assume that the shock is noncharacteristic, i.e., —p/(74) # ¢%;
hence 71 are nondegenerate equilibria and the shock profile decays exponentially to
its endstates as © — +oo.

In the present case classical gaugeless estimates would require some quantity—
identified as a7 /v below—to be positive everywhere. Whereas in the periodic context
the analogous quantity was known to be positive on average, here we know rather
that the limits at plus and minus infinity of this key quantity are positive, hence the
strategy to introduce weights to replace in the dissipation the indefinite quantity with
a smooth positive function interpolating positive limits.

The linearized equations are

(5.2) T3 — €Ty — Ug = 0, U — Cuy — (aT)y = u(’F_luI)x,
where a := —p/(7) —VE—;. Define I (C‘?’F) to be a smooth interpolant between %"; ey
such that
aT aT
5.3 E—1(Z) = o
(53) T 1(%T) = (el

for some positive 6.
Taking as before £(U) := f(%qbl T2+ %égug + @37ug), we find again
(5.4)

%5([}@)) = / ( — (&(¢1)c + ads) 72 — (L2) u2, + (¢1 — oo — Lep3) Tx’um)
+ O((lzellerz + Nl llz) (el e + li7llz2))-

Taking £(¢1)s + (5 — I(25))é1 = 0, ¢1 — ady — L¢3 = 0, ¢1(0) > 0, and

v

0 < ¢ = constant < 1, we thus have

d i 2
FEOO) =~ [ [(1052)81 - £262) 72 + (86n) ]
O (Ul + il )l + l1rlz)
<~ (sl + i72ll22) + Ol + il el + i lc2)

(5.5)

for some positive C* and 7', and thereby the same linear damping estimate as in the
periodic-coeflicient case:

(5.6) %S(U(t)) < —nEU) +CIU@)IIZ

for some positive 5 and C.

As in the periodic case, a crucial point is that [ I{O‘T’Fz —1 (QT’FZ)), hence ¢; and
1/¢1, remains bounded, so that E(U) ~ (||uz||22 + ||7z/|%2) modulo ||7||2,, a property
following in this case by exponential decay, (5.3).

The above may be recognized as exponentially weighted Kawashima-type esti-
mates similar to those used in the study of viscous shock stability in [Zum04, Zum07,
GMWZ06], reflecting the growing analogy between the periodic and asymptotically
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constant cases. Actually, part of the recent activity of the authors, jointly with
others, focused on dynamics around periodic waves and culminating more or less
in [JNRZ14], was motivated by the desire to put its analysis on a par with classi-
cal ones on asymptotically constant waves. In this respect the present contribution
that provides analytical tools necessary to consider large-amplitude periodic waves of
hyperbolic-parabolic systems should be compared with [MZ04], where, motivated by
some clever “transverse” energy estimates of Goodman [Goo91] in the study of small-
amplitude stability, the treatment of large-amplitude viscous shock waves was first
carried out. In the reverse direction the conjugation lemma of [MZ05] on asymptot-
ically constant-coefficient coordinate transformations from asymptotically constant-
to constant-coeflicient systems may be thought of as analogous to the classical Flo-
quet lemma on periodic coordinate transformation of periodic- to constant-coefficient
systems of equations.

6. Discussion. At the linear level, for a general second-order hyperbolic-para-
bolic principal part U; + AU, = (BUyg)s, RB > 0, a Kawashima-type estimate is
based on an energy combining &(U) := (U,, A°U,) + (U, KU,), with the lower-order
(U, A%U), where A® is symmetric positive definite and K is skew symmetric, chosen,
where possible, so that

(6.1) R(A°B+KA) > 0.

When A and B are constant, as arising from linearization around a constant state, and
the original nonlinear system admits a strictly convex entropy, (6.1) may be reduced
to a simple-looking condition that is satisfied by most systems of physical interest;
see [Kaw83, LZ97]. As a result, for small-amplitude waves, a suitable choice of K
may typically be achieved globally with a constant K. However, for large-amplitude
shocks, this can be done typically only near ©+ — 400, where A is symmetrizable, and
one needs to recover coercivity in the near field |z| < C in a different way.

As exemplified here—for the first time in a periodic context, the key to the treat-
ment of large-amplitude waves, is to choose the “symmetrizer” Aj jointly with the
“compensator” K so that one may use a clever choice for Ap to relax constraints on
K and vice versa. In the present case,

-3
a —c

for either of the St. Venant or isentropic compressible Navier—Stokes equations. The
issue in the latter case is that symmetrizability holds in general only in the limits
r — Z+oo, and in the former that it holds only on average, but in any case it does
not hold pointwise. However, we have seen that energy estimates can be recovered by
modulating classical symmetrizers and compensators with appropriate asymptotically
constant or periodic exponential weights.

Note that our analysis, while apparently quite robust, leaves open the question of

determining, for general systems, what kind of notion of symmetrizability on average
could lead to similar periodic-coefficient high-frequency damping.
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