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shocks of particular systems.
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1. Introduction

In this paper, we carry out the first complete, rigorous numerical proof of stability

of viscous shock profiles of a physically interesting system, demonstrating feasibil-

ity of a program proposed in Ref. 9, 28 for the treatment of shock waves of large

amplitude and or nonclassical type. Such shock profiles, being both highly nonlin-

ear and far from any convenient asymptotic regime, are typically described only

through numerical approximation. Thus, the study of their stability by purely an-

alytical means would appear to be a practical impossibility. What was suggested

in Ref. 9, 28 instead was a divide-and-conquer approach, wherein spectral stabil-

ity or instability would be determined by rigorous numerical ODE estimates, and
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the link between spectral and linearized and nonliner stability determined by sepa-

rate, purely analytical techniques based on pointwise estimates obtained by inverse

Laplace transform techniques.

The second, analytical part of this program has proceeded more quickly than

the first, comprising by now a mature and complete theory reducing the question

of stability to a numerically well-conditioned Evans function condition based on

Wronskians of the linearized eigenvalue ODE. However, the rigorous evaluation of

this condition has lagged behind, in part due to absence of rigorous computational

infrastructure in general and in part to numerical difficulties of the shock wave

systems in particular. Here, we treat individual shock profiles of the equations of

isentropic gas dynamics, the simplest physically interesting system. Our hope is

that the techniques introduced here will generalize to continuous families of shock

profiles and more complicated systems, fulfilling the vision outlined in Ref. 9, 28 of

rigorous automatic treatment of the difficult problem of shock stability

In Lagrangian coordinates, the isentropic compressible Navier-Stokes equations

in 1-D are given by

vt − ux = 0,

ut + p(v)x = (ux/v)x,
(1.1)

where u corresponds to velocity, v to specific volume, and p(v) is the pressure law,

which we take to be adiabatic, p(v) = a0v
−γ . 5,24 In physical modeling, generally

1 ≤ γ ≤ 3 is used, 13,22,23,24 where γ = 5/3 corresponds to a monatomic gas and

γ = 7/5 to a diatomic gas.

As is well known, these equations have viscous shock wave solutions

(v, u)(x, t) = (v̄, ū)(x− st), lim
x→±∞

(v̄, ū) = (v±, u±). (1.2)

The question of stability of these solutions has by now received considerable atten-

tion. In 1985, Matsumura and Nishihara 17 showed that small-amplitude waves of

(1.1) are stable when perturbed by zero-mass perturbations. Part of their work is

equivalent to showing spectral stability. In Ref. 15, 16, 27, 29, 28, the second author

and collaborators showed that spectral stability implies asymptotic-orbital stability

for a wide class of systems, including (1.1), hence small-amplitude waves of (1.1)

are asymptotically-orbitally stable. In 2007, addressing stability of large-amplitude

waves of (1.1), a bound on the potentially unstable point spectra of the linearized

eigenvalue problem was derived via energy estimates in Ref. 4, and an extensive

numerical Evans function study supplemented with evolution studies was carried

out indicating that traveling waves of (1.1) are spectrally, hence nonlinearly, sta-

ble. Then in 2009, Humpherys, Lafitte, and the second author 13 showed by ODE

estimates for all γ ≥ 1, that in the limit the Mach number goes to infinity, trav-

eling waves of (1.1) are spectrally, hence nonlinearly, stable, and they numerically

demonstrated a lower bound on the Mach number for which the result holds when

1 ≤ γ ≤ 3.
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The last piece in establishing stability of intermediate amplitude viscous shock

wave solutions is to rigorously verify the numerical Evans function computations

in Ref. 4. In general, automating rigorous verification of Evans function computa-

tions is the only fundamental open problem remaining in the program (pointwise

semigroup stability and dynamics of waves) introduced by the second author and

Howard in 1998. In this paper, we make a significant push in that direction. Indeed,

we rigorously verify spectral stability, hence nonlinear stability, of representative

viscous wave solutions of (1.1).

The Evans function D(λ) is a Wronskian for the eigenvalue ODE

W ′ = A(x, λ)W, (1.3)

whose zeros correspond with eigenvalues of the linearized operator about the profile.

It is constructed so as to be analytic with respect to the spectral parameter λ. To

rigorously verify spectral stability, therefore, we obtain an interval enclosure of the

image of the Evans function under a contour that encloses any potentially unstable

eigenvalues. We use interval arithmetic to account for machine truncation error,

and analytic and computer assisted error bounds to track errors introduced by

approximations and the numerical methods used. Provided the relative error in the

Evans approximation is strictly less than one everywhere along the contour, we may

then conclude by Rouche’s Theorem that the winding number of the numerically

computed Evans function has winding number equal to that of the exact Evans

function, deciding existence or nonexistence of unstable eigenvalues- hence spectral

stability- by the Argument Principle.

We use analytic interpolation of the stable/unstable eigenvalue of the limiting

coefficient matrices A(±∞, λ) to obtain a λ-varying analytic initializing basis at x =

±∞ for the ODE involved in the computation of the Evans function. A contraction

mapping argument with error bounds then provides the initialization error. To

bound the error of the numerical solution to the ODE, we obtain a posteriori error

bounds on a numerically approximated fundamental solution. This strategy greatly

reduces the challenging “wrapping” effect (cf. 21) involved in interval computations

in the complex plane.

1.1. Main result

We now describe our main results. Making use of the (Galillean and other) in-

variances of (1.1), we may by the change of coordinates (2.2) reduce to the case

(v−, u−) = (1, 0), u+ = 1, s = −1, leaving a one-parameter family of shock pro-

files indexed by 1 > v+ > 0. Here, v+ → 1, converging to a constant solution, is

the weak-shock, or small-amplitude limit corresponding to Mach number 1, while

v+ → 0 is the strong-shock, or large-amplitude limit corresponding to Mach number

∞.

We recall further 27 that spectral stability (specified in Definition 2.1) has been

shown to imply linear and nonlinear L1∩H3 → Lp∩H3 asymptotic-orbital stability,
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p > 1, in the sense that solutions with initial data sufficiently close in L1 ∩H3 to

the set S of translates of profile (v̄, ū) remains close to S for all time in L1 ∩ H3

and converges time-asymptotically to S in Lp ∩H3 for any p > 1.

Theorem 1.1. For γ = 5/3 and v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, the vis-

cous traveling wave solutions of (1.1) are spectrally stable, hence linearly and non-

linearly L1 ∩H3 → Lp ∩H3 asymptotically-orbitally stable for any p > 1.

Remark 1.1. By spectral continuity- as follows for example by construction of the

(complex-analytic) Evans function, together with the fundamental property that

zeros of the Evans function correspond to eigenvalues of the linearized operator-

stability of profiles with the specific v+ values of the theorem implies also stability

of sufficiently nearby profiles. However, a naive estimate by simply carrying along

intervals in v+ in the interval-arithmetic computations used to establish the theorem

does not yield a computationally useful result. To establish stability for a reasonably

sized family of v+ appears rather to require a further layer of interpolation, as for

example in Ref. 1. We leave this issue for the future.

1.2. Discussion and open problems

Rigorous numerical proof of stability has been carried out on bounded domains

for Bunsen flame profiles of the Kuramoto–Sivashinsky equation in the pioneering

work of Michelson in 1996, 18 by related, “shooting-type” techniques. Indeed, this

was one of the motivations cited in Ref 9. However, as discussed in Ref. 9, 10,

the extension to the whole line brings new challenges, as do specific features of the

shock wave/system case, and up until now numerical proof of stability had not been

carried out for any shock wave in the system case.

In this paper, we rigorously verify stability for several representative viscous

shock profiles of (1.1). However, it is still an open question whether stability holds

for all parameter sets in the physically relevant regime. This would be an interesting

direction to pursue as it would settle the question of stability of Isentropic Navier-

Stokes shocks once and for all. Extending numerical proof techniques to larger

systems such as nonisentropic gas dynamics, MHD, elasticity, or combustion is

another important next step:

More generally, as computations become more complex and delicate, it becomes

less certain that numerical results are correct if not accompanied by rigorous error

bounds. Simple convergence studies become less convincing and practical for large

systems. Thus, we expect that rigorous error control will play an increasingly im-

portant role in numerical analysis. In the context of stability, we plan on continuing

the development of numerical proof techniques for larger systems with the goal of

incorporating automated rigorous verification of spectral stability in STABLAB, 2

a general package for numerical stability analysis of traveling waves of all types; see

Ref. 1 for initial steps in that direction.
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2. Background

We look for traveling wave solutions of (1.1) of the form u(x− st) where s is wave

speed, or alternatively we rescale x → x− st and look for stationary solutions of

vt − svx − ux = 0

ut − sux + p(v)x = (ux/v)x.
(2.1)

As in Ref. 4, 13, we rescale

(x, t, v, u) → (−εsx, εs2t, v/ε,−uεs) (2.2)

with ε chosen so that 0 < v+ < v− = 1. This yields

vt + vx − ux = 0

vt + ux + (av−γ)x = (ux/v)x.
(2.3)

Stationary solutions of (2.3) satisfy

v′ − u′ = 0

u′ + (av−γ)′ = (u′/v)′,
(2.4)

or upon substitution,

v′ + (av−γ)′ = (u′/v)′. (2.5)

Integrating equation 2.5 from −∞ to x returns the profile equation

v′ = v(v − 1 + a(v−γ − 1)), (2.6)

where a = vγ+(1− v+)/(1− vγ+) is determined from applying the Rankine-Hugoniot

conditions to (2.3). Because (2.6) is scalar monotone decreasing (v+ < v− = 1),

there exists, as is commonly known, a solution v̄ connecting v+ to v− = 1, with an

associated u-profile ū = v̄ − 1 obtained from (2.4)(i).

2.1. The Evans function

Linearizing equation (2.3) about the profile solution (v̄(x), ū(x)) and looking for a

solution via separation of variables leads to the eigenvalue problem,

λ+ v′ − u′ = 0

λv + u′ −
(

h(v̄)

v̄γ+1
v

)′

=

(

u′

v̄

)′

,
(2.7)

where ′ = d
dx and h(v̄) = −v̄γ+1 + a(γ − 1) + (a + 1)v̄γ . Making the change of

coordinates ũ(x) =
∫ x

−∞
u(z)dz, ṽ(x) =

∫ x

−∞
v(z)dz in (2.7), dropping the tilde

notation, and integrating, we arrive at the integrated coordinate system

λv + v′ − u′ = 0

λu+ u′ − h(v̄)

v̄γ+1
v′ =

u′′

v̄
.

(2.8)
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In these new coordinates, the eigenvalue at zero corresponding to translational

invariance has been removed, but otherwise the set of unstable eigenvalues of (2.7)

and (2.8) agree. 28,15,16

Definition 2.1. If (2.8) has no eigenvalues with non-negative real part, the under-

lying wave is said to be spectrally stable.

We formulate (2.8) as a first order ODE system

W ′(x) = A(x, λ)W (x), A(x, λ) =





0 λ 1

0 0 1

λv̄ λv̄ f(v̄)− λ



 , W =





u

v

v′



 , ′ =
d

dx
,

(2.9)

where f(v̄) = v̄ − v̄−γh(v̄), and define A±(λ) = limx→±∞ A(x, λ). There is one

eigenvalue of A− with positive real part and two eigenvalues of A+ with negative

real part. Asymptotically, the solutions of (2.9) converge to the solutions of the

ODEs y′±(x) = A±(x, λ)y±(x). In order for λ to be an eigenvalue of (2.8), the

solution W−(x) of (2.9) that decays as x → −∞ must have nontrivial intersection

with the two solutions, W+
1 (x) and W+

2 (x), of (2.9) that decay as x → +∞. Thus,

the Evans function is defined as D(λ) := det([W−(0),W+
1 (0),W+

2 (0)]).

Approximating W+
1 (x) and W+

2 (x) using (2.9) leads to numerical error because

competing growth modes degrade the linear independence of the solutions. As in

Ref. 4, 6, 19, this numerical challenge is overcome by using the adjoint formulation

for x ≥ 0,W ′(x) = −A(x, λ)∗W (x), where ∗ indicates the complex transpose. Under

this formulation, we solve for a single trajectory W̃+ which decays exponentially as

x → +∞. The Evans function may then be computed simply as W̃+(0)∗W−(0),

where ∗ denotes adjoint, or conjugate transpose.

Following Ref. 4, we use the standard procedure of scaling out expected growth

or decay of the ODE solution to improve numerical accuracy via the substitution

W (x) =: eµxV (x), where µ is the eigenvalue of A− with positive real part, which

leads to the ODE

V ′(x) = (A(x, λ)− µI)V (x), lim
x→−∞

V (x, λ) = r−(λ), (2.10)

for x ≤ 0, where r− denotes the right eigenvector of A− associated with µ, and

similarly for the adjoint formulation when x ≥ 0. The Evans function may then be

defined equivalently as D(λ) := Ṽ ∗
+(0)V−(0).

Here and above, we have for compactness of notation supressed the dependence

of solutions on λ; however, it is an important property of the Evans function is

that this dependence may be taken to be analytic. Likewise, we have not specified

the choice of eigenvector r−(λ). To make the Evans function analytic, the initial

condition r−(λ) at x = −∞ is chosen by either obtaining an analytically varying

eigenbasis by hand, 9 or by using the method of Kato, 14,10 which solves an analytic

ODE to obtain a λ analytically varying initializing basis of the appropriate unstable
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or stable subspace of A±. The zeros of the Evans function correspond in location

and multiplicity to the eigenvalues of (2.8); see Ref 10.

Because the Evans function is constructed to be analytic, winding number com-

putations may be used to determine whether or not eigenvalues of (2.8) exist

within the interior of a simple, positively oriented contour. In particular, using

a bound R on the modulus of any unstable eigenvalues of (2.8), if they exist,

derived in Ref. 4, one may establish that no unstable eigenvalues of (2.8) ex-

ist by showing the Evans function has winding number zero when computed on

λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, R := (
√
γ + 1/2)2)).

The goal of this paper is to rigorously verify for representative values of v+ that

the Evans function has winding number zero when computed on S(λ), thus proving

the underlying wave is spectrally stable. In Ref. 15, 16, 27, it is shown that spectral

stability implies asymptotic nonlinearly stability.

2.2. Interval arithmetic

To make our computations completely rigorous, we must account for machine trun-

cation error. To accomplish this, we use interval arithmetic via the MATLAB pack-

age INTLAB, 21 developed by Siegfried M. Rump, head of the Institute for Scientific

Computing at the Hamburg University of Technology, Germany. With interval arith-

metic, numbers are enclosed in an interval with machine representable boundaries,

such as a rectangle or ellipse. We refer to an interval with machine epsilon width

as a point interval. When an operation is performed on intervals, such as addition,

the resulting interval contains all numbers that can be realized from performing the

operation on elements of the intervals on which the operation is performed. The

rounding mode of the computer is changed as needed to accomplish this. Because

changing the rounding mode is relatively time intensive, vectorization results in

significant speedup of code; hence, we seek to vectorize whenever possible.

2.3. The wrapping effect

One challenge of computing with complex valued interval arithmetic is the wrapping

effect. Rectangle or ellipse enclosures of complex valued intervals grow unnecessarily

large in size under repeated operations because of the underlying two dimensional

geometry in the complex plane. To keep an arbitrarily tight enclosure of the com-

puted quantity, the interval shape must change dynamically. Figure 1 demonstrates

this phenomena.

There are a number of strategies we use to overcome the wrapping effect, such as

track error separately as described in Section 2.4, evaluate Chebyshev interpolants

using a Taylor expansion as explained in Section 2.5.2, and most notably, solve the

Evans function ODE in a way that greatly reduces the wrapping effect as shown in

Section 3.2.
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Fig. 1. Rectangular interval multiplied by itself 3, 7, and 10 times. Black dots provide a sample
of a point in the original interval being raised to the appropriate power. Red boxes indicate a
minimal interval enclosure when rectangular intervals are used.

2.4. Error tracking

To reduce the wrapping effect, it is often advantageous to track error estimates

separately and compute the overall error bound at the end. For example, if A, B,

and C are matrices with point interval entries and Ae, Be, and Ce are matrices

with small width intervals representing error bounds, then rather than compute

an enclosure of D := (A + Ae)(B + Be)(C + Ce) following the order of operations

indicated by the parenthesis, we compute

D ⊂ ABC + (AeBC +ABeC +ABCe +ABeCe +AeBCe +AeBeC +AeBeCe).

2.5. Chebyshev interpolation

Analytic Chebyshev interpolation plays an important role in our strategy for com-

puting an enclosure of the solution of an ordinary differential equation.

The Chebyshev polynomials of the first kind are defined recursively by

T0(x) = 1, T1(x) = x, and Tn(x) = 2xTn−1(x) + Tn−2(x) for n > 2,

and have roots at xj = cos((j + 1/2)π/N), j = 0, ..., N − 1. The Chebyshev poly-

nomials satisfy the numerically advantageous condition Tn(x) = cos(nθ), where

x = cos(θ).

2.5.1. Interpolating with Chebyshev polynomials

The coefficients ak of a Chebyshev interpolant, pN (x) =
∑N−1

j=0 ajTj(x), that sat-

isfies yj at the interpolation nodes xj , the roots of TN (x), can be solved for using

the property

N−1
∑

k=0

cos(nθk) cos(mθk) =











N if n = m = 0

N/2 if n = m > 0

0 otherwise

, (2.11)
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where θk = (k + 1/2)π/N . In particular, if f(x) is the function to be inter-

polated, one notes that
∑N−1

n=0 an cos(nθk) = f(xk), so that am can easily be

solved for from
∑N−1

n=0 an
∑N−1

k=0 cos(mθk) cos(nθk) =
∑N−1

k=0 cos(mθk)f(xk). That

is, am = 2−sgn (m)
N

∑N−1
k=0 cos(mθk)f(xk). Similarly, coefficients of two dimensional

interpolation can be solved.

2.5.2. Chebyshev interpolation error bounds

If f(z) is an analytic function inside and on the stadium Eρ :=
{

z ∈ C|z = 1
2

(

ρeiθ + e−iθ/ρ
)

, θ ∈ [0, 2π]
}

, where ρ > 1, and if pN (z) is a poly-

nomial of degree N − 1 that satisfies f(xj) = pN (xj) for xj = cos((j + 1/2)π/N),

then the interpolation error for x ∈ [−1, 1] is given by Hermite’s formula

f(x)− pN (x) = (2πi)−1

∫

Eρ

(WN+1(x)f(z))/(WN+1(z)(z − x))dz,

where WN+1(z) := (z − x0)(z − x1)...(z − xn). Error bounds are then given by

|f(x)− pN (x)| ≤ MρLρ(πDρ sinh(η(N + 1)))−1, (2.12)

where

η := log(ρ), Dρ :=
1

2
(ρ+ ρ−1)− 1, Lp := π

√

ρ2 + ρ−2, Mρ := max
z∈Eρ

(|f(z)|),
(2.13)

where |f(z)| ≤ Mρ for z ∈ Eρ, Lρ is an upper bound on the length of Eρ, and Dρ

is a lower bound on the distance between [−1, 1] and Eρ. The bound

sinh(η(N + 1)) ≤ |WN+1| ≤ cosh(η(N + 1)) (2.14)

also holds. See Ref. 7, 20, 25 for details. Note that a crude bound Mρ suffices due

to the exponential decay of error as the number of interpolation nodes N increases.

Now suppose that L is the interpolant operator in two dimensions and Lx and Ly

are the interpolant operators in one dimension in the variables x and y. That is, if

f(x, y) is the function to be interpolated, Lf returns a two dimensional polynomial

with degree Nx − 1 and Ny − 1 in the variables x and y respectively such that

L(f(xj , yk)) = f(xj , yk), where xj and yk are the Chebyshev interpolation nodes

described above. An upper bound on the operator norm of L is given by the Lebesgue

constant Λ, which, for the Chebyshev polynomials of the first kind, is given by

ΛN−1 = 2
π log(N)+ 2

π (γ+log(8/π))+αN , where 0 < αN < π
72N2 , where γ = 0.5772...

is Euler’s constant; see Ref. 7, 12. Then a bound on the interpolation error of the

two dimensional Chebyshev interpolant can be given in terms of the 1d interpolation

error of each component on any slice of the two dimensional domain as given by

||f − Lf || = ||f − Lx(Lyf)|| = ||f − Lxf + Lxf − Lx(Lyf)||
≤ ||f − Lxf ||+ ||Lxf − Lx(Lyf)|| = ||f − Lxf ||+ ||Lx(f − Lyf)||
≤ ||f − Lxf ||+ ΛNx−1||f − Lyf ||.

(2.15)
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2.5.3. Evaluation of a Chebyshev interpolant

Clenshaw’s algorithm is often used to evaluate a Chebyshev interpolant because of

its numerical accuracy and fast computation time. However, Clenshaw’s algorithm

is not suitable for interval arithmetic because typically each coefficient in the in-

terpolant expansion will have at least machine epsilon width, which can result in

an interval enclosure of the interpolant evaluation that grows like 2N in width in

Clenshaw’s algorithm as the number of interpolation nodes N increases.

Fortunately, a Chebyshev interpolant can be evaluated using the property that

Tn(x) = cos(nθ), where x = cos(θ), in which case the width of the enclosure of the

interpolant evaluation grows linearly instead of exponentially as N increases. We

further improve the enclosure of the interpolant evaluation by Taylor expanding the

interpolant up to 5 terms in the variable θ.

3. Numerical Proof

3.1. Solving the profile ODE

3.1.1. Taylor’s method

We compute the profile solution, v̄(x) satisfying (2.6), on intervals [−L, 0] and [0, L]

using a Taylor expansion with error bounds. We use interval arithmetic to compute

the truncated Taylor expansion and the Taylor Remainder. We take care to reduce

the wrapping effect. In particular, if v̄(x) ⊂ Ux, we determine an interval enclosing

v̄(x + h) by computing an interval enclosure U1 containing v̄(x + h) when v̄(x) is

initialized as the point interval of inf Ux and an interval enclosure U2 containing

v̄(x+ h) when v̄(x) is initialized as the point interval of supUx. By the comparison

principle for one dimensional ODE, v̄(x) initialized at v0 ⊂ Ux is contained in the

interval Ux+h := [inf U1, supU2].

The Taylor expansion of v̄(x) is v̄(x + h) =
∑n−1

k=0
hkv̄(k)(x)

k! with remainder

RT = hnv̄(n)(x∗)/n! for some x∗ ∈ [x, x+ h]. The nth derivative, v̄(n)(x), of v̄(x) is

a function of v̄(x), v̄(n)(x) = hn(v(x)), and v̄(x) ⊂ [v+, 1], so we obtain an interval

enclosure Un of v̄(n)(x) by evaluating hn(v) with interval arithmetic on subintervals

Uj of [v+, 1] and then taking their union, Un =
⋃

Uj . Then RT ⊂ UR, where

UR := {hnu/n! : u ∈ Un}. In our computations, we took h = 1/8, n = 18, and

L = 10.

3.1.2. Interpolation error

Our algorithm for obtaining an interval enclosure of the Evans function requires

a bound on the Chebyshev interpolant of the profile solution v̄(x) on intervals

of the form [a, b] ⊂ R. The standard interpolation error bound is given by ((b −
a)/2)N sup(Un)/(2

N−1N !), where Un is as described above. We similarly obtain an

interpolation error bound on f(v) := v− v−γ(−vγ+1 + a(γ − 1)+ (a+1)vγ), which

is needed as well. Vectorization of the derivatives of v̄(x) and f(v̄(x)) is important



May 24, 2017 6:19 WSPC/INSTRUCTION FILE iso9

Numerical proof of stability of viscous shock profiles 11

in order to compute these bounds in reasonable time because the wrapping effect

requires that these derivatives be computed on small subintervals of [v+, 1] in order

to obtain a useful bound.

3.2. Solving the Evans function ODE

In this section we describe our method for obtaining an interval enclosure of the

solution of the ODE used to construct the Evans function. Consider the ODE

W ′(x;λ) = Ã(x;λ)W (x;λ), W (±L;λ) = W±,λ, x ∈ [±L, 0]. (3.1)

Take [a, b] ⊂ [±L, 0] and let T (x, λ) be invertible and satisfy T (a, λ) = I. Define V

by W = TV . Then

V ′ = T−1(ÃT − T ′)V =: DV, Ã = A− µI. (3.2)

Suppose |D| ≤ ε. Then by Ref. 8, 11, 26, |V (x)| ≤ |V (a)|eεx = |W (a)|eεx, and so

|V (x, λ)− V (a, λ)| ≤
∣

∣

∣

∣

∫ x

a

D(y)V (y)dy

∣

∣

∣

∣

≤ sgn (x− a)

∫ x

a

ε|W (a)|eεydy

≤ eεa|W (a)||eε(b−a) − 1|.

(3.3)

To choose T (x, λ), x ∈ [a, b], we take the entries of T to be Chebyshev polyno-

mials of degree N. We then form a sparse matrix M with block entries of the form

T ′
c(xj , λk) − Ã(xj , λk)Tc(xj , λk), where

′ = ∂
∂x and Tc are matrices whose entries

are the Chebyshev polynomials evaluated at the nodes xj . The three eigenvectors

of MHM corresponding to the three smallest modulus eigenvalues provides the

Chebyshev coefficients of an approximate basis for the solution space of the ODE,

which polynomial approximate basis B(x, λ) is used to form the transformation

matrix T (x, λ) = B(x, λ)B−1(a, λ) in our scheme.

To find the bound ε on D := T−1(ÃT − T ′), we approximate with error bounds

A(x, λ(θ)) with Chebyshev interpolation on [a, b]× [−1, 1]. On the imaginary axis,

λ(θ) takes the form λ(θ) = i[(λ1 + λ2)/2 + (λ1 − λ2)θ/20 for λ1 > λ2 ≥ 0. The

contour along the imaginary axis must be broken up into several pieces in order

to obtain good interpolation bounds because of the small modulus eigenvalue for

the adjoint problem which requires a small stadium when interpolating the decay

eigenvalue at x = +∞. On the half circle, λ(θ) = Rei(π/4+πθ/4). We use Chebyshev

interpolation to interpolate T ′. Because the polynomials that form the entries of T

are of degree N , and we interpolate the entries of T ′ with degree N , there is no

interpolation error. Finally, we must approximate T−1. To do this, we interpolate

the determinant of T and the Adjugate of T with Chebyshev polynomials of degree

3N , so that there is no interpolation error. Finally, we obtain a single matrix D̃

approximating adjugate(T )(ÃT − T ′) whose entries are Chebyshev polynomials of

degree 4N1+M1 by 4N2+M2, where M1 and M2 are the degree of the polynomials
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that approximate Ã(x, λ), so that once again there is no interpolation error. We

can sum the absolute value of the coefficients of the entries of D̃ to obtain an upper

bound on D̃. We then use small interval steps in λ to compute a lower bound on

the modulus of det(T ). Combining these yields ε such that |D| ≤ ε.

When we interpolate Ã(x, λ) = (A(x, λ)−µ(λ)I), we actually just use a Cheby-

shev polynomial µ̌(λ) to represent µ(λ). We must correct for the difference in µ(λ)

and µ̌(λ). This would not be necessary if we were computing on a single contour,

as it would only change the Evans function by a small, λ-varying analytic non-zero

factor. However, because we must compute the contour in parts, we correct by in-

terpolating µ(λ) with error bounds, call the interpolant µ̃(λ), and then multiplying

the solution basis at x = 0 by e(µ̃(λ)−µ̌(λ))L± ≈ 1. We note that it is important for

the coefficients of µ̌(λ) to be point intervals in order for the algorithm to provide

small error intervals. Otherwise, we would use the interval Chebyshev interpolant

of µ(λ).

3.3. ODE initialization error

In this section we bound the initialization error that comes from approximating the

ODE solution W (x) of (2.9) at x = M±.

Lemma 3.1. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, | · | the Eu-

clidean (l2) operator norm, and λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, (
√
γ + 1/2)2)),

the following bounds hold,
∣

∣

∣e(A−−µ−I)x
∣

∣

∣ ≤ C−

1 eη̂
−x, x ≥ 0, and

∣

∣

∣e(−A∗
+−µ+I)x

∣

∣

∣ ≤ C+
1 eη̂

+x, x ≤ 0, (3.4)

where µ− = µ−(λ) is the eigenvalue of A− with positive real part, µ+ = µ+(λ) is

the eigenvalue of −A∗
+ with negative real part, η̃− = 0.1, η̃+ = 0.25, C−

1 = 5.41,

and C+
1 = 8.76.

Proof. [Computer assisted proof] Following Ref. 4, we represent the matrix expo-

nential using the Laplace transform

e(A−−µ−I)x =
1

2πi

∮

Γ

exz(z − (A− − µ−I))
−1dz. (3.5)

We take Γ to be the rectangular contour with vertices at (−R,R), (−R,−R),

(η̂−, R), (η̂−,−R), where R is a bound on the modulus of the eigenvalues of

(A− − µ−I) given by Rouche’s theorem, R := 1 + max(|c2/c3|, |c1/c3|, |c0/c3|),
where the characteristic polynomial of A− is given by p(z) = c3z

3+ c2z
2+ c1z+ c0.

We note that

∣

∣

∣e(A−−µ−I)x
∣

∣

∣ ≤ exη̂−

2π

4
∑

k=1

∫ 1

0

∣

∣(γk(t)− (A− − µ−I))
−1
∣

∣ |γ′
k(t)|dt, (3.6)

where each γk(t) : [0, 1] → C parameterizes a different side of the rectangle Γ.

Using the adjugate and determinant of A− to compute A−1
− , we obtain an interval
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enclosure of the RHS of (3.6) by computing each integral with a Reimann sum with

interval arithmetic using 1000 evenly spaced subintervals of [0,1]. To obtain µ− on

each subinterval, we first interpolate µ−(λ) with a Chebyshev interpolant with error

bounds and then evaluate the resulting polynomial on the subintervals, all the while

using interval arithmetic. The rigorous computation indicates that

|e(A−−µ−I)x| ≤ C−eη̂
−x,

where C− ∈ [0, 5.407325642691972], hence the statement of the lemma holds for the

stated value of C−

1 . Similarly, we establish that C+
1 := 8.76 satisfies the statement

of the lemma.

Remark 3.1. In Ref. 4, analytic bounds on the matrix exponential are given, but

to improve the error estimates, we use rigorous computation here.

Lemma 3.2. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, | · | the Eu-

clidean (l2) operator norm, and λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, (
√
γ + 1/2)2)),

the following bounds hold,

||A(x, λ)−A−(λ)||2 ≤ C−(v+)e
η−(v+)x, x ≤ −10,

||A(x, λ)−A+(λ)||2 ≤ C+(v+)e
η+(v+)x, x ≥ 10,

(3.7)

where C±(v+) and η±(v+) are given in Table 1.

Proof. [Computer assisted proof] Taylor expanding f(v) about v± to first or-

der and computing the Frobenius norm yields ||A(x, λ) − A±||2 ≤ |v̄(x) −
v±|
√

2R2 + (f ′(ṽ))2, where ṽ ∈ [v+, v̄(10)] or ṽ ∈ [v̄(−10), 1] respectively and R :=

(
√
γ+1/2)2 is the radius of the semi-circle on which we compute the Evans function.

Using interval arithmetic, we compute an upper bound on
√

2R2 + (f ′(ṽ))2. We use

interval arithmetic to compute an enclosure, for v ∈ [v+, v̄(10)] or v ∈ [v̄(−10), 1],

of the following quantities derived in Ref. 4,

H(v, v+)

v − 1
= v

(

1−
(v+

v

)γ
(

1− vγ

1− v

))

,

H(v, v+) = (v − v+)

(

v −
(

1− v+
1− vγ+

)

(

1−
( v+

v

)γ

1−
( v+

v

)

))

.

(3.8)

Note that in the above, we use the inequality 1 ≤ (1−xγ)/(1−x) ≤ γ proved in Ref.

4, valid for 0 ≤ x < 1, γ ≥ 1. As in Ref. 4, we then use the comparison principle for

first order ODE to obtain the bound |v̄(x) − v±| ≤ |v̄(±10) − v±|eη±x. Combining

these rigorously computed bounds and enclosures yields the stated bounds of the

lemma.

Lemma 3.3. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, | · | the Eu-

clidean (l2) operator norm, and λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ B(0, (
√
γ + 1/2)2)),
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there hold for |x| ≥ 10
∣

∣V ±(x)− V±

∣

∣ ≤ θ±|V±|, (3.9)

where θ± is given in Table 1, V ′
−(x) = (A(x, λ) − µ−I)V−(x) for x ≤ 0, V ′

+(x) =

(−A∗(x, λ) − µ+I)V+(x) for x ≥ 0, V (x) → V± as x → ±∞, and V− and V+ are

respectively the eigenvectors of A− and −A∗
+ corresponding to the eigenvalue µ− of

A− with positive real part and to the eigenvalue µ+ of −A∗
+ with negative real part.

Proof. [Computer assisted proof]

Define the operator N on L2 by

N(U)(x) := V− +

∫ x

−∞

e(A−−µ−I)(x−y)(A(y)−A−)U(y)dy. (3.10)

Note that if V ′(x) = (A(x, λ) − µ−I)V (x), limx→−∞ V (x) = V−, then N(V (x)) =

V (x) as can be seen by applying Duhamel’s Principle to

V ′(x) = (A(x, λ)−A−)V (x) + (A− − µ−I)V (x). (3.11)

Note that for x ∈ (−∞,M−] and C−

1 , η̂− as in Lemma 3.1 and C−

2 and η− as in

3.2,

|N(U1)(x)−N(U2)(x)| ≤
∫ x

−∞

|e(A−−µ−I)(x−y)(A(y)−A−)||U1(y)− U2(y)|dy

≤ sup
y∈(−∞,M−]

|U1(y)− U2(y)|
∫ x

−∞

C−

1 C−

2 e−η̂−(x−y)eη−ydy

≤ sup
y∈(−∞,M−]

|U1(y)− U2(y)|C−

1 C−

2

eη−x

η− − η̂−

≤ C−

1 C−

2

eη−M−

η− − η̂−
sup

y∈(−∞,M−]

|U1(y)− U2(y)|.

(3.12)

Define q− = C−

1 C−

2
eη−M−

η−−η̂−
and note that if U1 = V− and U2 = N(U1), then by

the calculation in (3.12), supy∈(−∞,M−] |U1(y) − U2(y)| ≤ q−|V−|, where q− :=

v+ 1e-4 1e-3 1e-2 0.1 0.2 0.3 0.4

η−(v+) 0.9995 0.9994 0.9987 0.9969 0.9020 0.8185 0.7221

C−

2 (v+) 2.472e-3 2.445e-3 2.244e-3 2.676e-4 4.480e-4 9.016e-4 2.039e-3

θ−(v+) 6.783e-7 6.709e-7 6.206e-7 1.056e-7 3.655e-7 1.891e-6 1.296e-5

η+(v+) -0.9996 -0.9979 -0.9803 -0.8197 -0.6586 -0.5085 -0.3662

C+
2 (v+) 3.294e-3 7.356e-5 2.277e-6 1.759e-5 4.969e-5 1.867e-4 7.160e-4

θ+(v+) 1.051e-6 2.392e-8 8.946e-10 3.963e-8 6.599e-7 1.332e-5 2.611e-4

Table 1. Table showing the values of C±(v±) and η±(v±) in Lemma 3.2.
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C1C2e
ηM−/(η− η̂), so that if q− < 1, by the Banach fixed point theorem, |U∗(x)−

V−|sup x∈(−∞,M−] ≤ q
1−q |V−|, where U∗ = N(U∗) is the ODE solution of interest. We

define θ− = q−
1−q−

and use interval arithmetic to compute θ−, as reported in Table

1, completing the computer assisted proof. Similarly, we establish the contraction

constant θ+.

We are now ready to state the main lemma.

Lemma 3.4. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, and for λ ∈
S(γ) := ∂({<(λ) ≥ 0}∩∂B(0, (

√
γ + 1/2)2)), we have that <(D(λ)) ≥ c(v+), where

c(v+) is given in Table 2.

Proof. [Computer assisted proof]

We establish the lemma by rigorously verifying that the Evans function, D(λ),

when computed on S(λ) is enclosed in intervals whose union has real part no smaller

than the values reported in Table 2.

We use the error bounds described in Lemmas 3.1-3.3 to obtain an enclosure of

the initializing vectors to be used in solving (2.9). In particular, we use as initial

conditions the λ analytically varying eigenvectors,

V−(λ) = (λ+ µ−, µ−, µ
2
−)

T , V+(λ) = v−1
+ λ−2(−λv+µ+,−λv+µ+ + λ2v+, µ

2
+)

T ,

(3.13)

where µ− is the eigenvalue of A− with positive real part and µ+ is the eigenvalue

of −A+ with negative real part. To find an enclosure of µ±(λ), we use Chebyshev

interpolation of µ±(λ), where we determine µ± at specific λ points using an interval

Newton solver. We note that µ+ = O(λ) as λ → 0, and so V+(λ) can be smoothly

continued to λ = 0. Because the Chebyshev interpolation nodes do not correspond

to λ = 0, we do not need to compute the Evans function at λ = 0.

In order for the enclosure of the Evans function to be sufficiently tight to provide

useful information, we divide the contour S(λ) up into smaller pieces and compute

an enclosure of the Evans function on each of those pieces. We compute the Evans

function on the half-circle in one step because we are able to do so without the

interval enclosure of the Evans function including the origin. We divide the part of

S(λ) on the imaginary axis up into 39-74 pieces. The particular challenge along the

imaginary axis is that the initializing basis loses analyticity at values of λ with small

(10−3) negative real part because of colliding eigenvalues of the limiting matrix, and

so the stadium of the analytic interpolation must have a small radius which results

in a slowly decaying interpolation error bound. Consequently, smaller steps must

be taken to reduce the number of interpolation nodes needed in each computation.

Using the interval method described in Section 3.2 for solving ODE and the

Chebyshev interpolation method described in Section 2.5.1, we obtain an enclosure

of the solution to the ODE evaluated at x = 0 for each of the subintervals of S(λ)

on which we compute the Evans function.
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Evaluating the Chebyshev interpolant of the ODE solutions with the method

described in Section 2.5.1, we obtain an interval enclosure of the ODE solutions

which we then use to compute the Evans function. We take the infimum of the real

part of all intervals enclosing D(λ) yielding the result stated in the Lemma.

Figures demonstrating the interval enclosures of the Evans function are given

in Figure 2. Note that the enclosure of the Evans function computed on the semi-

circular part of S(λ) results in a large interval, which, nonetheless, lies to the right

of λ = 0. One could break the circular part of the contour up into smaller pieces ot

obtain a tighter enclosure of the Evans function at the cost of computation time.

Theorem 1.1 is an immediate consequence of Lemma 3.4 and the nonlinear

stability theorems of Ref. 15, 16, 27, 29, 28.

Proof. [Proof of Theorem 1.1] In Ref. 4, it is shown that any unstable eigenvalues

of (2.8), if any exist, must have modulus no larger than R = (
√
γ + 1/2)2. Lemma

3.4 shows that the winding number of the Evans function computed on the contour

given by λ ∈ S(γ) := ∂({<(λ) ≥ 0}∩∂B(0, (
√
γ + 1/2)2)) is zero for the values of v+

mentioned in the Theorem. Thus, the corresponding viscous traveling wave solutions

are asymptotically stable, hence, orbitally nonlinearly stable by the Theorems in

Ref. 15, 16, 27, 29, 28.

3.4. Stability for nearby parameters

We note that by continuity of the Evans function ODE in λ, v+, and γ, that our

verification of stability at a parameter point implies stability in some neighborhood

of that point in parameter space.

3.5. Computational Environment

As a necessary component of computer aided proof, we describe our computational

environment. All computations were carried out in STABLAB 3 using MatLab

2008b and Intlab V6. 21 At the time of this work, known errors occurred when

using Intlab with current versions of Matlab, and so the 2008 version was used

for reliability. Computations were performed on a System 76 Gazelle Professional

laptop with a 64-bit, 2.50 GH Intel Core i7-4710MQ processor, running Ubuntu

14.04 or 15.04.

v+ 1e-4 1e-3 1e-2 0.1 0.2 0.3 0.4

- c(v+) 7.65e-3 1.01e-2 8.34e-3 1.72 2.12 2.46 2.75

Table 2. Table describing c(v+) given in Lemma 2.
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Fig. 2. Solid black and red regions indicate an enclosure of the image of the Evans function, D(λ),
under the domain λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩B(0, (

√
γ + 1/2)2)). A blue, dotted line marks the

computed value of the Evans function using double arithmetic. In each figure, the winding number
of the Evans function is zero. In all figures, we take γ = 5/3 and (a) v+ = 0.4, (b) v+ = 0.3, (c)
v+ = 0.2, (d) v+ = 0.1, (e) v+ = 0.01, (f) v+ = 0.001, (g) v+ = 0.0001.

3.6. Computational statistics

On average, it took 18.8 minutes to solve the profile for a single value of v+, and it

took 2.20 hours total for all of the values of v+. Obtaining initialization errors for

(2.9) for all values of v+ took 24.7 minutes. It took on average 4.61 hours to evaluate

the Evans function for a single value of v+ and a total of 32.3 hours for all seven

values of v+. The value v+ = 0.01 was particularly difficult, requiring 10.3 hours

to compute the Evans function because the preimage contour had to be broken up

into 74 pieces instead of the typical 39.

3.7. Summary of results

Using interval arithmetic and analytic and rigorously computed error bounds,

we have shown by numerical proof that for γ = 5/3 and v+ ⊂
{10−4, 10−3, 10−2, 10−1, 0.2, 0.3, 0.4}, viscous shock solutions of (1.1) are spectrally
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stable, hence, nonlinear stable, since the Evans function evaluated on a suitable

contour has winding number zero.

Acknowledgment

Research of B.B. was partially supported under NSF grants no. DMS-1400872.

Research of K.Z. was partially supported under NSF grant no. DMS-0300487.

References

1. Blake Barker. Numerical proof of stability of roll waves in the small-amplitude limit
for inclined thin film flow. Journal of Differential Equations, 257(8):2950–2983, Oct
2014.

2. Blake Barker, Jeffrey Humpherys, Gregory D. Lyng, and Kevin Zumbrun. Viscous
hyperstabilization of detonation waves in one space dimension. SIAM Journal on

Applied Mathematics, 2015.
3. Blake Barker, Jeffrey Humpherys, Joshua Lytle, and Kevin Zumbrun. Sta-

blab: A matlab-based numerical library for evans function computation.
https://github.com/nonlinear-waves/stablab.git.

4. Blake Barker, Jeffrey Humpherys, Keith Rudd, and Kevin Zumbrun. Stability of vis-
cous shocks in isentropic gas dynamics. Comm. Math. Phys., 281(1):231–249, 2008.

5. G. K. Batchelor. An introduction to fluid dynamics. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, paperback edition, 1999.

6. Sylvie Benzoni-Gavage, Denis Serre, and Kevin Zumbrun. Alternate evans functions
and viscous shock waves. SIAM J. Math. Anal., 32(5):929–962, Jan 2001.

7. T. Bloom, L. P. Bos, J.-P. Calvi, and N. Levenberg. Polynomial interpolation and
approximation in C

d. http://arxiv.org/pdf/1111.6418v1.pdf.
8. Fred Brauer. Bounds for solutions of ordinary differential equations. Proceedings of

the American Mathematical Society, 14(1):36–43, Feb. 1963.
9. Leon Q. Brin. Numerical testing of the stability of viscous shock waves. Math. Comp.,

70(235):1071–1088, 2001.
10. Leon Q. Brin and Kevin Zumbrun. Analytically varying eigenvectors and the stability

of viscous shock waves. Mat. Contemp., 22:19–32, 2002. Seventh Workshop on Partial
Differential Equations, Part I (Rio de Janeiro, 2001).

11. R. Conti. Sulla prolugabilita delle soluzioni di un sistema di equazioni differenziali
ordinarie. Boll. Un. Math. Ital., 11:510–514, 1956.

12. R. Gunttner. Evaluation of lebesgue constants. SIAM Journal on Numerical Analysis,
17(4):512–520, 1980.

13. Jeffrey Humpherys, Olivier Lafitte, and Kevin Zumbrun. Stability of isentropic Navier-
Stokes shocks in the high-mach number limit. Commun. Math. Phys., 293:1–36, 2010.

14. Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics.
Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

15. Corrado Mascia and Kevin Zumbrun. Pointwise Green function bounds for shock
profiles of systems with real viscosity. Arch. Ration. Mech. Anal., 169(3):177–263,
2003.

16. Corrado Mascia and Kevin Zumbrun. Stability of large-amplitude viscous shock pro-
files of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal., 172(1):93–131, 2004.

17. Akitaka Matsumura and Kenji Nishihara. On the stability of travelling wave solutions
of a one-dimensional model system for compressible viscous gas. Japan Journal of

Applied Mathematics, 2(1):1725, Jun 1985.



May 24, 2017 6:19 WSPC/INSTRUCTION FILE iso9

Numerical proof of stability of viscous shock profiles 19

18. Daniel Michelson. Stability of the bunsen flame profiles in the kuramoto–sivashinsky
equation. SIAM J. Math. Anal., 27(3):765–781, May 1996.

19. Robert L. Pego and Michael I. Weinstein. Eigenvalues, and instabilities of solitary
waves. Philos. Trans. Roy. Soc. London Ser. A, 340(1656):47–94, 1992.

20. S. C. Reddy and J. A. C. Weideman. The accuracy of the chebyshev differencing
method for analytic functions. Siam Journal on Numerical Analysis, 42(5):2176–2184,
2005.

21. S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Develop-

ments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht,
1999.

22. Denis Serre. Systems of conservation laws. 1. Cambridge: Cambridge University Press,
1999. Translated from the 1996 French Original by I. N. Sneddon.

23. Denis Serre. Systems of conservation laws. 2. Cambridge: Cambridge University Press,
2000. Translated form the 1996 French Original by I. N. Sneddon.

24. Joel Smoller. Shock waves and reaction difussion equations. 2nd ed. New York:

Springer-Verlag, 1994.
25. Eitan Tadmor. The exponential accuracy of fourier and chebyshev differencing meth-

ods. SIAM Journal on Numerical Analysis, 23(1):1–10, 1986.
26. A. Wintner. Ordinary differential equations and laplace transforms. Amer. J. Math.,

79:265–294, 1957.
27. Kevin Zumbrun. Multidimensional stability of planar viscous shock waves. In Advances

in the theory of shock waves, volume 47 of Progr. Nonlinear Differential Equations
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