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Abstract We study the spectral stability of roll wave solutions of the viscous St.
Venant equations modeling inclined shallow water flow, both at onset in the small
Froude number or “weakly unstable” limit F → 2+ and for general values of
the Froude number F , including the limit F → +∞. In the former, F → 2+,
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limit, the shallow water equations are formally approximated by a Korteweg-de
Vries/Kuramoto–Sivashinsky (KdV–KS) equation that is a singular perturbation of
the standard Korteweg-de Vries (KdV) equation modeling horizontal shallow water
flow. Our main analytical result is to rigorously validate this formal limit, showing that
stability as F → 2+ is equivalent to stability of the corresponding KdV–KS waves in
the KdV limit. Together with recent results obtained for KdV–KS by Johnson–Noble–
Rodrigues–Zumbrun and Barker, this gives not only the first rigorous verification of
stability for any single viscous St. Venant roll wave, but a complete classification of
stability in the weakly unstable limit. In the remainder of the paper, we investigate
numerically and analytically the evolution of the stability diagram as Froude num-
ber increases to infinity. Notably, we find transition at around F = 2.3 from weakly
unstable to different, large-F behavior, with stability determined by simple power-law
relations. The latter stability criteria are potentially useful in hydraulic engineering
applications, for which typically 2.5 ≤ F ≤ 6.0.

1 Introduction

In this paper, we investigate the stability of periodic wavetrain, or roll wave, solutions
of the inclined viscous shallow water equations of St. Venant, appearing in nondimen-
sional Eulerian form as

∂t h + ∂x (hu) = 0, ∂t (hu)+ ∂x

(
hu2 + h2

2F2

)
= h − |u|u + ν∂x (h∂x u), (1.1)

where F is a Froude number, given by the ratio between (a chosen reference) speed
of the fluid and speed of gravity waves, and ν = R−1

e , with Re the Reynolds number
of the fluid. System (1.1) describes the motion of a thin layer of fluid flowing down an
inclined plane, with h denoting fluid height, u fluid velocity averaged with respect to
height, x longitudinal distance along the plane, and t time. The terms h and |u| u on
the right-hand side of the second equation model, respectively, are gravitational force
and turbulent friction along the bottom.1

Roll waves are well-known hydrodynamic instabilities of (1.1), arising in the region
F > 2 for which constant solutions, corresponding to parallel flow, are unstable.
They appear in the modeling of such diverse phenomena as landslides, river and
spillway flow, and the topography of sand dunes and sea beds; see Fig. 1a, b for
physical examples of roll waves and Fig. 1c for a typical wavetrain solution of (1.1). As
motivated by these applications, their stability properties have been studied formally,
numerically, and experimentally in various physically interesting regimes; see, for
example, Balmforth and Mandre (2004) for a useful survey of this literature. However,
up until now, there has been no complete rigorous stability analysis of viscous St.
Venant roll waves either at the linear (spectral) or nonlinear level.

Over the last several years, the authors, in various combinations, have developed
a theoretical framework for the study of nonlinear stability of these and related peri-

1 For simplicity, henceforth we restrict to cases where u ≥ 0 and write the latter term simply as u2.
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Fig. 1 Roll waves a on a spillway and b in the laboratory: pictures courtesy of Neil Balmforth, UBC. c Periodic profile of (1.1), F =
√

6, ν = 0.1, q = 1.5745, X = 17.15.
For better comparison to experiment, we extended the profile here as constant in transverse direction
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odic waves. Specifically, for the model at hand, it was shown in Johnson et al. (2011)
that, under standard diffusive spectral stability assumptions [conditions (D1)–(D3)
in Sect. 1.1.1] together with a technical “slope condition” [(1.4) below] satisfied for
“moderate” values 2 < F � 3.5 of F and a genericity assumption [(H1) below]
satisfied almost everywhere in parameter space,2 roll waves are nonlinearly stable in

the sense that localized perturbations converge to localized spatial modulations of the

background periodic wave. More recently, the technical slope condition was removed
(Rodrigues and Zumbrun 2016) as a necessary hypothesis, opening the possibility to
consider nonlinear stability of waves for arbitrary Froude numbers F. See also Barker
et al. (2012, 2013) for discussions in the related context of the Kuramoto–Sivashinsky
equation (Kuramoto 1984; Kuramoto and Tsuzuki 1975; Sivashinsky 1977, 1983).
Going further, for general (partially) parabolic systems, detailed nonlinear asymp-
totic behavior under localized and nonlocalized perturbations has been established in
Johnson et al. (2014) in terms of certain formal modulation, or “Whitham,” equations.3

This reduces the study of stability and asymptotic behavior to verification of the
spectral stability conditions (D1)–(D3), concerning Floquet spectrum of the associated
eigenvalue ODE. However, it is in general a hard problem to verify such spectral
assumptions analytically. Indeed, up to now, spectral stability has not been rigorously
verified for any roll wave solution of the viscous St. Venant equations (1.1).

In some particular situations, for example, at the onset of hydrodynamical instabil-
ity, analytical proof of spectral stability may be possible using perturbation techniques.
However, most of the known examples concern reaction diffusion equations and related
models like the Swift Hohenberg equations, Rayleigh Bénard convection or Taylor
Couette flows that are all described, near the instability threshold of a background
constant solution, by a Ginzburg–Landau equation derived as an amplitude equation
(Mielke 2002). Associated with classical Hopf bifurcation, this normal form may be
rigorously validated in terms of existence and stability by Lyapunov–Schmidt reduc-
tion about a limiting constant-coefficient operator (Collet and Eckmann 1990; Mielke
1997a, b).

By contrast, the corresponding model for onset of hydrodynamic (roll wave) insta-
bility in (1.1) is, at least formally, the Korteweg-de Vries/Kuramoto–Sivashinsky

equation (KdV–KS)

∂Sv + v∂Y v + ε∂3
Y v + δ

(
∂2

Y v + ∂4
Y v
)
= 0, ∀S > 0,∀Y ∈ R, (1.2)

with 0 < δ 	 1, ε > 0, a singular perturbation of the Korteweg-de Vries (KdV) equa-
tion.4 Equation (1.2) is derived as an amplitude equation for the shallow water system
(1.1) near the critical value F = 2 above which steady constant-height flows are unsta-
ble, in the small-amplitude limit h = h̄ + δ2v and in the KdV time and space scaling
(Y, S) = (δ(x − c0t), δ3t) with δ =

√
F − 2, where c0 is an appropriate reference

wave speed: see Sect. 2.1 below for details in the Lagrangian formulation. Alterna-

2 Indeed, this appears numerically to be satisfied for all profiles.
3 See Oh and Zumbrun (2010) for the easier multidimensional case, in which behavior is asymptotically
linear due to faster decay of the linearized propagator.
4 Without loss of generality, one can assume that ε2 + δ2 = 1. See Barker et al. (2013).
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tively, it may be derived from the full Navier–Stokes equations with free boundary
from which (1.1) is derived in the shallow water limit, for Reynolds number R near
the critical value Rc above which steady Nusselt flows are unstable; see Aung Win
(1993), Jun and Yang (2003).

In this case, neither existence nor stability reduce to computations involving
constant-coefficient operators; rather, the reference states are arbitrary amplitude peri-
odic solutions of KdV, and the relevant operators (variable-coefficient) linearizations
thereof. This makes behavior considerably richer and both analysis and validation of

the amplitude equations considerably more complicated than in the Ginzburg–Landau

case mentioned above. Likewise, onset occurs for (1.1) not through Hopf bifurcation
from a single equilibrium, but through Bogdanov–Takens, or saddle-node bifurcation
involving collision of two equilibria, as discussed, for example, in Hong Hwang and
Chang (1987), Barker et al. (2011), with limiting period thus +∞, consistent with
the 1/δ spatial scaling of the formal model. (The standard unfolding of a Bogdanov–
Takens bifurcation as a perturbed Hamiltonian system is also consistent with KdV–KS;
see Remark 2.1.)

Nevertheless, similarly as in previous works by Mielke (1997a, b) in the reaction
diffusion setting, where the stability of periodic waves for the amplitude (Ginzburg–
Landau) equation provides a stability result for periodic waves of the full system
(Swift Hohenberg equation or Rayleigh Bénard convection), we may expect that sta-
bility for the amplitude equation, here the KdV–KS equation (1.2) will provide some
information on the stability of periodic waves for the viscous St. Venant system (1.1),
at least in the weakly unstable limit F → 2+. Our first main goal is to rigorously
validate this conjecture, showing that stability of roll waves in the weakly unstable
limit F → 2+ is determined by stability of corresponding solutions of (1.2) under the
rescaling described above. Together with previous results (Bar and Nepomnyashchy
1995; Johnson et al. 2015; Barker 2014) on stability for (1.2), this gives the first
complete nonlinear stability results for roll waves of (1.1): More, it gives a complete

classification of stability in the weakly unstable limit.

This gives at the same time a rigorous justification in a particular instance of the
much more generally applicable and better-studied (1.2) as a canonical model for
weak hydrodynamic instability in inclined thin-film flow; see, for example, Bar and
Nepomnyashchy (1995), Chang and Demekhin (2002), Chang et al. (1993), Pego
et al. (2007). Looked at from this opposite point of view, (1.1) gives an interesting
extension in a specific case of (1.2) into the large-amplitude, strongly unstable regime.
Our second main goal is, by a combination of rigorous analysis and (nonrigorous but
numerically well conditioned) numerical experiment, to continue our analysis into
this large-amplitude regime, performing a systematic stability analysis for F on the
entire range of existence F > 2 of periodic roll wave solutions of (1.1). Our main
finding here is a remarkably simple power-law description of curves bounding the
region of stability in parameter space from above and below, across which particular
high-frequency and low-frequency stability transitions occur. These curves eventually
meet, yielding instability for F sufficiently large. The large-F description is quite
different from the small-F description of weakly unstable theory; indeed, there is
a dramatic transition from small- to large-F behavior at F ≈ 2.3, with behavior
governed thereafter by the large-F version. This distinction appears important for
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hydraulic engineering applications, where F is typically 2.5–6.0 and sometimes 10–
20 or higher (Jeffreys 1925; Brock 1969, 1970; Abd-el Malek. 1991; Richard and
Gavrilyuk 2012, 2013; Freeze et al. 2003).

1.1 Summary of Previous Work

We begin by recalling some known results that will be relied upon throughout our
analysis. In particular, we begin by recalling how spectral stability (in a suitable dif-
fusive sense) may provide a detailed nonlinear stability result, a fact that strongly
underpins and motivates our spectral studies. We then recall the relevant numerical
and analytical results for the amplitude Eq. (1.2), upon which our entire weakly unsta-
ble analysis for 0 < F − 2 	 1 hinges.

1.1.1 Diffusive Spectral Stability Conditions

We first recall the standard diffusive spectral stability conditions as defined in various
contexts in, for example, Schneider (1998, 1996), Johnson and Zumbrun (2011, 2010),
Johnson et al. (2011), Barker et al. (2013), Johnson et al. (2014).

Given an appropriately smooth nonlinear map F between Banach spaces5, let
u(x, t) = ū(x − ct) define a spatially periodic traveling wave solution of a gen-
eral partial differential equation ∂t u = F(u) with period (without loss of generality)
one, or, equivalently, ū be a stationary solution of ∂t u = F + c∂x u with period one.
Let L := (dF/du)(ū) + c∂x denote the associated linearized operator about ū. As
L is a linear differential operator with 1-periodic coefficients, standard results from
Floquet theory dictate that nontrivial solutions of Lv = λv cannot be integrable on R,
more generally they cannot have finite norm in L p(R) for any 1 ≤ p < ∞. Indeed,
it follows by standard arguments that the L2(R)-spectrum of L is purely continuous
and that λ ∈ σL2(R)(L) if and only if the spectral problem Lv = λv has an L∞(R)-
eigenfunction of the form

v(x; λ, ξ) = eiξ xw(x; λ, ξ)

for some ξ ∈ [π, π) and w ∈ L2
per([0, 1]); see Gardner (1993), Kapitula and Promis-

low (2013, Chapter 3.3), Reed and Simon (1978, Chapter XIII.16), or Rodrigues
(2013, pp. 30–31) for details. In particular, λ ∈ σL2(R)(L) if and only if there exists a
ξ ∈ [−π, π) such that there is a nontrivial 1-periodic solution of the equation

Lξw = λw, where
(
Lξw
)
(x) := e−iξ x L

[
eiξ ·w(·)

]
(x).

5 We are being intentionally vague for this general discussion, but interested readers may consult, for
instance, Kapitula and Promislow (2013).
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and

σL2(R)(L) = σL∞(R)(L) =
⋃

ξ∈[−π,π)

σL2
per([0,1])(Lξ ).

The parameter ξ is referred to as the Bloch or Floquet frequency, and the operators
Lξ are the Bloch operators associated with L . Since the Bloch operators have com-
pactly embedded domains in L2

per([0, 1]), their spectrum consists entirely of discrete
eigenvalues that depend continuously on the Bloch parameter ξ . Thus, the spectrum
of L consists entirely of L∞(R)-eigenvalues and may be decomposed into countably
many curves λ(ξ) such that λ(ξ) ∈ σL2

per([0,1])(Lξ ) for ξ ∈ [−π, π).

Suppose, further, that ū is a transversal6 orbit of the traveling wave ODE F(u) +
c∂x u = 0. Then, near ū, the implicit function theorem guarantees a smooth manifold
of nearby 1-periodic traveling wave solutions of (possibly) different speeds, with
some dimension N ∈ N,7 not accounting for invariance under translations. Then, the
diffusive spectral stability conditions are:

(D1) σL2(R)(L) ⊂ {λ | �λ < 0} ∪ {0}.
(D2) There exists a θ > 0 such that for all ξ ∈ [−π, π) we have σL2

per([0,1])(Lξ ) ⊂
{λ | �λ ≤ −θ |ξ |2}.

(D3) λ = 0 is an eigenvalue of L0 with generalized eigenspace �0 ⊂ L2
per([0, 1]) of

dimension N .

Under mild additional technical hypotheses to do with regularity of the coefficients
of F , hyperbolic–parabolic structure, etc., conditions (D1)–(D3) have been shown in
all of the above-mentioned settings—in particular for periodic waves of either (1.1)
or (1.2)—to imply nonlinear modulation stability, at Gaussian rate: More precisely,
provided ‖(ũ − ū)|t=0‖L1(R)∩H s (R) is sufficiently small for some s sufficiently large,
there exists a function ψ(x, t) with ψ(x, 0) ≡ 0 such that the solution satisfies

‖ũ(·, t)− ū(· − ψ(·, t)− ct)‖L p(R) + ‖∇x,tψ(·, t)‖L p(R) ≤ C(1 + t)−
1
2 (1−1/p),

2 ≤ p ≤ ∞, (1.3)

valid for all t > 0; see Johnson and Zumbrun (2011, 2010), Johnson et al. (2011),
Barker et al. (2013), Johnson et al. (2014), Rodrigues and Zumbrun (2016). In the case
of (1.1), (1.2), for which coefficients depend analytically on the solution, essentially
there suffices the single technical hypothesis:

(H1) The N zero eigenvalues of L0 split linearly as ξ is varied with |ξ | sufficiently
small, in the sense that they may be expanded as λ j (ξ) = α jξ + o(ξ) for some
constants α j ∈ C distinct.

We note that, since the existence of the expansion λ j (ξ) = α jξ +o(ξ) in (H1) may
be proved independently, the hypothesis (H1) really concerns distinctness of the α j ,

6 In a sense compatible with the algebraic structure of the system.
7 For both (1.1) and (1.2), an easy dimensional count gives N = 2 (Johnson et al. 2011; Barker et al. 2010)
because of the presence of one local conservation law in the respective sets of equations.
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which is equivalent to the condition that the characteristics of a (formally) related first-
order Whitham modulation system be distinct, a condition that, in the case of analytic
dependence of the underlying equations, as here, either holds generically with respect
to nondegenerate parametrizations of the manifold of periodic traveling waves, or else
uniformly fails. In the original nonlinear analysis (Johnson et al. 2011) of (1.1), there
appeared an additional slope condition

hx/h < (cνF)−2, (1.4)

used to obtain hyperbolic–parabolic damping and high-frequency resolvent estimates
by Kawashima-type energy estimates, which in turn were necessary to obtain the
desired nonlinear modulational stability result; see Johnson et al. (2011, Section 4.3).
More recently, a subset of the authors has shown through a modified energy approach
that these damping and resolvent estimates may be obtained provided the slope con-
dition holds in the averaged sense 0 < (cνF)−1 and hence may be dropped from the
nonlinear analysis: see Rodrigues and Zumbrun (2016).

The above nonlinear stability results motivate a detailed analytical inspection of the
conditions (D1)–(D3) and (H1), which is precisely the intent of the weakly nonlinear
analysis presented in Sect. 2 below. We note that these conditions may be readily
checked numerically, in a well-conditioned way, using either Hill’s method (Galerkin
approximation), or numerical Evans function analysis (shooting/continuous orthogo-
nalization); see Barker et al. (2012, 2013, 2010).

1.1.2 Numerical Evaluation for Viscous St. Venant and KdV–KS

The diffusive spectral stability conditions (D1)–(D3) have been studied numerically
for the viscous St. Venant equations (1.1) in Barker et al. (2010) for certain “typical”
waves and Froude numbers F , with results indicating existence of both stable and
unstable waves: More precisely, the existence of a single “band” of stable waves as
period is varied for fixed F . This echoes the much earlier numerical study of roll waves
of the classical Kuramoto–Sivashinsky equation (KS) [ε = 0 for (1.2)] in Frisch et al.
(1986) and elsewhere that obtained similar results.

Equations (1.2) have received substantially more attention, as canonical models for
hydrodynamical instability in a variety of thin-film settings; as derived formally in
Chang et al. (1993), see also Rodrigues (2013, p. 16, footnote 10), the model (1.2)
with the addition of a further term D(v2

Y )Y , D constant, gives a general form for such
instabilities in the weakly unstable regime. A systematic numerical study of this more
general model was carried out in Chang et al. (1993), across all values of ε, δ, D, and
the period X of the wave, and, by different methods in Barker et al. (2013), for the
value D = 0 only; see Fig. 2, reprinted from Barker et al. (2013) (in close agreement
also with the results of Chang et al. 1993). As noted in Chang et al. (1993), it may be
observed from Fig. 2 that the small stable band for ε/δ 	 1 enlarges with addition
of dispersion/decrease in δ, reaching its largest size at δ/ε = 0 (corresponding to the
singular KdV) limit. For intermediate ratios of δ/ε, behavior can be considerably more
complicated, with bifurcation to multiple stable bands as this ratio is varied.
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Fig. 2 Stability boundaries (in
period X ) versus parameter ε for
the KdV–KS equation (1.2) with
ε2 + δ2 = 1. Here, the shaded

regions correspond to spectrally
stable periodic traveling waves
of the KdV–KS equation. Note
the KdV limit corresponds to
ε → 1−
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1.1.3 The KdV Limit δ → 0+ for KdV–KS

Of special interest for us is the KdV limit δ → 0+ for (1.2), treated with varying
degrees of rigor in Ercolani et al. (1993), Bar and Nepomnyashchy (1995), Noble
and Rodrigues (2013), Johnson et al. (2014), Barker (2014): a singularly perturbed
Hamiltonian—indeed, completely integrable—system. We cite briefly the relevant
results; for details, see Johnson et al. (2015), Barker (2014).

Proposition 1.1 (Existence Ercolani et al. 1993) Given any positive integer r ≥ 1,

there exists δ0 > 0 such that there exist periodic traveling wave solutions vδ(θ),

θ = Y − σδ S, of (1.2) (with ε = 1) that are analytic functions of θ ∈ R and Cr

functions of δ ∈ [0, δ0). When r ≥ 3, profiles vδ expand as δ → 0+ as a 2-parameter

family {
vδ(θ; a0, k) = T0(θ; a0, k, κ)+ δT1(θ)+ δ2T2(θ)+ O(δ3),

σδ = σ0(a0, k, κ)+ δ2σ2 + O(δ3),
(1.5)

where

T0(θ; a0, k, κ) = a0 + 12k2κ2 cn2 (κ θ, k) , σ0 = a0 + 4κ2 (2k2 − 1),

comprise the 3-parameter family (up to translation) of periodic KdV profiles and their

speeds; cn(·, k) is the Jacobi elliptic cosine function with elliptic modulus k ∈ (0, 1);

a0 is a parameter related to Galilean invariance; and κ = G(k) is determined via the

selection principle

(
K (k)G(k)

π

)2

= 7

20

2(k4 − k2 + 1)E(k)− (1 − k2)(2 − k2)K (k)

(−2 + 3k2 + 3k4 − 2k6)E(k)+ (k6 + k4 − 4k2 + 2)K (k)
,

where K (k) and E(k) are the complete elliptic integrals of the first and second kind.

The period X (k) = 2K (k)/G(k) is in one-to-one correspondence with k. More-
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over, the functions (Ti )i=1,2 are (respectively, odd and even) solutions of the linear

equations

L0[T0]T1 = T ′′
0 + T ′′′′

0 , L0[T0]T2 =
(

T 2
1

2
− σ2T0

)′
+ T ′′

1 + T ′′′′
1 , (1.6)

on (0, 2K (k)/G(k)) with periodic boundary conditions, where L0[T0] := −∂3
θ −

∂θ (T0 − σ0) denotes the linearized KdV operator about T0.

Throughout this manuscript, we let vδ(·; a0, k) and σδ(a0, k) denote the periodic
traveling wave profiles and wave speeds, respectively, as described in Proposition 1.5.

Remark 1.2 The additional parameter κ for periodic KdV waves as compared to KdV–
KS waves reflects the existence of the additional conserved quantity of the Hamiltonian
at δ = 0. The selection principle κ = G(k) is precisely the condition that the periodic
Hamiltonian orbits at δ = 0 persist, to first order, for 0 < δ 	 1. Alternatively, this
condition can be written explicitly as

∫ 2K (k)/κ

0 T0 (T ′′
0 + T ′′′′

0 )dx = 0.

By Galilean invariance of the underling Eq. (1.2), the stability properties of the
above-described X = X (k)-periodic solutions are independent of the parameter a0.
Hence, for stability purposes one may identify waves with a common period, fixing
a0 and studying stability of a one-parameter family in k. It is known (Kuznetsov et al.
1984; Spektor 1988; Bottman and Deconinck 2009) that the spectra of the linearized
operator L[T0], considered on L2(R), about a periodic KdV wave T0 is spectrally
stable in the neutral, Hamiltonian, sense, i.e., all eigenvalues of the Bloch operators

Lξ [T0] := (∂Y + iξ)
(
−(∂Y + iξ)2 − T0 + σ0

)
: L2

per(0, X) → L2
per(0, X),

considered with compactly embedded domain H3
per(0, X), are purely imaginary for

each ξ ∈ [−π/X, π/X). Moreover, the explicit description of the spectrum obtained
in Bottman and Deconinck (2009) also yields8 that λ = 0 is an eigenvalue of L0[T0]
of algebraic multiplicity three, that λ = 0 is an eigenvalue of Lξ [T0] only if ξ = 0,
and that the three zero eigenvalues of L0[T0(·; a0, k,G(k))] expand about for |ξ | 	 1
as

λ j (ξ) = iα j (ξ)ξ = iξα j + O(ξ2), j = 1, 2, 3 with α j ∈ R distinct. (1.7)

We introduce one final technical condition, first observed then proved numerically to
hold, at least for KdV waves that are limits as δ → 0 of stable waves of (1.2) (Bottman
and Deconinck 2009; Johnson et al. 2015; Barker 2014):9

8 In Johnson et al. (2015), Barker (2014), some of these facts remained unnoticed to the authors. In particular,
in Johnson et al. (2015), the condition that only ξ = 0 yields λ = 0 was gathered to condition (A) below
to form condition (A1) and distinctness of the α j was identified as condition (A2).
9 In fact (A) has been verified (see Proposition 1.4 below) on essentially the entire range k ∈ (0, 1); we
know of no instance where it fails.
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(A) A given parameter k ∈ (0, 1) is said to satisfy condition (A) if the nonzero eigen-
values of the linearized (Bloch) KdV operator Lξ [T0] about T0(·; a0, k,G(k)) are
simple for each ξ ∈ [−π/X, π/X).

Note that the set of k ∈ (0, 1) for which property (A) holds is open.
Given a periodic traveling wave solution T0(·; a0, k,G(k)) of the KdV equation

with elliptic modulus k ∈ (0, 1) satisfying condition (A) above, we now consider
the spectral stability of the associated family of periodic traveling wave solutions
vδ(·; a0, k), defined for δ ∈ [0, δ0), with δ0 as in Proposition 1.5, as solutions of the
KdV–KS equation (1.2). To this end, notice that, assuming k ∈ (0, 1) satisfies condition
(A), the nonzero Bloch eigenvalues λ(ξ) of the linearized KdV–KS operator

Lξ [vδ] = e−iξ ·
[
−δ
(
∂4

Y + ∂2
Y

)
− ∂3

Y − ∂Y (vδ − σδ)

]
eiξ · : L2

per(0, X) → L2
per(0, X)

admit a smooth10 expansion in δ for 0 < δ 	 1. In particular, for each pair (ξ, λ0)

with λ0 ∈ σ(Lξ [T0]) \ {0} and ξ ∈ [−π/X, π/X), there is a unique spectral curve
λ(ξ, λ0, δ) bifurcating from λ0 smoothly in δ, and it takes the form

λ(δ; ξ, λ0) = λ0 + δλ1(ξ, λ0)+ O(δ2) (1.8)

for some λ1(ξ, λ0). It is then natural to expect that the signs of the real parts of the
first-order correctors λ1(ξ, λ0) in the above expansion be indicative of stability or
instability of the near-KdV profiles uδ for 0 < δ 	 1. With this motivation in mind,
for any k ∈ (0, 1) that satisfies condition (A) above,11 we define the index

Ind(k) := sup
λ0∈σ(Lξ [T0(·;a0,k,G(k))])\{0}

ξ∈[−π/X (k),π/X (k))

� (λ1(ξ, λ0)) . (1.9)

Evidently, Ind(k) > 0 is a sufficient condition for the spectral instability for 0 < δ 	 1
of the near-KdV waves vδ bifurcating from T0. The next proposition states that the
condition Ind(k) < 0 is also sufficient for the diffusive spectral stability of the vδ , for
0 < δ 	 1. Define the open set

P :=
{

k ∈ (0, 1)
∣∣ condition (A) holds for k and Ind(k) < 0

}
. (1.10)

Proposition 1.3 [Limiting stability conditions (Johnson et al. 2015)] For each k ∈ P

there exists a neighborhood Ωk ⊂ (0, 1) of k and δ0(k) > 0 such that Ωk ⊂ P and

for any (a0, k̃, δ) ∈ R × Ωk × (0, δ0(k)) the nondegeneracy and spectral stability

conditions (H1) and (D1)-(D3) hold for the solutions vδ(·; ã0, k̃) of (1.2) discussed

above. In particular, P is open and δ0(·) can be chosen uniformly on compact subsets

of P .

10 In the sense of Proposition 1.1 that one can reach arbitrary prescribed regularity.
11 Condition (A) is independent of a0, holding for every a0 or for none. Likewise, Ind(k) is independent
of a0.
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Proposition 1.3 reduces the question of diffusive spectral stability and nonlinear
stability—in the sense defined in Sect. 1.1.1—of the near-KdV profiles constructed in
Proposition 1.5 to the verification of the structural condition (A) and the evaluation
of the function Ind(k). Note condition (A) is concerned only with the spectrum of the
linearized KdV operator about the limiting KdV profile v0; its validity is discussed in
detail in Johnson et al. (2015, Section 1). Further, note that due to the triple eigenvalue
of the KdV linearized operator at the origin, the fact that Ind(k) < 0 is sufficient for
stability is far from a foregone conclusion, and this represents the main contribution
of Johnson et al. (2015).

To evaluate Ind(k), using the complete integrability of the KdV equation to find an
explicit parametrization of the KdV spectrum and eigenfunctions about v0 (Bottman
and Deconinck 2009; Deconinck and Kapitula 2010), one can construct a continuous
multi-valued mapping12

[−π/X, π/X)× Ri � (ξ, λ0) �→ �(λ1(ξ, λ0)) ∈ R

that is explicitly computable in terms of Jacobi elliptic functions; see Bar and Nepom-
nyashchy (1995) or Barker et al. (2013, Appendix A.1). This mapping may then be
analyzed numerically. Numerical investigations of Bar and Nepomnyashchy (1995),
Barker et al. (2013) suggest stability for limiting periods X = X (k) in an open interval
(Xm, X M ) and instability for X outside [Xm, X M ], with Xm ≈ 8.45 and X M ≈ 26.1,
thus completely classifying stability for 0 < δ 	 1. The following result of Barker
(2014), established by numerical proof using interval arithmetic, gives rigorous val-
idation of these observations for all limiting periods X (k) except for a set near the
boundaries of the domain of existence X (k) ∈ (2π,+∞) ≈ (6.2832,+∞) corre-
sponding to the limits k → 0, 1.

Proposition 1.4 (Numerical proof Barker 2014) With kmin = 0.199910210210210

and kmax = 0.999999999997, corresponding to Xmin ≈ 6.284 and Xmax ≈ 48.3,

condition (A) holds on [kmin, kmax]. Moreover, there are kl ∈ [0.9421, 0.9426] and

kr ∈ [0.99999838520, 0.99999838527], corresponding to Xl ∈ [8.43, 8.45]and Xr ∈
[26.0573, 26.0575], such that P∩[kmin, kmax] = (kl , kr ) and Ind takes positive values

on [kmin, kmax] \ [kl , kr ].

As noted in Barker (2014), the limits k → 0 and k → 1 not treated in Proposition
1.4, corresponding to Hopf and homoclinic limits, though inaccessible by the numer-
ical methods of Barker (2014), should be treatable by asymptotics relating spectra to
those of (unstable Barker et al. 2011, 2010) limiting constant and homoclinic profiles;
see the related analyses (Hǎrǎguş and Kapitula 2008; Mikyoung Hur and Johnson
2015; Yang and Zumbrun 2016).

12 While λ1(ξ, λ0) is defined above only when λ0 is a simple eigenvalue of the limiting linearized KdV
operator Lξ [v0] , it possesses an explicit expression in terms of k and an auxiliary Lax spectral parameter
that extend this function to points where simplicity fails. Note in particular that this extension is triple-valued
at (0, 0).
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1.2 Description of Main Results

As mentioned previously, the fact that the KdV–KS equation (1.2) serves as an ampli-
tude equation for the shallow water system (1.1) in the weakly nonlinear regime
0 < δ =

√
F − 2 	 1 suggests that Propositions 1.3 and 1.4 should have natural

counterparts for the stability of roll waves in (1.1). To explore this connection, follow-
ing (Johnson et al. 2011, 2014; Barker et al. 2011), we find it convenient to rewrite
the viscous St. Venant equations (1.1) in their equivalent Lagrangian form:

∂tτ − ∂x u = 0, ∂t u + ∂x

(
τ−2

2F2

)
= 1 − τ u2 + ν∂x (τ

−2∂x u), (1.11)

where τ := 1/h and x denotes now a Lagrangian marker rather than a physical
location x̃ , satisfying the relations dt/dx̃ = u(x̃, t) and dx/dx̃ = τ(x̃, t). In these
coordinates, observe that the (now unnecessary Rodrigues and Zumbrun 2016) slope
condition (1.4) takes the form

2νux < F−2. (1.12)

Hereafter, we will work exclusively with the formulation (1.11).

Remark 1.5 Though nontrivial, the one-to-one correspondence between periodic
waves of the Eulerian and Lagrangian forms is a well-known fact. A fact that seems
to have remained unnoticed until very recently is that this correspondence extends
to the spectral level even in its Floquet-by-Floquet description. In particular, without
loss of generality one may safely study spectral stability in either formulation. See,
for instance, Benzoni-Gavage et al. (2014) for an explicit description of the former
correspondence and [BGMR] for the spectral connection, both in the closely related
context of the Euler–Korteweg system.

1.2.1 The Weakly Unstable Limit F → 2+

Our first three results, and the main analytical results of this paper, comprise a rigorous
validation of KdV–KS as a description of roll wave behavior in the weakly unstable
limit F → 2+. Let (τ0, u0), u0 = τ0

−1/2, be a constant solution of (1.11), and c0 :=
τ
−3/2
0 /2. Setting δ =

√
F − 2, we introduce the rescaled dependent and independent

variables

τ̃ = 3δ−2
(

τ

τ0
−1

)
, ũ = 6δ−2

(
u

u0
−1

)
, Y = τ

5/4
0 δ(x−c0t)

ν1/2 , S := δ3t

4τ
1/4
0 ν1/2

.

(1.13)

Our first result concerns existence of small-amplitude periodic traveling wave solutions
in the limit δ → 0+. Seeking traveling wave solutions (τ̃ , ũ)(Y − c̃S), in Sect. 2.1
below we will show that, up to a further near-identity change in the dependent variable
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τ̃ , the rescaled τ̃ (·) solves the profile equation for the KdV–KS equation (1.2), forced
by higher-order terms in δ: see (2.4)–(2.6) for details. Together with an appropriate
perturbation argument, this leads to the following existence result.

Theorem 1.6 (Existence) There exists δ0 > 0 such that there exist periodic traveling

wave solutions of (1.11), in the rescaled coordinates (1.13) (τ̃ , ũ)δ(θ), θ = Y −
c̃δ(a0, k)S, that are analytic functions of θ ∈ R, (a0, k) ∈ R× (0, 1) and δ ∈ [0, δ0)

and that, in the limit δ → 0+, expand as a 2-parameter family

⎧
⎪⎪⎨
⎪⎪⎩

τ̃δ(θ; a0, k) = −vδ̃(θ; a0, k)+ O(δ2),

ũδ(θ; a0, k) = −τ̃δ(θ; a0, k)+ δ2

2 (q̃(a0, k)− 3τ−1
0 c̃δ(a0, k)τ̃δ(θ; a0, k)),

c̃δ(a0, k) = σδ̃(a0, k)+ O(δ2),

(1.14)
where δ̃ = δ/(2τ

1/4
0 ν1/2), vδ(θ; a0, k) and σδ(a0, k) are the small-δ traveling wave

profiles and speeds of KdV–KS described in (1.5) and

q̃(a0, k) = 24k2(1 − k2)(G(k))4 − a0 ( 1
2 a0 + 4(G(k))2(2k2 − 1))

≡ v2
0/2 − σ0v0 + v′′0

is a constant of integration in the limiting KdV traveling wave ODE (see (2.7)).

For brevity, throughout the paper we shall often leave implicit the dependence on
(a0, k) or a0.

Remark 1.7 As we will see in the analysis below, the weakly unstable limit for the St.
Venant equations (1.11) is a regular perturbation of KdV, rather than a singular per-
turbation as in the KdV–KS case, a fact reflected in the stronger regularity conclusions
of Theorem 1.6 as compared to Proposition 1.1.

Our next result concerns the spectral stability of the small-amplitude periodic trav-
eling wave solutions constructed in Theorem 1.6 when subject to arbitrary small
localized (i.e., integrable) perturbations on the line.

Theorem 1.8 (Limiting stability conditions) For each k ∈ P , P as in (1.10), there

exists a neighborhood Ωk ⊂ (0, 1) of k and δ0(k) > 0 such that for any (a0, k̃, δ) ∈
R × Ωk × (0, δ0(k)), the nondegeneracy and spectral stability conditions (H1) and

(D1)-(D3) hold for (τ, u)δ(·; a0, k̃). In particular, δ0(·) can be chosen uniformly on

compact subsets of P . Conversely for each k ∈ (0, 1) such that condition (A) holds but

Ind(k) > 0 (where Ind is defined as in (1.9)), there exists a neighborhood Ωk ⊂ (0, 1)

of k and δ0(k) > 0 such that if (a0, k̃, δ) ∈ R×Ωk × (0, δ0(k)) then (τ, u)δ(·; a0, k̃)

is spectrally unstable.

From Theorem 1.6, it follows in particular that our roll waves have asymptotic
period∼ δ−1 and amplitude∼ δ2 in the weakly unstable limit F → 2+; that is, this is
a long-wave, small-amplitude limit.13 In Theorems 1.6 and 1.8, rescaling period and

13 Observe that, in this limit, ux ∼ δ3 so that the slope condition (1.12) is automatically satisfied for δ 	 1.
Recall, however, this condition is no longer required for the nonlinear analysis thanks to Rodrigues and
Zumbrun (2016).
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amplitude to order one, we find that in this regime, existence and stability are indeed
well described by KdV–KS → KdV: to zeroth order by KdV, and to first correction
by KdV–KS.

Combining Theorem 1.8 with Proposition 1.4, and untangling coordinate changes,
we obtain the following essentially complete description of stability of viscous St.

Venant roll waves in the limit F → 2+.

Corollary 1.9 (Limiting stability region) For δ =
√

F − 2 sufficiently small, uni-

formly for δ X on compact sets, periodic traveling waves of (1.11) are stable for

(Lagrangian) periods X ∈ ν1/2

τ
5/4
0 δ

(Xl , Xr ) and unstable for X ∈ ν1/2

τ
5/4
0 δ

[Xmin, Xl) and

X ∈ ν1/2

τ
5/4
0 δ

(Xr , Xmax]where Xmin, Xl , Xr , Xmax are as in Proposition 1.4, in particular,

Xmin ≈ 6.284, Xl ≈ 8.44, Xr ≈ 26.1, and Xmax ≈ 48.3.

1.2.2 Large Froude Number Limit F →+∞

We complement the above weakly nonlinear analysis by continuing into the large-
amplitude regime, beginning with a study of the distinguished large Froude number
limit F → +∞. The description of this limit requires a choice of scaling in the
parameters indexing the family of waves. To this end, we first emphasize that a suitable
parametrization, available for the full range of Froude numbers, is given by (q, X),
where q := −cτ̄ − ū is a constant of integration in the associated traveling wave
ODE, corresponding to total outflow, and X is the period. As discussed in Sect. 3.1
below, the associated two-parameter family of possible scalings may be reduced by
the requirements that (i) the limiting system be nontrivial and (ii) the limit be a regular
perturbation, to a one-parameter family indexed by α ≥ −2, given explicitly via

τ = aFα, u = bF−α/2, c = c0 F−1−3α/2, X = X0 F−1/2−5α/4, q = q0 F−α/2,

(1.15)

where a, b : R → R and c0, X0, q0 are real constants. Note, from the relation X = 1/k

between period and wave number14 k, that we have also k = k0 F1/2+5α/4.
Under this rescaling, moving to the co-moving frame (x, t) �→ (k(x − ct), t),

we find that X -periodic traveling wave solutions of (1.11) correspond to X0-periodic
solutions of the rescaled profile equation

a′′ = (−a2/c0k2
0ν)

×
(
k0a′F−3/2−3α/4(c2

0 − 1/a3)− 1 + a(q0 − c0 F−1a)2 − 2c0k2
0ν(a′)2/a3),

(1.16)

where b is recovered from a via the identity b = −q0 − c0 F−1a; see Sect. 3.1 below
for details. Noting that the behavior of F−3/2−3α/4 as F → ∞ depends on whether

14 Note that throughout our paper we use notation k for two distinct quantities, wavenumber as here (in
study away from F ≈ 2) and modulus of ellipticity (in study of F → 2+) as described in the previous
section.
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α = −2 or α > −2, one finds two different limiting profile equations in the limit
F →∞: a (disguised15) Hamiltonian equation supporting a selection principle, when
α > −2, and a non-Hamiltonian equation in the boundary case α = −2; see Sect. 3.1
below. Further, by elementary phase plane analysis when α > −2 or direct numerical
investigation when α = −2, periodic solutions of the limiting profile equations are
seen to exist as 2-parameter families parametrized by the period X0 and the discharge
rage q0. Noting that, by design, the rescaled profile Eq. (1.16) is a regular perturbation

of the appropriate limiting profile equation for all α ≥ −2, we readily obtain the
following asymptotic description

Theorem 1.10 For sufficiently large F, generically, X0-periodic profiles of (1.16),
obtained under the scaling (1.15), emerge for each α ≥ −2 from X0-periodic solutions

of the appropriate limiting profile equation obtained by taking F →∞ in (1.16) and,

when α > −2, satisfying a suitable selection principle.

Next, we study the spectral stability of a pair of fixed periodic profiles (ā, b̄) con-
structed above. One may readily check that, under the further rescaling Fb = b̌ and
F1/2+α/4λ = �, the linearized spectral problems around such a periodic profile (ā, b̄)

is given by
�a − c0k0a′ − k0b̌′ = 0

F−3/2−3α/4
(
�b̌ − c0k0b̌′ − k0(a/ā3)′

)

= −2F−1āb̄b̌ − b̄2a + νk2
0(b̌′ā2 + 2c0ā′a/ā3)′,

(1.17)

where (a, b) denotes the perturbation of the underlying state (ā, b̄). The limiting
spectral problems obtained by taking F → ∞ again depend on whether α = −2
or α > −2. In particular, we note the spectral problem is Hamiltonian and hence
possesses a natural fourfold symmetry about the real and imaginary axes, when α >

−2; see 3.1 below for details. Since (1.17) is, again by design, a regular perturbation

of the appropriate limiting spectral problems for all α ≥ −2, we obtain by standard
perturbation methods (e.g., the spectral/Evans function convergence results of Plaza
and Zumbrun 2004) the following sufficient instability condition.

Corollary 1.11 For all α ≥ −2, under the rescaling (1.15), the profiles of (1.16)
converging as F → ∞ to solutions of the appropriate limiting profile equation, as

described in Theorem 1.10 are spectrally unstable if the appropriate limiting spectral

problem about the limiting profiles admit L2(R)-spectrum in � with positive real part.

As clearly discussed in Sect. 3.1.2, for α > −2 the limiting profile equation,
associated selection principle, and limiting spectral problem are independent of the
value ofα: see (3.11) and (3.14) and surrounding discussion. Thus, the above instability
criterion for F →+∞ can be determined by the study of just two model equations: one
for α = −2 and one for any other fixed α > −2. Both regimes include particularly
physically interesting choices since α = 0 corresponds to holding the outflow q

constant as F →∞, while α = −2 corresponds to holding the Eulerian period �(X0)

15 Indeed, the profile equation in this case is Hamiltonian in the unknown h = 1
a .
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Fig. 3 In a, b, we plot a numerical sampling of the (unstable) spectrum corresponding to the F → ∞
limiting spectral problems for the cases α = −2 and α > −2, respectively, for a representative periodic
stationary solution of the appropriate limiting profile equation

constant as F → ∞.16 In Sect. 3.2, we investigate numerically the stability of the
limiting spectral problems in both the cases α = −2 and α = 0. This numerical study
indicates that, in both these cases, all periodic solutions of the appropriate limiting
profile equations are spectrally unstable and hence, by Corollary 1.11, that spectrally
stable periodic traveling wave solutions of the viscous St. Venant system (1.11) do not
exist for sufficiently large Froude numbers; see Figs. 3 and 6.

Numerical Observation 1 For both α > −2 and α = −2, the limiting eigenvalue

equations have strictly unstable spectra; hence, converging profiles are spectrally

unstable for F sufficiently large.

1.2.3 Intermediate F

We complete our stability investigation in Sect. 3.3 by carrying out a numerical study
for F bounded away from the distinguished values 2 and +∞ of the L2(R)-spectrum
of the linearized operator obtained from linearizing (1.11) about a given periodic
traveling wave solution. For F relatively small (2 < F ≤ 4), we find, unsurprisingly,
a smooth continuation of the picture for F → 2+, featuring a single band of stable
periods between two concave upward curves; see Fig. 4c. However, continuing into
the large-but-not-infinite regime (2.5 ≤ F ≤ 100), we find considerable additional
structure beyond that described in Numerical Observation 1.

Namely, for α ∈ [−2, 0] we see that the stability region is enclosed in a lens-
shaped region between two smooth concave upward curves corresponding to the lower
stability boundary and an upper high-frequency instability boundary, pinching off at
a special value F∗(α) after which, consistent with Numerical Observation 1, stable
roll waves no longer exist; see Fig. 4a for the case α = −2. Examining these curves
further for different values of α, we find that they obey a remarkably simple power-law

16 Here, the Eulerian scaling relation � = �0 F
− 1

2−
α
4 follows by � =

∫ X
0 τ̄ (x)dx , (1.15), and conver-

gence of the profile a.
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Fig. 4 Lower and upper stability boundaries for α = −2, ν = 0.1, and, motivated by (1.15), scaling q = 0.4F−2. Solid dots show numerically observed boundaries. Pale
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description in terms of F , q, α, and X ; see Fig. 4b for an example log–log plot in the
case α = −2. The general description of this power-law behavior is provided by the
following.

Numerical Observation 2 Both lower and upper stability boundaries appear for

F � 1 to be governed by universal power laws c1 log F + c2 log q + c3 log X +
c4 log ν = d, independent of parameters −2 ≤ α ≤ 0, ν > 0, where for the lower

boundary, c1 = 0.69, c2 = −3.5, c3 = 1, c4 = 0.18, and d = −0.11, and for the

upper boundary, c1 = 0.79, c2 = −1.7, c3 = 1, c4 = 0.76, and d = 2.2: see Fig. 7.

Values α > 0 were not computed.

Together with the small-F description of Theorem 1.8, these observations give an
essentially complete description of stability of periodic roll wave solutions of the St.
Venant equations (1.1), for −2 ≤ α ≤ 0.

1.3 Discussion and Open Problems

There have been a number of numerical and analytical studies of viscous roll waves
in certain small-amplitude limits, in particular for the KdV–KS equations governing
formally the weakly unstable limit F → 2+ (Frisch et al. 1986; Chang and Demekhin
2002; Chang et al. 1993; Bar and Nepomnyashchy 1995; Ercolani et al. 1993; Pego
et al. 2007; Barker et al. 2013; Johnson et al. 2015; Barker 2014). However, to our
knowledge, the present study represents the first systematic investigation of the sta-
bility of arbitrary amplitude roll wave solutions of the viscous St. Venant equations
for inclined thin-film flow.

Our main mathematical contribution is the rigorous validation of the formal KdV–
KS → KdV limit as a description of behavior in the small Froude number/weakly
unstable limit F → 2+. This, together with the works (Ercolani et al. 1993; Bar and
Nepomnyashchy 1995; Johnson et al. 2015; Barker 2014) on KdV–KS→KdV, gives
a complete classification of existence and stability of viscous St. Venant roll waves
in the weakly unstable regime. We note again that KS-KdV→KdV is a canonical
weakly unstable limit for the type of long-wave instabilities arising in thin-film flow,
in the same way that the (real and complex) Ginzburg–Landau equations are canonical
models for finite-wavelength “Turing-type” instabilities. However, its analysis, based
on singular perturbations of periodic KdV solutions, is essentially different from that of
the finite-wavelength case based on regular perturbation of constant solutions (Mielke
1997a, b; Schneider 1996).

From a practical point of view, the main point is perhaps the numerically obtained
description of behavior in the passage from small-amplitude to large-amplitude behav-
ior. In particular, the universal scaling law of Numerical Observation 2 gives an
unexpected global, simple-to-apply description of stability that seems potentially of
use in biological and engineering applications, for which the St. Venant equations
appear to be the preferred ones in current use. (Compare with the very complicated
behavior in Fig. 2 as δ is varied away from the small-δ limit.) This adds new insight
beyond the qualitative picture afforded by the canonical KdV–KS→KdV limit. In
particular, our numerical results indicate a sharp transition at F ≈ 2.3 from the
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quantitative predictions of the small-amplitude theory to the quite different large-F

prediction of Numerical Observation 2. As hydraulic engineering applications typi-
cally involve values 2.5 ≤ F ≤ 20 (Jeffreys 1925; Brock 1969, 1970; Abd-el Malek.
1991; Richard and Gavrilyuk 2012, 2013; Freeze et al. 2003), this distinction appears
physically quite relevant.

A very interesting open problem, both from the mathematical and engineering point
of view, is to rigorously verify this numerically observed rule of thumb. As noted
above (see Fig. 4), the upper and lower stability boundaries described in Numerical
Observation 2 obey different scalings from those prescribed in (1.15), as F → ∞,
with period growing faster than X ∼ F−1/2−5α/4 by a factor F1/2−c1+α(c2/2+5/4) that
is � 1 for α ≤ α∗ ≈ 1.54: in particular, for the two main physical values of interest
α = −2 and α = 0, corresponding to constant (Eulerian) period and constant inflow,
respectively. Indeed, given the large values of F to which the stability region extends,
this may be deduced by Numerical Observation 1, which implies that all such waves
of period O(F−1/2−5α/4) are necessarily unstable for F � 1.

An important consequence is that, rescaling viscosity ν so that the resulting period
Xν after standard invariant scaling remains constant, we find that ν → 0. Hence,
the limiting behavior of stable waves is described by the joint inviscid, large Froude

number limit ν → 0, F → +∞. Figure 5, depicting periodic profiles at the upper
and lower stability boundaries for values F = 5, 10, 15, clearly indicate convergence
as F increases to inviscid Dressler waves (Dressler 1949), alternating smooth por-
tions and shock discontinuities. This agrees with recent observations of (Boudlal and
Yu Liapidevskii 2005) that large-amplitude roll waves are experimentally well pre-
dicted by a simplified, asymptotic version of the inviscid theory. We conjecture that
our lower (low-frequency) stability boundary, corresponding to loss of hyperbolicity
of associated Whitham equations, agrees with the inviscid threshold suggested by
Noble (2006), Theorem 1.2,17 while the upper (high-frequency) stability boundary,
corresponding to appearance of unstable spectra far from the origin, arises through a
homoclinic, or “large-X ,” limit similar to that studied in Gardner (1997), Sandstede
and Scheel (2001) for reaction diffusion, KdV and related equations.

We note that both analysis and numerics are complicated in the large-X limit by
the appearance, differently from the case treated in Sandstede and Scheel (2001) of
essential spectra through the origin of the limiting solitary wave profile at X = +∞,
along with the usual zero eigenvalue imposed by translational invariance. Whereas
point spectra of a solitary wave are approximated as X → +∞ by individual loops
of Floquet spectra, curves of continuous spectra are “tiled” by arcs of length ∼ X−1,
leading to the plethora of zero eigenvalues (marked as pale dots, red in color plates)
visible in Fig. 8c, d. The large number of roots as X →∞ leads to numerical difficulty
for both Hill’s method and numerical Evans function techniques, making the resolution
of the stability region an extremely delicate computation, requiring 40 days on IU’s
370-node Quarry supercomputer cluster to complete (“Appendix 3”). The asymptotic
analysis of this region is thus of considerable practical as well as theoretical interest.

17 For fixed 4 < F2 < 90, this states that waves are stable for fixed velocity/period and inclination angle
θ sufficiently small: equivalently (by rescaling), for fixed inclination angle and period X sufficiently large.
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Fig. 5 Convergence to Dressler waves: we plot τ̄ (x) with pale solid curves and τ̄ ′(x) with dark dashed curves (green and blue, respectively, in color plates). Here α = −2,
ν = 0.1, q = 0.4F−2, and a F = 5, X ≈ 6.25, b F = 10, X ≈ 33.3, c F = 15, X ≈ 107, d F = 5, X ≈ 20.8, e F = 10, X ≈ 83.3, f F = 15, X ≈ 205
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Finally, recall that, just as the KdV–KS→KdV limit is derived formally from the
viscous St. Venant equations in the weakly unstable limit, the viscous St. Venant equa-
tions are derived formally from the more fundamental free-boundary Navier–Stokes
equations in the shallow water limit. Alternatively, the KdV–KS→KdV limit may be
derived directly from the Navier–Stokes equations in a formal weakly unstable/shallow
water limit. Rigorous verification of this formal limit, directly from the free-boundary
Navier–Stokes equations, is perhaps the fundamental open problem in the theory.

1.4 Plan of the Paper

In Sect. 2.1, we recall the formal derivation of KdV–KS from the viscous St. Venant sys-
tem and establish Theorem 1.6 concerning the existence of small-amplitude roll waves.
These calculations will serve as a guideline for the subsequent analysis: Indeed, we
will follow the general strategy for the proof of spectral stability for KdV–KS periodic
waves presented in Johnson et al. (2015). In Sect. 2.2, we begin studying the stability of
these small-amplitude roll waves by computing a priori estimates on possible unstable
eigenvalues for their associated linearized (Bloch) operators: Energy estimates provide
natural O(1) bounds (as δ =

√
F − 2 → 0), whereas an approximate diagonalization

process is needed to obtain the sharper bound O(δ3). At this stage, we recover, after a
suitable rescaling and up to some negligible terms, the spectral problem associated with
KdV–KS obtained after the Fenichel’s transformations. In Sect. 2.3, we then follow
the proof in Johnson et al. (2015) to complete the spectral stability analysis: For any
fixed nonzero Bloch number, possible unstable eigenvalues λ(ξ) for the linearized St.
Venant system as δ → 0+ are expanded as λ(δ; ξ, λ0) = δ3λ0+δ4λ1(ξ, λ0)+O(δ5),
where λ0 ∈ iR is an explicit eigenvalue associated with the linearized (Bloch) operator
for the KdV equation and the corrector λ1(ξ, λ0) is exactly the corrector found in the
analogous study of the stability of KdV–KS wavetrains in the singular limit δ → 0+:
see Barker (2014), Johnson et al. (2015) and Sect. 1.1.3 above. In particular, there it
was proven (through numerical evaluation of integrals of certain elliptic functions)
that Ind(k) < 0, as defined in (1.9) for all k ∈ P corresponding to periods X = X (k)

in an open interval (Xm, X M ) with Xm ≈ 8.44 and X M ≈ 26.1. On the other hand, in
the regime 0 < |λ|/δ3 + |ξ | 	 1 a further expansion of the Evans function is needed.
There, we show that modulo a rescaling of λ by δ3 this expansion is exactly the one
derived in Johnson et al. (2015) for the singular KdV limit of the KdV–KS equation.
From the results of Johnson et al. (2015), this concludes the proof of our descrip-
tion of spectral stability in the small Froude number limit F → 2+. We then turn
our attention to the stability of large-amplitude roll waves, far from the distinguished
limit F → 2+. We then continue our analysis into the large-amplitude regime, far
from the weakly unstable limit F → 2+. We begin with a study of the distinguished
large Froude number limit F → ∞ in Sect. 3.1, identifying a one-parameter family
of limiting systems approachable by various scaling choices in (1.11). An analysis of
these limiting systems indicates instability of roll waves for sufficiently large Froude
number F . Finally, in Sect. 3.2, we carry out a numerical analysis similar to the one in
Barker et al. (2013) where for the KdV–KS equation the full set of model parameters
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was explored: here we consider the influence of 2 < F < ∞ on the range of stability
of periodic waves, as parametrized by period X and discharge rate q.

2 Existence and Stability of Roll Waves in the Limit F → 2+

In this section, we rigorously analyze in the weakly unstable limit F → 2+ the spectral
stability of periodic traveling wave solutions of the St. Venant equations (1.11) to small
localized (i.e., integrable) perturbations. We begin by studying the existence of such
solutions and determining their asymptotic expansions. In particular, we show that
such waves exist and, up to leading order, are described by solutions of the KdV–KS
equation (1.2) in the singular limit δ → 0 (Theorem 1.6).

2.1 Existence of Small-Amplitude Roll Waves: Proof of Theorem 1.6

The goal of this section is to establish the result of Theorem 1.6. To begin, notice that
traveling wave solutions of the shallow water equations (1.11) with wave speed c are
stationary solutions of the system

∂tτ − ∂x (u + cτ) = 0, ∂t u + ∂x

(
τ−2

2F2 − cu

)
= 1− τu2 + ν∂x

(
τ−2∂x u

)
(2.1)

of PDE’s. In particular, from the first PDE it follows that u = q−cτ for some constant
of integration q ∈ R and hence τ must satisfy the profile ODE

∂x

(
τ−2

2F2 + c2τ

)
= 1 − τ(q − cτ)2 − cν∂x

(
τ−2∂xτ

)
. (2.2)

Clearly then, we have that (τ, u) = (τ0, τ
−1/2
0 ) is a constant equilibrium solution of

(2.1) for any τ0 > 0. Furthermore, linearizing the profile ODE (2.2) about τ = τ0
yields, after rearranging, the ODE

cντ−2
0 τ ′′ +

(
c2 − c2

s

)
τ ′ +
(

τ
−3/2
0 /2 − c

τ
−1/2
0 /2

)
τ = 0, cs =

τ
−3/2
0

F
.

Considering the eigenvalues of the above linearized equation as being indexed by the
parameters u0, c, and q it is straightforward to check that a Hopf bifurcation occurs
when

c = cs =
τ
−3/2
0

F
and F > 2.

This verifies that as the Froude number F crosses through F = 2, the equilibrium solu-
tions (τ, u) = (τ0, τ

−1/2
0 ), corresponding to a parallel flow, become linearly unstable

through a Hopf bifurcation, and hence, nontrivial periodic traveling wave solutions of
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(1.11) exist for F > 2. Moreover, at the bifurcation point the limiting period of such
waves is given by X = 2π

ω
where ω = τ

5/4
0 ν−1/2

√
F − 2.

With the above preparation in mind, we want to examine the small-amplitude peri-
odic profiles generated in the weakly nonlinear limit F → 2+. To this end, we set
δ =

√
F − 2 and notice that by rescaling space and time in the KdV-like fashion

Y = δ(x − c0 t)/ν1/2 and S = δ3t/ν1/2, with c0 = τ
−3/2
0 /2, (1.11) become

δ2∂Sτ − ∂Y (u + c0τ) = 0,

δ3∂Su + δ∂Y

(
τ−2

2F2 − c0u

)
= ν1/2

(
1 − τu2

)
+ ν1/2δ2∂Y

(
τ−2∂Y u

)
. (2.3)

We now search for small-amplitude solutions of this system of the form (τ, u) =
(τ0, τ

−1/2
0 )+ δ2(τ̃ , ũ) with wave speed c0 in the limit F → 2+. The unknowns τ̃ and

ũ satisfy the system

δ2∂S τ̃ − ∂Y (ũ + c0τ̃ ) = 0

δ3∂S ũ + δ∂Y

(
(τ0 + δ2τ̃ )−2

2δ2 F2 − c0ũ

)

= ν1/2δ−2
(

1 − (τ0 + δ2τ̃ )(τ
−1/2
0 + δ2ũ)2

)
+ ν1/2δ2∂Y

(
(τ0 + δ2τ̃ )−2∂Y ũ

)
.

Defining the new unknown w̃ = δ−2 (ũ + c0τ̃ ) and inserting ũ = −c0τ̃ + δ2w̃ above
yields

∂S τ̃ − ∂Y w̃ = 0

δ3∂Sw̃ + δ−1∂Y

(
(τ0 + δ2τ̃ )−2 − τ 2

0 + 2τ−3
0 δ2τ̃ − 3τ 4

0 δ4τ̃ 2

2δ2 F2

+
(

c2
0 −

τ−3
0

F2

)
τ̃ + 3τ 4

0

2F2 δ2τ̃ 2 − 2c0δ
2w̃

)

= ν1/2
(
(2τ

−1/2
0 c0 − c2

0τ0)τ̃
2 − 2τ

1/2
0 w̃ − c0τ

−2
0 ∂Y Y τ̃ + δ2 g̃(τ̃ , w̃, δ)

)

+ ν1/2τ−2
0 δ2∂Y Y w̃ + ν1/2δ2∂Y

(
r̃(τ̃ , δ)∂Y (δ2w̃ − c0τ̃ )

)

for some smooth functions g̃, r̃ . Expanding F−2 = 1
4

(
1 − δ2

)
+ O(δ4) reduces the

above system to

∂S τ̃ − ∂Y w̃ = 0

δ3∂Sw̃ + δ∂Y

(
τ̃

4τ 3
0

+ 3

8τ 4
0

τ̃ 2 − τ
−3/2
0 w̃ + δ2 f̃ (τ̃ , δ)

)
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= ν1/2

(
3

4τ 2
0

τ̃ 2 − 2τ
1/2
0 w̃ − 1

2τ
7/2
0

∂Y Y τ̃ + δ2 g̃(τ̃ , w̃, δ)

)

+ ν1/2τ−2
0 δ2∂Y Y w̃ + ν1/2δ2∂Y

(
r̃(τ̃ , δ)∂Y (δ2w̃ − c0τ̃ )

)

for some smooth function f̃ . Rescaling the independent and dependent variables via

(Y, S, τ̃ , w̃) �→
(
τ

5/4
0 Y, 1

4τ
−1/4
0 S, 3τ−1

0 τ̃ , 12τ
1/2
0 w̃
)

,

we arrive at the rescaled system

∂S τ̃ − ∂Y w̃ = 0

δ3

8τ
1/4
0 ν1/2

∂Sw̃ + δ

2τ
1/4
0 ν1/2

∂Y

(
τ̃ + 1

2
τ̃ 2 − w̃ + δ2 f (τ̃ , δ)

)

= 1

2
τ̃ 2 − w̃ − ∂Y Y τ̃ + δ2g(τ̃ , w̃, δ)+ 1

2
δ2∂Y Y w̃ + δ2∂Y

(
r(τ̃ , δ)∂Y (δ2w̃ − c0τ̃ )

)

(2.4)

for some smooth functions f , g, and r .
We now search for periodic traveling waves of the form (τ̃ , w̃)(Y − c̃S) in the

rescaled system (2.4). Changing to the moving coordinate frame (Y − c̃S, S), in which
the S-derivative becomes zero, and integrating the first equation with respect to the
new spatial variable Y − c̃S, we find that w̃ = q̃− c̃τ̃ for some constant q̃ . Substituting
this identity into the second equation in (2.4), also expressed in the moving coordinate
frame (Y − c̃S, S), gives

δ3

8τ
1/4
0 ν1/2

c̃2τ̃ ′ + δ

2τ
1/4
0 ν1/2

(
(1 + c̃)τ̃ + 1

2
τ̃ 2 + δ2 f (τ̃ , δ)

)′

= −q̃ + 1

2
τ̃ 2 + c̃τ̃ + δ2G(τ̃ , δ)−

(
(1 + δ2 B(τ̃ , δ))τ̃ ′

)′

for some smooth functions G and B. Next, introducing the near-identity change in
dependent variables

T̃ = −
(

τ̃ + δ2
∫ τ̃

0
B(x, δ)dx

)
(2.5)

gives, finally, the reduced, nondimensionalized profile equation

T̃ ′′ + 1

2
T̃ 2 − c̃T̃ − q̃ = −δ̃

(
(c̃ + 1)T̃ − 1

2
T̃ 2
)′
+ δ̃2m(T̃ , T̃ ′, δ̃), δ̃ := δ

2τ
1/4
0 ν1/2

(2.6)
for some smooth function m.
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It is well known (see Bottman and Deconinck 2009 for instance) that the limiting
δ̃ = 0 profile equation

T ′′
0 + 1

2
T 2

0 − c̃ T0 = q̃ (2.7)

selects for a given (c̃, q̃), up to translation, a one-parameter subfamily of the cnoidal
waves of the KdV equation ut + uux + uxxx = 0, which are given explicitly as a
three-parameter family by

T0(x; a0, k, κ) = a0 + 12k2κ2 cn2 (κx, k) ,

where cn(·, k) is the Jacobi elliptic cosine function with elliptic modulus k ∈ (0, 1),
κ > 0 is a scaling parameter, and a0 is an arbitrary real constant related to the Galilean
invariance of the KdV equation, with the parameters (a0, k, κ) being constrained by
(c̃, q̃) through the relations

c̃ = a0 + 4κ2 (2k2 − 1) ,

q̃ = 24k2(1 − k2)κ4 − a0 ( 1
2 a0 + 4κ2 (2k2 − 1)) .

Note that these cnoidal profiles are 2K (k)/κ periodic, where K (k) is the complete
elliptic integral of the first kind.

Now, noting that (2.6) can be written as

1

δ̃

(
1

2
(T̃ ′)2 + 1

6
T̃ 3 − c̃

2
T̃ 2 − q̃ T̃

)′
= T̃ ′

(
−
(

c̃ + 1)T̃ − 1

2
T̃ 2
)′
+ δ̃ m(T̃ , T̃ ′, δ̃)

)
,

standard arguments in the study of regular perturbations of planar Hamiltonian sys-

tems (see, for example, Guckenheimer and Holmes 1990, Chapter 4) imply that, among
the above-mentioned one-dimensional family of KdV cnoidal waves T0, only those
satisfying

∫ 2K (k)/κ

0
T ′

0

(
(c̃ + 1)T0 −

1

2
T 2

0

)′
dx = 0 (2.8)

can continue for 0 < δ̃ 	 1 into a family of periodic solutions of (2.6) and that,
further, simple zeros of (2.8) do indeed continue for small δ̃ into a unique, up to
translations, three-parameter family of periodic solutions of (2.6); that is, for each
fixed 0 < δ̃ 	 1 we find, up to translations, a two-parameter family of periodic
solutions of (2.6) that may be parametrized by a0 and k. The observation that, in the
present case, the selection principle (2.8) indeed determines a unique wave that is a
simple zero, follows directly from the proof of Proposition 1.1 (see Remark 1.2) since
Eq. (2.7) implies
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∫ 2K (k)/κ

0
T ′

0

(
(c̃ + 1)T0 −

1

2
T 2

0

)′
dx =

∫ 2K (k)/κ

0
T ′

0

(
T0 + T ′′

0

)′
dx

= −
∫ 2K (k)/κ

0
T0
(
T ′′

0 + T ′′′′
0

)
dx,

in agreement with the KdV–KS case. This shows that the profile expansion agrees to
order O(δ̃) with the KdV–KS expansion. Indeed, further computations show that the
expansion of the profile coincides with the KdV–KS expansion up to order O(δ̃2). To
complete the proof of Theorem 1.6 we need to only observe that, instead of fixing the
speed as above and letting the period vary, one may alternatively fix the period and
vary the velocity.

Remark 2.1 Viewed from a standard dynamical systems point of view, the F →
2+ limit may be recognized as a Bogdanov–Takens, or saddle-node bifurcation;
see, for example, the corresponding bifurcation analysis carried out for an arti-
ficial viscosity version of Saint Venant in Hong Hwang and Chang (1987). The
unfolding of a Bogdanov–Takens point proceeds, similarly as above, by rescal-
ing/reduction to a perturbed Hamiltonian system (Guckenheimer and Holmes 1990,
Section 7.3).

2.2 Estimate on Possible Unstable Eigenvalues

Next, we turn to analyzing the spectral stability (to localized perturbations)18 of the
asymptotic profiles of the St. Venant equation constructed in Theorem 1.6. To begin,
let (τ̄δ, ūδ)(x − c̄δt) denote a periodic traveling wave solution of the viscous St.
Venant equation (1.11), as given by Theorem 1.6 for δ =

√
F − 2 ∈ (0, δ0). More

explicitly, in terms of the expressions given in Theorem 1.6, the periodic profiles
are

τ̄δ(θ) = τ0 + δ2 τ0
3 τ̃δ

(
τ

5/4
0 δ

ν1/2 θ

)
, ūδ(θ) = u0 + δ2 u0

6 ũδ

(
τ

5/4
0 δ

ν1/2 θ

)
(2.9)

and the period Xδ , wave speed c̄δ , and constant of integration qδ ≡ ūδ + c̄δ τ̄δ are
expressible via

Xδ =
ν1/2

τ
5/4
0 δ

X, c̄δ = c0 +
δ2

4τ
3/2
0

c̃δ, qδ = u0 + c̄δτ0 +
δ2

12τ
1/2
0

q̃, (2.10)

18 The strongest kind of spectral stability, in the sense that it implies spectral stability to co-periodic
perturbations, subharmonic perturbations, side-band perturbations, etc.

123



312 J Nonlinear Sci (2017) 27:285–342

with τ0, u0 constant, c0 = τ
−3/2
0 /F , and θ = x− c̄δt . Linearizing (1.11) about (τ̄δ, ūδ)

in the co-moving coordinate frame19 (x − c̄t, t) leads to the linear evolution system

∂tτ − ∂x (u + c̄τ) = 0,

∂t u − ∂x

(
c̄ u +

(
τ̄−3

F2 − 2τ̄−3ū′
)

τ

)
= −ū2τ − 2ūτ̄ + ν∂x (τ̄

−2∂x u) (2.11)

governing the perturbation (τ, u) of (τ̄ , ū). Seeking time-exponentially dependent
modes leads to the spectral problem

(u + c̄τ)′ = λ τ,

ν(τ̄−2u′)′ = (λ+ 2ūτ̄ )u −
((

τ̄−3

F2 − 2τ̄−3ū′
)

τ ′ + c̄u′
)

+
(

ū2 −
(

τ̄−3

F2 − 2τ̄−3ū′
)′)

τ,

(2.12)

where primes denote differentiation with respect to x . In particular, notice that (2.12)
is an ODE spectral problem with Xδ-periodic coefficients. As described in Sect. 1.1
above, Floquet theory implies that the L2(R) spectrum associated with (2.11) is
comprised entirely of essential spectrum and can be smoothly parametrized by the
discrete eigenvalues of the spectral problem (2.12) considered with the quasi-periodic
boundary conditions (τ, u)(x + Xδ) = eiξ (τ, u)(x) for some value of the Bloch para-
meter ξ ∈ [−π/Xδ, π/Xδ). The underlying periodic solution (τ̄ , ū) is said to be
(diffusively) spectrally stable provided conditions (D1)–(D3) introduced in the intro-
duction hold. Reciprocally, the solution will be spectrally unstable if there exists a
ξ ∈ [−π/Xδ, π/Xδ) such that the associated Bloch operator has an eigenvalue in the
open right half plane.

In this section, we provide a priori estimates on the possible unstable Bloch eigen-
values of the above eigenvalue problem (2.12). As a first step, we carefully examine
the hyperbolic–parabolic structure of the eigenvalue problem and demonstrate that, as
F → 2+ or, equivalently, as δ → 0+, the unstable Bloch eigenvalues of this system are
O(1). Next, we prove a simple consistent splitting result that establishes all unstable
Bloch eigenvalues of (2.12) converge to zero as δ → 0+. We can then bootstrap these
estimates to perform a more refined analysis of the eigenvalue problem demonstrating
that such unstable eigenvalues are necessarily O(δ3) as δ → 0+.

2.2.1 Unstable Eigenvalues Converge to Zero as δ → 0+

We begin by ruling out the existence of sufficiently large unstable eigenvalues for
(2.12). Setting Z := (τ, u, τ̄−2u′)T , and recalling that ū = q − c̄τ̄ for some constant
q ∈ R, we first write (2.12) as a first-order system

Z ′(x) = A(x, λ)Z(x), (2.13)

19 Henceforth, we suppress the dependence of τ̄ , ū q, and c̄ on δ.
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where

A(x, λ) :=

⎛
⎜⎝

λ/c̄ 0 −τ̄2/c̄

0 0 τ̄2

(q−c̄τ̄ )2−ᾱx−ᾱλ/c̄
ν

λ+2τ̄ (q−c̄τ̄ )
ν

−c̄τ̄ 2+ᾱτ 2/c̄
ν

⎞
⎟⎠ , ᾱ := τ̄−3(F−2 + 2c̄ντ̄ ′).

(2.14)

Setting B(x, λ) :=

⎛
⎝

λ/c̄ 0 0
0 0 τ̄ 2

− ᾱλ/c̄
ν

λ
ν

0

⎞
⎠ and noting that A − B is O(1) as |λ| → ∞, we

expect that the spectral problem (2.13) is governed by the principal part B(x, λ) for
|λ| sufficiently large. A direct inspection shows that the eigenvalues of B are given

by λ
c̄

and ±τ̄

√
λ
ν

, so that the eigenvalues of B have two principal growth rates as
|λ| → ∞. In the following, we keep track of both of these spectral scales by a series
of carefully chosen coordinate transformations preserving periodicity; for details of
these transformations, see Section 4.1 of Barker et al. (2011).

With the above preliminaries, we begin by verifying that the unstable spectra for
the system (2.12) are O(1) for δ sufficiently small. Throughout, we use the notation
‖u‖2 =

∫ Xδ

0 |u(x)|2dx . Note that although we focus on uniformity in δ in the forth-
coming estimates of the unstable spectra, the norms ‖ · ‖ do depend on δ through the
period Xδ .

Lemma 2.2 Let (τ̄δ, ūδ) be a family of periodic traveling wave solution of (1.11)
defined as in Theorem 1.6 for all δ =

√
F − 2 ∈ (0, δ0) for some δ0 > 0 sufficiently

small. Then, there exist constants R0, η > 0 and 0 < δ1 < δ0 such that, for all

δ ∈ (0, δ1), the spectral problem (2.12) has no L∞(R) eigenvalues with �(λ) ≥ −η

and |λ| ≥ R0.

Proof Suppose that λ is an L∞(R) eigenvalue for the spectral problem (2.12) and let
(τ, u) be a corresponding eigenfunction satisfying (u, τ, τ ′)(Xδ) = eiξ (u, τ, τ ′)(0)

for some ξ ∈ [−π/Xδ, π/Xδ). As described above, setting Z := (τ, u, τ̄−2u′)T

allows us to write (2.12) as the first-order system (2.13), where the coefficient matrix
A(x, λ) is given explicitly in (2.14). By performing a series of Xδ-periodic change in
variables, carried out in detail in (Barker et al. 2011, Section 4.1), we find there exists
a Xδ-periodic change in variables W (·) = P(·; λ, δ)Z(·) that transforms the above
spectral problem into

W ′(x) = (Dλ + N )(x, λ)W (x), (2.15)

supplemented with the boundary condition W (Xδ) = eiξ W (0), where the matrices
Dλ, N are defined as

Dλ(·, λ) = diag

(
λ

c̄
+ θ0 +

θ1

λ
, τ̄

√
λ

ν
, −τ̄

√
λ

ν

)
, θ0 =

ᾱτ̄ 2

c̄ ν
, (2.16)
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ᾱ as in (2.14), and N :=
(

0 NH,D

ND,H ND,D

)
with ND,D a 2 × 2 matrix. Here, N (·, λ)

is an Xδ-periodic matrix, and moreover, the individual blocks of the matrix N (·, λ)

expand as

ND,D(·, λ) = N 0
D,D + λ−

1
2 N 1

D,D + λ−1 N 2
D,D

ND,H (·, λ) = N 0
D,H + λ−

1
2 N 1

D,H

NH,D(·, λ) = N 0
H,D + λ−

1
2 N 1

H,D + λ−1 N 2
H,D + λ−

3
2 N 3

H,D ,

(2.17)

with |N j
∗,∗| bounded uniformly in δ 	 1. Explicit formulae for N

j
k,l and θ1 are given

in “Appendix 1.”
Now, a crucial observation is that, by Theorem 1.6, together with the scalings

(2.9)–(2.10), we have

lim
δ→0+

θ0(x) = τ
1/2
0

2ν
> 0.

It follows that θ0 is strictly positive and uniformly bounded away from zero, for all
δ > 0 sufficiently small. Thus, there exists η, δ1 > 0 sufficiently small and R0 > 0
sufficiently large such that if |λ| ≥ R0 and�(λ) ≥ −η, then the quantity�(λ

c̄
+θ0+ θ1

λ
)

is strictly positive and bounded away from zero, uniformly in δ for 0 < δ < δ1.

Likewise, by choosing δ1 smaller if necessary, the quantity |λ|1/2�(τ̄

√
λ
ν
) may be

taken to be strictly positive and bounded away from 0, uniformly in δ in the same set
of parameters.

Finally, under the same conditions, taking R0 possibly larger and decomposing

W := (WH , WD,+, WD,−)T ,

observing that |WH |, |WD,+| and |WD,−| are Xδ-periodic functions, it follows by
standard energy estimates, taking the real part of the complex L2[0, Xδ]-inner product
of each W j against the W j -coordinate of (2.15)–(2.17), using the above-demonstrated
coercivity (nonvanishing real part) of the entries of the leading-order diagonal term
Dλ, and rearranging, that there exists a constant C > 0 independent of R0 such that,
for all 0 < δ < δ1, �(λ) ≥ −η and |λ| ≥ R0, we have

‖WH‖2 ≤ C
(
‖WD,+‖ + ‖WD,−‖

)
‖WH‖ and ‖WD,+‖2 + ‖WD,−‖2

≤ C R
−1/2
0

(
‖WD,+‖ + ‖WD,−‖

)
‖WH‖ .

Thus, ‖WH‖ ≤ C
(
‖WD,+‖ + ‖WD,−‖

)
≤ C2 R

−1/2
0 ‖WH‖, yielding a contradiction

for R0 sufficiently large.

Next, we rescale the spatial variable x as y = δ x , noting that, since δXδ =
ν1/2τ

−5/4
0 X , the period is then independent of δ. Then, the first-order system (2.13)

can be rewritten as
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δ Z ′(y) =
(

A0(λ) + δ2 A1(y; λ, δ)
)

Z(y) (2.18)

coupled with the boundary condition Z(δ Xδ) = eiξ Z(0) for some ξ ∈ [−π/δXδ,

π/δXδ), where

A0(λ) =

⎛
⎝

2λτ
3/2
0 −2λτ

3/2
0 0

0 0 τ 2
0 ν−1

λ− 2
√

τ0 2λ 0

⎞
⎠

is constant and A1(·; λ, δ) is uniformly bounded (for λ and δ in any compact set).
More precisely, for any δ in a compact subset of [0, δ0), we have

A1(·; λ, δ) =

⎛
⎝

O(λ) O(λ) 0
0 0 O(1)

O(1) O(1) O(1)

⎞
⎠ .

By analyzing the eigenvalues of A0(λ), we now show that the possible unstable eigen-
values for (2.12) converge to the origin as δ → 0+.

Lemma 2.3 Let (τ̄δ, ūδ) be a family of periodic traveling wave solution of (1.11)
defined as in Theorem 1.6 for all δ =

√
F − 2 ∈ (0, δ0) for some δ0 > 0 sufficiently

small. Then, for every ε > 0, there exists a δ1 ∈ (0, δ0) such that for all δ ∈ (0, δ1),

the spectral problem (2.12) has no L∞(R) eigenvalues with �(λ) ≥ 0 and |λ| ≥ ε.

Proof By Lemma 2.2, it is sufficient to consider λ on a compact set ε ≤ |λ| ≤ R0,
�λ ≥ 0, whence (2.18), δ → 0+ represents a uniform family of semiclassical limit
problems, with A0, A1 varying in compact sets. By standard WKB-type estimates
[see, for example, the “Tracking Lemma” of Gardner and Zumbrun (1998); Zumbrun
and Howard (1998); Plaza and Zumbrun (2004), these have no bounded solutions for
0 < δ ≤ δ0 sufficiently small, so long as A0 satisfies consistent splitting, meaning
that its eigenvalues have nowhere-vanishing real parts: equivalently, A0(λ) has no
purely imaginary eigenvalue for �λ > 0 and ε ≤ |λ| ≤ R0. Indeed, it is easy to see
using convergence as δ → 0 of the associated periodic Evans function of Gardner
(1993) (following from continuous dependence on parameters of solutions of ODE),
the correspondence between bounded solutions and zeros of the Evans function, and
analyticity of the Evans function together with properties of limits of analytic functions,
that A0(λ) has a pure imaginary eigenvalue, i.e., the δ = 0 version of (2.18) has a
bounded solution, if and only if there are bounded solutions of (2.18) for a sequence
λδ → λ as δ → 0.

To prove the lemma therefore, we establish consistent splitting of A0 for λ ∈ � :=
{λ : ε ≤ |λ|,�λ > 0}. The eigenvalues γ (λ) of the matrix A0(λ) are the solutions of
the equation

γ 3 − 2λτ
3/2
0 γ 2 − 2λτ 2

0 ν−1γ + 2λ2τ
7/2
0 ν−1 + 4λτ 4

0 ν−1 = 0. (2.19)
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Suppose that γ = iΩ ∈ Ri is an eigenvalue of A0(λ) for some λ ∈ �. From (2.19),
it follows that λ must be a root of the quadratic equation

2λ2τ
7/2
0 ν−1 + 2λ

(
2τ 4

0 ν−1 +Ω2τ
3/2
0 − 2iΩτ 2

0 ν−1
)
− iΩ3 = 0. (2.20)

By Lemma 2.2 above, if **Ω is sufficiently large, then the roots of (2.20) satisfy
�(λ) ≤ 0, else, by the discussion surrounding the Evans function, above, there would
be bounded solutions of (2.18) for �λ > 0, |λ| large, and δ arbitrarily small, a
contradiction. (Alternatively, one may repeat the steps of the proof of Lemma 2.2
for (2.18) with δ = 0.) Increasing Ω then from the supposed value corresponding
to an eigenvalue of Aλ, and tracking the corresponding root λ of (2.20), we see
that eventually this root must cross the imaginary axis in moving from �λ ≥ 0 to
�λ ≤ 0. Thus, it is sufficient to search for roots of (2.20) of the form λ = i� for
some � ∈ R. Substituting this ansatz into (2.20) and grouping real and imaginary
parts implies that Ω and � satisfy the system of equations �(τ

3/2
0 � −Ω) = 0 and

2τ
3/2
0 � = Ω ×Ω2/[Ω2 + 2ν−1τ

3/2
0 ], from which it easily follows that Ω = � = 0.

It follows that for all Ω �= 0, the real parts of the roots λ j (Ω) of (2.20) have constant
signs, so that, for each ε > 0, A0(λ) indeed has consistent splitting in the region �,
and the lemma immediately follows. ��

2.2.2 Unstable Eigenvalues are O(δ3)

Next, we bootstrap the estimates of Lemmas 2.2 and 2.3 to provide a second energy
estimate on the reduced “slow”, or KdV, block of the spectral problem (2.12) in the limit
δ → 0+. Notice that this result relies heavily on the fact that the corresponding spec-

tral problem for the linearized KdV equation about a cnoidal wave T0(·; a0, k,G(k))

described in Theorem 1.8 has been explicitly solved in Bottman and Deconinck (2009);
Spektor (1988) using the associated completely integrable structure, and in particular
has been found to be spectrally stable20 for all k ∈ (0, 1).

Proposition 2.4 Let (τ̄δ, ūδ) be a family of periodic traveling wave solution of (1.11)
defined as in Theorem 1.6 for all δ =

√
F − 2 ∈ (0, δ0) for some δ0 > 0 sufficiently

small.

Then, there exist positive constants C1, C2 and δ1 ∈ (0, δ0) such that for all δ ∈ (0, δ1)

the spectral problem (2.12) has no L∞(R) eigenvalues with�(λ) ≥ C1δ
4 or (�(λ) ≥

0 and |λ| ≥ C2δ
3).

Proof By Lemmas 2.2 and 2.3, the possible unstable eigenvalues for the spectral
problem (2.12) converge to the origin as δ → 0+. To analyze the behavior of these
possible unstable eigenvalues further, we rescale the unknown Z in (2.18) to W =
(Z1, λ

2/3 Z2, λ
1/3 Z3)

T , λ1/3 denoting the principle third root, yielding the system

δ W ′(y) =
(

B0(λ) + δ2 λ−1/3 B1(y; λ, δ)
)

W (y)

20 In the Hamiltonian sense, meaning the linearization about T0 of the KdV equation has purely imaginary
spectrum.
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with boundary conditions W (δ Xδ) = eiξ W (0) for some ξ ∈ [−π/δXδ, π/δXδ),
where

B0(λ) = λ1/3

⎛
⎝

2λ2/3τ
3/2
0 −2τ

3/2
0 0

0 0 τ 2
0 ν−1

λ− 2
√

τ0 2λ1/3 0

⎞
⎠

and B1(·; λ, δ) is uniformly bounded for (λ, δ) in any compact subset of C× [0, δ0).
More precisely, for any δ in a compact subset of [0, δ0), we have

B1(·; λ, δ) =

⎛
⎝

O(λ2/3) O(λ2/3) 0
0 0 O(λ2/3)

O(λ2/3) O(1) O(λ1/3)

⎞
⎠ .

To track the most dangerous terms, we write the above system as

δ W ′(y) =
(
λ1/3 M0 + (2λ2/3 + δ2 λ−1/3 β(y)) M1 + λ R0(λ)+ δ2 R1(y; λ, δ)

)
W (y),

(2.21)

where

M0 =

⎛
⎝

0 −2τ
3/2
0 0

0 0 τ 2
0 ν−1

−2
√

τ0 0 0

⎞
⎠ , M1 =

⎛
⎝

0 0 0
0 0 0
0 1 0

⎞
⎠ ,

and the function β(·) is some explicit periodic function expressed in terms of τ0, ν

and asymptotic KdV profiles, while the R j matrices are uniformly bounded functions
of λ and δ on compact subsets of C×[0, δ0). The goal is to now reduce the first-order
problem (2.21) to a constant-coefficient problem at a sufficiently high order in λ and
δ.

To begin, we diagonalize M0 by defining the matrices

P0 =

⎛
⎜⎜⎜⎝

1 0 0
0 K0

2τ
3/2
0

0

0 0 − ν K 2
0

2τ
7/2
0

⎞
⎟⎟⎟⎠

⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ , P−1

0 = 1

3

⎛
⎝

1 1 1
1 ω2 ω

1 ω ω2

⎞
⎠

⎛
⎜⎜⎜⎝

1 0 0

0
2τ

3/2
0

K0
0

0 0 − 2τ
7/2
0

ν K 2
0

⎞
⎟⎟⎟⎠ ,

where K0 = 41/3τ
4/3
0 ν−1/3 and ω = e2iπ/3. Setting Y (·) = P−1

0 W (·), the system
(2.21) can be written in equivalent form

δ Y ′(y) =
(

λ1/3 D0 −
τ 2

0

3νK0
(2λ2/3 + δ2 λ−1/3 β(y)) Q1 + λ R̃0(λ)+ δ2 R̃1(y; λ, δ)

)
Y (y)

(2.22)
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where

D0 =

⎛
⎝
−K0 0 0

0 −K0ω

0 0 −K0ω
2

⎞
⎠ Q1 =

⎛
⎝

1 ω ω2

ω ω2 1
ω2 1 ω

⎞
⎠ ,

and R̃ j are uniformly bounded in (λ, δ) on compact subsets of C × [0, δ0). This
effectively diagonalizes system (2.21) to leading order.

Aiming at reducing (2.22) to a constant-coefficient problem at a higher order, we
choose q(·) satisfying

q ′(·) = τ 2
0

3νK0
(β(·)− 〈β(·)〉),

where 〈·〉 denotes average over one period. Notice that the periodicity of β(·) implies
that q is (δ Xδ)-periodic. Now, since the matrix (I3+ δ2λ−1/3q(·)Q1) is invertible for
δ2λ−1/3 sufficiently small, for such parameters we can make the change in variables

U (·) = (I3 + δ2λ−1/3 q(·) Q1) Y (·),

with U (·) satisfying the first-order system

δ U ′(y) =
(
λ1/3 D0 −

τ 2
0

3νK0
(2λ2/3 + δ2 λ−1/3 〈β(·)〉) Q1

+ λ R̄0(y; λ, δ) + δ2 R̄1(y; λ, δ) + δ4 λ−2/3 R̄2(y; λ, δ)
)

U (y),

with R̄ j uniformly bounded in (λ, δ) on compact subsets of C× [0, δ0).
Next, we diagonalize the system at a higher order. Since D0 has distinct eigenvalues,

we may choose a constant matrix P1 such that the commutator [P1, D0] equals the
off-diagonal part of Q1. Then, provided that λ and δ2λ−2/3 are small enough, we may
change the unknown to

S(·) =
(

I3 +
τ 2

0

3νK0
(2λ1/3 + δ2 λ−2/3 〈β(·)〉) P1

)
U (·)

with S(·) satisfying the first-order system

δ S′(y) =
(

D1(λ, δ) + λ R̂0(y; λ, δ) + δ2 R̂1(y; λ, δ) + δ4 λ−1 R̂2(y; λ, δ)
)

S(y)

(2.23)
where R̂ j are uniformly bounded in (λ, δ) on compact subsets of C × [0, δ0) and
D1(λ, δ) is a constant-coefficient diagonal matrix whose diagonal entries are
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μ0(λ, δ) = −K0 λ1/3 − τ 2
0

3νK0
(2λ2/3 + δ2 λ−1/3 〈β(·)〉)

μ+(λ, δ) = −K0 ω λ1/3 − τ 2
0 ω2

3νK0
(2λ2/3 + δ2 λ−1/3 〈β(·)〉)

μ−(λ, δ) = −K0 ω2 λ1/3 − τ 2
0 ω

3νK0
(2λ2/3 + δ2 λ−1/3 〈β(·)〉).

In particular, we find

�(μ0(λ, δ)) = −
(

K0 +
τ 2

0

3νK0
δ2 |λ|−2/3 〈β(·)〉

)
�(λ1/3)− τ 2

0

3νK0

2�(λ̄ λ1/3)

|λ|2/3
,

�(μ+(λ, δ)) = −
(

K0 +
τ 2

0

3νK0
δ2 |λ|−2/3 〈β(·)〉

)
�(ωλ1/3)− τ 2

0

3νK0

2�(λ̄ ωλ1/3)

|λ|2/3
,

�(μ−(λ, δ)) = −
(

K0 +
τ 2

0

3νK0
δ2 |λ|−2/3 〈β(·)〉

)
�(ω2λ1/3)− τ 2

0

3νK0

2�(λ̄ ω2λ1/3)

|λ|2/3 ,

so that, when �(λ) ≥ 0 and λ and δ2 |λ|−2/3 are sufficiently small,

�(μ0(λ, δ)) ≤ −C |λ|1/3,

�(μ+(λ, δ)) ≥
{

C |λ|1/3, if  (λ) ≥ 0

C
(
�(λ)

|λ|2/3 + | (λ)|
|λ|1/3

)
, if  (λ) ≤ 0

,

�(μ−(λ, δ)) ≥
{

C |λ|1/3, if  (λ) ≤ 0

C
(
�(λ)

|λ|2/3 + | (λ)|
|λ|1/3

)
, if  (λ) ≥ 0

.

Using an energy estimate as in the proof of Lemma 2.2 above, it follows for ε, δ1 > 0
sufficiently small and R > 0 sufficiently large that for 0 < δ < δ1 system (2.23) has
no bounded solutions provided that

�(λ) ≥ 0 , |λ| ≤ ε , �(λ) |λ|1/3 + | (λ)| |λ|2/3 ≥ R δ4 . (2.24)

In particular, this shows that as δ → 0+ the unstable eigenvalues satisfy |λ| =
O(δ12/5).

Next, we refine the above bound by using spectral stability of the limiting cnoidal
wave. To do so, we scale unknowns of the system (2.12) according to

τ(θ) = δ2 τ0
3 a

(
τ

5/4
0 δ

ν1/2 θ

)
, u(θ) = δ2 u0

6 b

(
τ

5/4
0 δ

ν1/2 θ

)
, λ = δ3

4τ
1/4
0 ν1/2

�.

(2.25)

Our goal is to prove that the rescaled system obtained from (2.12) has no unstable
eigenvalues � with |�| sufficiently large. To this end, notice that by (2.24) the possible
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unstable eigenvalues � must satisfy the estimate

�(�) ≥ 0 , �(�) |�|1/3 + δ | (�)| |�|2/3 = O(1), (2.26)

so that, in particular, we already know that � = O(δ−3/5). Rewriting the eigenvalue
system (2.12) in terms of the unknown V (Y ) = (δ−2(b(Y ) + c̄ a(Y )), a(Y ), a′(Y ))

results in the system

V ′(Y ) = (AKdV(Y ;�)+�δ B + δ C(Y )+ R(Y ;�, δ)) V (Y ) (2.27)

with21

AKdV(·;�) =

⎛
⎝

0 � 0
0 0 1
−1 σ0 − T0(·) 0

⎞
⎠ ,

B = 1

2τ
1/4
0 ν1/2

⎛
⎝

0 0 0
0 0 0
0 1 0

⎞
⎠

C(·) = 1

2τ
1/4
0 ν1/2

⎛
⎝

0 0 0
0 0 0
0 T ′

0(·)− T1(·) −1 + T0(·)− σ0

⎞
⎠ ,

and

R(·;�, δ) =

⎛
⎝

0 0 0
0 0 0

O(� δ3)+ O(δ2) O(� δ3)+ O(δ2) O(� δ2)+ O(δ2)

⎞
⎠ .

To make use of known results about KdV, we rewrite the above spectral problem
in a more standard way by introducing the unknown W (·) = (V2(·), V3(·),−V1(·)+
(σ0 − T0(·)) V2(·))T . This leads to

W ′(Y ) = (H0(Y ;�)+�δ H1 + δ H2(Y )+ R(Y ;�, δ)) W (Y ) (2.28)

with

H0(·;�) =

⎛
⎝

0 1 0
0 0 1

−�− T ′
0(·) σ0 − T0(·) 0

⎞
⎠ , (2.29)

21 We don’t need here the exact form of C but we specify it for latter use.
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H1 =
1

2τ
1/4
0 ν1/2

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠ ,

H2(·) =
1

2τ
1/4
0 ν1/2

⎛
⎝

0 0 0
T ′

0(·)− T1(·) −1 + T0(·)− σ0 0
0 0 0

⎞
⎠ , (2.30)

and

R(·;�, δ) =

⎛
⎝

0 0 0
O(� δ3)+ O(δ2) O(� δ2)+ O(δ2) O(� δ3)+ O(δ2)

0 0 0

⎞
⎠ .

The leading-order “KdV” part may now be changed to a diagonal constant-coefficient
matrix through an explicit periodic Floquet change in variable P(·;�) such that

P(·;�) =

⎛
⎝

1 0 0
0 �1/3 0
0 0 �2/3

⎞
⎠
⎛
⎝
⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠+ O(�−2/3)

⎞
⎠ ,

with inverse
⎛
⎝1

3

⎛
⎝

1 1 1
1 ω2 ω

1 ω ω2

⎞
⎠+ O(�−2/3)

⎞
⎠
⎛
⎝

1 0 0
0 �−1/3 0
0 0 �−2/3

⎞
⎠ .

Indeed, using that � = O(δ−3/5), replacing W with Y (·) = P(·;�)−1W (·) leads to
the system

Y ′ =
(

D(�)+�2/3 δ Q1 + R(·;�, δ)
)

Y (2.31)

with

D(�) =

⎛
⎝

μ0(�) 0 0
0 μ+(�) 0
0 0 μ−(�)

⎞
⎠ Q1 = 1

6τ
1/4
0 ν1/2

⎛
⎝

1 1 1
ω2 ω2 ω2

ω ω ω

⎞
⎠ ,

and R(·;�, δ) = O(δ), where the μ0 and μ± are smooth functions of �. In particular,
we know that when �(�) ≥ 0, we have

�(μ0(�)) ≥ 0 , �(μ+(�)) ≤ 0 , �(μ−(�)) ≤ 0 ,

and

μ0(�) = �1/3(1 + O(�−2/3))

μ+(�) = �1/3(ω + O(�−2/3))

μ−(�) = �1/3(ω2 + O(�−2/3))

.
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Next, provided that �1/3δ is sufficiently small, which is guaranteed for δ suffi-
ciently small since � = O(δ−3/5), we can use a near-identity change in variables to
diagonalize the system (2.31) to order O(�2/3δ), resulting in the system

Z ′(Y ) =
(

D1(�, δ) + O(�5/3 δ4) + O(δ)
)

Z(Y ),

where D1(�, δ) is a constant-coefficient diagonal matrix whose diagonal entries are

μ0(�, δ) = μ0(�) + 1

6τ
1/4
0 ν1/2

�2/3 δ,

μ+(�, δ) = μ+(�) + ω2

6τ
1/4
0 ν1/2

�2/3 δ,

μ−(�, δ) = μ+(�) + ω

6τ
1/4
0 ν1/2

�2/3 δ.

Hence, when �(�) ≥ 0, � is large, and δ |�|1/3 is small,

�(μ0(�, δ)) ≥ C |�|1/3

�(μ+(�, δ)) ≤ −C
(
�(�)|�|−2/3 + δ |�|2/3

)

�(μ−(�, δ)) ≤ −C
(
�(�)|�|−2/3 + δ |�|2/3

)
,

which, when combined with previous exclusions, is sufficient to prove by an energy
argument similar to that in Lemma 2.2 above that if δ1 ∈ (0, δ0) is sufficiently small
and R > 0 is sufficiently large, there are no eigenvalues of (2.31) when 0 < δ < δ1
and

�(�) ≥ 0 ,
�(�)

δ |�|2/3 + |�|2/3 ≥ R .

In particular, it follows that any unstable eigenvalue λ of the original spectral problem
(2.12) must satisfy the estimates |λ| = O(δ3) and �(λ) = O(δ4) as δ → 0+, by
|�| ≤ R3/2 and �(�) ≤ Rδ|�|2/3 ≤ Rδ, together with the scaling λ = cδ3�, with
c > 0 a real constant. ��

2.3 Connection to the KdV–KS Index: Proof of Theorem 1.8

It follows from Proposition 2.4 that, in order to complete the proof of Theorem 1.8, it
remains to study the eigenvalues of (2.12), supplemented with the appropriate Bloch
quasi-periodic boundary conditions, of the formλ = �δ3 with� confined to a compact
subset of C and 0 < δ 	 1. More precisely, using the rescaling (2.25) from the proof
of Proposition 2.4 and setting (α, β) = (δ−2(b + c̄ a), a), we must study the spectral
problem

123



J Nonlinear Sci (2017) 27:285–342 323

�β − α′ = 0

δ̃ (β + τ̃ β + c̃β − α)′ = τ̃ β + c̃β − α − β ′′ + O(δ̃2) f (α, β, β ′),
(2.32)

for some smooth function f , supplemented with the boundary condition (α, β, β ′)
(X) = eiξ (α, β, β ′)(0) for some ξ ∈ [−π/X, π/X). Here, δ̃ = 1

2τ
−1/4
0 ν−1/2δ is as

in Theorem 1.6, and the bounds in O(· · · ) are uniform as � varies on compact subsets
of C.

To study the above one-parameter family of eigenvalue problems, parametrized by
the Bloch frequency ξ , we can define a periodic Evans function, a complex analytic
function whose zeros, for each fixed ξ , agree in location and algebraic multiplicity
with the eigenvalues of the boundary value problem (2.32). To proceed, we first recall,
from the proof of Proposition 2.4, that the spectral problem under scaling (2.25) may
be written as the dynamical system [Eq. (2.28)]

W ′(Y ) =
(

H0(Y ;�)+�δ H1 + δ H2(Y )+ O(δ̃2)
)

W (Y )

for W = (β, β ′,−α + (σ0 − T0) β)T , where H0, H1, H2 are given by (2.29) and
(2.30). Introducing the new dependent variables Z = (W1, W2, W3 + δ̃((� − T ′

0 −
T1)W1 + (−1 + T0 + σ0)W2))

T , the differential system becomes

Z ′ =

⎛
⎝
⎛
⎝

0 1 0
0 0 1

−�− T ′0 σ0 − T0 0

⎞
⎠+ δ̃

⎛
⎝

0 0 0
0 0 0

T ′′0 − T ′1 2T ′0 − T1 +� T0 − 1 + σ0

⎞
⎠+ O(δ̃2)

⎞
⎠ Z .

(2.33)

Let �(·,�, δ̃) denote the associated 3 × 3 fundamental solution matrix22 associated
with (2.33). It is an easy consequence of the regularity with respect to parameters of
the flow associated with the differential system (2.33) that �(·,�, δ̃) is analytic with
respect to � ∈ C and δ̃. Moreover, for any fixed (ξ, δ̃), eigenvalues � of (2.32) agree
in location and algebraic multiplicity with roots of the Evans function

ESV(�, ξ, δ̃) := det
(
�(X,�, δ̃)− eiξ X Id

)
; (2.34)

see Gardner (1993) for details. To complete the proof of Theorem 1.8, we must study
the roots of the function ESV(·, ξ, δ̃) on compact subsets of C for all ξ ∈ [−π/X, π/X)

and 0 < δ̃ 	 1.
In order to connect the stability properties of the small-amplitude roll waves

described by Theorem 1.6 to those of the associated leading order approximating KdV–
KS waves given in Proposition 1.1, we also define an Evans function EKdV−KS(�, ξ, δ)

for the eigenvalue boundary value problem

�z + ((Tδ − σδ)z)
′ + z′′′ + δ (z′′ + z′′′′) = 0 (2.35)

22 In particular, this guarantees that �(0, �, δ̃) =Id.
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with (z, z′, z′′, z′′′)(X) = eiξ X (z, z′, z′′, z′′′)(0). The next result shows that the Evans
function EKdV−KS is faithfully described, to leading order, by the St. Venant Evans
function ESV for 0 < δ̃ 	 1.

Proposition 2.5 Uniformly on compact sets of � ∈ C, the Evans function EKdV−KS
can be expanded for 0 < δ 	 1 as

EKdV−KS(�, ξ, δ̃) = −eiξ X (1 + O(δ̃)) exp

(
X

δ̃

)

×
(

ESV(�, ξ, δ̃)+ O(δ̃2(|�|2 + |ξ |2)+ O(δ̃3(|�| + |ξ |))
)

.

(2.36)

Proof A similar expansion has been obtained for EKdV−KS in Johnson et al. (2015,
Propositions 3.7 and 4.1). Our proof parallels the arguments there but in a slightly
more precise way in order to equate leading-order terms with those of ESV.

The starting point is, as in the proof of Johnson et al. (2015, Propositions 3.7), that
the spectral problem (2.35) may be equivalently written, through a series of variables
transformations with Jacobian of size 1 +O(δ), as

Z ′ =

⎛
⎝
⎛
⎝

0 1 0
0 0 1

−�− T ′
0 σ0 − T0 0

⎞
⎠+ δ

⎛
⎝

0 0 0
0 0 0

T ′′
0 − T ′

1 2T ′
0 − T1 +� T0 − 1 + σ0

⎞
⎠
⎞
⎠ Z

+O(δ2)g1(Z , w)

w′ = −1

δ
w + O(δ)g2(Z , w)

for some smooth functions g1, g2; see Johnson et al. (2015, Propositions 3.7) for
details. To obtain the expected homogeneity in (�, ξ) we also use that the above
system supports a conservation law

�Z1 =
[ (

T0 − σ0 − 1 + T ′0 +�+ δ(T1 + T ′1 + T ′′0 − T0 + σ0 + 1)
)

Z1

+
(
T0 − σ0 − 1 + δ(T1 + 2T ′0 +�))Z2

)
+ (−1 − δ(T0 − σ0 − 1)) Z3 + O(δ2)[Z , w]

]′

(2.37)

and that the derivative v′δ of the profile built in Proposition 1.1 provides a special
solution of the system when � = 0. Elaborating on this, manipulations on lines
and columns of the determinant usually performed to validate at the spectral level
averaged (or “Whitham”) equations (Serre 2005) then yield that the Evans function
EKdV−KS(�, ξ, δ̃) may be written as

EKdV−KS(�, ξ, δ̃) = −eiξ X (1 + O(δ̃)) exp

(
X

δ̃

)
det
(

M(�, ξ, δ̃)+ M̃(�, ξ, δ̃)
)

,

(2.38)
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where

M(�, ξ, δ̃) =

⎛
⎜⎜⎝

N

0
0
0

0 0 0 1

⎞
⎟⎟⎠ ,

N (�, ξ, δ̃) =

⎛
⎝

O(|�| + |ξ |) O(1) O(1)

O(|�| + |ξ |) O(1) O(1)

O(|�|2 + |�||ξ |) O(|�| + |ξ |) O(|�| + |ξ |)

⎞
⎠ ,

and

M̃(�, ξ, δ̃) =

⎛
⎜⎜⎝

O(δ̃2(|�| + |ξ |)) O(δ̃2) O(δ̃2) O(δ̃2)

O(δ̃2(|�| + |ξ |)) O(δ̃2) O(δ̃2) O(δ̃2)

O(δ̃2|�|(|�| + |ξ |)) O(δ̃2(|�| + |ξ |)) O(δ̃2(|�| + |ξ |)) O(δ̃2)

O(δ̃|�|) O(δ̃) O(δ̃) O(δ̃)

⎞
⎟⎟⎠ .

Again, see Johnson et al. (2015, Propositions 3.7) for details.
Now, returning to the St. Venant spectral problem (2.33), we notice that (2.33) also

supports a conservation law in form (2.37) and, furthermore, the space derivative of
the traveling wave profile provides a special solution when � = 0. Using calculations
completely analogous to those described above for the KdV–KS spectral problem
(2.35), it follows that we can write

ESV(�, ξ, δ̃) = (1 +O(δ)) det
(

N (�, ξ, δ̃)+ Ñ (�, ξ, δ̃)
)

,

where N is exactly the same matrix as above23 and

Ñ (�, ξ, δ̃) =

⎛
⎝

O(δ̃2(|�| + |ξ |)) O(δ̃2) O(δ̃2)

O(δ̃2(|�| + |ξ |)) O(δ̃2) O(δ̃2)

O(δ̃2|�|(|�| + |ξ |)) O(δ̃2(|�| + |ξ |)) O(δ̃2(|�| + |ξ |))

⎞
⎠ .

The expansion (2.36) follows conveniently by expanding the determinant det(M+ M̃)

in (2.38). ��

The proof of Theorem 1.8 now follows immediately from the proof of Proposition
1.3 in Johnson et al. (2015) for the stability of KdV–KS waves in the KdV limit δ → 0+.
Indeed, the proof in Johnson et al. (2015) followed by studying the renormalized KdV–
KS Evans function

EKdV−KS(�, ξ, δ̃) = e−iξ X (1 + O(δ̃)) exp

(
− X

δ̃

)
EKdV−KS(�, ξ, δ̃) ,

23 Not just in order of magnitude, but by component-wise identification of the coefficients.
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and using the asymptotic description of EKdV−KS(�, ξ, δ̃) up to O(δ̃2(|�|2+|ξ |2))+
O(δ̃3(|�| + |ξ |)). Since Proposition 2.5 implies that

ESV(�, ξ, δ̃) = EKdV−KS(�, ξ, δ̃)+ O(δ̃2(|�|2 + |ξ |2))+ O(δ̃3(|�| + |ξ |))

it follows that the same arguments can be applied without modification to the Evans
function ESV(�, ξ, δ̃). For completeness, we briefly sketch the details.

For k ∈ (0, 1) such that condition (A) holds, all the nonzero Bloch eigenvalues of
the St. Venant linearized operator admit a smooth expansion in δ̃ for 0 < δ̃ 	 1. In
particular, to each pair (ξ,�0) such that �0 ∈ Ri is a nonzero eigenvalue of the KdV
Bloch operator Lξ [T0], there is a unique root of ESV(�, ξ, δ̃) for 0 < δ̃ 	 1 that can
be expanded in δ̃ as

�(δ̃; ξ,�0) = �0 + δ̃λ1(ξ,�0)+O(δ̃2)

where λ1(·, ·) is the function already involved in definition (1.9) ; see (Johnson et al.
2015, Corollary 3.8). As this expansion is uniform in (ξ,�0) when (ξ,�0) varies in
a compact set that does not contain (0, 0), it follows that for any neighborhood U of
0 in the spectral plane, the condition k ∈ P provides when δ̃ is sufficiently small a
negative upper bound on the real part of the spectrum in C \ {0}; see (Johnson et al.
2015, Corollary 3.10) for details.

On the other hand, when ξ = 0 the origin is an eigenvalue of the KdV Bloch operator
L0[T0] of algebraic multiplicity three and geometric multiplicity two. To unfold the
degeneracy for 0 < δ̃ 	 1, we directly apply the arguments in Johnson et al. (2015,
Section 4). By studying the three asymptotic regions 0 < δ̃ � |ξ | (Johnson et al. 2015,
Lemma 4.4), δ̃ ∼ |ξ | (Johnson et al. 2015, Lemma 4.6), and 0 ≤ |ξ | � δ̃ (Johnson
et al. 2015, Lemma 4.7) separately, it follows that the condition k ∈ P implies that a
set of “subcharacteristic conditions” hold which, in turn, are shown to imply that all
the roots of ESV(�, ξ, δ̃), with 0 < |(�, ξ)| 	 1 and 0 < δ̃ 	 1 all have negative real
parts. More precisely, under these conditions it is shown that the (diffusive) spectral
stability conditions (D1)-(D3) and the nondegeneracy hypothesis (H1) are satisfied
when δ is sufficiently small. This completes the proof of Theorem 1.8.

3 Stability of Large-Amplitude Roll Waves

In the previous section, we rigorously justified the KdV–KS equation (1.2) as a correct
description for the weak hydrodynamic instability in inclined thin-film flow. In par-
ticular, in the weakly nonlinear regime F → 2+ we saw that the KdV–KS equation
accurately predicts the stability of the associated small-amplitude roll wave solutions
of the shallow water equations (1.1). We now complement this study by continuing our
analysis into the large-amplitude regime, far from the weakly unstable limit F → 2+,
performing a systematic stability analysis for roll waves with Froude number on the
entire range of existence F > 2, including the distinguished limit F →∞. We begin
by considering the limit F →∞, identifying a one-parameter family of limiting sys-
tems approachable by various scaling choices in the shallow water equations. We will
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then numerically study the influence of intermediate Froude numbers 2 < F < ∞ on
the range of stability of periodic waves.

3.1 Scaling as F → ∞

In our F →∞ studies, we investigate the stability of periodic traveling wave solutions
of some asymptotic systems obtained from (1.11) via scaling arguments. To begin,
performing the change in variables (x, t) �→ (x̃, t̃) = (k(x − ct), t) in (1.11) and
erasing tildes yields the equivalent system

∂tτ−k c ∂xτ−k∂x u = 0, ∂t u−k c ∂x u+k ∂x

(
τ−2

2F2

)
= 1−τ u2+νk2∂x (τ

−2∂x u).

To prepare for sending F → ∞ above, we first scale the dependent quantities inde-
pendently via τ = Fατ a, u = Fαu b, k = Fαk k0 and c = Fαc c0. This transforms
the above shallow water system to

Fατ ∂t a − k0c0 Fατ+αk+αc ∂x a − k0 Fαu+αk ∂x b = 0 ,

Fαu ∂t b − k0c0 Fαu+αk+αc ∂x b + k0 Fαk−2−2ατ ∂x

(
a−2

2

)

= 1−Fατ+2αu a b2 + νk2
0 Fαu+2αk−2ατ ∂x (a

−2∂x b) .

(3.1)
Seeking stationary 1-periodic solutions of (3.2) leads to an ODE system

− c0 Fατ+αc a′ − Fαu b′ = 0,

k0c2
0 Fατ+αk+2αc a′ + k0 Fαk−2−2ατ

(
a−2

2

)′

= 1 − Fατ+2αu a b2 − νk2
0 c0 Fαc+2αk−ατ (a−2a′)′ ,

governing the traveling wave solutions of (1.11) in the appropriate moving frame.
Note that, by its expression as

∫ X

0 τ̄ (x)dx , the period in the physical Eulerian variables
scales as Fατ−αk under the above transformations. To balance the terms of the “elliptic-
constant” right-hand side above, we choose now to impose ατ + 2αu = 0 and αc +
2αk − ατ = 0. This effectively leaves two free parameters, say α = ατ and β = αk ,
with αu = −α/2 and αc = α − 2β. Under this choice, the above profile system now
reads

− c0 F
5
2 α−2β a′ − b′ = 0,

k0c2
0 F3α−3β a′ + k0 F−2−2α+β

(
a−2

2

)′
= 1 − a b2 − νk2

0 c0 (a−2a′)′ . (3.2)

The first equation may be integrated to yield b = q0 − F
5
2 α−2β c0 a where q0 is a

constant of integration. Substituting this into the second equation above, the rescaled
profile system is reduced to the scalar equation
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k0c2
0 F3α−3β a′ + k0 F−2−2α+β

(
a−2

2

)′

= 1 − a (q0 − F
5
2 α−2β c0 a)2 − νk2

0 c0 (a−2a′)′ . (3.3)

In order to ensure that the “elliptic part” (a−2a′)′ is not asymptotically negligible as
F → ∞, we restrict ourselves to the parameter regimes where 5

4α ≤ β ≤ 2α + 2,
β ≥ α. In particular, this latter choice requires α ≥ −2. With the above choices, the
full rescaled shallow water equations (3.1) now read as

Fα∂t a − k0c0 F2α−β ∂x a − k0 Fβ−α/2∂x b = 0 ,

F−α/2∂t b − k0c0 Fα/2−β ∂x b + k0 F−2−2α+β ∂x

(
a−2

2

)

= 1 − a b2 + νk2
0 F2β−5α/2 ∂x (a

−2∂x b) ,

(3.4)

which is a two-parameter family of systems, parametrized by α ≥ −2 and 5
4α ≤ β ≤

2α + 2.
Finally, when sending F → ∞ in (3.4), we balance the first-order terms of the

reduced profile Eq. (3.2) by requiring 3α−3β = −2−2α+β, i.e., that β = 1
2+5α/4,

effectively reducing our scalings to a one-parameter family indexed by α ≥ −2. In
particular, under this choice the full one-parameter family of rescaled shallow water
systems reads as

Fα∂t a − k0c0 F3α/4−1/2 ∂x a − k0 F1/2+3α/4∂x b = 0 ,

F−α/2∂t b − k0c0 F−3α/4−1/2 ∂x b + k0 F−3/2−3α/4 ∂x

(
a−2

2

)

= 1 − a b2 + νk2
0 F ∂x (a

−2∂x b),

(3.5)

and the associated rescaled profile system is equivalent to b = q0 − F−1 c0 a, q0
constant and

F−3/2−3α/4

(
k0c2

0 a′ + k0

(
a−2

2

)′)
= 1− a (q0 − F−1 c0 a)2 − νk2

0 c0 (a−2a′)′ .

(3.6)
By the discussion above Eq. (3.2), the Eulerian period of the periodic profiles satisfying
(3.6) scale as F−α/4−1/2. Notice that (3.6) is equivalent to the profile Eq. (1.16) claimed
in the introduction.

As mentioned in the introduction, taking F → ∞ in (3.6) produces different
limiting profile equations depending on whether α = −2 or if α > −2. Next, we
discuss both limiting profile equations and the spectral problems governing the stability
of the profiles.

3.1.1 Case α = −2

Taking α = −2 in the above discussion corresponds to rescaling (3.2) via

τ = F−2 a, u = F b, k = k0 F−2, c = c0 F2
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Note that in this case, the Eulerian period of the profile is held constant as F →∞.
With this choice, the profile Eq. (3.6) reads as

(
k0c2

0 a′ + k0

(
a−2

2

)′)
= 1 − a (q0 − F−1 c0 a)2 − νk2

0 c0 (a−2a′)′, (3.7)

and b = q0 − F−1 c0 a, q0 constant. Linearizing (3.5) with α = −2 about such an
X0-periodic profile (ā, b̄) yields the associated rescaled spectral problem

F−2λ a − k0c0 F−2 a′ − k0 F−1b′ = 0

Fλ b − k0c0 F b′−3k0

(
ā−3 a

)′

= −a b̄2 − 2āb̄ + νk2
0 F (−2āb̄′ a + ā−2b′)′

(3.8)

to be considered for (a, b) satisfying suitable Bloch boundary conditions. Sending
F → ∞ above, it follows that the profile equation is a regular perturbation of the
limiting system

(
k0c2

0 a′ + k0

(
a−2

2

)′)
= 1 − a q2

0 − νk2
0 c0 (a−2a′)′, (3.9)

while the above spectral problem is a regular perturbation of

λa − k0c0a′ − k0b̌′ = 0,

λb̌ − k0c0b̌′ − k0(ā
−3
∞ a)′ = −aq2

0 + k2
0ν(ā−2

∞ b̌′ + 2c0ā−3
∞ ā′∞ a)′, (3.10)

where (ā∞, b̄∞), necessarily solutions of (3.9), denote the limiting profiles of (ā, b̄)

as F →∞, and b̌ = Fb̃. The limiting profile Eq. (3.9) is numerically seen to admit
periodic orbits existing in a two-parameter family, parametrized by the period X0 and
the discharge rate q0. The stability of these profiles may then be investigated by means
of the spectral problem (3.10): This is discussed in Sect. 3.2 below.

3.1.2 Case α > −2

When α > −2, it is readily seen that the profile Eq. (3.6) is a regular perturbation of
the ODE

0 = 1 − q2
0 a − νk2

0 c0 (a−2a′)′ , (3.11)

which is Hamiltonian in the unknown 1/a. Indeed, denoting h := q−2
0 a−1 and rescal-

ing space via x = s/

√
νk0c0q2

0 , the above ODE reads as

0 = 1 − h−1 + h′′, (3.12)
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where ′ denotes differentiation with respect to s. This is clearly seen to be Hamiltonian
and, upon integrating, is equivalent to

μ = h − ln(h)+ 1

2
(h′)2, (3.13)

where μ is a constant of integration. Elementary phase plane analysis shows that
(3.12) admits a one-parameter family of periodic orbits parametrized by the constant
μ. Indeed, for each μ > 1 Eq. (3.13) admits a unique (up to spatial translations)
periodic solution hμ, whose period we denote Xμ. Returning to the original variables
then, we see that, choosing k0 to satisfy νk2

0c0q2
0 X2

μ = 1, the profile Eq. (3.11) admits
a three-parameter family of periodic orbits with unit period parametrized by μ, c0,
and q0. Clearly, a necessary condition for such a 1-periodic orbit of (3.11) to persist
as a solution of (3.6) for F � 1 is that the (α-independent) orthogonality condition

0 =
∫ 1

0

(
1

a

)′
×
(

k0c2
0 a′ + k0

(
a−2

2

)′)
dx

be satisfied. Note that this yields a selection principle for the wavespeed via

c2
0 = −1

2

∫ 1

0
(a−1)′ × (a−2)′dx

∫ 1

0
(a−1)′ × a′dx

=

∫ 1

0
a−5 × (a′)2dx

∫ 1

0
a−2 × (a′)2dx

=

∫ 1

0
a−1 × ((a−1)′)2dx

∫ 1

0
((a−1)′)2dx

.

Generically zeros of the above selection function are simple, and in this case, as in
Sect. 2.1, it follows from elementary bifurcation analysis that the Hamiltonian profile
Eq. (3.11) admits a two-parameter family of periodic orbits, parametrized by μ and q0
that persist as periodic orbits of (3.6) for F � 1. In particular, note that for α > −2,
the specific value of α does not enter into either the limiting profile equation nor the
selection principle.

Finally, taking F →∞ in (3.5), we see that the spectral stability of the 1-periodic
traveling wave solutions (ā, q0) of (3.5) constructed above is determined via the spec-
tral problem

� a − k0 b̌′ = 0 ,

0 = −a q2
0 + νk2

0 (2c0ā−3ā′ a + ā−2b̌′)′

where here (a, b) denotes perturbation, � = F1/2λ, and b̌ = Fb. The former system
may also be written as

� a − k0 b̌′ = 0 ,

0 = −a q2
0 +�νk2

0c0(ā
−2 a)′ − νk2

0c0 (ā−2 a)′′ .
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Therefore, in this case we investigate the spectral problem

0 = h−2
μ ǎ − �̌ ǎ′ + ǎ′′, (3.14)

for �̌ = (Xμ)−1 � and ǎ(·) = q−2
0

(
ā−2 a

) (
(Xμ)−1 ·

)
where hμ and Xμ are

associated with ā as described above. As above, we point out that for α > −2, the
spectral problem governing the spectral stability of the limiting F = ∞ profiles is
independent of the value of α. As a consequence, spectral instability of the limiting
periodic traveling wave solutions constructed above implies spectral instability of the
(α-dependent) large-F profiles of the system (3.5) for any α > −2.

3.2 Numerical Investigation as F → ∞

With the above preparations, we report our numerical results concerning the existence
and spectral stability of the profiles introduced in the previous section for the limiting
systems in the F →∞ limit.

In the case α > −2, elementary phase plane analysis indicates that for each
h− ∈ (0, 1), there exists a unique (up to translations) periodic solution with
h(0) = h−. These profiles were numerically computed for 1000 equally spaced
values of h− in [0.05, 0.95] using the MATLAB functions bvp5c and bvp6c, with
absolute and relative error tolerances both set to 10−8 in the bvp solver. To this
end, we utilized a bisection method to approximate the value h+ > h− such that
h+ − log(h+) = μ and then approximated the corresponding period by computing√

2
∫ h++10−13

h−−10−13 (μ− x + log(x))−1/2 dx .

As a first attempt to study the L2(R)-spectrum associated with (3.14), we utilized a
Galerkin truncation method known as Hill’s method. For each ξ ∈ [−π/Xμ, π/Xμ),
Hill’s method proceeds by expanding both the unknown ǎ as well as the background
wave hμ in the associated Bloch eigenvalue problem as a Fourier series and then trun-
cating all expansions at some finite order to reduce the problem to finding, for each
ξ ∈ [−π/Xμ, π/Xμ) the eigenvalues of a finite-dimensional matrix; see Appendix
1 for more details. For each of the profiles numerically constructed above, unstable
spectra were present; see Fig. 6d for an example. In addition, we verified the exis-
tence of unstable spectra of (3.14) by numerically computing winding number for the
associated periodic Evans function on a closed contour in the open right half complex
plane verifying that the winding number is indeed greater than zero for some Bloch
frequency ξ . Employing Theorem 1.11, his study suggests that all periodic traveling
wave solutions of (3.2) are spectrally unstable for F � 1. Note, in our study of spec-
tral problem (3.14) via Hill’s method, we used 41 Fourier modes and 1000 Floquet
parameters.

Concerning the caseα = −2, the profile Eq. (3.9) was solved by using the MATLAB
functions bvp5c and bvp6c, where we treated c0 as a free parameter in the bvp solver
and used numerical continuation to solve the profile as k0 was varied. Our numerical
investigation of the associated spectral problem (3.10) covered q0 ∈ [1.6, 2.2] for
ν = 2 and q0 ∈ [1.2, 2.7]∪[0.3, 0.45] for ν = 0.1 with step size 0.1 in q0 and varying,
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Fig. 6 In a, b, we plot, respectively, for F = 38 and F = 100, the spectrum corresponding to eigenvalue problem (3.8) with α = −2, and in c the spectrum corresponding
to the limiting spectral problem (3.10). Here ν = 0.1, q0 = 0.4, X = 437.6, c = 84.0, and a X0 = 0.303, b X0 = 0.044. In d, we plot a numerical sampling (via Hill’s
method) of the unstable spectrum corresponding to the spectral problem 3.14, corresponding to the case α > −2, for a representative periodic stationary solution of (3.12)
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but smaller, steps in k0 in the region where we could solve profiles numerically. Again,
we found that all these waves have unstable spectra; see Fig. 6c for an example. In
Fig. 6, we also plot the spectrum as determined using the “α = −2” scaling given in
Sect. 3.1.1 and show that in this scaling the spectrum is unstable for large F as well
as in the F = ∞ eigenvalue problem (3.10). Instability in the F = ∞ case was thus
confirmed by multiple numerical checks, providing strong evidence of instability.

In conclusion, our numerical calculations strongly indicate that for F , sufficiently
large, spectrally stable periodic traveling wave solutions of the St. Venant system
(1.11) do not exist. This justifies Numerical Observation 1 described in 1.2.2.

3.3 Numerical Investigation for Intermediate F

In order to better understand the stability of periodic traveling wave solutions of
(1.11) away from the distinguished limits F → 2+ and F →∞, we also carried out
a numerical investigation for some “intermediate” Froude numbers.

To solve the profile equation numerically, we expand (2.2) to obtain the profile
ODE equation,

τ ′′ =
(−τ 2

cν

)(
c2τ ′ − τ ′

F2τ 3 − 1 + τ(q − cτ)2 − 2cν(τ ′)2/τ 3
)

, (3.15)

and then proceed the same way as described in the studies of the limiting F → ∞
systems described above, this time using a relative error tolerance between 10−6

and 10−10 in the bvp solver. Checking the slope condition (1.12) across numerically
determined profiles, we found that it is satisfied for profiles with F � 3.5 but violated
for those with larger F . As discussed in the introduction, however, the slope condition
is no longer required for the nonlinear analysis thanks to the recent work Rodrigues
and Zumbrun (2016).

To study the spectrum, we worked with the original (unrescaled) eigenvalue system
(2.12), associating parameters with those under the rescaling (1.15). We found that
the results for Hill’s method were more accurate using these original coordinates as
opposed to the rescaled coordinates (1.15), even for large F . For q0 = 0.4, k0 ranging
in the parameter space where profiles could be solved, and for F ranging from 10 to
either 20 or 30 by 1, we examined, via Hill’s method and the Taylor expansion of the
Evans function, the cases α = −0.7,−1,−1.4,−1.5,−1.6,−1.7,−1.8,−1.9,−2.
We used 201-3000 Fourier modes and 21-31 Floquet parameters in Hill’s method
and 33-201 Chebyshev nodes for the integral in the Taylor expansion. For each value
of α, we found that a lower stability boundary curve and an upper high-frequency
instability curve meet at some value F∗(α) after which no waves are stable. See
Figures 4. In addition, we find that the upper and lower stability boundaries appear
to have a linear relationship of the form log(X/ν) = b1 log(F)+ b2 log(q)+ b3; see
Fig. 7. We used a combination of Hill’s method and Evans function computations to
determine stability or instability. However, as the period X increases, a small loop of
spectra parameterized by the whole interval of Floquet parameters ξ ∈ [−π/X, π/X)

shrinks until eventually neither the Evans function nor Hill’s method can definitively

123



334 J Nonlinear Sci (2017) 27:285–342

(a)

2

2.5

3

0.5
1

1.5
2

1

2

3

4

5

lo
g

(X
)

log(q)log(F)

(b)

2.2
2.4

2.6
2.8

3

0

1

2

3

3

4

5

6

lo
g

(X
)

log(q)

log(F)

Fig. 7 In a, b, black dots mark the computed boundary and pale dots (red in color plates) mark the best
least curve fit. We hold ν = 0.1 constant. a Lower stability boundary. We have log(X) ≈= b1 log(F) +
b2 log(q) + b3 where b1 = −0.692, b2 = 3.46, and b3 = 0.3. Here α = −1.6,−1.8,−1.9,−2. The
maximum error is 0.200, and the maximum relative error is 0.056. The average relative error is 0.012, and
the average absolute error is 0.041. b High-frequency stability boundary. We have log(X) ≈ b1 log(F)+
b2 log(q) + b3 where b1 = −0.791, b2 = 1.73, and b3 = 3.92. Here α = −1.6,−1.8,−1.9,−2. The
maximum error is 0.228, and the maximum relative error is 0.052. The average relative error is 0.024, and
the average absolute error is 0.103

determine small frequency stability at which point we rely on Hill’s method for the
overall behavior of the spectrum; in this region, analytic verification of the stability
regions as F → ∞ would be beneficial. However, for the lower intermediate F

region where the period is smaller, the stability picture appears clear. In particular,
for α = −2 our numerical study, though not a numerical proof, strongly suggests
the stability region shown in Fig. 4a. As F continues to increase, it becomes easier
again to compute the spectrum with Hill’s method as the spectrum approaches that of
the limiting system given in Eq. (3.9); see Fig. 6a–c for an illustration. For F = 38,
we examined the full set of periods corresponding to those examined in Fig. 4, and
found no stability region, confirming that by this point, the upper and lower stability
boundaries have met.
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Appendix 1: Notation for High-Frequency Bounds

The proof of Lemma 2.2 in Sect. 2.2.1 relied heavily on computations previously car-
ried out in detail in Section 4.1 of Barker et al. (2011). There the authors were concerned
with the stability analysis of traveling solitary wave solutions of the viscous St. Venant
equation (1.11), i.e., those traveling wave solutions that decay exponentially fast to
zero as x− c̄t →±∞. By a straightforward adaptation of this analysis to the periodic
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Fig. 8 Plot of spectra for the intermediate eigenvalue problem. We plot the approximations returned by
Hill’s method with black dots and those obtained by Taylor expanding the Evans function with light dashes.
We plot the spectra corresponding to Floquet parameter zero with a pale star (red in color plates). The solid

line indicates the imaginary axis. In all cases, α = −2, ν = 0.1, and q0 = 0.4. Other parameters are a

F = 6, X = 7.83, b F = 6, X = 8.78, c F = 10, X = 76.9, d F = 10, X = 90.9

case,24 it follows that, for each k ∈ P , there exists an Xδ-periodic change in variables
W (·) = P(·; λ, δ)Z(·) that transforms the spectral problem (2.13) into an equiva-
lent system of the form W ′(x) = (D(x, λ)+�(x, λ)) W (x), supplemented with the
boundary conditions W (Xδ) = eiξ W (0) for some ξ ∈ [−π/Xδ, π/Xδ), where the 3×
3 matrix-valued D is defined via D(·, λ) = diag

(
λ
c̄
+ θ0 + θ1

λ
, τ̄

√
λ
ν
, − τ̄

√
λ
ν

)
,

where θ0 = ᾱτ̄ 2

c̄ν
and θ1 = − τ̄ 2(q−c̄τ̄ )2

ν
− c̄ᾱ√

ν
τ̄ 3

ν3/2 with ᾱ := τ̄−3(F−2 + 2c̄ντ̄ ′). More-

over, the 3 × 3 matrix �(x, λ) has the block structure � =
(

�++ �+−
�−+ �−−

)
, where

�++ is a 2×2 matrix. The individual blocks of the matrix � can be expanded as cubic
polynomials in λ−1/2 with matrix-valued coefficients. More precisely, they expand as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�++(·, λ) = �0
++ + λ−1/2�1

++ + λ−1�2
++ + λ−3/2�3

++

�+−(·, λ) = �0
+− + λ−1/2�1

+− + λ−1�2
+− + λ−3/2�3

+−

�−+(·, λ) = �0
−+ + λ−1/2�1

−+ + λ−1�2
−+ + λ−3/2�3

−+

�−−(·, λ) = �0
−− + λ−1/2�1

−− + λ−1�2
−− + λ−3/2�3

−−,

24 Namely, using formally identical coordinate changes depending on the profile and its derivatives.
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with

�0
++ =

(
0 − τ̄ 2

ν

− ᾱτ̄ 2

2ν
τ̄ ′
τ̄
− c̄τ̄ 2

2ν

)
, �1

+− =

⎛
⎝−

2τ̄ ′√
ν
+ τ̄ 3

ν3/2 ( ᾱ
c̄
+ c̄)

− τ̄ 2(q−c̄τ̄ )√
ν

− ᾱ
2

τ̄ 3

ν3/2

⎞
⎠ ,

�1
++ =

⎛
⎝ 0 − 2τ̄ ′√

ν
+ τ̄ 3

ν3/2 ( ᾱ
c̄
+ c̄)

τ̄
2
√

ν

(
(q − c̄τ̄ )2 + cᾱ τ̄ 2

ν

)
τ̄ 2(q−c̄τ̄ )√

ν
+ ᾱ

2
τ̄ 3

ν3/2

⎞
⎠ ,

�2
++ =

(
0 − 2τ̄ 3(q−c̄τ̄ )

ν

0 τ̄ 2(q−c̄τ̄ )2

2ν
+ c̄ᾱ

2
√

ν
τ̄ 3

ν3/2

)
,

�3
++ =

(
0 − τ̄ 3(q−c̄τ̄ )2

ν3/2 − c̄ᾱ√
ν

τ̄ 4

ν2

0 0

)
, �0

+− =
(

τ̄ 2

ν
τ̄ ′
2τ̄
− c̄

2
τ̄ 2

ν

)
,

�2
+− =

(
2τ̄ 3(q−c̄τ̄ )

ν
τ̄ 2(q−c̄τ̄ )2

2ν
+ c̄ᾱ

2
√

ν
τ̄ 3

ν3/2

)
, �3

+− =
(
− τ̄ 3(q−c̄τ̄ )2

ν3/2 − c̄ᾱ√
ν

τ̄ 4

ν2

0

)
,

�0
−+ =

(
ᾱτ̄ 2

2ν
τ̄ ′
τ̄
− c̄τ̄ 2

2ν

)
, �2

−+ =
(

0 τ̄ 2(q−c̄τ̄ )2

2ν
+ c̄ᾱ

2
√

ν
τ̄ 3

ν3/2

)
,

�1
−+ =

(
τ̄

2
√

ν

(
(q − c̄τ̄ )2 + c̄ᾱ τ̄ 2

ν

)
τ̄ 2(q−c̄τ̄ )√

ν
+ ᾱ

2
τ̄ 3

ν3/2

)
, �0

−− =
(

τ̄ ′
τ̄
− c̄τ̄ 2

2ν

)
,

�1
−− =

(
− τ̄ 2(q−c̄τ̄ )2

2ν
+ c̄ᾱ

2
√

ν
τ̄ 3

ν3/2

)
, �2

−− =
(

τ̄ 2(q−c̄τ̄ )2

2ν
+ c̄ᾱ

2
√

ν
τ̄ 3

ν3/2

)
.

From this, the matrices ND,D, NH,D, ND,H in (2.17) are obtained through the identi-
fication

(
�++ �+−
�−+ �−−

)
=
(

0 NH,D

ND,H ND,D

)
,

where NDD is a 2 × 2 matrix.

Appendix 2: Computational Methods

For completeness, we very briefly describe the computational methods utilized in our
investigations reported in Sects. 3.2 and 3.3 above. For more details, the interested
reader is referred to Barker et al. (2013) where an analogous numerical study is per-
formed on the generalized Kuramoto–Sivashinsky equation.

3.4 Hill’s Method

To determine the global picture of spectrum of a linear X -periodic operator L , we
use Hill’s method. The linear operator L takes the form L j,k =

∑m jk

q=1 f j,k,q(x) ∂q

∂xq

where the f j,k,q(x) are X periodic. Following Deconinck et al. (2007), we represent the
coefficient functions f j,k,q(x) as a Fourier series f j,k,q(x) =

∑∞
j=−∞ φ̂ j,k,qei2π j x/X .
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We use MATLAB’s fast Fourier transform to determine the coefficients φ̂ j,k,q . The
generalized eigenfunctions are represented as25 v(x) = eiξ x

∑∞
j=−∞ v̂ j e

iπ j x/X ,
where ξ ∈ [−π/2X, π/2X) is the Floquet exponent. Upon substituting the Fourier
expansions into the eigenvalue problem, fixing ξ , and equating the coefficients of
the resulting Fourier series, we arrive at the eigenvalue problem L̂ξ v̂ = λv̂ where
L̂ξ is an infinite-dimensional matrix. The spectrum of the operator L is given by
σ(L) =

⋃
ξ∈[−π/2X,π/2X) σ(Lξ ). Truncating the Fourier series at N terms leads to

a finite-dimensional eigenvalue problem L
ξ
N v̂ = λv̂. The matrix L

ξ
N is of the form

M−1
2 M1 where M1v̂ = λM2v̂ is the original eigenvalue problem. Typically M2 is the

identity, but in (3.14), M2 is diagonal with j th diagonal entry i( j+ξ); hence, we avoid
ξ = 0 in that case so that M2 is invertible. We compute σ(L

ξ
N ) on a mesh to approxi-

mate the spectral curves of L . For our numerical studies, we used the implementation
of Hill’s method built into STABLAB [BHZ]. For discussion of Hill’s method and its
convergence, see Curtis and Deconinck (2010), Deconinck and Nathan Kutz (2006),
Johnson and Zumbrun (2012).

3.5 Evans Function

Our results for Hill’s method are augmented by use of the Evans function. To this end,
note all the spectral problems we study, such as the one given in (3.14), may be written
as a first-order system of the form W ′(x) = A(x; λ)W (x) and that, further, λ ∈ C

belongs to the essential spectrum of the associated linearized operator L if and only
if this first-order system admits a nontrivial solution satisfying

Y (x + X; λ) = eiξ X Y (x; λ), ∀x ∈ R

where here X denotes the period of the coefficients of L . Following Gardner (1993),
the Evans function is defined as D(λ, ξ) := det

(
�(X, λ)− eiξ X

)
where the matrix

�(x, λ) satisfies ∂x�(x, λ) = A�(x, λ) and �(0, λ) = Id. By construction then,
the roots of D(·; ξ) agree in location and algebraic multiplicity with the eigenvalues
of the associated ξ -dependent spectral problem. Unfortunately, the Evans function as
described here is poorly conditioned for numerical computation. To remedy this, as in
Barker et al. (2013), we use the observation of Gardner (1993) that

D(λ, ξ) := det(�(X)− eiξ X Id) = det

(
�(X) eiξ X Id

Id Id

)
,

to express the Evans function as an exterior product of solutions of

(
Y

α

)′
=
(

A(·, λ)Y

0

)
,

25 Mark that in the standard implementation of Hill’s method a periodic wave is treated as a periodic function
of twice its fundamental period. As recalled in (Rodrigues 2013, Section 3.1, p.67), this is originally
motivated by the fact that in applications to self-adjoint second-order scalar operators, the Floquet-zero
spectrum will then provide edges of spectral bands.
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with data (Id, Id)T at x = 0 and (eiξ X Id, Id)T at x = X ; for details see Barker et al.
(2013). We then use the polar coordinate method of Humpherys and Zumbrun (2006) to
evolve the solutions. This algorithm is numerically well conditioned Zumbrun (2009).
All computations were carried out using STABLAB [BHZ].

As mentioned above, Hill’s method is ideal for obtaining a global picture of the
spectrum and the Evans function can be evaluated on contours and the winding number
evaluated to determine the presence of zeros. However, neither method determines
definitively whether unstable spectra of arbitrarily small size exist, due to numerical
error. In particular, such methods cannot be used to determine the spectrum of the
associated linearized operators in a sufficiently small neighborhood of the origin, i.e.,
they cannot resolve the modulational instability problem. A strategy for rigorously
computing stability, which we utilize in our intermediate F numerical studies reported
in 3.3 above, involves a Taylor expansion of the Evans function as we now briefly
describe; see Barker et al. (2013) for details.

Due to the presence of a conservation law in the governing system (see Serre
(2005), Johnson et al. (2011), Johnson et al. (2014), Rodrigues (2013)) the Evans
function has a double root at the origin when ξ = 0. As such, the Taylor expansion
of the Evans function about the origin (λ, ξ) = (0, 0) takes the form D(λ, ξ) =
c2,0λ

2 + c1,1λξ + c0,2ξ
2 + c3,0λ

3 + c2,1λ
2ξ + c1,2λξ2 + c0,3ξ

3 + O(|λ|4 + |ξ |4)
where the coefficients ck, j may be determined via Cauchy’s integral formula,

ck, j = − 1

4π2

∮

∂ B(0,r)

∮

∂ B(0,r)

D(λ, ξ)λ−k−1ξ− j−1dλ dξ (3.16)

with r > 0 sufficiently small. Setting α j =
−c1,1+(−1) j+1

√
c2

1,1−4c2,0c0,2

2c2,0
, β j =

− c3,0α
3
j+c2,1α

2
j+c1,2α j+c0,3

2c2,0α j+c1,1
, one readily checks that the roots of the Evans function near

(λ, ξ) = (0, 0) may be continued for |ξ | 	 1 as

λ j (ξ) = α jξ + β jξ
2 + ξ3

2

∫ 1

0
(1 − s)2λ′′′j (sξ)ds.

The spectral curves at the origin are thus approximated by α jξ + β jξ
2 with spectral

stability corresponding to the case α j ∈ Ri and �(β j ) < 0; see Barker et al. (2013)
for details.

In practice, to compute the Taylor expansion coefficients, rather than to compute
the Evans function on the contour integral in the variable λ for fixed ξ given in (3.16),
we interpolate with

∑K
k=0 eikξ x (K = 3 is the largest power of eiξ x that appears)

and then use the Taylor expansion eikξ x = 1 + (ikξ x) + (ikξ x)2/2 + · yielding
D(λ, ξ) =

∑∞
k=0 ckξ

k , from which the contour integral can be determined simply by
reading off the corresponding coefficient. Calling the quantity just determined D̃, we
see

1

2π i

∮

|λ|=R1

D̃(λ)

λr+1 dλ = 1

2π

∫ π

−π

D̃(Reiθ )

Rr eirθ
dθ = 1

2Rr

∫ 1

−1
D̃(Reiπθ )e−irπθ dθ,
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which we compute by approximating the integrand with Chebyshev interpolation and
integrating.

4 Computational Effort

4.1 Computational Environment

In carrying out our numerical investigations, we used a MacBook laptop with 2GB
memory and a duo core Intel processor with 2GHz processing speed, a 2009 Mac Pro
with 16GB memory and two quad-core Intel processors with 2.26 GHz processing
speed, and Quarry, a supercomputer at Indiana University consisting of 140 IBM
HS21 Blade servers with two 2GH quad-core Intel Zeon 5335 processors per node
and delivering 8.96 teraflops processing speed. All computations were done using
MATLAB and the MATLAB-based stability package STABLAB.

4.2 Computational Time

We begin by providing computational statistics for the representative parameter set
α = −2, q0 = 0.4, F = 10, and X = 50. We compute the Evans function, D(λ, ξ),
on a semicircular contour, Ω , of radius R = 0.2 with 42 evenly spaced Floquet
parameters ξ ∈ [−π/X,−π/(10X)]∪ [π/(10X), π/X ]. We require the relative error
between contour points of the image contour, Yξ , D(·, ξ) : Ω → Yξ , not exceed 0.2 so
that Rouché’s theorem implies the winding number of Yξ corresponds to the number
of roots of D(·, ξ) in Ω . We use 277 points in Ω , chosen adaptively, to achieve 0.2
relative error in each Yξ at a computational cost of 56.0 s using 8 MATLAB workers
on Quarry to determine the winding number is zero. Computing the Taylor expansion
of the Evans function at the origin requires 61.7 s on Quarry, while computing the
spectrum via Hill’s method using 603 Fourier modes and 21 Floquet parameters comes
at a computational cost of 143 s.

As the period X increases or as F increases, the number of Fourier modes needed
in Hill’s method increases. Using 600 Fourier modes typically takes around 3 min on
the Mac Pro, while using 1600 Fourier modes takes about 77 min, and using 3000
Fourier modes requires approximately 8 h.

In creating Fig. 4a, it took 4.36 days of computation time to evaluate the Taylor
coefficients and 34.5 days to compute the spectrum using Hill’s method, while the
Evans function required an estimated 58 h. A typical profile requires only a few seconds
to compute, but we must use continuation whereby we use a nearby profile as an initial
guess in the boundary value solver, so that computing the profiles also required a great
computational effort. Overall, taking into account the use of parallel computing and
all values of α investigated, we estimate that total computational time for the project
exceeds a year.
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