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Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion
equations. However, up to now, they have not been studied for systems of conservation laws. Here,
we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find
families of periodic solutions bifurcating from uniform states, numerically continuing these families into
the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable
periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as
amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question
of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a
full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability
conditions - remains an interesting open problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The study of periodic solutions of conservation laws and their
stability, initiated in [1,2] and continued in [3,4], etc., has led to
a number of interesting developments, particularly in the related
study of roll-waves in inclined shallow-water flow. For an account
of these developments, see, e.g., [5] and references therein. How-
ever, in the original context of conservation laws, so far no example
of a stable periodic wave has been found. Indeed, one of the primary
results of [1,6] was that for the fundamental example of planar
viscoelasticity, stable periodic waves do not exist, due to a special
variational structure of this particular system; it was cited as a
basic open problem whether stable periodic waves could arise for
any system of conservation laws, either physically motivated: or
artificially contrived.
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In the more standard context of reaction-diffusion systems
and classical pattern formation theory, by contrast, stable peri-
odic solutions are abundant and well-understood, through the
mechanism of Turing instability, or bifurcation of small-amplitude,
approximately-constant period, periodic solutions from a uniform
state. For such waves, stability is completely determined by an
associated Eckhaus stability diagram, as derived formally in [7]
and verified rigorously in [8-11], essentially by perturbation from
constant-coefficient linearized behavior. By contrast, the small-
amplitude waves investigated up to now (see Example 3.2)
come through more complicated zero-wave number bifurcations
in which period goes to infinity as amplitude goes to zero and the
stability analysis is far from constant-coefficient (see, e.g., [12] in
the successfully-analyzed case of shallow-water flow).

Our simple goal in this paper, therefore, is to seek stable pe-
riodic waves via a conservation law analog of Turing instability.
In the first part, we find an analog of Turing instability, with
which we are able to generate large numbers of examples of
spatially periodic solutions of conservation laws. Next, we find an
interesting dimensional restriction to systems of three or more
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coordinates, explaining the absence of Turing instabilities for 2 x 2
systems considered previously. Finally, we perform a numerical
existence/stability study for 3 x 3 example systems exhibiting
Turing instability, answering in the affirmative the fundamental
question posed in [1,6] whether there can exist stable spatially
periodic solutions of systems of conservation laws, at least at the
level of numerical approximation. These studies suggest that, for
supercritical Turing bifurcation, stable waves can emerge through
the small-amplitude limit and persist up to rather large ampli-
tudes. For subcritical Turing bifurcations, all emerging waves are
necessarily initially unstable, but appear in some cases to undergo
secondary bifurcation to stability as amplitude is further increased.

The numerically observed stability of intermediate-amplitude
waves we regard as conclusive. Delicacy of numerical approx-
imation as amplitude goes to zero, however, prevents us from
obtaining a detailed stability diagram near the Turing bifurcation
or even from making definitive conclusions about stability in that
regime. Rigorous spectral stability analysis for conservation laws in
this regime, analogous to those of [8-11] in the reaction-diffusion
case, we regard therefore as a very interesting open problem. The
studies in [13,14] of reaction-diffusion equations with an associ-
ated conservation law may offer guidance in such an investigation.

2. Turing instability for conservation laws

We begin by defining a notion of Turing instability for systems
of conservation laws

ur + f(u; &)y = (D°uy)x, (2.1)

u € R", where ¢ is a bifurcation parameter and D° for simplicity is
taken constant. Linearizing (2.1) about a uniform state u(x, t) = ug
yields the family of constant-coefficient equations

U = L(e)u .= —A®Uy + DPuyy (2.2)

with dispersion relations 1;(¢) € o(—i£A° — £2D), £ € R, where
o(-) here and elsewhere denotes spectrum of a matrix or linear
operator. The state uy is spectrally (hence nonlinearly) stable if

No(—iEA® — £2D°) < —0|&|%,

forallé e R[15].

Following the original philosophy applied by Turing [16] to
reaction-diffusion systems, we seek a natural set of conditions
guaranteeing low- and high-frequency stability - i.e., that (2.3) hold
for ] — 0, co - but allowing instability at finite frequencies
|&] # 0, co. Should this be possible, then performing a homotopy
in ¢ between stable and unstable states, we may expect generically
to arrive at a special bifurcation point ¢ = &,, without loss of
generality e, = O, for which (2.3) holds uniformly away from
special points & = £&,, at which

0 >0, (2.3)

S _iEAEE _ £2D8x) —
1223( NRo (—iEA E°D*)=0 (2.4)
is achieved (note, by complex conjugate symmetry, that extrema
appear in + pairs) and for which (2.3) fails strictly as ¢ is further
increased. We may then conclude, by standard bifurcation theory
applied to the domain of periodic functions with period X :=
2 /€, the appearance of nontrivial spatially periodic solutions
with periods near X, similarly as in the reaction-diffusion case
[8-11].

At & = 0, (2.3) yields that A® is hyperbolic, in the sense that
it has real semisimple eigenvalues. Without loss of generality,
therefore, take A® diagonal, with entries a;, j = 1,...,n. In the
simplest case that A® is strictly hyperbolic, in the sense that these

a; are distinct, we find by spectral perturbation expansion about
& = 0[15] that the corresponding eigenvalue expansions are

A(€) = —iag — Dig? + 0(83),
so that (2.3) (¢ <« 1) is equivalent to the condition that D° have

positive diagonal entries Dj‘j Similarly, by spectral expansion about
§ = oo,

o(—igA° — £°D%) = —£%0(D°) + 0(8),

so that (2.3)(§ = o0) is equivalent to the condition that D°
be unstable, i.e., have eigenvalues with strictly positive real part.
Collecting, our hypotheses are (C) :

e Af is diagonal with distinct entries, and
e D? has positive diagonal entries and eigenvalues with
strictly positive real part.

These are to be contrasted with Turing’s conditions in the reaction-
diffusion case u; = Duy, + g(u) that D be symmetric positive and
A = dg(u) be symmetric negative definite [ 16].

2.1. Turing instability and Hopf bifurcation

Let (2.4) hold at a bifurcation point ¢ = ¢, with A = +it €
o(—iEA®—£2D?)for & = +&,,&, # 0.Then, changing to the moving
coordinate frame x — X := x — ct, for ¢ := 7 /£,, or, equivalently,
under the change of coordinates A* — A® := A® — cI, we have

Ar=0¢€ a(—iég\e — £2D%) for € = +£,, i.e,, at a bifurcation point
& = ¢&,, det(—i£A® — E*DF) =0at& = &, or

+it, € o(DF A°). (2.5)

Condition (2.5) may be recognized as the condition for Hopf
bifurcation of an equilibrium u(x, t) = constant of the traveling-
wave ODE

D°u = f(u; &) —cu+gq, (2.6)

where g is a constant of integration, for which the linearized
equation is v’ = DS_IASu, A again diagonal. Thus, we recover
by finite-dimensional bifurcation theory the previously-remarked
appearance of nontrivial periodic solutions with period near X =
27 /&,. We also obtain the alternative bifurcation criterion (2.5).
This simplifies the problem a great deal; for one thing, we are now
working with real matrices, as occur for symbols in the reaction-
diffusion case, and not complex ones.

2.1.1. Dimensional count

From the usual Hopf bifurcation theorem for ODE, we find that
for each fixed nearby g, c, there exists a one-parameter family
of nontrivial periodic solutions bifurcating from the constant so-
lution, generically parametrized nonsingularly by period X. Thus,
fixing ¢ = 0, we obtain a 2-parameter family of periodic solutions,
generically well-parametrized by c and X.

2.2. Finding Turing instabilities

To find Turing instability, we may seek A® and D? satisfying (C)
, € € R abifurcation parameter, such that (2.4) is violated at ¢ = 1
(instability), but (2.3) is satisfied for all £ at ¢ = 0 (stability), for
example if D° = Id. For, in this case, the conditions (C) on A?, D*
insure that at the largest value ¢, of ¢ for which (2.4) is satisfied,
the maximum (2.4) is achieved at some £ = &, # 0, while for
¢ > g, there must be strictly positive real part eigenvalues, again
bounded uniformly away from zero.

As another approach, starting from the observation relating
Turing instabilities and Hopf bifurcation, notice first that (2.4)
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cannot occur when D = I and A is diagonal with distinct entries, in
which case the spectra of (—i£A — £2D) are simply Aj(E) = —ikaj—
£2:norcan(2.5), since o(;\) is by assumption real. Thus, we suggest,
first, finding examples AD satisfying (2.5) either analytically or
by checking random matrices, then, setting up a homotopy D :=

eD + (1 — &)l from the identity to D (at this moment we assume
A® = A). Since, as just observed, o(—i£A — £2D?) is stable for
& = 0, while for ¢ = 1 it is at most neutrally stable, having zero
eigenvalues at § = +£, # 0, we find that for some ¢, € (0, 1],
o(—iEA — £2D%) is exactly neutral, i.e., a Turing instability, with
eigenvalues +it at £ = j:§* (note: different from the original
&, in general!). As described above, this corresponds to a Hopf
bifurcation in the traveling-wave ODE for speed c, := t/§,, with
limiting wave number &, and period X, := 27 /&,.

3. Negative results

We next describe situations in which Turing instability cannot
occur, narrowing our search.

3.1. The 2 x 2 case

We have the following result for n = 2, strikingly different from
the situation of the reaction-diffusion case.

Proposition 3.1. Assuming (C), there exist no Turing-type instabil-
ities of (2.1) for n = 2 by showing that under the assumption (C)
there are no A and D satisfying (2.5) (for simplicity, we do not use a
superscript “e,”).

Proof. Take by assumption A diagonal. Since the entries of the
matrix D~!A are real, appearance of a pure imaginary eigenvalue
it implies the appearance also of its complex conjugate —it, hence
trace is zero and determinant is positive. By a scaling transforma-

tionS = (g g>not affecting diagonal form of A, we may arrange

therefore that D7'A = (fl jc) =: J, for some c¢?> < 1. Noting

that J2 = (c¢* — 1)I, we may solve to obtain D = ﬁAj =

- (flu‘; _‘:1126). The requirement that D have positive diagonal

implies, with ¢ < 1, that a;¢c < 0 and ayc > 0, so that a; and a,
have opposite sign. But, det D = (¢ —1)"2a;a,(1—c?) > 0implies
that a; and a, have the same sign, hence these two conditions
cannot hold at once. O

Example 3.2. The viscoelasticity model 7, — uy = dy1Tu, U +
p(t)x = dyux studied by Oh-Zumbrun [1] falls into the above
framework, hence does not admit Turing instabilities. In fact, pe-
riodic waves arise in this model through Bogdanov-Takens bifur-
cation associated with splitting of two or more equilibria, a more
complicated bifurcation far from constant-coefficient behavior.

3.2. Simultaneous symmetrizability

Another case in which Turing instabilities do not occur is when
A and D are simultaneously symmetrizable, or, equivalently, can
be converted by change of coordinates to be both symmetric (we
again do not use a superscript “e,”). For, then, in the new coor-
dinates, D, being symmetric positive definite, has a square root,
and so D~'A is similar to the symmetric matrix D'/2D~'AD~1/? =
D~12AD~1/2, hence has real eigenvalues. More generally, it is easy
to see that Turing instability does not occur for A symmetric and
H(D) := (1/2)(D+D") > 0(i.e., D with positive definite Hermitian
part), since D"'Av = itv would imply 0 = NRir(v,Av) =

—12R(v, Dv) = —12(v, HD)v) < 0, a contradiction. This recov-
ers the well-known fact that existence of a viscosity-compatible
convex entropy for the system (2.1) implies nonexistence of non-
constant stationary solutions, since existence of such an entropy
implies the corresponding symmetry conditions on the linearized
equations. Thus, taking A without loss of generality diagonal, we
must specifically seek D nonsymmetric, D 4+ D nonpositive in order
to find Turing instability.

3.3. Nonstrict hyperbolicity

Finally, we give a simple example showing that the condition of
strict hyperbolicity of A® is necessary in (C) . Consider the matrices

1 0 O 1 0o 2
Af = (0 e 0 and D°=(0 1 1].
0 0 1 1 -2 1

Here, o(D) = {1}; so —i£A® — £2D¢ is stable for |£| — 4o0. For
|&] — 0, we look at 2 x 2 blocks corresponding to the 1 and 3
entries of A° and D?,

~ 1 0 ~ 1 2
A:<O 1) and D:(1 ]>.

Then, the two eigenvalues of —i£A® — £2D° close to i£ for £ <« 1
are by standard spectral perturbation theory 1;(§) = —i§ — Ezaj
, Where a,- are eigenvalues of D. We easily see that D has two real
eigenvalues with opposite sign because det(D) = —1 < 0. Thus,
(2.3) is not satisfied for || — 0.

(3.1)

(3.2)

Remark 3.3. Though example (3.1), failing (C) , does not itself
yield Turing instability, it is quite useful in finding nearby systems

that do. For, note perturbation in & generates matrices D~'A with
nonstable eigenvalues despite A > 0. Perturbing first ¢ to obtain
instability, then A still more slightly to recover strict hyperbolicity,
we thus obtain an example satisfying (C) with unstable DA,
which yields a Turing bifurcation upon homotopy D — I. We
in fact used this method to generate the examples of Section 5.
(We have generated other examples in other ways, that were not
reported here; all exhibited similar behavior, however.)

4. Spectral and nonlinear stability

Before describing our numerical investigations, we briefly recall
the abstract stability framework developed in [1,4,5], etc., relevant
to stability of the nontrivial periodic waves bifurcating from a
constant solution at Turing instability. First, recall [4,5] that, under
the condition of transversality of the associated periodic orbit of
the traveling-wave ODE (guaranteed in this case by the Hopf bifur-
cation scenario, for sufficiently small-amplitude waves), nonlinear
stability with respect to localized perturbations of the periodic
wave considered as a solution on the whole line is determined
(up to mild nondegeneracy conditions) by conditions of diffusive
spectral stability, as we now describe.

For given a periodic wave u with period X, the generic situa-
tion [3,17] is that up to translation the set of X-periodic solutions
in the vicinity u forms a smooth (n + 1) dimensional manifold
(the constant of integration g € R" in the traveling wave ODE
(2.6) and the wave speed ¢ € R). By Floquet theory, the L*(R)
spectrum of the linearized operator L about u is entirely essential
spectrum, corresponding to values A € C for which there exist
generalized eigenfunction solutions v(x) = e®*w(x), £ € R, of
the associated eigenvalue equation (L — A)v = 0 with w periodic,
period X. The dissipative stability conditions are that this spectrum
have real part < —p&2, n > 0, for all £ € R, and strictly negative
for (¢, 1) # (0,0). In particular, for § = 0, L’ = Oand uis a
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Fig. 1. Plot with dots of a sampling of the spectrum of the constant solution, —iféA — £2D, with (a) e = —0.2, (b) ¢ = 0, (c) ¢ = 0.2. The dashed vertical line marks the

imaginary axis.

periodic wave with period X implies that an eigenvalue A = 0 has
the multiplicity (n + 1).

For transversal orbits with ¢ bounded away from ¢,, the spectra
near (&£, A) = (0, 0) consists of the union of (n+ 1) smooth spectral
curves

Ai(§) = —ia;§ + o(§)

through the origin A = 0 for sufficiently small |£]. This was
established in[17] using direct Evans function calculations and also
proved in [18] based on direct spectral perturbation expansion.
Moreover, under the nondegeneracy condition that a; be distinct,
this bifurcation is analytic in £, admitting second-order expansions

Aj(€) = —igiE — bE* +0(&), j=1,....,n+1. (4.1)

“Sideband”, or low-frequency stability, is defined as Ja; = 0,
b, > 0, i.e. stability to second order in & for £ # 0. “Diffusive
stability” may then be expressed as sideband stability plus the
property that all spectra other than the curves described in (4.1)
have real part strictly < —» for some uniform n > 0. See [4,18] for
more complete discussion from a general point of view.

In the case of Turing instability, choosing the period X, such
that the wave-numbers +£, at ¢ = ¢, are equal to zero modulo
27 /X,, we find by direct Fourier transform calculation that the
constant solution at ¢ = ¢, has low-frequency spectrum consisting
of (n + 2) spectral curves passing through the origin, with all other
spectra satisfying WA < —n < O for some n > 0. The spectra
of the bifurcating periodic waves perturbs smoothly from these
values as ¢ is increased, hence high-frequency diffusive stability is
guaranteed. However, low-frequency stability is now determined
by a possibly complicated bifurcation of (n + 2) spectral curves
involving the (n+ 1) curves (4.1) passing through the origin plus an

additional curve originating from the constant limit passing close
to but not through the origin. These curves are clearly visible in the
numerically approximated spectra displayed below in Section 5
for example systems with n = 3: namely, 4 curves (4.1) passing
through the origin, with a 5th (initially) neutral spectral curve
passing near the origin, with all 5 of these passing through the
origin at the bifurcation point ¢ = ¢,.

5. Numerical investigations

Guided by the results of Sections 2, 3, and 4, we now perform
the main work of the paper, carrying out numerical existence and
stability investigations for periodic solutions of systems of conser-
vation laws arising through Turing bifurcation from the uniform
state in dimension n = 3. Numerics are carried out using the
MATLAB-based package STABLAB developed for this purpose [19].
We first briefly summarize our numerical observations.

5.1. A brief summary of results

In Section 5.2, by considering systems of conservation laws
with a quadratic nonlinearity, we obtain stable periodic waves
bifurcating from the Turing instability and moreover they exist
through a supercritical Hopf bifurcation. In order to investigate
both super and subcritical Hopf bifurcation, we consider systems of
conservation laws with a cubic nonlinearity in Section 5.3. Indeed,
in this case, we show there are stable periodic waves through
both super and subcritical Hopf bifurcation by simply changing
the sign of the nonlinearity, while it does not happened in the
case of quadratic nonlinearity. However, the stable periodic waves
we found from the cubic nonlinearity are not bifurcating from
the Turing instability, but secondary bifurcation to stability as
amplitude of waves is further increased.

5.2. Quadratic nonlinearity

We first consider the system

ur + Auy + N(u)y = Duy, (5.1)
with
1 0 0 1 0 2
A=|0 d,+e 0|, D=[0 1 1}, and
0 0 3 1 -2 1
uf
Nu)=p8{0], (5.2)
0

where a), = 2.605173614560316. Here, ¢ is a bifurcation param-
eter that we will vary and u = 0 is a constant solution of (5.1). By
linearization of (5.1) about u = 0, we have

u; + A°uy = Duy,. (5.3)

We first check Turing-type instability conditions for u = 0
in (5.3). Notice that A® is strictly hyperbolic and D has positive
diagonal entries with o(D) = {1}, which means that —i£A® —&£2D s
stable near & = 0 or§ = £00. We examine numerically stability of
u = 0 as ¢ changes. In Fig. 1, we plot the spectrum of —iA® — £2D
withe = —0.2, ¢ = 0,and ¢ = 0.2. It is seen that the constant
solution u = 0 is stable for ¢ < 0 and unstable for ¢ > 0. Thus,
Turing instability occurs at ¢ = 0, that is, (2.4) is satisfied with
+it € o(—iEA°—£2D)fort & 1.5and &, ~ 41.16.As we observed
in the previous section, +i&, are eigenvalues of D~1(A° — c,I) for
¢, = &= ~ 1.30. So the condition for Hopf bifurcation of a constant
solution u = 0 of the profile equation

—cu+Au+Nu)=Du +q (5.4)
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Fig. 2. Plot with dots of a sampling of the spectrum of the constant solution, —i£(A — c,I) — £2D, with (a) e = —0.2,(b)e = 0, (c) e = 0.2 and ¢ = ¢, & 1.30. The dashed

vertical line marks the imaginary axis.

is satisfied at the bifurcating pointe = 0and ¢ = c,. Hereq € R?is
an integration constant and we fix ¢ = 0 from now on. In Fig. 2, we
plot the spectrum of —i£(A® — c,I) — £2D for the same ¢ as in Fig. 1,
showing how this moves the neutral spectrum from A = =it to
A=0.

The Hopf bifurcation leads to periodic profiles bifurcating from
the uniform state u = 0. In order to solve for these profiles, we
let ¢ be a free variable and vary the period X and wave speed
¢, approximating associated solutions using the periodic profile
solver built into STABLAB, which uses MATLAB’s Newton-based
boundary-value problem solver bvp5c. In addition to periodic
boundary conditions, the profile solver specifies a phase condition
w - f(y(0)) = 0 where y'(x) = f(y(x)) is the profile ODE ((2.6)
in the present case) and w is a random vector. Unless w is a
degenerate choice, w - y(t) = 0 for some t by periodicity of y
and Rolle’s Theorem, so this phase condition chooses a solution (at
least locally) uniquely. To numerically solve the profile equation
with a quadratic nonlinearity, we first obtain a solution by using
as an initial guess u(x) = /eN(e*"*v)/10, where v is the real
part of an eigenvector, whose corresponding eigenvalue has non-
zero imaginary part, of the profile Jacobian evaluated at the fixed
point (0, 0, 0)T. That is, we start with an initial guess consisting of a
strategically scaled periodic solution of the linearized equations at
the bifurcation point ¢ = 0. Once we have a profile solution via this
guess, we use continuation to solve for other profiles with nearby
period X and speed c, obtaining thereby a full 2-parameter family
of approximate solutions parametrized by (c, X), as described in
Section 2.1.1.

In Fig. 3(a) and (b), we plot the stability bifurcation diagram in
the coordinates of shifted wave speed ¢ = ¢ — c, and period
X. The bifurcation diagram shows that there is a family of stable
waves bifurcating from the Turing bifurcation. There is a small
region of instability occurring from a “parabolic” instability, or
change in curvature of a neutral spectral curve through the origin,
which separates the region of stability near the Turing bifurcation
point and the larger stability region. Fig. 3(d)-(f) demonstrate the
onset of this type of instability as seen in the spectrum of the
bifurcating periodic waves. In Fig. 3(c), we see that the spectrum of
the background constant solution becomes unstable as ¢ increases,
so that the periodic profile shown in Fig. 3(g) comes into existence
through a supercritical Hopf bifurcation. Finally, in Fig. 3(g), we
plot the periodic profile for § = —10,¢ = 2.82e — 3,¢c =
Ci +4.06e — 3,X = 5.44.

We note that, as described in Section 4, there are generically 4
neutral spectral curves passing through the origin. This is clearly
visible in Fig. 3(d)—(f). However, as seen in Fig. 2(b), the constant
solution has 5 spectral curves passing through the origin at the
bifurcation point and the spectra of bifurcating periodic waves
perturbs from these 5 curves. So, at the bifurcation point, there
is a 5th neutral curve passing through the origin, which remains
nearby for values of ¢ nearby e¢,. It explains why the spectrum
of stable periodic waves bifurcating from Turing bifurcation in

Fig. 3(d) has an additional 5th curve which is very close to the origin
but not through the origin. Stability of small-amplitude waves is
determined by behavior of these 5 neutral curves, either by move-
ment of the maximum real part of the 5th curve into the unstable
or stable half-plane (“co-periodic” stability, corresponding with
super- or sub-criticality of the associated Hopf bifurcation), or
by a “sideband” instability consisting of loss of tangency to the
imaginary axis (first-order, or “hyperbolic” instability) or change
in curvature (2nd order, or “parabolic” instability) of one of the 4
neutral curves through the origin; see Section 4.

For the quadratic nonlinearity, if u(x) is a profile solution for
a fixed B, then —u(x) is a profile solution for — g, with the same
value of e. Thus, we are not able to produce a corresponding
subcritical Hopf bifurcation by reversing the sign of 8, but a mirror
supercritical bifurcation.

To find examples of stable periodic profiles corresponding
to both sub and supercritical Hopf bifurcations, we change the
quadratic nonlinearity to a cubic nonlinearity in the next example,
removing this symmetry and allowing us to change from super- to
sub-by changing the sign of S.

5.3. Cubic nonlinearity

We consider next the system of conservation laws

Ue +A8ux + N(u)x = Duyy, (5-5)
with
1 0 0 1 0 2
A=|0 d,+¢ 0], D==(0 1 1), and
0 0 3 1 -2 1
u;
Nw):=8|0]. (5.6)
0

where a3, = 2.605173614560316. Similarly as the quadratic
example, we vary ¢ as a bifurcation parameter. The stability of
u = 0 as ¢ varies is already shown in Figs. 1 and 2.

Starting from the supercritical periodic profile solutions found
previously for the quadratic nonlinearity, we obtain a solution for
the cubic nonlinearity by continuation in a homotopy variable 0 <
h < 1via the nonlinearity N(u) = [B(hu + (1 — h)u?), 0, 0]". To
obtain a subcritical profile solution for the cubic nonlinearity, we
use the approximate symmetry (8, ¢, &) — (—8, —c, —¢), which
is valid at the linear periodic level only. Thereafter, we solve for
profiles using continuation.

In Fig. 4, we plot the bifurcating stable periodic solution through
a supercritical Hopf bifurcation. Since ¢ > 0 for the constant
solution to be unstable, as seen in Fig. 2, the periodic profile shown
in Fig. 4(c) exists through a supercritical Hopf bifurcation. Fig. 4(b)
shows the stable spectrum of the periodic profile shownin (c). Here



16 B. Barker et al. / Physica D 367 (2018) 11-18

| b 62

alO Il-
||II

X 5

0.15
0.1
0.05

-0.05
-0.1
-0.15

sk
-0.025 -0.02 -0.015 -0.08 -0.06 -0.04 -0.02 0.02
Re(\)

|
I
I
I
I
1
I
:
-0.02 -0.01 0
Re(\)
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respectively to stable and unstable waves. (b) Zoom in of (a) showing a family of stable waves in parameter space leading to the point of the Turing bifurcation. There is a small
region of instability separating the stable waves near the Turing bifurcation point and the large stability region. (c) Plot of the spectrum of the zero constant solution when
& =2.82e—3,c =c, +4.06e — 3,and X = 5.44, indicating that the Turing bifurcation corresponds to a supercritical Hopf bifurcation. (d) Plot of the spectrum of a periodic
wave in the family of stable waves bifurcating from the Turing bifurcation. (e) Plot of the spectrum of a periodic wave in the family of unstable waves separating the two
regions of stability. (f) Plot of the spectrum of a periodic wave in the large stability region. (g) Plot of the bifurcating periodic profile when ¢ = 2.82e — 3, ¢ = ¢, +4.06e — 3,
and X = 5.44, with component one marked with a solid line, component two with a dashed line, and component three with a dot-dashed line. Throughout 8 = —10 and a
dashed line marks the imaginary axis.
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Fig. 4. (a) Stability diagram in the coordinates of shifted wave speed c® = ¢ — c, and period X for 8 = 10. Pink dots (light dots in grayscale) and black dots correspond
respectively to stable and unstable waves. (b) For a stable wave, we plot in (b) its spectrum and in (c) the wave itself, with 8 = 10,c® = 0.5,X = 6,and ¢ = 8.74e — 1. A
dashed line marks the imaginary axis in (b).

B =10,c® = 05, X = 6,and ¢ = 8.74e — 1. In Fig. 4(a), we
plot a stability diagram in the coordinates of shifted wave speed
c® = ¢ — ¢, and period X. We do not find a family of stable waves
bifurcating from the Turing instability.

By changing the sign of 8, we find the stable periodic solutions
through a subcritical Hopf bifurcation as demonstrated in Fig. 5.
Since ¢ < O for the constant solution to be stable, as seen in

Fig. 2, the periodic profile shown in Fig. 5(c) exists through a
subcritical Hopf bifurcation. Fig. 5(b) shows the stable spectrum
of the periodic profile shown in (c). Here 8 = —10, ¢® = —0.3,
X =4.5,and e = —3.5e—3.InFig. 5(a), we plot a stability diagram
in the coordinates of shifted wave speed c® = ¢ — ¢, and period X.
We do not find a family of stable waves bifurcating from the Turing
instability.
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dashed line marks the imaginary axis in (b). In (d) we plot a curve showing existence, up to numerical approximation, of periodic profiles of period X = 5.4 in the parameters
c® and £ when 8 = —10 and the nonlinearity is cubic. A thin horizontal line marks the axis.

5.4. Numerical stability method

To determine the spectrum of the periodic profiles, we used
Hill's method. The associated eigenvalue problem is given by
Lv = Xv where the linear operator L takes the form Lj; =
Z:ik]ﬁ,k,q(x)%. The coefficients fj ; 4(x) are X periodic. As in [20],
we use a Fourier series to represent the coefficient functions
fikg fikg®) Yo so®ikge®X, and write the general-

ized eigenfunctions as v(x) = e} * _ 9;e™X, where & €
(—m/2X, 7 /2X] is the Floquet exponent. Substituting these quan-
tities into the eigenvalue problem and equating coefficients gives
an infinite dimensional eigenvalue problem for each fixed &. By
truncating the Fourier series at N terms and using MatLabs FFT
function to determine the coefficients ¢; ; 4, we arrive at a finite
dimensional eigenvalue problem Lfvf) = AD, which we solve with
MATLAB’s eigenvalue solver. All computations were done using
STABLAB [19]. For further information about Hill’'s method and its
convergence properties, see [21-23].

5.5. Computational statistics

All computations were carried out on a Macbook pro quad core
or a Leopard WS desktop with 10 cores. Computing a profile took
approximately 2 s or less, and computing the spectrum via Hill’s
method took on average 20-60 s depending on the number of
modes used. We typically used 101 Floquet parameters and 41 or
81 Fourier modes when using Hill’s method. Each stability diagram
took less then 24 h to compute on the Leopard WS desktop.

6. Discussion and open problems

We have identified an analog of Turing instability occurring for
n x n systems of conservation laws of dimension n > 3, leading to
a large family of spatially periodic traveling waves. Our numerical
stability investigations give convincing numerical evidence that
at least some of these waves are stable, answering the question
posed in [1,6] whether there can exist stable periodic solutions of
conservation laws.

Moreover, the same numerical investigations indicate that at
least for some model parameters, the bifurcation diagram near
Turing instability/Hopf bifurcation includes an open region of in-
stability. This opens the possibility for rigorous proof of existence
of stable periodic waves through a small-amplitude bifurcation
analysis as carried out in [8-11] for the reaction-diffusion case.
Such an analysis we consider an extremely interesting open prob-
lem. Note, however, that it is inherently more complicated than the
reaction-diffusion version, involving n + 2 bifurcation parameters
(X,c,q), X,c € R!, g e R" rather than the two parameters
of the reaction-diffusion case. For an example of intermediate
complexity, we point to the recent analyses [13,14] of reaction-
diffusion equations with a single conserved quantity, featuring a
three-parameter bifurcation.
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