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a b s t r a c t

Turing patterns on unbounded domains have been widely studied in systems of reaction–diffusion

equations. However, up to now, they have not been studied for systems of conservation laws. Here,

we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find

families of periodic solutions bifurcating from uniform states, numerically continuing these families into

the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable

periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as

amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question

of Oh–Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a

full small-amplitude stability diagram – specifically, determination of rigorous Eckhaus-type stability

conditions – remains an interesting open problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The study of periodic solutions of conservation laws and their

stability, initiated in [1,2] and continued in [3,4], etc., has led to

a number of interesting developments, particularly in the related

study of roll-waves in inclined shallow-water flow. For an account

of these developments, see, e.g., [5] and references therein. How-

ever, in the original context of conservation laws, so far no example

of a stable periodic wave has been found. Indeed, one of the primary

results of [1,6] was that for the fundamental example of planar

viscoelasticity, stable periodic waves do not exist, due to a special

variational structure of this particular system; it was cited as a

basic open problem whether stable periodic waves could arise for

any system of conservation laws, either physically motivated: or

artificially contrived.
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In the more standard context of reaction–diffusion systems
and classical pattern formation theory, by contrast, stable peri-
odic solutions are abundant and well-understood, through the
mechanism of Turing instability, or bifurcation of small-amplitude,
approximately-constant period, periodic solutions from a uniform
state. For such waves, stability is completely determined by an
associated Eckhaus stability diagram, as derived formally in [7]
and verified rigorously in [8–11], essentially by perturbation from
constant-coefficient linearized behavior. By contrast, the small-
amplitude waves investigated up to now (see Example 3.2)
come through more complicated zero-wave number bifurcations
in which period goes to infinity as amplitude goes to zero and the
stability analysis is far from constant-coefficient (see, e.g., [12] in
the successfully-analyzed case of shallow-water flow).

Our simple goal in this paper, therefore, is to seek stable pe-
riodic waves via a conservation law analog of Turing instability.
In the first part, we find an analog of Turing instability, with
which we are able to generate large numbers of examples of
spatially periodic solutions of conservation laws. Next, we find an
interesting dimensional restriction to systems of three or more
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coordinates, explaining the absence of Turing instabilities for 2× 2

systems considered previously. Finally, we perform a numerical

existence/stability study for 3 × 3 example systems exhibiting

Turing instability, answering in the affirmative the fundamental

question posed in [1,6] whether there can exist stable spatially

periodic solutions of systems of conservation laws, at least at the

level of numerical approximation. These studies suggest that, for

supercritical Turing bifurcation, stable waves can emerge through

the small-amplitude limit and persist up to rather large ampli-

tudes. For subcritical Turing bifurcations, all emerging waves are

necessarily initially unstable, but appear in some cases to undergo

secondary bifurcation to stability as amplitude is further increased.

The numerically observed stability of intermediate-amplitude

waves we regard as conclusive. Delicacy of numerical approx-

imation as amplitude goes to zero, however, prevents us from

obtaining a detailed stability diagram near the Turing bifurcation

or even from making definitive conclusions about stability in that

regime. Rigorous spectral stability analysis for conservation laws in

this regime, analogous to those of [8–11] in the reaction–diffusion

case, we regard therefore as a very interesting open problem. The

studies in [13,14] of reaction–diffusion equations with an associ-

ated conservation lawmay offer guidance in such an investigation.

2. Turing instability for conservation laws

We begin by defining a notion of Turing instability for systems

of conservation laws

ut + f (u; ε)x = (Dεux)x, (2.1)

u ∈ R
n, where ε is a bifurcation parameter and Dε for simplicity is

taken constant. Linearizing (2.1) about a uniform state u(x, t) ≡ u0

yields the family of constant-coefficient equations

ut = L(ε)u := −Aεux + Dεuxx (2.2)

with dispersion relations λj(ξ ) ∈ σ (−iξAε − ξ 2Dε), ξ ∈ R, where

σ (·) here and elsewhere denotes spectrum of a matrix or linear

operator. The state u0 is spectrally (hence nonlinearly) stable if

ℜσ (−iξAε − ξ 2Dε) ≤ −θ |ξ |2, θ > 0, (2.3)

for all ξ ∈ R [15].

Following the original philosophy applied by Turing [16] to

reaction–diffusion systems, we seek a natural set of conditions

guaranteeing low- and high-frequency stability – i.e., that (2.3) hold

for |ξ | → 0, ∞ – but allowing instability at finite frequencies

|ξ | ̸= 0, ∞. Should this be possible, then performing a homotopy

in ε between stable and unstable states, wemay expect generically

to arrive at a special bifurcation point ε = ε∗, without loss of

generality ε∗ = 0, for which (2.3) holds uniformly away from

special points ξ = ±ξ∗, at which

max
ξ ̸=0

ℜσ (−iξAε∗ − ξ 2Dε∗ ) = 0 (2.4)

is achieved (note, by complex conjugate symmetry, that extrema

appear in ± pairs) and for which (2.3) fails strictly as ε is further

increased. We may then conclude, by standard bifurcation theory

applied to the domain of periodic functions with period X :=
2π/ξ∗ the appearance of nontrivial spatially periodic solutions

with periods near X , similarly as in the reaction–diffusion case

[8–11].

At ξ = 0, (2.3) yields that Aε is hyperbolic, in the sense that

it has real semisimple eigenvalues. Without loss of generality,

therefore, take Aε diagonal, with entries aj, j = 1, . . . , n. In the

simplest case that Aε is strictly hyperbolic, in the sense that these

aj are distinct, we find by spectral perturbation expansion about

ξ = 0 [15] that the corresponding eigenvalue expansions are

λj(ξ ) = −iajξ − Dε
jjξ

2 + O(ξ 3),

so that (2.3) (ξ ≪ 1) is equivalent to the condition that Dε have

positive diagonal entries Dε
jj. Similarly, by spectral expansion about

ξ = ∞,

σ (−iξAε − ξ 2Dε) = −ξ 2σ (Dε) + O(ξ ),

so that (2.3)(ξ = ∞) is equivalent to the condition that Dε

be unstable, i.e., have eigenvalues with strictly positive real part.

Collecting, our hypotheses are (C) :

• Aε is diagonal with distinct entries, and

• Dε has positive diagonal entries and eigenvalues with

strictly positive real part.

These are to be contrastedwith Turing’s conditions in the reaction–

diffusion case ut = Duxx + g(u) that D be symmetric positive and

A := dg(u) be symmetric negative definite [16].

2.1. Turing instability and Hopf bifurcation

Let (2.4) hold at a bifurcation point ε = ε∗ with λ = ±iτ ∈
σ (−iξAε−ξ 2Dε) for ξ = ±ξ∗, ξ∗ ̸= 0. Then, changing to themoving

coordinate frame x → x̃ := x − ct , for c := τ/ξ∗, or, equivalently,
under the change of coordinates Aε → Ãε := Aε − cI , we have

λ = 0 ∈ σ (−iξ Ãε − ξ 2Dε) for ξ = ±ξ∗, i.e., at a bifurcation point

ε = ε∗, det(−iξ Ãε − ξ 2Dε) = 0 at ξ = ξ∗, or

±iξ∗ ∈ σ (Dε−1

Ãε). (2.5)

Condition (2.5) may be recognized as the condition for Hopf

bifurcation of an equilibrium u(x, t) ≡ constant of the traveling-

wave ODE

Dεu′ = f (u; ε) − cu + q, (2.6)

where q is a constant of integration, for which the linearized

equation is u′ = Dε−1
Ãεu, Ãε again diagonal. Thus, we recover

by finite-dimensional bifurcation theory the previously-remarked

appearance of nontrivial periodic solutions with period near X =
2π/ξ∗. We also obtain the alternative bifurcation criterion (2.5).

This simplifies the problem a great deal; for one thing, we are now

working with real matrices, as occur for symbols in the reaction–

diffusion case, and not complex ones.

2.1.1. Dimensional count

From the usual Hopf bifurcation theorem for ODE, we find that

for each fixed nearby q, c , there exists a one-parameter family

of nontrivial periodic solutions bifurcating from the constant so-

lution, generically parametrized nonsingularly by period X . Thus,

fixing q = 0, we obtain a 2-parameter family of periodic solutions,

generically well-parametrized by c and X .

2.2. Finding Turing instabilities

To find Turing instability, we may seek Aε and Dε satisfying (C)

, ε ∈ R a bifurcation parameter, such that (2.4) is violated at ε = 1

(instability), but (2.3) is satisfied for all ξ at ε = 0 (stability), for

example if D0 = Id. For, in this case, the conditions (C) on Aε , Dε

insure that at the largest value ε∗ of ε for which (2.4) is satisfied,

the maximum (2.4) is achieved at some ξ = ξ∗ ̸= 0, while for

ε > ε∗ there must be strictly positive real part eigenvalues, again

bounded uniformly away from zero.

As another approach, starting from the observation relating

Turing instabilities and Hopf bifurcation, notice first that (2.4)
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cannot occur when D = I and A is diagonal with distinct entries, in

which case the spectra of (−iξA− ξ 2D) are simply λj(ξ ) = −iξaj −
ξ 2; nor can (2.5), sinceσ (Ã) is by assumption real. Thus,we suggest,

first, finding examples Ǎ, Ď satisfying (2.5) either analytically or

by checking random matrices, then, setting up a homotopy Dε :=
εĎ + (1 − ε)I from the identity to Ď (at this moment we assume

Aε = Ǎ). Since, as just observed, σ (−iξ Ǎ − ξ 2Dε) is stable for

ε = 0, while for ε = 1 it is at most neutrally stable, having zero

eigenvalues at ξ = ±ξ∗ ̸= 0, we find that for some ε∗ ∈ (0, 1],
σ (−iξ Ǎ − ξ 2Dε∗ ) is exactly neutral, i.e., a Turing instability, with

eigenvalues ±iτ at ξ = ±ξ̂∗ (note: different from the original

ξ∗ in general!). As described above, this corresponds to a Hopf

bifurcation in the traveling-wave ODE for speed c∗ := τ/ξ̂∗, with

limiting wave number ξ̂∗ and period X∗ := 2π/ξ̂∗.

3. Negative results

We next describe situations in which Turing instability cannot

occur, narrowing our search.

3.1. The 2 × 2 case

Wehave the following result for n = 2, strikingly different from

the situation of the reaction–diffusion case.

Proposition 3.1. Assuming (C) , there exist no Turing-type instabil-

ities of (2.1) for n = 2 by showing that under the assumption (C)

there are no A and D satisfying (2.5) (for simplicity, we do not use a

superscript ‘‘ε∗’’).

Proof. Take by assumption A diagonal. Since the entries of the

matrix D−1A are real, appearance of a pure imaginary eigenvalue

iτ implies the appearance also of its complex conjugate−iτ , hence

trace is zero and determinant is positive. By a scaling transforma-

tion S =
(

α 0

0 β

)

not affecting diagonal form of A, we may arrange

therefore that D−1A =
(

c 1

−1 −c

)

=: J, for some c2 < 1. Noting

that J2 = (c2 − 1)I, we may solve to obtain D = 1

c2−1
AJ =

1

c2−1

(

a1c a1
−a2 −a2c

)

. The requirement that D have positive diagonal

implies, with c2 < 1, that a1c < 0 and a2c > 0, so that a1 and a2
have opposite sign. But, detD = (c2−1)−2a1a2(1−c2) > 0 implies

that a1 and a2 have the same sign, hence these two conditions

cannot hold at once. □

Example 3.2. The viscoelasticity model τt − ux = d11τxx, ut +
p(τ )x = d22uxx studied by Oh–Zumbrun [1] falls into the above

framework, hence does not admit Turing instabilities. In fact, pe-

riodic waves arise in this model through Bogdanov–Takens bifur-

cation associated with splitting of two or more equilibria, a more

complicated bifurcation far from constant-coefficient behavior.

3.2. Simultaneous symmetrizability

Another case in which Turing instabilities do not occur is when

A and D are simultaneously symmetrizable, or, equivalently, can

be converted by change of coordinates to be both symmetric (we

again do not use a superscript ‘‘ε∗’’). For, then, in the new coor-

dinates, D, being symmetric positive definite, has a square root,

and so D−1A is similar to the symmetric matrix D1/2D−1AD−1/2 =
D−1/2AD−1/2, hence has real eigenvalues. More generally, it is easy

to see that Turing instability does not occur for A symmetric and

H(D) := (1/2)(D+DT ) > 0 (i.e., Dwith positive definite Hermitian

part), since D−1Av = iτv would imply 0 = ℜiτ ⟨v, Av⟩ =

−τ 2ℜ⟨v,Dv⟩ = −τ 2⟨v,H(D)v⟩ < 0, a contradiction. This recov-

ers the well-known fact that existence of a viscosity-compatible

convex entropy for the system (2.1) implies nonexistence of non-

constant stationary solutions, since existence of such an entropy

implies the corresponding symmetry conditions on the linearized

equations. Thus, taking A without loss of generality diagonal, we

must specifically seek D nonsymmetric, D+DT nonpositive in order

to find Turing instability.

3.3. Nonstrict hyperbolicity

Finally, we give a simple example showing that the condition of

strict hyperbolicity of Aε is necessary in (C) . Consider the matrices

Aε =
(

1 0 0

0 ε 0

0 0 1

)

and Dε =
(

1 0 2

0 1 1

1 −2 1

)

. (3.1)

Here, σ (D) = {1}; so −iξAε − ξ 2Dε is stable for |ξ | → +∞. For

|ξ | → 0, we look at 2 × 2 blocks corresponding to the 1 and 3

entries of Aε and Dε ,

Ã =
(

1 0

0 1

)

and D̃ =
(

1 2

1 1

)

. (3.2)

Then, the two eigenvalues of −iξAε − ξ 2Dε close to iξ for ξ ≪ 1

are by standard spectral perturbation theory λj(ξ ) = −iξ − ξ 2d̃j
, where d̃j are eigenvalues of D̃. We easily see that D̃ has two real

eigenvalues with opposite sign because det(D̃) = −1 < 0. Thus,

(2.3) is not satisfied for |ξ | → 0.

Remark 3.3. Though example (3.1), failing (C) , does not itself

yield Turing instability, it is quite useful in finding nearby systems

that do. For, note perturbation in ε generates matrices D−1A with

nonstable eigenvalues despite A > 0. Perturbing first ε to obtain

instability, then A still more slightly to recover strict hyperbolicity,

we thus obtain an example satisfying (C) with unstable D−1A,

which yields a Turing bifurcation upon homotopy D → I . We

in fact used this method to generate the examples of Section 5.

(We have generated other examples in other ways, that were not

reported here; all exhibited similar behavior, however.)

4. Spectral and nonlinear stability

Before describing our numerical investigations,we briefly recall

the abstract stability framework developed in [1,4,5], etc., relevant

to stability of the nontrivial periodic waves bifurcating from a

constant solution at Turing instability. First, recall [4,5] that, under

the condition of transversality of the associated periodic orbit of

the traveling-wave ODE (guaranteed in this case by the Hopf bifur-

cation scenario, for sufficiently small-amplitude waves), nonlinear

stability with respect to localized perturbations of the periodic

wave considered as a solution on the whole line is determined

(up to mild nondegeneracy conditions) by conditions of diffusive

spectral stability, as we now describe.

For given a periodic wave ū with period X , the generic situa-

tion [3,17] is that up to translation the set of X-periodic solutions

in the vicinity ū forms a smooth (n + 1) dimensional manifold

(the constant of integration q ∈ R
n in the traveling wave ODE

(2.6) and the wave speed c ∈ R). By Floquet theory, the L2(R)

spectrum of the linearized operator L about ū is entirely essential

spectrum, corresponding to values λ ∈ C for which there exist

generalized eigenfunction solutions v(x) = eiξxw(x), ξ ∈ R, of

the associated eigenvalue equation (L − λ)v = 0 with w periodic,

period X . The dissipative stability conditions are that this spectrum

have real part ≤ −ηξ 2, η > 0, for all ξ ∈ R, and strictly negative

for (ξ, λ) ̸= (0, 0). In particular, for ξ = 0, Lū′ = 0 and ū is a
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Fig. 1. Plot with dots of a sampling of the spectrum of the constant solution, −iξA − ξ 2D, with (a) ε = −0.2, (b) ε = 0, (c) ε = 0.2. The dashed vertical line marks the

imaginary axis.

periodic wave with period X implies that an eigenvalue λ = 0 has

the multiplicity (n + 1).

For transversal orbits with ε bounded away from ε∗, the spectra
near (ξ, λ) = (0, 0) consists of the union of (n+1) smooth spectral

curves

λj(ξ ) = −iajξ + o(ξ )

through the origin λ = 0 for sufficiently small |ξ |. This was

established in [17] using direct Evans function calculations and also

proved in [18] based on direct spectral perturbation expansion.

Moreover, under the nondegeneracy condition that aj be distinct,

this bifurcation is analytic in ξ , admitting second-order expansions

λj(ξ ) = −iajξ − bjξ
2 + O(ξ 3), j = 1, . . . , n + 1. (4.1)

‘‘Sideband’’, or low-frequency stability, is defined as ℑaj = 0,

ℜbj > 0, i.e. stability to second order in ξ for ξ ̸= 0. ‘‘Diffusive

stability’’ may then be expressed as sideband stability plus the

property that all spectra other than the curves described in (4.1)

have real part strictly ≤ −η for some uniform η > 0. See [4,18] for

more complete discussion from a general point of view.

In the case of Turing instability, choosing the period X∗ such

that the wave-numbers ±ξ∗ at ε = ε∗ are equal to zero modulo

2π/X∗, we find by direct Fourier transform calculation that the

constant solution at ε = ε∗ has low-frequency spectrum consisting

of (n + 2) spectral curves passing through the origin, with all other

spectra satisfying ℜλ ≤ −η < 0 for some η > 0. The spectra

of the bifurcating periodic waves perturbs smoothly from these

values as ε is increased, hence high-frequency diffusive stability is

guaranteed. However, low-frequency stability is now determined

by a possibly complicated bifurcation of (n + 2) spectral curves

involving the (n+1) curves (4.1) passing through the origin plus an

additional curve originating from the constant limit passing close

to but not through the origin. These curves are clearly visible in the

numerically approximated spectra displayed below in Section 5

for example systems with n = 3: namely, 4 curves (4.1) passing

through the origin, with a 5th (initially) neutral spectral curve

passing near the origin, with all 5 of these passing through the

origin at the bifurcation point ε = ε∗.

5. Numerical investigations

Guided by the results of Sections 2, 3, and 4, we now perform

the main work of the paper, carrying out numerical existence and

stability investigations for periodic solutions of systems of conser-

vation laws arising through Turing bifurcation from the uniform

state in dimension n = 3. Numerics are carried out using the

MATLAB-based package STABLAB developed for this purpose [19].

We first briefly summarize our numerical observations.

5.1. A brief summary of results

In Section 5.2, by considering systems of conservation laws

with a quadratic nonlinearity, we obtain stable periodic waves

bifurcating from the Turing instability and moreover they exist

through a supercritical Hopf bifurcation. In order to investigate

both super and subcritical Hopf bifurcation,we consider systems of

conservation laws with a cubic nonlinearity in Section 5.3. Indeed,

in this case, we show there are stable periodic waves through

both super and subcritical Hopf bifurcation by simply changing

the sign of the nonlinearity, while it does not happened in the

case of quadratic nonlinearity. However, the stable periodic waves

we found from the cubic nonlinearity are not bifurcating from

the Turing instability, but secondary bifurcation to stability as

amplitude of waves is further increased.

5.2. Quadratic nonlinearity

We first consider the system

ut + Aεux + N(u)x = Duxx, (5.1)

with

Aε :=

⎛

⎝

1 0 0

0 a022 + ε 0

0 0 3

⎞

⎠ , D :=
(

1 0 2

0 1 1

1 −2 1

)

, and

N(u) := β

⎛

⎝

u2
1

0

0

⎞

⎠ , (5.2)

where a022 = 2.605173614560316. Here, ε is a bifurcation param-

eter that we will vary and u ≡ 0 is a constant solution of (5.1). By

linearization of (5.1) about u = 0, we have

ut + Aεux = Duxx. (5.3)

We first check Turing-type instability conditions for u ≡ 0

in (5.3). Notice that Aε is strictly hyperbolic and D has positive

diagonal entrieswith σ (D) = {1}, whichmeans that−iξAε −ξ 2D is

stable near ξ = 0 or ξ = ±∞. We examine numerically stability of

u ≡ 0 as ε changes. In Fig. 1, we plot the spectrum of −iξAε − ξ 2D

with ε = −0.2, ε = 0, and ε = 0.2. It is seen that the constant

solution u ≡ 0 is stable for ε < 0 and unstable for ε > 0. Thus,

Turing instability occurs at ε = 0, that is, (2.4) is satisfied with

±iτ ∈ σ (−iξA0−ξ 2D) for τ ≈ 1.5 and ξ∗ ≈ ±1.16. Asweobserved

in the previous section, ±iξ∗ are eigenvalues of D−1(A0 − c∗I) for
c∗ = τ

ξ∗
≈ 1.30. So the condition for Hopf bifurcation of a constant

solution u ≡ 0 of the profile equation

− cu + Aεu + N(u) = Du′ + q (5.4)
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Fig. 2. Plot with dots of a sampling of the spectrum of the constant solution, −iξ (A − c∗I) − ξ 2D, with (a) ε = −0.2, (b) ε = 0, (c) ε = 0.2 and c = c∗ ≈ 1.30. The dashed

vertical line marks the imaginary axis.

is satisfied at the bifurcating point ε = 0 and c = c∗. Here q ∈ R
3 is

an integration constant andwe fix q = 0 from now on. In Fig. 2, we
plot the spectrum of−iξ (Aε − c∗I)− ξ 2D for the same ε as in Fig. 1,
showing how this moves the neutral spectrum from λ = ±iτ to
λ = 0.

The Hopf bifurcation leads to periodic profiles bifurcating from
the uniform state u ≡ 0. In order to solve for these profiles, we
let ε be a free variable and vary the period X and wave speed
c , approximating associated solutions using the periodic profile
solver built into STABLAB, which uses MATLAB’s Newton-based
boundary-value problem solver bvp5c. In addition to periodic
boundary conditions, the profile solver specifies a phase condition
w · f (y(0)) = 0 where y′(x) = f (y(x)) is the profile ODE ((2.6)
in the present case) and w is a random vector. Unless w is a
degenerate choice, w · ẏ(t) = 0 for some t by periodicity of y
and Rolle’s Theorem, so this phase condition chooses a solution (at
least locally) uniquely. To numerically solve the profile equation
with a quadratic nonlinearity, we first obtain a solution by using
as an initial guess u(x) = √

εℜ(e2π ixv)/10, where v is the real
part of an eigenvector, whose corresponding eigenvalue has non-
zero imaginary part, of the profile Jacobian evaluated at the fixed
point (0, 0, 0)T . That is, we start with an initial guess consisting of a
strategically scaled periodic solution of the linearized equations at
the bifurcation point ε = 0. Oncewe have a profile solution via this
guess, we use continuation to solve for other profiles with nearby
period X and speed c , obtaining thereby a full 2-parameter family
of approximate solutions parametrized by (c, X), as described in
Section 2.1.1.

In Fig. 3(a) and (b), we plot the stability bifurcation diagram in
the coordinates of shifted wave speed c0 = c − c∗ and period
X . The bifurcation diagram shows that there is a family of stable
waves bifurcating from the Turing bifurcation. There is a small
region of instability occurring from a ‘‘parabolic’’ instability, or
change in curvature of a neutral spectral curve through the origin,
which separates the region of stability near the Turing bifurcation
point and the larger stability region. Fig. 3(d)–(f) demonstrate the
onset of this type of instability as seen in the spectrum of the
bifurcating periodic waves. In Fig. 3(c), we see that the spectrum of
the background constant solution becomes unstable as ε increases,
so that the periodic profile shown in Fig. 3(g) comes into existence
through a supercritical Hopf bifurcation. Finally, in Fig. 3(g), we
plot the periodic profile for β = −10, ε = 2.82e − 3, c =
c∗ + 4.06e − 3, X = 5.44.

We note that, as described in Section 4, there are generically 4
neutral spectral curves passing through the origin. This is clearly
visible in Fig. 3(d)–(f). However, as seen in Fig. 2(b), the constant
solution has 5 spectral curves passing through the origin at the
bifurcation point and the spectra of bifurcating periodic waves
perturbs from these 5 curves. So, at the bifurcation point, there
is a 5th neutral curve passing through the origin, which remains
nearby for values of ε nearby ε∗. It explains why the spectrum
of stable periodic waves bifurcating from Turing bifurcation in

Fig. 3(d) has an additional 5th curvewhich is very close to the origin

but not through the origin. Stability of small-amplitude waves is

determined by behavior of these 5 neutral curves, either by move-

ment of the maximum real part of the 5th curve into the unstable

or stable half-plane (‘‘co-periodic’’ stability, corresponding with

super- or sub-criticality of the associated Hopf bifurcation), or

by a ‘‘sideband’’ instability consisting of loss of tangency to the

imaginary axis (first-order, or ‘‘hyperbolic’’ instability) or change

in curvature (2nd order, or ‘‘parabolic’’ instability) of one of the 4

neutral curves through the origin; see Section 4.

For the quadratic nonlinearity, if u(x) is a profile solution for

a fixed β , then −u(x) is a profile solution for −β , with the same

value of ε. Thus, we are not able to produce a corresponding

subcritical Hopf bifurcation by reversing the sign of β , but a mirror

supercritical bifurcation.

To find examples of stable periodic profiles corresponding

to both sub and supercritical Hopf bifurcations, we change the

quadratic nonlinearity to a cubic nonlinearity in the next example,

removing this symmetry and allowing us to change from super- to

sub-by changing the sign of β .

5.3. Cubic nonlinearity

We consider next the system of conservation laws

ut + Aεux + N(u)x = Duxx, (5.5)

with

Aε :=

⎛

⎝

1 0 0

0 a022 + ε 0

0 0 3

⎞

⎠ , D :=
(

1 0 2

0 1 1

1 −2 1

)

, and

N(u) := β

⎛

⎝

u3
1

0

0

⎞

⎠ , (5.6)

where a022 = 2.605173614560316. Similarly as the quadratic

example, we vary ε as a bifurcation parameter. The stability of

u ≡ 0 as ε varies is already shown in Figs. 1 and 2.

Starting from the supercritical periodic profile solutions found

previously for the quadratic nonlinearity, we obtain a solution for

the cubic nonlinearity by continuation in a homotopy variable 0 ≤
h ≤ 1 via the nonlinearity N(u) = [β(hu3

1 + (1 − h)u2
1), 0, 0]T . To

obtain a subcritical profile solution for the cubic nonlinearity, we

use the approximate symmetry (β, c, ε) → (−β, −c, −ε), which

is valid at the linear periodic level only. Thereafter, we solve for

profiles using continuation.

In Fig. 4,we plot the bifurcating stable periodic solution through

a supercritical Hopf bifurcation. Since ε > 0 for the constant

solution to be unstable, as seen in Fig. 2, the periodic profile shown

in Fig. 4(c) exists through a supercritical Hopf bifurcation. Fig. 4(b)

shows the stable spectrumof the periodic profile shown in (c). Here
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Fig. 3. (a) Stability bifurcation diagram in the coordinates of shifted wave speed c0 = c − c∗ and period X . Pink dots (light dots in grayscale) and black dots correspond

respectively to stable and unstablewaves. (b) Zoom in of (a) showing a family of stablewaves in parameter space leading to the point of the Turing bifurcation. There is a small

region of instability separating the stable waves near the Turing bifurcation point and the large stability region. (c) Plot of the spectrum of the zero constant solution when

ε = 2.82e− 3, c = c∗ + 4.06e− 3, and X = 5.44, indicating that the Turing bifurcation corresponds to a supercritical Hopf bifurcation. (d) Plot of the spectrum of a periodic

wave in the family of stable waves bifurcating from the Turing bifurcation. (e) Plot of the spectrum of a periodic wave in the family of unstable waves separating the two

regions of stability. (f) Plot of the spectrum of a periodic wave in the large stability region. (g) Plot of the bifurcating periodic profile when ε = 2.82e− 3, c = c∗ + 4.06e− 3,

and X = 5.44, with component one marked with a solid line, component two with a dashed line, and component three with a dot-dashed line. Throughout β = −10 and a

dashed line marks the imaginary axis.

Fig. 4. (a) Stability diagram in the coordinates of shifted wave speed c0 = c − c∗ and period X for β = 10. Pink dots (light dots in grayscale) and black dots correspond

respectively to stable and unstable waves. (b) For a stable wave, we plot in (b) its spectrum and in (c) the wave itself, with β = 10, c0 = 0.5, X = 6 , and ε = 8.74e − 1. A

dashed line marks the imaginary axis in (b).

β = 10, c0 = 0.5, X = 6 , and ε = 8.74e − 1. In Fig. 4(a), we

plot a stability diagram in the coordinates of shifted wave speed

c0 = c − c∗ and period X . We do not find a family of stable waves

bifurcating from the Turing instability.

By changing the sign of β , we find the stable periodic solutions

through a subcritical Hopf bifurcation as demonstrated in Fig. 5.

Since ε < 0 for the constant solution to be stable, as seen in

Fig. 2, the periodic profile shown in Fig. 5(c) exists through a

subcritical Hopf bifurcation. Fig. 5(b) shows the stable spectrum

of the periodic profile shown in (c). Here β = −10, c0 = −0.3,

X = 4.5 , and ε = −3.5e−3. In Fig. 5(a), we plot a stability diagram

in the coordinates of shifted wave speed c0 = c − c∗ and period X .

We do not find a family of stable waves bifurcating from the Turing

instability.
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Fig. 5. (a) Stability diagram in the coordinates of shifted wave speed c0 = c − c∗ and period X for β = −10. Pink dots (light dots in grayscale) and black dots correspond

respectively to stable and unstable waves. For a stable wave, we plot in (b) its spectrum and in (c) the wave itself, with β = −10, c0 = −0.3, X = 4.5, and ε = −3.5e− 3. A

dashed linemarks the imaginary axis in (b). In (d) we plot a curve showing existence, up to numerical approximation, of periodic profiles of period X = 5.4 in the parameters

c0 and ε when β = −10 and the nonlinearity is cubic. A thin horizontal line marks the axis.

5.4. Numerical stability method

To determine the spectrum of the periodic profiles, we used

Hill’s method. The associated eigenvalue problem is given by

Lv = λv where the linear operator L takes the form Lj,k =
∑mjk

q=1fj,k,q(x)
∂q

∂xq
. The coefficients fj,k,q(x) are X periodic. As in [20],

we use a Fourier series to represent the coefficient functions

fj,k,q, fj,k,q(x) =
∑∞

j=−∞φ̂j,k,qe
i2π jx/X , and write the general-

ized eigenfunctions as v(x) = eiξx
∑∞

j=−∞v̂je
iπ jx/X , where ξ ∈

(−π/2X, π/2X] is the Floquet exponent. Substituting these quan-

tities into the eigenvalue problem and equating coefficients gives

an infinite dimensional eigenvalue problem for each fixed ξ . By

truncating the Fourier series at N terms and using MatLabs FFT

function to determine the coefficients φ̂j,k,q, we arrive at a finite

dimensional eigenvalue problem L
ξ

N v̂ = λv̂, which we solve with

MATLAB’s eigenvalue solver. All computations were done using

STABLAB [19]. For further information about Hill’s method and its

convergence properties, see [21–23].

5.5. Computational statistics

All computations were carried out on a Macbook pro quad core

or a Leopard WS desktop with 10 cores. Computing a profile took

approximately 2 s or less, and computing the spectrum via Hill’s

method took on average 20–60 s depending on the number of

modes used. We typically used 101 Floquet parameters and 41 or

81 Fouriermodeswhen using Hill’s method. Each stability diagram

took less then 24 h to compute on the Leopard WS desktop.

6. Discussion and open problems

We have identified an analog of Turing instability occurring for

n × n systems of conservation laws of dimension n ≥ 3, leading to

a large family of spatially periodic traveling waves. Our numerical

stability investigations give convincing numerical evidence that

at least some of these waves are stable, answering the question

posed in [1,6] whether there can exist stable periodic solutions of

conservation laws.

Moreover, the same numerical investigations indicate that at

least for some model parameters, the bifurcation diagram near

Turing instability/Hopf bifurcation includes an open region of in-

stability. This opens the possibility for rigorous proof of existence

of stable periodic waves through a small-amplitude bifurcation

analysis as carried out in [8–11] for the reaction–diffusion case.

Such an analysis we consider an extremely interesting open prob-

lem. Note, however, that it is inherentlymore complicated than the

reaction–diffusion version, involving n+ 2 bifurcation parameters

(X, c, q), X, c ∈ R
1, q ∈ R

n rather than the two parameters

of the reaction–diffusion case. For an example of intermediate

complexity, we point to the recent analyses [13,14] of reaction–

diffusion equations with a single conserved quantity, featuring a

three-parameter bifurcation.
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