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An efficient algorithm is developed to calculate the periodic steady-state distribution and moments of the
remaining workload W, at time yc within a cycle of length ¢, 0 <y < 1, in a single-server queue with a peri-
odic arrival-rate function. The algorithm applies exactly to the GI:/GI/1 model, where the arrival process is
a time-transformation of a renewal process. A new representation of W, makes it possible to apply a modifi-
cation of the classic rare-event simulation for the stationary GI/GI/1 model exploiting importance sampling
using an exponential change of measure. We establish bounds between the periodic workload and the sta-
tionary workload with the average arrival rate that enable us to prove that the relative error in estimates of
P(Wy > b) is uniformly bounded in b. With the aid of a recent heavy-traffic limit theorem, the algorithm also
applies to compute the periodic steady-state distribution of (i) reflected periodic Brownian motion (RPBM)
by considering appropriately scaled GI,/GI/1 models and (ii) a large class of general G;/G/1 queues by
approximating by GI;/GI/1 models with the same heavy-traffic limit. Simulation examples demonstrate the

accuracy and efficiency of the algorithm for both GI:/GI/1 queues and RPBM.

Key words: periodic queues, ruin probabilities, rare-event simulation, exponential change of measure,
heavy traffic, reflected periodic Brownian motion

History: January 31, 2017

1. Introduction

For the steady-state performance of the stationary GI/GI/1 single-server queue with
unlimited waiting room and service in order of arrival, we have effective algorithms, e.g.,
Abate et al. (1993), Asmussen (2003). We also have exact formulas in special cases and use-
ful general approximation formulas in heavy traffic, e.g., Asmussen (2003), Whitt (2002).

For the periodic steady-state performance of associated periodic single-server queues, hav-
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ing periodic arrival-rate functions, there is much less available. There is supporting theory
in Harrison and Lemoine (1977), Lemoine (1981, 1989), Rolski (1981, 1989). On the algo-
rithm side, there is a recent contribution on perfect sampling in Xiong et al. (2015). Of
particular note is the paper on the periodic M;/GI/1 queue by Asmussen and Rolski
(1994) that provides a theoretical basis for a rare-event simulation algorithm (although
no algorithm is discussed there); also see §VIL.6 of Asmussen and Albrecher (2010) and
Morales (2004). The goal there was to calculate ruin probabilities, but those are known to
be equivalent to waiting-time and workload tail probabilities. A heavy-traffic limit for the
periodic G;/G/1 queue, was also established recently by Whitt (2014), which shows that
the basic processes can be approximated by reflected periodic Brownian motion (RPBM),
but so far there are no algorithms or simple formulas for RPBM.

In this paper, we provide an effective algorithm to calculate the periodic steady-state
distribution and moments of the remaining workload W, at time yc within a cycle of length
¢, 0 <y <1, in a single-server queue with a periodic arrival-rate function. The algorithm
applies exactly to the M;/GI/1 model, where the arrival process is a nonhomogeneous
Poisson process (NHPP), and any GI;/GI/1 model, where the arrival process is a time-
transformation of an equilibrium renewal process. A new representation of W, (in (2)
below) makes it possible to apply a modification of the classic rare-event simulation for the
stationary GI/GI/1 model exploiting importance sampling using an exponential change
of measure, as in Ch. XIII of Asmussen (2003) and Ch. VI of Asmussen and Glynn (2007).
We show that the algorithm is effective for estimating the mean and variance as well as
small tail probabilities.

The main example is the periodic M;/GI/1 queue, but our results go well beyond the
periodic M;/GI/1 queue. By also treating the more general GI;/GI/1 queue, we are able
to apply the algorithm to compute the steady-state distribution of the limiting RPBM in
Whitt (2014). To cover the full range of parameters of the RPBM, we need the general-
ization to GI;/GI/1. (In particular, this enables us to calculate the periodic steady-state
distribution of the limiting RPBM for the GI;/GI/1 model in (51) and (55) for any vari-
ability parameter c,.) As we will explain in §6.4, the algorithm for the GI;/GI/1 model
can serve as a basis for an approximation algorithm for more general G;/G/1 models, but

we do not report simulation results for that extension here.
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We report results from extensive simulation experiments for GI;/G1/1 models to demon-
strate the effectiveness of the algorithm. Both the convergence to RPBM and the effective-
ness of the algorithm for RPBM are demonstrated by displaying the results for a range
of traffic intensities p approaching 1. This unity in the numerical results requires the non-
standard heavy-traffic scaling in Whitt (2014), which we review in §6. (In particular, the
deterministic arrival-rate function is scaled as well as space and time; see (41).) The unity
in the numerical results provided by the heavy-traffic scaling is in the same spirit as the

scaling in the numerical results in Abate and Whitt (1998), Choudhury et al. (1997).

1.1. Using Bounds to Connect to Familiar Rare-Event Simulation Methods

We are able to apply the familiar rare-event simulation for the GI/GI/1 model to the
periodic GI;/GI/1 model because we can make strong connections between the given
periodic GI;/GI/1 model and the associated GI/GI/1 model with the constant average
arrival rate. In fact, this connection is largely achieved directly by construction, because
we represent the periodic arrival counting process A as a deterministic time transformation

of an underlying rate-1 counting process N by
t
A(t)= N(A(t)), where A(t) E/ Ms)ds, ¢>0, (1)
0

A is the arrival-rate function, assumed to be positive, and = denotes equality by definition.
This is a common representation when N is a rate-1 Poisson process; then A is an NHPP.
For the G;/G/1 model, N is understood to be a rate-1 stationary point process. Hence,
for the GI,/GI/1 model, N is an equilibrium renewal process with time between renewals
having mean 1, which is a renewal process except the first inter-renewal time has the
equilibrium distribution. The representation in (1) also has been used for processes N more
general than NHPP’s by Massey and Whitt (1994), Gerhardt and Nelson (2009), Nelson
and Gerhardt (2011), He et al. (2016), Ma and Whitt (2015), Whitt (2015) and Whitt and
Zhao (2016).

Given that we use representation (1), we show that it is possible to uniformly bound
the difference between the cumulative arrival-rate function A and the associated linear
cumulative arrival-rate function Ae of the stationary model, where X is the average arrival
rate and e is the identity function, e(t) =t¢, t > 0. Consequently, we are able to bound the
difference between the steady-state workloads W in the stationary G/G/1 model and W,
in the periodic G;/G/1 model.
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1.2. A Convenient Representation for Estimation Efficiency
We exploit the arrival process construction in (1) to obtain a convenient representation of
the stationary workload W, in terms of the underlying stationary process N = {N(¢) : ¢t > 0}

in (1) and the associated sequence of service times V ={V, : k> 1} via

N(s)
Wy tsup { S Vi— A, (s) ), 0<y<1, 2)
s>0 _
where
Ay(t)=A(ye) — A(ye—t), t>0, (3)

is the reverse-time cumulative arrival-rate function starting at time yc within the periodic
cycle [0,¢],0<y <1, and ]\y_ ! is its inverse function, which is well defined because ]\y (t) is
continuous and strictly increasing. Representation (2) is convenient because all stochastic
dependence is captured by the first term within the supremum, while all deterministic time
dependence is captured by the second term.

From the representation in (2), it is evident that from each sample path of the underlying
stochastic process (N, V'), we can generate a realization of W, in (2) for each y, 0 <y < 1, by
just changing the deterministic function /~\; L. Moreover, from the rare-event construction
in §4, we can simultaneously obtain an estimate of P(W, > b) for all b in the bounded
interval [0, bg] while applying the estimation for the single value by. Thus, we can essentially
obtain estimates for all performance parameter pairs (y,b) € [0,1) x [0, by] while doing the
estimation for only one pair. This efficiency is very useful to conduct simulation studies to

expose the way that P(W, > b) and the other performance measures depend on (y,b).

1.3. Stylized Sinusoidal Examples
We illustrate the rare-event simulation by showing simulation results for GI;/GI/1 queues

with sinusoidal arrival-rate function
A(t)=A(1+ Bsin(4t)), >0, (4)

where 8, 0 < 8 < 1, is the relative amplitude and the cycle length is ¢ = 27 /7. We let
the mean service time be p~! =1, so that the average arrival rate is the traffic intensity,
i.e., A= p. With this scaling, we see that there is the fundamental model parameter triple

(p, B,7) or, equivalently, (p, 5,c). The associated cumulative arrival-rate function is

A(t) =p(t+(B/7)(1 —cos (1)), t=>0. (5)
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and the associated reverse-time cumulative arrival-rate function defined in (3) is

Ay(t)=p(t+(B/7) (cos (v(yc—t)) — cos (yyc))), t>0. (6)

We only consider the case p < 1, under which a proper steady-state exists under reg-
ularity conditions (which we do not discuss here). Behavior differs for short cycles and
long cycles. There are two important cases for the relative amplitude: (i) 0 <8 <p ' —1
and (ii) p~!' —1 < B < 1. In the first case, we have p(t) < 1 for all ¢, where p(t) = \(¢) is
the instantaneous traffic intensity, but in the second case we have intervals with p(¢) > 1,
where significant congestion can build up. If there is a long cycle as well, the system may
be better understood from fluid and diffusion limits, as in Choudhury et al. (1997). (Tables

8 and 9 illustrate the significant performance difference for the mean E[W,].)

1.4. Organization of the Paper

We start in §2 by reviewing the reverse-time representation of the workload process, which
leads to representation (2). In §3 we establish the bounds and associated asymptotic and
approximations connecting the periodic model to the associated stationary model with the
average arrival rate. In §4 we develop the simulation algorithm for the G1,/GI/1 model and
establish theoretical results on its efficiency. We also discuss the computational complexity
and running times. In §5 we present simulation examples. In §6 we review and extend the
heavy-traffic FCLT in Theorem 3.2 of Whitt (2014), which explains the scaling that unifies
our numerical results in the simulation experiments. in §6.4 we discuss the approximation
for general periodic G;/G/1 models. In §7 we draw conclusions. We present additional
material in the online supplement Ma and Whitt (2016), including approximations for the

important asymptotic decay rate and more simulation examples.

2. Reverse-Time Representation of the Workload Process

We consider the standard single-server queue with unlimited waiting space where cus-
tomers are served in order of arrival. Let {(Uy, Vi)} be a sequence of ordered pairs of
interarrival times and service times. (in §2 and in §3 we do not need to impose any GI
conditions.) Let an arrival counting process be defined on the positive halfline by A(t) =
max{k>1:U;+ - -+ U, <t} for t >U; and A(t) =0 for 0 <t < Uy, and let the total input
of work over the interval [0,¢] be the random sum

A(t)
Y(t)=) Vi, t>0. (7)
k=1
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Then we can apply the reflection map to the net input process Y (¢) — ¢ to represent the

workload (the remaining work in service time) at time ¢, starting empty at time 0, as
W)=Y () —t—inf{Y(s) —s:0<s<t}=sup{Y(t) =Y (s)—(t—s):0<s<t}, t>0.

We now convert this standard representation to a simple supremum by using a reverse-
time construction, as in Loynes (1962) and Chapter 6 in Sigman (1995). This is achieved by
letting the interarrival times and service times be ordered in reverse time going backwards
from time 0. Then A(t) counts the number of arrivals and Y (t) is the total input over the

interval [—t, 0] for t > 0. With this reverse-time construction (interpretation), we can write
W(t)=sup{Y(s)—s:0<s<t}, t>0, (8)

and we have W (t) increasing to W (co) = W with probability 1 (w.p.1) as ¢ 1 co. In a stable
stationary setting, under regularity conditions, we have P(W < o0) = 1; see §6.3 of Sigman
(1995).

We now consider the periodic arrival-rate function A(¢) with cycle length ¢, average
arrival rate A = p < 1 and bounds 0 < A\;, < \(t) < Ay < oo for 0 <t <c. As in (1), we can
construct the arrival process A by transforming a general rate-1 stationary process N by
the cumulative arrival-rate function. We let the service times Vi be a general stationary
sequence with E[Vj]=1.

We now exploit (8) in our more specific periodic G;/G/1 context. The workload at time

yc in the system starting empty at time yc —t can be represented as

W, (t) = sup {Y,(s) — s}

0<s<t
N(Ay(s))
= sup{ Z Vk—s}
0<s<t & 1y
N(s)

= s S vi-A )} (9)

where f/y is the reverse-time total input of work starting at time yc within the cycle of
length ¢, A,(t) is the reverse-time cumulative arrival-rate function in (3) and A; Lis its
inverse function, which are defined in terms of the cumulative arrival-rate function A(¢) in

(1). The second line equality in distribution holds when N is a stationary point process,
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which is a point process with stationary increments and a constant rate. In the GI;/GI/1
setting, N is an equilibrium renewal process and thus this regularity condition is satisfied.
Note that in this specific setting, V}’s are i.i.d. with distribution V', but U; has equilibrium
distribution U, which may be different from the i.i.d. distributions of Uy, k> 2 in (9). Just
as W(t) T W w.p.1 as t — 0o, so W, (t) T W, w.p.1 as t — oo, for W, in (2).

Even though (9) is valid for all ¢, we think of the system starting empty at times —kc, for
k>0, so that we let yc —t = —kc or, equivalently, we stipulate that t =c(k+y), 0<y <1,
and consider successive values of k and let kK — oo to get (2). That makes (9) valid to
describe the distribution of W (c(k +y)) for all £ > 0. We think that (9) and (2) are new

representations, but they can be related to various special cases in the literature.

3. Bounds and Approximations for General Periodic G;/G/1 Queues
We first bound the periodic system above and below by modifications of the correspond-
ing stationary system with an arrival process that has the average arrival rate. Then we

establish limits and introduce approximations. In doing so, we extend results in Asmussen

and Rolski (1994).

3.1. Basic Bounds
We now compare the periodic steady-state workload W, in (2) and the associated stationary
workload W defined as in (2) with p~'s replacing A} !(s):

N(s)
Wgsup{ZVk—p‘IS}, (10)

s>0

Note that in both (2) and (10), N is understood to be a stationary point process. In
particular, for the GI;/GI/1 model, N is an equilibrium renewal process with the first inter-
renewal time having the equilibrum distribution, therefore W is the stationary workload
in the associated GI/GI/1 model, which may differ from the stationary waiting time in
the same model. We now show that we can bound W, above and below by a constant

difference from the stationary workload W by rewriting (2) as

N(s)
Wy:sgg{zvk—pls—(Ayl(s) —p’ls)}. (11)
=T k=1

From (11), we immediately obtain the following lemma.
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LEMMA 1. (upper and lower bounds on W,) For W, in (2) and W in (10),

W, =W—( <W,<W-(=W] (12)
where
= A (s) —ptst > = i Al (s) —p st <.

Gy Oi}slgpc{/\y (8)=ps}20 and (= inf {A(s)—p~s}<0 (13)
Note that the supremum and infimum in (13) are over the interval [0, pc]. Because the
average arrival rate is p, A,(c) = A(c) = pc and thus /~Xy_ Y(pc) = c. Given that A is continuous
and strictly increasing, we can use properties of the inverse function as in §13.6 of Whitt

(2002) to determine an alternative representation of the bounds in terms of the reverse-time

cumulative arrival-rate function /~\y. We emphasize that these bounds depend on y.

LEMMA 2. (alternative representation of the bounds) The constants ¢, and ¢ can also

be expressed as

¢, =—p ' inf {Ay(s)—ps}>0 and (f=—p " sup {A,(s) —ps}<0.  (14)

0<s<c 0<s<c
Proof. We use basic properties of inverse functions, as in §13.6 of Whitt (2002). First,

note that, for any homeomorphism ¢ on the interval [0, ¢],

sup {¢(s) —s}= sup {6(¢ '(s)) —¢ '(s)} = sup {s—¢ '(s)} =— inf {¢ '(s)—s}.

0<s<e 0<s<c 0<s<ec 0<s<c
(15)
To treat ¢, in (13), we apply (15) to /~\;1 after rescaling time to get
sup {As1(s) = p s} = sup (A (pu) —up=— inf {5 ', (u) —u}
0<s<pc 0<u<e 0<u<c
— —p inf {A,(s) — ps}. (16)

0<s<c
In (16), the first equality is by making the change of variables u = p~'s; the second equality
is by (15) plus Lemma 13.6.6 of Whitt (2002), i.e., (A1 ope)™t = (p~teoA,) = p~'A; the
third equality is obtained by multiplying and dividing by p. =

We now combine the one-sided extrema into an expression for the absolute value.

COROLLARY 1. (single bound) As a consequence,

W, —W| < (=max{(,,—('}

-1

=08, = pelle =" sup {IA,(s) — psl} < cc. (17)
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COROLLARY 2. (bounds in the sinusoidal case) For the sinusoidal case in (4), the bounds
can be expressed explicitly as
B(cos (yey) — 1)

B(cos (yey) +1) and CH— . (18)
g Y g

G =
Proof. By (6),
Ay (t) = pt=(pB/7) (cos (v(cy — 1)) —cos (yey)), =0, (19)
from which (18) follows by choosing ¢ to make cos (y(cy —t)) =+1. =

3.2. Tail Asymptotics for the Periodic G;/G/1 Model

For many models, it is possible to obtain an approximation for W of the form

PW>b)~Ae™ " b>0, (20)
based on the limit
Jim P P(W > b) = A. (21)
—00

For the GI/GI/1 model, the limit (21) is discussed in §XIIL.5 of Asmussen (2003), where
the random variable X, =V, — T}, is required to have a nonlattice distribution. However,
the limit (21) also has been established for much more general models, allowing dependence
among the interarrival times and service times; see Abate et al. (1994), Choudhury et al.
(1996) and references therein. If indeed, the limit (21) holds for W, then we easily get
corresponding bounds for W,.

We remark that logarithmic asymptotics from Glynn and Whitt (1994) supports the

weaker approximation
P(W,>b)~P(W>b~e " b>0. (22)

The following corollary draws implications from the limit (20), from the bounds we have

established, assuming that the limit (20) is valid.

COROLLARY 3. (tail-limit bounds) If e/ *P(W >b) — A as b— oo for some 6* > 0, then

limsup e’ "P(W, >b) < lim " "P(W > b+ () = Af =A™ and
— 00

b—o0
liminf e” " P(W, >b) > lim " "P(W > b+ ()= A, = Ae @ ", (23)
b— o0 b—o0

as b—oo. If " P(W, >b) — A, as b— oo, then

A, <A, <AT and A; <A<AT. (24)
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For the GI/GI/1 model, we have the Cramer-Lundberg inequality for W in Theorem
XII1.5.1 of Asmussen (2003), yielding P(W >b) <e %" for all b.

COROLLARY 4. (periodic Cramer-Lundberg bound) For the periodic GI;/GI/1 model,
P(W,>b)<e ) forall b>0.

4. Simulation Methodology for the GI;/GI/1 Model

We now apply the representation in (2) and the bounds in §3 to obtain an effective rare-
event simulation method for the periodic GI;/GI/1 queueing model. Our approach is
to first generate exponentially tilted interarrival times and service times until a process
involving them hits a given level b and then to calculate an estimate of tail probability using
these generated values for each simulation replication. Hence, the algorithm is primarily
deterministic calculations. We obtain estimates of statistical precision by performing a

large number of independent replications.

4.1. Exponential Tilting for the GI/GI/1 Model

We apply the familiar rare-event simulation method for the stationary GI/GI/1 model
using importance sampling with an exponential change of measure, as in §XIII of Asmussen
(2003) and §§V and VI of Asmussen and Glynn (2007). For the discrete-time waiting times
in the GI/GI/1 model based on {(p~'Uy,V;)}, where {Uy} and {V,} are independent
sequences of i.i.d. nonnegative mean-1 random variables, the key random variables are
Xi(p) = Vi — p~tU,. We assume that Uy, Vi and thus Xj(p) have finite moment generating
functions (mgf’s) my(0), my(0), and mx () =mx(,)(0), e.g., my(0) = E[e’*], and prob-
ability density functions (pdf’s) fy, fv and fx = fx(,. As usual, we define the twisted
pdf fxo(x) =€ fx(x)/mx(#) and for our simulation use the “optimal value” §* such that
mx (6*) = 1. That optimal tilting parameter coincides with the asymptotic decay rate 6*
in Corollary 3.

There are several simplifications that facilitate implementation. First, as in Example
XIII.1.4 of Asmussen (2003), we can construct the tilted pdf fx ¢(z) by constructing asso-
ciated tilted pdf’s of fyy and fy, in particular, because X (p) = Vi — p~'Uy, it suffices to
let fvo(z) = e fv(x)/my(0) and

_ @) e pfu(y)
P =0 T -6)p) 9
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with the second expression obtained after making a change of variables, so that mx(0) =
my (0)my(—6/p). We thus obtain the i.i.d. tilted random variables with pdf fy¢-(z) by
simulating independent sequences of i.i.d. random variables with the pdf’s fy-(z) and
f-v/po ().

Second, for all our examples, we consider common distributions that produce twisted
pdf’s having the same form as the original pdf’s; it is only necessary to change the parame-
ters. In particular, this property holds for the M, H,, E};, and M + D distributions that we
propose to exploit in §6.4. In particular, if V' is a rate-p exponential (M) random variable
with pdf fy (z) = pue #*, then fy(z) is again an exponential random variable with param-
eter p— 6, where we are required to have > 6 > 0. Moreover, for the M /M /1 queue with
arrival rate A\ and service rate u, the associated optimal tilted parameters are g« = u and
o= = A; i.e., the optimal tilting just switches the arrival and service rates; see Example
XIII.1.5 of Asmussen (2003).

If V has an Hs pdf fy(x) =pure "%+ (1 —p)uge 2%, having parameter triple (p, 1, p12),
then fy(z) again has an H, distribution, but with a new parameter triple (pg, 11,9, f2),
where 19 = p; — 6 and pg = [ppr/ (1 — 0)/{[ppa /(1 — )] + [(1 = p)p2/ (2 — 0)]}. We
remark that the twisted H, pdf does not inherit the balanced-means property of the orig-
inal Hy pdf and has a different squared coefficient of variation (scv, variance divided by
the square of the mean), but still ¢ > 1.

We now turn to the pdf’s with scv ¢? < 1. First, a twisted E) distribution is again
Ey. More generally (because Ej is a special gamma distribution), if V' has a gamma
pdf fy(z;a,p) = p*z* e * /T (a), then fyy(z) has a gamma pdf with parameter pair
(v, pg) = (a, o — 0); see §V.1.b of Asmussen and Glynn (2007). Finally, if V is an M + D
distribution with parameter pair (d, p), then the twisted distribution is an M + D distri-
bution with parameter pair (d, u— 0).

As a consequence, we can generate the tilted random variables in the standard way given
underlying uniform random variables; e.g., we can apply the function h(x) = —log (1 —x)/u
to a vector of uniform random variables to obtain the corresponding vector of exponential
random variable with mean 1/u. For each H random variable we can use two uniforms, one
to select the exponential component and the other to generate the appropriate exponential;
i.e., a random variable X with the H, distribution having parameter triple (p, 1, p2) can

be expressed in terms of the pair of i.i.d. uniforms (7, Z,) as

X =—((1/p) Lz <pp + (1/ p2)1z,5py) log (22), (26)
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where 14 is the indicator variable with 14 =1 on the event A.

4.2. Rare-Event Simulation for Stationary Waiting Time in GI/GI/1 Model

Let W* denote the steady-state discrete-time waiting time, which coincides with the steady-
state continuous-time workload W in the GI/GI/1 model for Poisson arrivals, but not
otherwise. The heavy-traffic limits coincide, as can be seen from Theorem 9.3.4 of Whitt
(2002).

The standard simulation for rare-event probability of large waiting times in the GI /GI/1
model is achieved by performing the change of measure using the tilted interarrival times
and service times, as indicated in §4.1, where the tilting parameter 6* coincides with the
asymptotic decay rate in §3.2, as described in Ch. XIIT of Asmussen (2003) and §VI1.2a of
Asmussen and Glynn (2007).

To implement the simulation, we generate the random variables U, and V. from their
tilted distributions with 6*. We estimate the tail probability of stationary waiting time
P(W* > b) by its representation as P(1y < 0o), where 7 is the first hitting time of S,
at level b, with S, =>"7_| Xs(p). The tail probability can be expressed in terms of the
stopped sum STbS using the underlying probability measure Py-. Note that Sfbs =b+Y(b),
where Y (b) is the overshoot of b by {S,,}, all under Py-. Under the new probability measure
Py., S, hits b with probability 1, so we only need to estimate the likelihood ratio. Thus
the tail probability of the GI/GI/1 steady-state waiting time W* can be expressed as

P(W* > b) = P(rf < 00) = B [[{ri{ < 50} L(0%)] = By [L,5(0")]

—0"S.s *9*575] — ¢ OV By [0 VSO, (27)

= By [mx(07)7 e | = Ep-le

where L_s(6") is the likelihood ratio of {Xj(p)}1<r<.s with respect to Fy- . The second
moment of this estimator is Ej- [LTbs(Q*)Z] = Eg*[efwsff ]. Theorem XIII.7.1 of Asmussen
(2003) shows that the rare-event estimator of P(W > b) has relative error that is uniformly
bounded in b as b — oo. (The proof of Theorem XIII.7.1 relies on Theorems XIII.5.1-3; the

pdf assumption implies that X has a nonlattice distribution.)

4.3. Rare-Event Simulation for Stationary Workload in GI/GI/1 Model
We are interested in the rare-event probability of large stationary workload W as in (10),
where arrival process N is an equilibrium renewal process, because this is the process that

we used to develop bounds of W, in section 3. The classical exponential tilting method
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applies to simulating the rare-event probability of stationary waiting time W* as reviewed
in §4.2. The stationary waiting time is as in (10) with N being the renewal process with-
out the exceptional first inter-renewal time. To apply this exponential tilting method to
stationary workload W, we need to make a slight modification of the algorithm above.
Now the equilibrium renewal process N has the exceptional first interarrival time and a
constant rate p. We still use the usual partial sum process S, =Y ;_, (Vi — p~'Uy), where
Vi are still i.i.d with distribution V', but U; has the equilibrium distribution of U, and
Uy, k > 2 are i.i.d with distribution U. We do the same tilting for all X (p)’s still using Py,
with dPp(z) = [e!* /mx (0*)]dP(x). Note that 6* is solved from my, (6*) =1, where k > 2

and when k£ =1, this equation may not hold. Now the likelihood ratio becomes

Los(07) = mu, (0%) X may(67) . x o (6) SR

= mx, (07,
where the second line follows because my, (0*) = 1.

Then we need to add a constant multiplier mx, (6*) to equation (27):

P(W >b) = P(1y < 0)

= Ep-[L.s(0")]

—0*S s

— Ee* [le (9*)mx(9*)n§71€ b ]

—G*Squ]

= mx, (0")e VP Ey.[e7Ys )], (28)

= E@* [le (9*)6

Note that (28) is also different from (27) in that the first X;(p) in the partial sum S s may
have a different distribution from {X(p), k > 2}. The exact form of my, (6*) is as below

my, (0) = E{exp{0"V —0"p~'U.}}

= E{exp{~0"p~'Uc}}/E{exp{~0"p~'U}}.

where the second line still follows from my, (0*) = 1 and thus E{exp{0*V}} =
1/ E{exp{—07p"1U}}.
Given that the estimator in (27) has bounded relative error as b goes to infinity, the

estimator in (28) has bounded relative error as b goes to infinity as well. This is because
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when b is large, the first X; does not influence the distribution of the overshoot Ys(b) and
thus Yg(b) has the same distribution under Py in both estimators.

Table 1 shows simulation estimates for the workload tail probabilities P(WW > b) and the
associated waiting-time tail probabilities P(WW* > b) using the algorithms in §4.3 and §4.2
respectively. In both cases, we refer to the estimates as P(W >b) =p= Ae "’ where 6*
is common to both. We use a very small p= 0.1 here so that workload and waiting time
probabilities are very different. These numerical results match the exact values of p and A

calculated from Theorem X.5.1 of Asmussen (2003).

Table 1 Comparison of the steady-state workload and waiting-time tail probabilities for b = 4,20 in the

stationary H>/M/1 queue with p=0.1. The exact values are calculated from Theorem X.5.1 of Asmussen (2003).

workload waiting time workload waiting time

P 0.1 0.1 0.1 0.1

0* 0.8690 0.8690 0.8690 0.8690
exact A 0.1 0.1310 0.1 0.1310
exact p 0.003093  0.004050 2.83E-09 3.70E-09
b 4 4 20 20

P 0.003104  0.004055 2.84E-09 3.69E-09
e 070 0.0309 0.0309 2.83E-08 2.83E-08
A 0.1004 0.1311 0.1004 0.1305
s.e. 2.73E-05 3.55E-05 2.49E-11 3.25E-11
%95 CI'1b | 0.003050 0.003985 2.79E-09 3.63E-09
%95 CI ub | 0.003157 0.004125 2.89E-09 3.76E-09
r.e. 0.008788 0.008765 0.008771 0.008792

4.4. Applying the Bounds to Treat the Periodic Case
From (2), we see that any positive b must be hit for the first time at an arrival time. Thus,
we have the alternative discrete-time representation

W, = sup { i:vk —A;l(N—l(n))} — sup { znjvk —]\;1(2”: Uk)}, (29)

n>0

where Uj, is the k" interarrival time in the equilibrium renewal process N, i.e. U; assumes
the equilibrium distribution U, while {Uy, k > 2} are i.i.d. with distribution U.

For the periodic GI,/GI/1 model with A = p, we can apply a variant of the exponential
change of measure for the waiting times in the GI/GI/1 model in §4.1 above. We use the
underlying measure Py« determined for GI/GI/1. we use the usual partial sum process

Sn=> 1 Xi(p) for GI/GI/1 and the associated process

R, = zn:vk —[\yl(zn: Uy). (30)
k=1 k=1
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We estimate the tail probability P(W, > b) by its representation as P(7 < 0o), where 7/t
is the first hitting time of R,, at level b. Under the new probability measure, R, hits b
with probability 1, so we only need to estimate the likelihood ratio. We still twist X (p) =
Vi, — p~tU, in the same way, which is equivalent to twisting V}, and p~'U, separately, as
discussed in §4.1. Then the likelihood ratio for {X%(p):1 <k <n} is the same as before,
ie., L,(0) =mx, (0)mx(0)" Ve 5. As a consequence, we obtain the representation

P(W, >b) = P(1" < 00) = Eg-[Lr(0")]

R

_ Eg*[le (0*)mX(0*)(Tb —1)6—0*5' R —0*37—5

| =mx, (07)Ey[e ]. (31)

Still note that the first X;(p) in the partial sum S r has a different distribution from
{ Xk, k>2}.

At first glance, (31) does not look so useful, because the random sum S;r involves the
hitting time 7 for {R,} instead of {S,}, but we can shift the focus to R_r because we

can bound the difference between S » and R x.

LEMMA 3. (bound on difference of random sums) Under the assumptions above,
|S-n — Ror| < ¢ =max{|(]],(, }, (32)

where (T and ¢ are the one-sided bounds in (13) and (14). In addition, 70, < T <715 ..
y y b—¢ =T b+

Proof. The bound in (32) follows immediately from (13) and (14), because

IR, — S| :\(ka—]\;zUk) - (ZVk—Zp*Uk)! <¢=max{|¢,|.¢,}  (33)
k=1 k=1 k=1 k=1

for all n > 1, where f and ¢, are the one-sided bounds in (13) and (14). =

Lemma 3 allows us to focus on R r, where 72 is the hitting time for {R,}. To do so,
we impose an additional regularity condition. The regularity condition requires the excess
service-time distribution in probability measure Py« be bounded above in stochastic order
by a proper cdf, i.e.,

Pg*(v>t+£l?)
Pg*(v>t>

where G°(z) =1 — G(x) — 0 as © — co. For example, it suffices for the service time to be

Py (V >t42z|V > 1)

<Gz) forall t>0, (34)

bounded. It also suffices for the service-time distribution to have an exponential tail, which

holds if there is a constant 1 > 0 such that

Py (V>z)—L, 0<L<oo as x— 00. (35)
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If (35) holds, then
"0 Py (V >t + )

1 t
TPy (V > 1) —1 as t— o0, (36)

so that (34) holds asymptotically with G°(x) = e . It holds over any bounded interval
because the ratio is continuous and bounded, given (35). Of course, condition (34) would

not hold if 2P Py«(V > x) — L as x — oo for 0 < L < oo and p > 0.

THEOREM 1. (bounded relative error) The rare-event simulation algorithm for the tail
probability P(W, >b) in the periodic GI;/GI/1 queue is unbiased and, if the service-time
distribution satisfies condition (34), then the rare-event simulation algorithm produces rel-
ative error that is uniformly bounded in b, just as for the stationary GI/GI/1 model, pro-
vided that the conditions for the rare-event simulation in the GI/GI/1 model are imposed

so that the estimates are unbiased with bounded relative error.

Proof. The unbiasedness follows from (31). Lemma 3 allows us to focus on R.r. The
remaining result parallels Theorem XIII.7.1 in Asmussen (2003) for the GI/GI/1 model,
which draws on Theorems XIIL.5.1-3. Just as S;s = b+Ys(b), where Yg(b) is the overshoot
of b upon first passage to b in the random walk {5}, so is Ror=b+ Yr(b), where Yr(b)
is the overshoot of b upon first passage to b in the sequence {R,}. The results for the
stationary case are based on the well developed theory for that overshoot, which depend
on the random walk structure. In contrast, less is known for {R,}. However, we do see
from (29) that the overshoot can be regarded as an excess-distribution of the last service
time. Thus, under the extra condition (34), we can again apply the proof in Asmussen
(2003), using

~k0*R_g
b

efké*b Z EG* [6 ] Z efké*bEe* [eka*YR(b)] Z Ceka*b

for 0 <c< 1, where c= E[e *"?] P(Z > z)=G(x), >0, and k is a positive integer. m

4.5. The Mean and Variance

We now show how tail-integral representations of the mean and higher moments on p. 150
of Feller (1971) can be exploited to obtain corresponding rare-event simulations of these
related quantities. Recall that, for any nonnegative random variable X, the mean can be

expressed as

BIX]= /0 T P(X 1) dl, (37)
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while the corresponding representation of the p® moment for any p > 1 is
BIX7] = / ptP 1 P(X > 1) dt. (38)
0

To obtain a finite algorithm, it is natural to approximate the integrals for the mean and

the second moment by finite sums plus a tail approximation, i.e.,

E[W,] ~ zn:(P(Wy > k6)8) + w
E[W;] ~ zn:(ZP(Wy > kd)ko) +2P(W, > né)(Z—f 4 (91)2)_ (39)

In each case, the second term is based on applying the tail integral formula over [nd, co)

with the approximation
P(W,>né+x)~P(W,>nd)e " (40)

and integrating.
To understand how to choose the discretization parameter § in (39), suppose that P(W >
t) =ae . In that case, the infinite sum for the mean can be expressed as

Zaée’e*ka = % (1 + G*g + 0(52)) as 0.0,
k=0

so that the relative error for the mean is 6*(6/2) + O(4?). Similarly, the corresponding
calculation for the second moment indicates an asymptotic relative error proportional to
0*9. The subsequent truncation approximations involving n imposes no additional error,
provided that the tail is exponential, which is likely to hold in view of §3.2. Thus, the
truncation is good provided that approximation (40) is good, which can be checked with
the algorithm.

In closing, we remark that because 6*(p) tends to be of order 1 —p as p1 1, as explained
in §2.2 of Ma and Whitt (2016), we can maintain fixed relative error in the discretization
if we let 6 be inversely proportional to 1 — p or 8*(p) as p1 1. That can be useful because
otherwise the computational complexity increases as p increases, as we show in the next

sections. We illustrate letting ¢ increase with increasing p in Table 10.
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4.6. The Algorithm

This exponential tilting algorithm to estimate tail probabilities P(W, > b) in the GI;/GI/1
queue is based on equation (31) with the following steps. (We elaborate on Steps 4 and 5
in Ma and Whitt (2016).) Without loss of generality, we assume service rate is =1 and
thus \ = p.

Step 1. Before we conduct the simulation, we first construct a table of the inverse
cumulative arrival-rate function p]\; 1 i.e., the inverse of the reverse-time cumulative
arrival-rate function ]\y in (3) scaled by p, for each time yc in the cycle to be considered.
For that purpose, we use Algorithm 1 in Ma and Whitt (2015). That algorithm constructs
an approximation J, to the inverse function p/~\; I for one cycle from the interval [0, | to
the interval [0, ¢]. This table is the same for a fixed y no matter what value p takes, which
will be used for efficiently calculating A; ! later. The computational complexity has shown
to be of order O(c/¢), where ¢ is the length of a cycle of the periodic arrival-rate function
and € is an allowed error tolerance.

Step 2. Again, before we conduct the simulation, we determine the required number
of partial sums needed in each replication, which we denote by n,. Note that we need
this step because Matlab is much faster in vector operations than in loops. However, if
another software is used to implement this algorithm, we can skip this step and generate
exponentially twisted service times and interarrival times one by one in a loop until the hit-
ting time 7/ is reached. Given the largest b under consideration, we estimate the expected
number by ms = b/ Eg«[Vi, — p~' Uy by approximating the sum by Brownian motion which is
asymptotically correct as b gets large, e.g. by §5.7.5 of Whitt (2002). If we use a Brownian
motion approximation for the random walk, then we can get that the approximate mean
and variance by applying Theorems 5.7.13 and 5.7.9 of Whitt (2002). For the canonical
Brownian motion in Theorem 5.7.13, the variance of the first passage time is equal to
the mean, but in general the ratio of the variance to the mean is proportional to the scv
% =Var(X)/E[X]? Hence, we use n, = max{C, Lm}, where C' is a minimum number
like 100 and L is a safety-factor multiplier to account for the stochastic variability, which
might be taken to be simply 10, but could be constructed more carefully. The largest value
of b will depend on the case. If we want to treat multiple cases at once for simulation
efficiency, we need to determine the largest required value of ng. If m, is large, then it is
natural to use ny, =m, + 5\/c§(7mS instead of n, = 10m,, because then 5\/03(75 is about 5
standard deviations, which should be sufficient, and beneficial if 5\/05(77713 << (L—1)ms.
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Step 3. As the first part of the actual stochastic simulation, for each replication we now
generate the required random vectors of tilted interarrival times and service
times; For each replication, generate V = (V4,...,V,,) and p~'U = (p~'Uy, ..., p~'U,,) where
n=n, from step 2 above, Vj, are i.i.d. random variables from F{ , the exponentially tilted
distribution of V), with parameter 6* and p~'U, i.i.d. from Fp’_el*U, the exponentially tilted
distribution of p~'U,, with parameter —0*. The distributions of V), and U;, under the tilted
probability measure Py« were discussed in §4.1.

Step 4. Using vector operations, we calculate the associated vectors of partial sums
and transformed partial sums. Use Algorithm 2 in Ma and Whitt (2015) to calculate
the time-transformed arrival times.

Step 5. Use (31) to calculate the tail probability P(W, >b). If n, is not large
enough to reach hitting times 7%, we repeat Step 3 to generate additional vectors of V and
p’lff and repeat Step 4 to calculate additional partial sums and transformed partial sums.
We treat the cases of the tail probability for a single value of b differently from multiple
values of b, as required when we estimate moments. For multiple values of b, we use one
loop to find all stopping times at each element of the vector b.

Step 6. We run the algorithm for N i.i.d. replications. Estimate P(W, >b), EW,
and EWy2 by the sample averages over the NN replications. We estimate the associated
confidence intervals in the usual way, using the Gaussian distribution if /V is large enough
and the Student-¢ distribution otherwise. =

In conclusion, we point out that there is flexibility in the order of the steps specified
above. We can re-use random variables if we generate the random vectors in an early step.
We can avoid storage problems if we perform calculations for each replication separately.

As usual, there is a tradeoff in storage requirements and computation efficiency.

4.7. Computational Complexity and Running Times
We implemented the algorithm using matlab on a desktop computer. All examples were
for the sinusoidal arrival-rate function A in (4) with associated reverse-time cumulative
arrival-rate function A, in (6). Because we used matlab, it was important to use vector
calculations in step 3 to avoid loops.

We now specify the computational complexity of the algorithm above. Given the
inverse function table for /~\; ! computed in advance using the algorithm in Ma and Whitt

(2015), the remaining algorithm has an approximate linear computational complexity of
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O(b/Ep<[V}, — p~'U4]), Specifically for the M;/M/1 model, the computational complexity
is O(bp/(1 — p)), being directly proportional to b and inversely proportional to 1 — p. This
can be made precise as b1 oo or as p1 1, and presumably in some joint limit as b/(1—p) T,
but we do not do that here. For b large or for p large, we can perform asymptotics to make
the following approximations valid.

The hitting time 7, of the random walk S, as defined in (30) has expectation E(m,) =
b/(Eg-(V}, — p~tUy)) by approximating S,, by a Brownian motion, for b that is very large
compared to the step size of the random walk. Now consider the hitting time 7, of R,, as
defined in (30). Since the average arrival rate A = p, the expected value of this hitting time
is approximately the same as that for .5,,.

When both V}, and p~!U, are exponential random variables with rates 1 and p respec-
tively, under the new measure 6*, they are still exponential with rates p and 1 respectively.
Thus b/ Ep- (Vi —p~'Ux) =b/(1/p—1) =bp/(1 — p).

It can be advantageous to estimate the tail probabilities P(W, > b) for multiple values
of b simultaneously. This can be done for each b by keeping track of the passage times for
them while considering the largest value of b. This is very useful when we want to plot the
cdf or its probability density function (pdf), or when we want to calculate the mean.

We now describe our experiments with running times on a desktop computer. Before
conducting the simulation, we did step 1, constructing the table of the inverse function
,0/~\y_ U'in one cycle, which takes computational time of O(c/€) = O(1/~e) by Theorem 3.1
of Ma and Whitt (2015), where ¢ is the cycle length of the arrival rate function, 7 is the
parameter in the sinusoidal arrival-rate function and e is the error bound we choose for
the inverse function table. The longest cycle we consider has v = 0.00025 (for (42) with
p=0.99), or ¢ =25,120. For e =107, it took 0.08 seconds to form the table needed for a
single value of y.

In each replication, we can quickly determine the required length of the random variable
vector, generate the vectors of random variables and calculate the partial sums, which are
steps 2 to 4. The most time is required for step 5, searching for the stopping time for one
b, or for all stopping times for a long vector of b. When we do the search for one b, the
computational time is O(b/(Fg«[Vix — p~'Ux]), which is the approximate expected stopping
time. When we do this for a long vector of b, we use a big loop which takes time linear in

the maximum stopping time and the length of vector b, i.e., O(maz(b)/(Eg[Vy — p~ U] +
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length(b)). Specifically, for the M;/M/1 queue, the computational times are O(bp/(1— p)
and O(maz(b)p/(1 — p) + length(b)) respectively. For example, in M;/M/1 queue, when
p = 0.8, we choose max(b) = log(1000)/6* = log(1000)/(1 — p), 6 = 0.0002/(1 — p), then
maximum stopping time O(max(b)p/(1 — p)) is negligible compared to the length of the
vector b. The first part of time increases as p increases while the second part does not
depend on p as both the largest b and § are inversely proportional to (1 — p). In this case,
when we did 40,000 replications, the run time was 127 seconds on the desktop to find all
stopping times, whereas it took about 10 seconds to find one stopping time for the largest

b.

5. Simulation Examples
We now give examples to illustrate the new simulation algorithm. All our examples are
for the sinusoidal arrival-rate function in (4) with parameter triple (X, 3,v). More results

appear in the online supplement.

5.1. Estimating the Tail Probabilities P(W, >b)

We start by illustrating the efficiency of the rare-event simulation estimator of the tail
probability P(W, > b), which gets exponentially small as b increases, and thus is pro-
hibitively hard to estimate accurately by direct simulation. Table 2 shows that the relative
errors of simulation estimates of P(W, > b) for the M;/M/1 model in several cases are
approximately independent of b. That property held in all models considered.

In particular, Table 2 shows estimates of p= P(W, >b) = A,e ""® and the components
A, and e~ %% for the special case y = 0.0 based on 5000 i.i.d. replications. Table 2 also
shows estimates of the standard error (s.e.) of p, the upper and lower bounds of the 95%
confidence interval (CI), and the relative error (r.e.), which is the s.e. divided by the
estimate of the mean. For Table 2, we used the arrival-rate function (4) with A =1, and
E[V1] =0.8, so that p=0.8. We let §=0.2 and consider three values of v: 10, 1 and 0.1,
making cycle lengths of 0.628, 6.28 and 62.8. The rapid fluctuation with v = 10 makes
the arrival process very similar to a homogeneous Poisson process, because the cumulative
arrival-rate function approaches a linear function; see Theorem VIII.4.10 in Jacod and
Shiryaev (1987), Problem 1 on p. 360 of Ethier and Kurtz (1986) and Whitt (2016). We

also simulated the M /M /1 model with 5 =0 to verify simulation correctness.
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Table 2 shows that the rare-event simulation is effective for estimating P(W, > b),
because the relative error is approximately independent of b for each v, ranging from about

0.0029 for v =10 to about 0.0055 for v =0.1.

Table 2 Estimates of p= P(W, >b) = A,e %" in the M,/M/1 model with sinusoidal arrival-rate function in (4)

as a function of v and b for: p=0.8,\=1,.=1.25 and = 0.2 based on 5000 replications.

b |p exp(—0*b) Ag(b) s.e. 95% CI (Ib) (ub) r.e.
v=10 | 10 | 0.0654 0.0821 0.797 1.87E-04 0.0651 0.0658 0.00286
20 | 0.00537  0.00674 0.797 1.55E-05 0.00534 0.00540 | 0.00289

40 | 3.61E-05 4.54E-05  0.795 1.05E-07 3.59E-05 3.63E-05 | 0.00290
80 | 1.64E-09 2.06E-09  0.796 4.82E-12 1.63E-09 1.65E-09 | 0.00294
vy=1 10 | 0.0628 0.0821 0.765 1.87E-04 0.0624 0.0632 0.00298
20 | 0.00516  0.00674 0.766 1.51E-05 0.00513 0.00519 | 0.00292
40 | 3.49E-05 4.54E-05  0.769 1.00E-07 3.47E-05 3.51E-05 | 0.00287
80 | 1.58E-09 2.06E-09  0.767 4.65E-12 1.57E-09 1.59E-09 | 0.00294
v=0.1|10 ] 0.0413 0.0821 0.503 2.33E-04 0.0409 0.0418 0.00565
20 | 0.00360  0.00674 0.535 1.98E-05 0.00356 0.00364 | 0.00550
40 | 2.50E-05 4.54E-05  0.551 1.37E-07 2.47E-05 2.53E-05 | 0.00548
80 | 1.12E-09 2.06E-09  0.545 6.20E-12 1.11E-09 1.14E-09 | 0.00552

5.2. Unified Numerical Results Via Heavy-Traffic Scaling

We produce unified numerical results by exploiting heavy-traffic scaling. In particular, we
scale the arrival rate function so that the performance measures have heavy-traffic limits
as p T 1, which we explain in §6. In the special case of (4), we consider an arrival-rate

function scaled by the overall traffic intensity p, specifically,

Ao(t) = p+ (1= p)pBsin (v(1—p)°t), >0, (41)

so that the cycle length in model p is ¢, = c¢*(1 — p) =2 =27 /(v(1 — p)?). After scaling, the
cycle length is ¢* =27 /.

When we consider the periodic steady-state workload, we include spatial scaling by 1 —p
Hence, to have asymptotically convergent models, we should choose parameter four-tuples

(A, BosVp, b,) indexed by p, where

(Aos Bos ¥pr bp) = (p, (1= p) B, (1 — p)*v, (1 — p)~'b), (42)

where (3,7,b) is a feasible base triple of positive constants with 5 < 1. (We must constrain
B, < 1so that \,(t) >0 for all ¢.) Hence, we have the p-dependent constraint p, = (1—p)8 <
1. There is no problem if 5 <1, but we may want to consider 3> 1. In that case, [, is

only well defined for p >1— (1/3). For example, if §=5.0, then we require that p > 0.8.
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ExampLE 1. (Using M,;/M/1 to estimate the performance of RPBM)

To illustrate how we can apply simulations of the M;/M /1 model with increasing traffic
intensities, let the base parameter triple be (8,7,b) = (1.0,2.5,4.0). Then the parameter
4-tuple for p=0.8 is

(Aps BosYps bp) = (0.8, (1 = 0.8) 3, (1 — 0.8)%y, (1 — 0.8)"'b) = (0.8,0.2,0.1,20.0). (43)

The associated parameter 4-tuple for p=0.9 is (0.90,0.10,0.025,40.00).

Let W be the steady-state workload in the stationary M/M/1 model with the same
scaling, which has an exponential distribution except for an atom 1 — p at the origin. Table
3 shows estimates of the ratio P(W, >b,)/P(W >b,) for 5 different values of 1 — p, where
we successively divide 1 — p by 2, and 8 different values of the position y within the cycle in
the M, /M /1 model with sinusoidal arrival-rate function in (41) with the parameter 4-tuple
in (42) using the base parameter triple (8,v,b) = (1.0,2.5,4.0). (The paramter 4-tuples for
p=0.8 and p=0.9 are shown above.)

Table 3 ~ Comparison of the ratios P(W, >b,)/P(W >b,), where W is for the stationary model, for 5 different
values of 1 — p and 8 different values of the position y within the cycle in the M;/M/1 model with sinusoidal
arrival-rate function in (41) with the parameter 4-tuple in (42) using the base parameter triple

(B,7,b) = (1.0,2.5,4.0).

y]1—p=016 1—-p=008 1—-p=004 1—p=0.02 1—p=0.01

0.000 0.96364 0.96523 0.96424 0.96357 0.96344

0.125 0.97619 0.97686 0.97504 0.97493 0.97482

0.250 1.00456 1.00450 1.00255 1.00251 1.00305

0.375 1.03278 1.03264 1.03035 1.03152 1.03152

0.500 1.04565 1.04470 1.04278 1.04346 1.04405

0.625 1.03213 1.03096 1.03230 1.03150 1.03204

0.750 1.00225 1.00404 1.00425 1.00277 1.00241

0.875 0.97371 0.97696 0.97629 0.97457 0.97545
avg diff 0.00037 0.00112 0.00015 ~0.00019
avg. abs. dif 0.00099 0.00121 0.00081 0.00039
rmse 0.00116 0.00134 0.00096 0.00049

Table 3 shows that, for each fixed y, all estimates as a function of p serve as reasonable
practical approximations for the others as well as for the RPBM limit developed in §6. The
convergence in Table 3 is summarized by showing the average difference, average absolute
difference and root mean square error (rmse) of the entry with the corresponding estimate
for p=0.99 in the final column, taken over 40 evenly spaced values of y in the interval

0,1).
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5.3. Hyperexponential Examples

We now present results from simulation experiments with nonexponential service times
and interarrival times in the base process N. In particular, we work with hyprexponential
(H3) examples.

Tables 4, 5 and 6 show estimates of P(W,, > b) for the M, /M /1, M;/H>/1 and (Hs);/M/1
models, respectively. All three tables show results for y =0.0 and y = 0.5 as a function of
1 — p with base parameter triple (3,7,b) = (1,2.5,4) in (42) based on 40,000 replications.
The mean service time is fixed at ~' =1, so that A= p in all cases. The scv of the H, cdf
is always ¢? = 2. The scaling in (42) is performed as a function of p in order to produce
nearly stable results in each row.

We start by showing the estimate of the tail probability p= P(W, >b) = A,e ?*. Then
we show the corresponding estimates for the components e="* and A, = e/’p. We then
show the lower and upper bounds in (23) of Corollary 3. We then show the s.e., the
associated 95% CI bounds (Ib and ub), and the r.e. In all cases the relative error is less
than 0.0015 or 0.15%.

For the two cases y = 0.0 and y = 0.5, we also display estimates of scaled tail probabilities,
P(W, >0b)/P(W >b), where P(W > b) is the corresponding estimate for the stationary
model. We do this because we seek estimates that are more stable as functions of 1 — p, and
thus support approximations for the limiting RPBM tail probability, which is the scaled
limit as p1 1. In Tables 5 and 6 for the M;/H,/1 and (Hs);/M /1 models we also show the
alternative ratios P(W, >b)/p; we do not show that for M;/M/1 in Table 4 because the
ratios are proportional, because P(W >b) = pe %% for M/M/1 and 0*(p) =1 — p. Tables
5 and 6 show that greater stability is achieved with the ratio P(W, >b)/(W >b).

Tables 4, 5 and 6 strongly support the heavy-traffic limit in Theorem 2, establishing
convergence to RPBM as p 71 1. The stability of the scaled quantities is especially clear
through the ratios P(W, >b)/P(W > b). For the ratios at the bottom of the tables, we
also show the difference and absolute difference of the value with value in the final column
of the table.

A close examination of Tables 5 and 6 show that there is a consistent sign in the differ-
ences in the second-to-last row, being positive for the M;/H,/1 in Table 5 and negative
for the (H2):/M/1 model Table 6. These consistent signs in Tables 5 and 6 suggest that
the two cases M;/Hy/1 and (Hs);/M/1 serve as one-sided bounds on RPBM. We provide
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Table 4  Simulation estimates of p= P(W, >b)= A,e %" in the M;/M/1 model for y =0.0 and y =0.5 as a
function of 1 — p with base parameter triple (8,7,b) = (1,2.5,4) in (42) based on 40,000 replications.

1—p 0.16 0.08 0.04 0.02 0.01

p for y=0.0 0.011053 0.012192 0.012814 0.013122 0.013263
e 070 0.0183 0.0183 0.0183 0.0183 0.0183
Ay 0.604 0.666 0.700 0.716 0.724
A, LB in (23) 0.377 0.413 0.431 0.440 0.445
A} UB in (23) 0.840 0.920 0.960 0.980 0.990
s.e. 1.75E-05 1.69E-05 1.71E-05 1.73E-05 1.74E-05
95% CI (1b) 0.01102  0.01216  0.01278  0.01309  0.01323
(ub) 0.01109  0.01223  0.01285 0.01316  0.01330
r.e. 0.001582 0.001387 0.001333 0.001319 0.001313

PW,>0)/P(W >0b) | 0.71845 0.72356  0.72879  0.73103  0.73144
diff w.r.t. last column | 0.01298  0.00788  0.00264  0.00041  0.00000

abs diff 0.01298 0.00788  0.00264  0.00041  0.00000
p for y=0.5 0.025888 0.028396 0.029551 0.030110 0.030430
e 070 0.0183 0.0183 0.0183 0.0183 0.0183
A, 1.413 1.550 1.613 1.644 1.661
A, LB in (23) 0.840 0.920 0.960 0.980 0.990
A} UB in (23) 1.869 2.047 2.137 2.181 2.203
s.e. 3.87E-05 3.74E-05 3.80E-05 3.86E-05 3.89E-05
95% CI (1b) 0.02581  0.02832  0.02948  0.03003  0.03035
(ub) 0.02596  0.02847  0.02963  0.03019  0.03051
r.e. 0.001496 0.001318 0.001286 0.001281 0.001279

PW,>b)/P(W>0b) | 1.68266 1.68517 1.68068 1.67751  1.67821
diff w.r.t. last column | -0.00445 -0.00696 -0.00247 0.00071  0.00000
abs diff 0.00445  0.00696  0.00247  0.00071  0.00000

Table 5  Simulation estimates of p= P(W, >b) = A,e % * in the M;/H>/1 model for y =0.0 and y =0.5 as a
function of 1 — p with base parameter triple (3,7,b) = (1,2.5,4) in (42) based on 40,000 replications.

1—p 0.16 0.08 0.04 0.02 0.01
0*(p) 0.101 0.0519 0.0263 0.0132 0.00664
p for y=0.0 0.050594 0.052946 0.054024 0.054544 0.054904
e "0 0.0807 0.0747 0.0720 0.0707 0.0701
A, 0.627 0.708 0.750 0.771 0.783
A, LB in (23) 0.477 0.532 0.560 0.573 0.580
A} UB in (23) 0.789 0.894 0.947 0.974 0.987
s.e. 7.49E-05 5.64E-05 5.13E-05 5.03E-05 b5.01E-05
95% CI (1b) 0.05045  0.05284  0.05392  0.05445  0.05481
(ub) 0.05074  0.05306  0.05412  0.05464  0.05500
r.e. 0.001480 0.001065 0.000950 0.000923 0.000913

P(W, >b)/P(W >b) | 0.79534  0.79246  0.79200  0.79200  0.79377
diff w.r.t. last column | -0.00158 0.00131  0.00177  0.00177  0.00000

abs diff 0.00158  0.00131  0.00177  0.00177  0.00000
Ay/p 0.74662 0.76999  0.78125  0.78680  0.79107
diff w.r.t. last column | 0.04445  0.02108  0.00982  0.00427  0.00000
abs diff 0.04445 0.02108 0.00982  0.00427  0.00000
p for y=0.5 0.086646 0.092721 0.095707 0.096711 0.097186
e f"0 0.0807 0.0747 0.0720 0.0707 0.0701
A, 1.074 1.241 1.329 1.367 1.386
A, LB in (23) 0.789 0.894 0.947 0.974 0.987
AJ UB in (23) 1.305 1.502 1.603 1.654 1.679
s.e. 1.25E-04 9.42E-05 8.49E-05 8.28E-05 8.28E-05
95% CI (1b) 0.08640  0.09254  0.09554  0.09655  0.09702
(ub) 0.08689  0.09291  0.09587  0.09687  0.09735
r.e. 0.001442 0.001016 0.000887 0.000856 0.000852

P(W, >b)/P(W >b) | 1.36208  1.38777  1.40307 1.40428  1.40505
diff w.r.t. last column | 0.04297  0.01728  0.00198  0.00077  0.00000
abs diff 0.04297 0.01728 0.00198  0.00077  0.00000
Ay/p 1.27865  1.34842  1.38403  1.39507  1.40028
diff w.r.t. last column | 0.12163  0.05186  0.01625  0.00521  0.00000
abs diff 0.12163  0.05186  0.01625 0.00521  0.00000




4ViAa Al VvV 11ivb. 14 LIoUWEL g WL WLo

26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 6  Simulation estimates of p= P(W, >b)= A,e ?" in the (H2):/M/1 model for y=0.0 and y =0.5 as a
function of 1 — p with base parameter triple (8,v,b) = (1,2.5,4) in (42) based on 40,000 replications.

T—p 0.16 0.08 0.04 0.02 0.01
0*(p) 0.113 0.0548  0.0270  0.0134  0.00669
b for y =0 0.038876 0.046701 0.050799 0.053020 0.053985
e=0"b 0.0593  0.0645  0.0670  0.0682  0.0689
A, 0.655 0.724 0.758 0.777 0.784
A, LB 0.477 0.532 0.559 0.573 0.580
A, UB 0.840 0.920 0.960 0.980 0.990
s.c. 4.36E-05 4.56E-05 4.73E-05 4.88E-05 4.95FE-05
95% CI (Ib) 0.03879  0.04661  0.05071 0.05292  0.05389
(ub) 0.03896  0.04679  0.05089 0.05312  0.05408
re. 0.001123 0.000976 0.000932 0.000920 0.000917
P(A, >b)/P(A>b) | 0.78051 0.78763 0.78988  0.79280  0.79187
diff 0.01136  0.00424  0.00199  -0.00093 0.00000
abs diff 0.01136  0.00424  0.00199  0.00093  0.00000
Ay /p 0.78015  0.78747  0.78988  0.79279  0.79186
diff 0.01171  0.00439  0.00198 -0.00094 0.00000
abs diff 0.01171  0.00439  0.00198 0.00094  0.00000
pfor y =05 0.071241 0.084111 0.090923 0.094201 0.096045
e=0b 0.0593  0.0645  0.0670  0.0682  0.0689
A, 1.201 1.305 1.357 1.380 1.395
A, LB 0.840 0.920 0.960 0.980 0.990
A, UB 1.477 1.592 1.648 1.677 1.691
s.c. 7.61E-05 7.71E-05 7.93E-05 8.13E-05 8.21E-05
95% CI (Ib) 0.07109  0.08396  0.09077  0.09404  0.09588
(ub) 0.07139  0.08426  0.09108  0.09436  0.09621
r.e. 0.001068 0.000917 0.000873 0.000863 0.000855
P(A, >b)/P(A>D) | 1.43030 1.41856 1.41378 1.40857  1.40881
diff -0.02149  -0.00975 -0.00497 0.00024  0.00000
abs diff 0.02149  0.00975  0.00497  0.00024  0.00000
A, /p 1.42963 1.41826  1.41378 1.40856  1.40878
diff -0.02085 -0.00948 -0.00500 0.00023  0.00000
abs diff 0.02085  0.00948  0.00500 0.00023  0.00000

strong theoretical support for this idea in Theorem 1 and Corollary 1 of Ma and Whitt
(2016). Those results show that the one-sided bounds apply exactly to the asymptotic
decay rates 6*, which is the dominant part of the actual tail probability. For the cases
considered in Table 6, it is natural to wonder if the refinement of the rare-event algorithm
for the first non-exponential interarrival time makes much difference. We show that it does
not for these cases with higher p in §4.6 of Ma and Whitt (2016).

Tables 4, 5 and 6 show that the bounds A, and A} in (23) are not too close, and thus
not good approximations for the actual A,. Experiments show that the average of the two
bounds is not a consistently good approximation for A, either.

Simulation results over a wide range of y show that P(W, > b) consistently increases
from a minimum at y =0 to a maximum at y = 0.5 and then decreases to back to the
minimum at y =1, with The values for y =1/4 and y = 3/4 being approximately equal to
P(W >b). It remains to establish theoretical supporting results.
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5.4. Estimating the Moments of W,
We now apply the extension of the algorithm in §4.5 to estimate the first two moments
of W, reporting the estimated mean and standard deviation. In Table 7 we first show

preliminary results for the stationary M /M /1 model, so that we can judge the algorithm

Table 7 Estimated mean E[W] and standard deviation SD(1V) as a function of 1 — p for five cases of the

stationary M/M/1 queue: p=1,A=p

T—p 0.16 0.08 0.04 0.02 0.01

n. in (39) 40,000 40,000 40,000 40,000 40,000

§ in (39) 0.001 0.001 0.001 0.001 0.001

largest b 41 86 173 345 691

P(W>0) 0.8396 0.9201 0.9601 0.9799 0.9900

exact 0.8400 0.9200 0.9600 0.9800 0.9900

s.e. of P(W >0) 6.86E-04 3.71E-04 1.93E-04 9.73E-05 4.98E-05

%95 CI of P(W > 0) [0.8383, 0.8410] [0.919, 0.921] [0.9598, 0.9605]  [0.9797, 0.9801]  [0.9899, 0.9901]
E[W] 5.249 11.499 23.999 49.000 99.000

exact 5.250 11.500 24.000 49.000 99.000

s.e. of E[W] 1.59E-03 1.27E-03 9.51E-04 6.93E-04 4.94E-04

%95 CI of E[W] [5.246, 5.252]  [11.497, 11.502]  [23.997, 24.001]  [48.999, 49.001]  [98.999, 99.001]
E[W|W >0 6.251 12.497 24.995 50.003 100.005

%95 CI of E[W|W > 0] | [6.238,6.265] [12.485, 12.510]  [24.983, 25.007]  [49.992, 50.014]  [99.994, 100.015]
E[W?] 65.624 287.494 1199.982 4899.957 19,800.03

exact 65.625 287.500 1200.000 4900.000 19,800.00

s.e. of E[W?] 1.50E-02 2.33E-02 3.40E-02 4.92E-02 7.04E-02

%95 CI of E[W?] [65.595, 65.654] [287.449, 287.540] [1199.92, 1200.05] [4899.86, 4900.05] [19,799.89, 19,800.17]
SD[W] 6.170 12.460 24.981 49.990 99.995

exact 6.1695 12.450 24.980 49.990 99.995
P(W>0)/p 0.9995 1.0002 1.0001 0.9999 1.0000

exact 1.0000 1.0000 1.0000 1.0000 1.0000
(1—p)E[W] 0.8398 0.9200 0.9600 0.9800 0.9900
(1—p)SD[W] 0.9873 0.9968 0.9992 0.9998 0.9999
(1—p)EW]/p 0.9998 0.9999 0.9999 1.0000 1.0000
(1—p)SD[W]/p 0.8293 0.9171 0.9593 0.9798 0.9899
(1—p)E[W|W > 0] 1.0002 0.9998 0.9998 1.0001 1.0000

(1 —p)SD[W|W > 0] 1.0002 1.0000 1.0000 1.0000 1.0000

against known exact results. For ease of comparison, we show the corresponding known
exact values for P(W > 0), E[W], E[W?| and SD(W). The first section of Table 7 with
three rows shows the algorithm parameters. The final seven rows of Table 7 are included
to show alternatives ways of scaling aimed at achieving stable values across all values of
1 — p. In this case, knowing that W has an exponential distribution except for an atom of
mass 1 — p at the origin, we are not surprised to see that the final two rows provide the
best scaling. We will use those rows in the following tables for time-varying arrival-rate
functions.

Tables 8 and 9 show corresponding estimates of the time varying mean E[IV,] and
standard deviation SD(W,,) for the special case of y=0.5 for associated M;/M /1 model
with arrival-rate function in (4) for base parameter pairs (5,7v) = (1,2.5) and (5,7) =
(4,2.5) using the scaling convention in (42). Both have cycle length 27 /~, which equals
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6.28/0.1 =62.8 for p=0.8. The higher relative amplitude in Table 9 leads to much larger
mean values at y = 0.5, which tends to produce the largest values in the cycle. As can
be seen from the online supplement, much lower values occur for y = 0, which tends to

produce the least values.

Table 8  Estimated mean E[W,] and standard deviation SD(W,) as a function of 1 — p for five cases of the
M:/M/1 queue at y=0.5: =1, A= p and base parameter pair (5,v) = (1,2.5)
1—p 0.16 0.08 0.04 0.02 0.01
ns in (39) 40,000 40,000 40,000 40,000 40,000
4 in (39) 0.001 0.001 0.001 0.001 0.001
largest b 41 86 173 345 691
P(W, >0) 0.8801 0.0411 0.0714 0.0851 0.0930
s.e. of P(W, > 0) 9.85F-04 6.54E-04 4.51E-04 2.92E-04 2.19E-04
%95 CI of P(W, > 0) [0.8782, 0.8820] [0.9399, 0.9424] [0.9705, 0.9723] [0.9845, 0.9856]  [0.9926, 0.9934]
E[W,] 6.839 14.927 31.194 63.667 128.411
std of E[W,] 6.42E-03 1.20E-02 2.36E-02 4.69E-02 9.30E-02
%95 CI of E[W,] [6.827, 6.852]  [14.903, 14.950] [31.147, 31.240] [63.575, 63.759]  [128.228, 128.593)]
E[W,|W, > 0] 7.771 15.860 32.113 64.632 129.315
%95 CI of E[W,|W, > 0] | [7.740, 7.803]  [15.814, 15.907] [32.036, 32.189] [64.501, 64.763]  [129.075, 129.554]
E[Wyz] 97.057 427.685 1795.344 7344.665 29,673.77
std of E[Wﬂ 7.81E-02 0.302 1.207 4.829 19.314
%95 CI of E[W?] [96.90, 97.21]  [427.09, 428.28] [1793.0, 1797.7] [7335.2, 7354.13] [29,636, 29,712
SD[W,] 7.091 14.314 28.676 57.369 114.824
PW, >0)/p 1.0478 1.0230 1.0119 1.0052 1.0030
(1= p)E[W,|W, >0 1.2434 1.2688 1.2845 1.2926 1.2931
(1—p)SD[W,|W, >0] | 1.1301 1.1395 1.1433 1.1452 1.1472

Table 9

M;/M/1 queue at y=0.5: =1, )= p and base parameter

Estimated mean E[IV,] and standard deviation

SD(W,) as a function of 1— p for five cases of the

pair (3,7v) = (4,2.5) having larger relative amplitude

1—p 0.16 0.08 0.04 0.02 0.01

ns in (39) 40,000 40,000 40,000 40,000 40,000

¢ in (39) 0.001 0.001 0.001 0.001 0.001

largest b 41 86 173 345 691

P(W,>0) 0.9728 0.9883 0.9967 0.9965 0.9993

s.e. of P(W, >0) 3.61E-03 2.69E-03 2.05E-03 1.16E-03 8.52E-04

%95 CI of P(W, >0) [0.9657, 0.9799] [0.9831, 0.9936] [0.9927, 1.0000] [0.9943, 0.9988] [0.9976, 1.0000]
E[W,] 15.148 33.583 70.677 145.183 294.222

std of E[W,] 5.58E-02 1.13E-01 2.27E-01 4.59E-01 9.15E-01

%95 CI E[W,] [15.04, 15.26] [33.36, 33.81] [70.23, 71.12] [144.3, 146.1] [292.4, 296.0]
E[W,|W, > 0] 15.572 33.980 70.909 145.690 294.437

%95 CI of E[W,|W, >0] | [15.35, 15.80] [33.58, 34.39] [70.2, 71.6] [144.5, 147.0] [292.4, 296.7]
E[W?] 331.868 1528.127 6547.951 27,092.17 110,239.9

std of E[W] 1.023 4.263 17.227 69.632 0.785

%95 CI of E[W7] [329.9, 333.9] [1519.8, 1536.5] [6514, 6582] [26,955, 27,228] 109,691, 110,787]
SD[W,] 10.119 20.007 39.405 77.551 153.861
P(W,>0)/p 1.1581 1.0743 1.0383 1.0169 1.0094

(1= p)E[W,|W, >0] 2.4915 2.7184 2.8364 2.9138 2.9444
(1—p)SD[W,|W, > 0] 1.5892 1.5830 1.5704 1.5442 1.5371

Finally, Table 10 shows estimates of the time varying mean E[WV,] and standard deviation

SD(W,) for the special case of y = 0.5 for associated (Hs);/M/1 model with arrival-rate

function in (4) for base parameter pairs (3,7) = (1,2.5), but here we let J increase as 1 —p
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decreases. Table 10 shows that the precision remains good for all p. (For the cases consid-
ered in Table 10, the refinement of the rare-event algorithm for the first non-exponential

interarrival time does not make too much difference, but it matters more than for Table
6, as we show in §4.6 of Ma and Whitt (2016).)

Table 10  Estimated mean E[IV,] and standard deviation SD(W,) as a function of 1 — p for five cases of the
(H2):/M/1 queue at y =0.5: =1, \=p and base parameter pair (3,7) = (1,2.5).

T—p 0.16 0.08 0.04 0.02 0.01

6" (p) 0.113 0.0548 0.0270 0.0134 0.00669

e 40,000 40,000 40,000 40,000 40,000

5 0.001 0.002 0.004 0.008 0.016

largest b 41 86 173 345 691

P(W, > 0) 0.8721 0.9382 0.9691 0.9853 0.9923

s.e. of P(W, >0) 7.36E-04 4.81E-04 3.18E-04 2.34E-04 1.51E-04

%95 CI of P(W, >0) [0.8707, 0.8736]  [0.9373, 0.9391]  [0.9685, 0.9697] [0.9848, 0.9857] [0.9920, 0.9926]

E[W,] 9.125 20.501 43.720 88.613 179.456

std of E[W,] 5.56E-03 1.05E-02 2.07E-02 4.07E-02 8.18E-02

%95 CI of E[W,] [9.114, 9.135) [20.480, 20.521]  [43.162, 43.243)] [88.533, 88.693] [179.296, 179.616]

E[W,|W, > 0] 10.462 21.851 45.114 89.937 180.845

%95 CI of E[W,|W, >0] | [10.432, 10.492]  [21.807, 21.895]  [44.510, 44.651] [89.814, 90.060] [180.630, 181.061]
E[W?] 175.380 814.768 3489.720 14,425.330 58,633.918

std of E[W2] 8.65E-02 0.350 1.424 5.703 23.026

%95 CI of E[W2] [175.210, 175.549] [814.081, 815.455] [3,486.928, 3,492.511] [14,414, 14,436] [58,588, 58,679

SD[W,] 9.598 19.862 40.289 81.074 162.571

P(W, >0)/p 1.0383 1.0198 1.0095 1.0054 1.0023

(1—p)E[W,] 1.4599 1.6401 1.7488 1.7723 1.7946

(1—p)SD[W,] 1.5357 1.5889 1.6116 1.6215 1.6257

(1—p)E[W,]/p 1.7380 1.7827 1.8216 1.8084 1.8127

(1—p)SD[W,]/p 1.2900 1.4618 1.5471 1.5891 1.6095

(1 — p)E[W,|W, >0 1.6739 1.7481 1.8045 1.7987 1.8085

(1 —p)SD[W,|W,, > 0] 1.5316 1.5818 1.5828 1.6189 1.6243

6. The Supporting Heavy-Traffic FCLT for Periodic Queues

To explain the unified numerical results in §5, we now review and extend the heavy-traffic
(HT) functional central limit theorem (FCLT) for periodic G;/G/1 queues in Theorem 3.2
of Whitt (2014). An extension of the HT FCLT in Whitt (2014) is needed because that
HT FCLT is stated for the scaled arrival process and the scaled queue-length process, but
not the scaled workload process that we consider here. A similar argument applies to the
workload process, jointly with the other processes, but it is more natural to apply Theorem
9.3.4 of Whitt (2002) than Iglehart and Whitt (1970), because the workload process is
defined there in §9.2 essentially the same way as the workload is defined in §2.

The innovative part of Whitt (2014) is the new HT scaling in (41) to capture the impact
of the periodicity in an interesting and revealing way, as demonstrated by the tables in §5.
As shown in Whitt (2014), the periodicity has no impact on the heavy-traffic limit if this
additional scaling is not included. (That elementary observation was made earlier by Falin

(1989); the main contribution of Whitt (2014) is the new scaling.)
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6.1. The Heavy-Traffic FCLT

We assume that the rate-1 arrival and service processes N and V specified in §2 are
independent and each satisfies a FCLT. To state the result, let N, and S‘g be the scaled
processes defined by

[nt]
N,(t)=n""?[N(nt)—nt] and Si(t)=n""?]> Vi—nt], t>0, (44)

i=1
with = denoting equality in distribution and |z| denoting the greatest integer less than

or equal to x. We assume that
N, = c,B, and S}; =c¢,B, in D as n— oo, (45)

where D is the usual function space of right-continuous real-valued functions on [0, c0)
with left limits and = denotes convergence in distribution, as in Whitt (2002), while B,
and By are independent standard (mean 0, variance 1) Brownian motion processes (BM’s).
The assumed independence implies joint convergence in (45) by Theorem 11.4.4 of Whitt
(2002).

We emphasize that GI assumptions are not needed, but that is an important special

2

case. If the service times Vj, are i.i.d. mean-1 random variables with variance = scv cg,

then the limit in (45) holds with service variability parameter c¢,. Similarly, if the base
arrival process is a renewal process or an equilibrium renewal process with times between
renewals having mean 1 and variance = scv ¢Z, then the limit in (45) holds with arrival
variability parameter ¢,. (See Nieuwenhuis (1989) for theoretical support in the case of an
equilibrium renewal process.)

Theorem 9.3.4 of Whitt (2002) refers to the conditions of Theorem 9.3.3, which requires
a joint FCLT for the partial sums of the arrival and service processes, notably (3.9) on p.
295. That convergence follows from the FCLT’s we assumed for N and V' in (45) above.
In particular, the assumed FCLT for N implies the associated FCLT for the partial sums
of the interarrival times by Theorem 7.3.2 and Corollary 7.3.1 of Whitt (2002).

We create a model for each p, 0 < p <1, by defining the arrival-rate function

Ao(t)=p+ (1= p)Aal(1—p)*t), t>0, (46)

where \; is a periodic function with period c¢* satisfying

_ 1 [<
A= — / Ai(s)ds=0. (47)
¢ Jo



AVic AL vy 4 L UL g WL wbo

AL L.
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

As a regularity condition, we also require that the function Ay be an element of D. As a
consequence of (46) and (47), the average arrival rate is A, = p, 0 < p < 1. Hence, (41) is a
special case of (46); see §6.3 below.

We can also work with cumulative functions and let the cumulative arrival-rate function

in model p be

Ap(t)=pt+(1=p) " Aa((1 - p)*), >0, (48)

where
A(t) = /O Na(s) ds, (49)

for A, again being the periodic function in (47). From (48)-(49), we see that the associated
arrival-rate function obtained by differentiation in (48) is (46).

The time scaling in (46) and (48) implies that the period in model p with arrival-rate
function A\, (t) in (46) is ¢, = ¢*(1 — p)~2, where ¢* is the period of A\4(¢) in (47). Thus the
period ¢, in model p is growing with p.

Now let A,(t) = N(A,(t)) be the arrival process, using the cumulative arrival-rate func-
tion A, in (48) in place of A in (1). Let Q,(t) and W,(¢) be the associated queue length
process and workload process in the G;/G/1 model with arrival process A,(t) in (46) and
service times from the fixed service process V', constructed as in §9.2 of Whitt (2002). Then

let associated scaled arrival, queue length and workload processes be defined by

A1) = (1= p)[A((1=p)2t) = (1= p)*1), (50)
Qu(t) = (1=p)Q,((1—=p) %) and W,(t) = (1—p)W,((1—p)~*t), ¢>0.

The scaled processes in (50) and the HT limit all have cycle length ¢*.

The following heavy-traffic FCLT states that flp converges to periodic Brownian motion
(PBM), while Qp and Wp converge to a common reflected periodic Brownian motion
(RPBM). To explain, let e be the identity function with e(t) =t, ¢t > 0. By a PBM, we
mean a process cB+ A —e={cB(t) + Ay(t) —t:t > 0}, where B is a BM and Ay is of
the form (49), so that the process has periodic deterministic drift \;(t) — 1. Let ¢ be the
usual one-dimensional reflection map as on pp. 87, 290 and 439 of Whitt (2002). Given
that cB+ A — e is a PBM, ¢(cB+ A —¢) is a RPBM. To state the HT FCLT, let D* be
the k-fold product space of D with itself and let 4 denote equality in distribution.
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THEOREM 2. (heavy-traffic limit extending Whitt (2014)) If, in addition to the defini-
tions and assumptions in (44)-(50) above, the system starts empty at time 0, then

A

(A, Q)W) = (Xo, Z2,Z) in D* as ptl, (51)
where
Xo=ciB,+Ag—e, X=X,—c¢Bs and Z=9(X), (52)

with B, and By being independent BM’s, Ay in (49) and c, and cs being the variability
parameters in (45), so that X < ¢, B, where c, = Ve +c2 and B is a BM.

The joint limit for (AP,QP) is established in Theorem 3.2 of Whitt (2014), which in
turn follows quite directly from Iglehart and Whitt (1970). (We remark that there is
a typographical error in the translation term on the first line of (13) in the proof of
Theorem 3.2 of Whitt (2014); it should be —(1 — p)~2¢ as in equation (11) there instead
of —(1—p)~2pt.) To treat the workload, we apply Theorem 9.3.4 of Whitt (2002), which
implies that the limit for Wp is the same as for the limit for Qp.

Unfortunately, the periodic feature makes the RPBM complicated, so that it remains
to derive explicit expressions for its transient and periodic steady-state distributions. The
present paper contributes by developing an effective algorithm to calculate the periodic

steady-state distribution.

6.2. Approximations for the Periodic Steady State Workload

Our algorithm for the periodic steady-state distribution of RPBM calculates the periodic
steady-state distribution of the scaled workload process in a GI;/GI/1 queue for suitably
large p and uses Theorem 2 for justification. While that approach is intuitively reasonable,
there are steps that remain to be justified. Proper justification requires an additional limit
interchange argument, which has been done in some contexts, e.g., see Budhiraja and Lee
(2009), but here is left for a topic of future research.

Hence, we assume that those steps are justified. In particular, we assume that the work-
load process and the limiting RPBM have proper periodic steady-state distributions for
each p and that there is convergence in distribution of the scaled periodic steady state
workload to the periodic steady state of RPBM as p1 1. In particular, in addition to the
limit VVP = 2 in D as p11 established in Theorem 2, we assume that

W,((k+y)c,) =W, (c0) in R as k— oo, (53)
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where P(W, ,(00) <oo)=1for all pand y, 0 <p<1and 0<y <1, or, equivalently,

W,((k+y)c")=W,,(c0) in R as k- oo, (54)

A

where P(W, ,(00) <oo)=1forall pand y, 0<p<1land 0<y<1, and
Z((k+y)c")=Z,(00) in R as k— oo, (55)

where P(Z,(00) < 00) =1 for all y, 0 <y < 1. With these assumptions, our algorithm
applies to RPBM using the approximation

A

P(Z,(00)>x)~ P(W,,(c0) > x) (56)

where p is chosen to be suitably large.

6.3. Application to the Sinusoidal Arrival-Rate Function

For the sinusoidal example in (4), we let
Aa(t) = ABsin (yt), t>0, (57)

for A\4(t) in (47), so that the cycle length is ¢* = 27 /. With (57) and A = p, (46) becomes
(41), so that the cycle length in model p is ¢, = ¢*(1 — p) =2 = 27/(v(1 — p)?). When we
consider the periodic steady-state workload, the time scaling is gone but we still have the

spatial scaling. When the traffic intensity is p, we multiply by 1 — p; i.e., we have
Wiy (00) = (1= p)Wp,(00). (58)

Hence, to have asymptotically convergent models, we should choose parameter four-tuples

(A, Bos Vo, b,) indexed by p as indicated in (42).

6.4. Approximations for the Periodic G;/G/1 Model

To apply the heavy-traffic FCLT to generate approximations for the performance of the
periodic steady-state workload in a general periodic G;/G/1 model (without i.i.d. assump-
tions), we assume that the assumptions in §6.1 are satisfied so that Theorem 2 is valid. We
then approximate the model by a GI;/GI/1 model which has the same HT FCLT limit
process. In other words, we approximate the underlying rate-1 arrival counting process N

by a renewal process with i.i.d. mean-1 times between renewals having scv ¢2, where ¢, is
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the arrival process variability parameter in the assumed FCLT (45). Similarly, we approx-
imate the sequence of mean-1 service times {V;} by a sequence of mean-1 i.i.d. random
variables with a scv equal to ¢, where ¢, is the service variability parameter in the assumed
FCLT (45). Both approximations are exact for GI.

To construct the specific GI arrival and service processes, we follow the approximation
scheme in §3 of Whitt (1982). We apply the same method for the interarrival times Uy
of N as we do to the service times Vj, so we only discuss the service times. If ¢? &~ 1,
then we use a mean-1 exponential (M) distribution; if ¢ > 1, then we use a mean-1
hyperexponential (Hs) distribution with pdf fi (z) = pipie™"* + popse 2% with p; +py =
1, having parameter triple (p1,u1,p2). To reduce the parameters to two (the mean and
scv), we assume balanced means, i.e., py /1 = pa/ 2, as in (3.7) of Whitt (1982). If ¢2 < 1
and if ¢ ~ 1/k for some integer k, then we use a mean-1 Erlang (E}) distribution (sum
of k i.i.d. exponential variables), otherwise if ¢> < 1, then we use the D + M distribution,
i.e., a sum of a deterministic constant (D) and an exponential (M) distribution with rate

p, which has pdf fy(z) = pe @9 2 >d, asin (3.11) and (3.12) of Whitt (1982).

7. Conclusions

We have developed a new algorithm to calculate the distribution of the periodic steady-
state remaining workload W, at time yc within a periodic cycle of length ¢, 0 <y <1, in
a general GI;/G1/1 single-server queue with periodic arrival-rate function. The key model
assumption is the representation in (1) of the arrival process as a time-transformation of
a rate-1 process. The algorithm is based on the new representation of W, in (2) derived
in §1.1 and §2. In §4 we developed an algorithm for computing the exact tail probabilities
P(W, > b) in the GI;/GI/1 model based on the established rare-event simulation algorithm
for the associated stationary GI/GI/1 model. That connection is supported by the close
relation between the two models, established in §3.

We also have shown that the algorithm can be applied together with the heavy-traffic
FCLT in Whitt (2014) reviewed in §6 to also calculate the periodic steady-state distribution
and moments of reflected periodic Brownian motion (RPBM). In addition, the algorithm
can be applied to approximate the tail probabilities in the more general G;/G/1 model
by choosing special parameters (the squared coefficients of variation (scv) of interrenewal
times) in the GI;/GI/1 model to insure that the two systems obey the same heavy-traffic
FCLT.



AViA Alild Vi LLibvb. 14 LI UWOL g WL Who

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 35

We have verified the effectiveness of the algorithm for GI;/GI/1 queues and RPBM
by conducted extensive simulation experiments for the GI;/GI/1 model with sinusoidal
arrival rate in §1.3 and a range of traffic intensities. Some of these are reported in §5 and
in the online supplement Ma and Whitt (2016). It remains to investigate the algorithm for
G:/G/1 queues more general than GI;/GI/1.
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