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An efficient algorithm is developed to calculate the periodic steady-state distribution and moments of the

remaining workload Wy at time yc within a cycle of length c, 0≤ y < 1, in a single-server queue with a peri-

odic arrival-rate function. The algorithm applies exactly to the GIt/GI/1 model, where the arrival process is

a time-transformation of a renewal process. A new representation of Wy makes it possible to apply a modifi-

cation of the classic rare-event simulation for the stationary GI/GI/1 model exploiting importance sampling

using an exponential change of measure. We establish bounds between the periodic workload and the sta-

tionary workload with the average arrival rate that enable us to prove that the relative error in estimates of

P (Wy > b) is uniformly bounded in b. With the aid of a recent heavy-traffic limit theorem, the algorithm also

applies to compute the periodic steady-state distribution of (i) reflected periodic Brownian motion (RPBM)

by considering appropriately scaled GIt/GI/1 models and (ii) a large class of general Gt/G/1 queues by

approximating by GIt/GI/1 models with the same heavy-traffic limit. Simulation examples demonstrate the

accuracy and efficiency of the algorithm for both GIt/GI/1 queues and RPBM.
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1. Introduction

For the steady-state performance of the stationary GI/GI/1 single-server queue with

unlimited waiting room and service in order of arrival, we have effective algorithms, e.g.,

Abate et al. (1993), Asmussen (2003). We also have exact formulas in special cases and use-

ful general approximation formulas in heavy traffic, e.g., Asmussen (2003), Whitt (2002).

For the periodic steady-state performance of associated periodic single-server queues, hav-
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ing periodic arrival-rate functions, there is much less available. There is supporting theory

in Harrison and Lemoine (1977), Lemoine (1981, 1989), Rolski (1981, 1989). On the algo-

rithm side, there is a recent contribution on perfect sampling in Xiong et al. (2015). Of

particular note is the paper on the periodic Mt/GI/1 queue by Asmussen and Rolski

(1994) that provides a theoretical basis for a rare-event simulation algorithm (although

no algorithm is discussed there); also see §VII.6 of Asmussen and Albrecher (2010) and

Morales (2004). The goal there was to calculate ruin probabilities, but those are known to

be equivalent to waiting-time and workload tail probabilities. A heavy-traffic limit for the

periodic Gt/G/1 queue, was also established recently by Whitt (2014), which shows that

the basic processes can be approximated by reflected periodic Brownian motion (RPBM),

but so far there are no algorithms or simple formulas for RPBM.

In this paper, we provide an effective algorithm to calculate the periodic steady-state

distribution and moments of the remaining workloadWy at time yc within a cycle of length

c, 0≤ y < 1, in a single-server queue with a periodic arrival-rate function. The algorithm

applies exactly to the Mt/GI/1 model, where the arrival process is a nonhomogeneous

Poisson process (NHPP), and any GIt/GI/1 model, where the arrival process is a time-

transformation of an equilibrium renewal process. A new representation of Wy (in (2)

below) makes it possible to apply a modification of the classic rare-event simulation for the

stationary GI/GI/1 model exploiting importance sampling using an exponential change

of measure, as in Ch. XIII of Asmussen (2003) and Ch. VI of Asmussen and Glynn (2007).

We show that the algorithm is effective for estimating the mean and variance as well as

small tail probabilities.

The main example is the periodic Mt/GI/1 queue, but our results go well beyond the

periodic Mt/GI/1 queue. By also treating the more general GIt/GI/1 queue, we are able

to apply the algorithm to compute the steady-state distribution of the limiting RPBM in

Whitt (2014). To cover the full range of parameters of the RPBM, we need the general-

ization to GIt/GI/1. (In particular, this enables us to calculate the periodic steady-state

distribution of the limiting RPBM for the GIt/GI/1 model in (51) and (55) for any vari-

ability parameter cx.) As we will explain in §6.4, the algorithm for the GIt/GI/1 model

can serve as a basis for an approximation algorithm for more general Gt/G/1 models, but

we do not report simulation results for that extension here.
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We report results from extensive simulation experiments for GIt/GI/1 models to demon-

strate the effectiveness of the algorithm. Both the convergence to RPBM and the effective-

ness of the algorithm for RPBM are demonstrated by displaying the results for a range

of traffic intensities ρ approaching 1. This unity in the numerical results requires the non-

standard heavy-traffic scaling in Whitt (2014), which we review in §6. (In particular, the

deterministic arrival-rate function is scaled as well as space and time; see (41).) The unity

in the numerical results provided by the heavy-traffic scaling is in the same spirit as the

scaling in the numerical results in Abate and Whitt (1998), Choudhury et al. (1997).

1.1. Using Bounds to Connect to Familiar Rare-Event Simulation Methods

We are able to apply the familiar rare-event simulation for the GI/GI/1 model to the

periodic GIt/GI/1 model because we can make strong connections between the given

periodic GIt/GI/1 model and the associated GI/GI/1 model with the constant average

arrival rate. In fact, this connection is largely achieved directly by construction, because

we represent the periodic arrival counting process A as a deterministic time transformation

of an underlying rate-1 counting process N by

A(t)≡N(Λ(t)), where Λ(t)≡
∫ t

0

λ(s)ds, t≥ 0, (1)

λ is the arrival-rate function, assumed to be positive, and ≡ denotes equality by definition.

This is a common representation when N is a rate-1 Poisson process; then A is an NHPP.

For the Gt/G/1 model, N is understood to be a rate-1 stationary point process. Hence,

for the GIt/GI/1 model, N is an equilibrium renewal process with time between renewals

having mean 1, which is a renewal process except the first inter-renewal time has the

equilibrium distribution. The representation in (1) also has been used for processes N more

general than NHPP’s by Massey and Whitt (1994), Gerhardt and Nelson (2009), Nelson

and Gerhardt (2011), He et al. (2016), Ma and Whitt (2015), Whitt (2015) and Whitt and

Zhao (2016).

Given that we use representation (1), we show that it is possible to uniformly bound

the difference between the cumulative arrival-rate function Λ and the associated linear

cumulative arrival-rate function λ̄e of the stationary model, where λ̄ is the average arrival

rate and e is the identity function, e(t)≡ t, t≥ 0. Consequently, we are able to bound the

difference between the steady-state workloads W in the stationary G/G/1 model and Wy

in the periodic Gt/G/1 model.
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1.2. A Convenient Representation for Estimation Efficiency

We exploit the arrival process construction in (1) to obtain a convenient representation of

the stationary workloadWy in terms of the underlying stationary processN ≡ {N(t) : t≥ 0}
in (1) and the associated sequence of service times V ≡ {Vk : k≥ 1} via

Wy
d
=sup

s≥0

{N(s)∑
k=1

Vk − Λ̃−1
y (s)

}
, 0≤ y < 1, (2)

where

Λ̃y(t)≡Λ(yc)−Λ(yc− t), t≥ 0, (3)

is the reverse-time cumulative arrival-rate function starting at time yc within the periodic

cycle [0, c], 0≤ y < 1, and Λ̃−1
y is its inverse function, which is well defined because Λ̃y(t) is

continuous and strictly increasing. Representation (2) is convenient because all stochastic

dependence is captured by the first term within the supremum, while all deterministic time

dependence is captured by the second term.

From the representation in (2), it is evident that from each sample path of the underlying

stochastic process (N,V ), we can generate a realization ofWy in (2) for each y, 0≤ y < 1, by

just changing the deterministic function Λ̃−1
y . Moreover, from the rare-event construction

in §4, we can simultaneously obtain an estimate of P (Wy > b) for all b in the bounded

interval [0, b0] while applying the estimation for the single value b0. Thus, we can essentially

obtain estimates for all performance parameter pairs (y, b)∈ [0,1)× [0, b0] while doing the

estimation for only one pair. This efficiency is very useful to conduct simulation studies to

expose the way that P (Wy > b) and the other performance measures depend on (y, b).

1.3. Stylized Sinusoidal Examples

We illustrate the rare-event simulation by showing simulation results for GIt/GI/1 queues

with sinusoidal arrival-rate function

λ(t)≡ λ̄(1+β sin (γt)), t≥ 0, (4)

where β, 0 < β < 1, is the relative amplitude and the cycle length is c = 2π/γ. We let

the mean service time be μ−1 = 1, so that the average arrival rate is the traffic intensity,

i.e., λ̄= ρ. With this scaling, we see that there is the fundamental model parameter triple

(ρ, β, γ) or, equivalently, (ρ, β, c). The associated cumulative arrival-rate function is

Λ(t) = ρ(t+(β/γ)(1− cos(γt)), t≥ 0. (5)



Ma and Whitt: Periodic Queues
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

and the associated reverse-time cumulative arrival-rate function defined in (3) is

Λ̃y(t) = ρ (t+(β/γ) (cos (γ(yc− t))− cos (γyc))) , t≥ 0. (6)

We only consider the case ρ < 1, under which a proper steady-state exists under reg-

ularity conditions (which we do not discuss here). Behavior differs for short cycles and

long cycles. There are two important cases for the relative amplitude: (i) 0< β < ρ−1 − 1

and (ii) ρ−1 − 1≤ β ≤ 1. In the first case, we have ρ(t)< 1 for all t, where ρ(t)≡ λ(t) is

the instantaneous traffic intensity, but in the second case we have intervals with ρ(t)≥ 1,

where significant congestion can build up. If there is a long cycle as well, the system may

be better understood from fluid and diffusion limits, as in Choudhury et al. (1997). (Tables

8 and 9 illustrate the significant performance difference for the mean E[Wy].)

1.4. Organization of the Paper

We start in §2 by reviewing the reverse-time representation of the workload process, which

leads to representation (2). In §3 we establish the bounds and associated asymptotic and

approximations connecting the periodic model to the associated stationary model with the

average arrival rate. In §4 we develop the simulation algorithm for the GIt/GI/1 model and

establish theoretical results on its efficiency. We also discuss the computational complexity

and running times. In §5 we present simulation examples. In §6 we review and extend the

heavy-traffic FCLT in Theorem 3.2 of Whitt (2014), which explains the scaling that unifies

our numerical results in the simulation experiments. in §6.4 we discuss the approximation

for general periodic Gt/G/1 models. In §7 we draw conclusions. We present additional

material in the online supplement Ma and Whitt (2016), including approximations for the

important asymptotic decay rate and more simulation examples.

2. Reverse-Time Representation of the Workload Process

We consider the standard single-server queue with unlimited waiting space where cus-

tomers are served in order of arrival. Let {(Uk, Vk)} be a sequence of ordered pairs of

interarrival times and service times. (in §2 and in §3 we do not need to impose any GI

conditions.) Let an arrival counting process be defined on the positive halfline by A(t)≡
max{k≥ 1 : U1+ · · ·+Uk ≤ t} for t≥U1 and A(t)≡ 0 for 0≤ t < U1, and let the total input

of work over the interval [0, t] be the random sum

Y (t)≡
A(t)∑
k=1

Vk, t≥ 0. (7)
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Then we can apply the reflection map to the net input process Y (t)− t to represent the

workload (the remaining work in service time) at time t, starting empty at time 0, as

W (t) = Y (t)− t− inf {Y (s)− s : 0≤ s≤ t}= sup{Y (t)−Y (s)− (t− s) : 0≤ s≤ t}, t≥ 0.

We now convert this standard representation to a simple supremum by using a reverse-

time construction, as in Loynes (1962) and Chapter 6 in Sigman (1995). This is achieved by

letting the interarrival times and service times be ordered in reverse time going backwards

from time 0. Then Ã(t) counts the number of arrivals and Ỹ (t) is the total input over the

interval [−t,0] for t≥ 0. With this reverse-time construction (interpretation), we can write

W (t) = sup{Ỹ (s)− s : 0≤ s≤ t}, t≥ 0, (8)

and we haveW (t) increasing toW (∞)≡W with probability 1 (w.p.1) as t ↑∞. In a stable

stationary setting, under regularity conditions, we have P (W <∞) = 1; see §6.3 of Sigman

(1995).

We now consider the periodic arrival-rate function λ(t) with cycle length c, average

arrival rate λ̄= ρ < 1 and bounds 0< λL ≤ λ(t)≤ λU <∞ for 0≤ t≤ c. As in (1), we can

construct the arrival process A by transforming a general rate-1 stationary process N by

the cumulative arrival-rate function. We let the service times Vk be a general stationary

sequence with E[Vk] = 1.

We now exploit (8) in our more specific periodic Gt/G/1 context. The workload at time

yc in the system starting empty at time yc− t can be represented as

Wy(t) = sup
0≤s≤t

{Ỹy(s)− s}

d
= sup

0≤s≤t

{N(Λ̃y(s))∑
k=1

Vk − s
}

= sup
0≤s≤Λ̃y(t)

{N(s)∑
k=1

Vk − Λ̃−1
y (s)

}
, (9)

where Ỹy is the reverse-time total input of work starting at time yc within the cycle of

length c, Λ̃y(t) is the reverse-time cumulative arrival-rate function in (3) and Λ̃−1
y is its

inverse function, which are defined in terms of the cumulative arrival-rate function Λ(t) in

(1). The second line equality in distribution holds when N is a stationary point process,



Ma and Whitt: Periodic Queues
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

which is a point process with stationary increments and a constant rate. In the GIt/GI/1

setting, N is an equilibrium renewal process and thus this regularity condition is satisfied.

Note that in this specific setting, Vk’s are i.i.d. with distribution V , but U1 has equilibrium

distribution Ue, which may be different from the i.i.d. distributions of Uk, k≥ 2 in (9). Just

as W (t) ↑W w.p.1 as t→∞, so Wy(t) ↑Wy w.p.1 as t→∞, for Wy in (2).

Even though (9) is valid for all t, we think of the system starting empty at times −kc, for
k≥ 0, so that we let yc− t=−kc or, equivalently, we stipulate that t= c(k+y), 0≤ y < 1,

and consider successive values of k and let k → ∞ to get (2). That makes (9) valid to

describe the distribution of W (c(k+ y)) for all k ≥ 0. We think that (9) and (2) are new

representations, but they can be related to various special cases in the literature.

3. Bounds and Approximations for General Periodic Gt/G/1 Queues

We first bound the periodic system above and below by modifications of the correspond-

ing stationary system with an arrival process that has the average arrival rate. Then we

establish limits and introduce approximations. In doing so, we extend results in Asmussen

and Rolski (1994).

3.1. Basic Bounds

We now compare the periodic steady-state workloadWy in (2) and the associated stationary

workload W defined as in (2) with ρ−1s replacing Λ̃−1
y (s):

W
d
=sup

s≥0

{N(s)∑
k=1

Vk − ρ−1s
}
, (10)

Note that in both (2) and (10), N is understood to be a stationary point process. In

particular, for theGIt/GI/1 model,N is an equilibrium renewal process with the first inter-

renewal time having the equilibrum distribution, therefore W is the stationary workload

in the associated GI/GI/1 model, which may differ from the stationary waiting time in

the same model. We now show that we can bound Wy above and below by a constant

difference from the stationary workload W by rewriting (2) as

Wy = sup
s≥0

{N(s)∑
k=1

Vk − ρ−1s− (Λ̃−1
y (s)− ρ−1s)

}
. (11)

From (11), we immediately obtain the following lemma.
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Lemma 1. (upper and lower bounds on Wy) For Wy in (2) and W in (10),

W−
y ≡W − ζ−y ≤Wy ≤W − ζ+y ≡W+

y (12)

where

ζ−y ≡ sup
0≤s≤ρc

{Λ̃−1
y (s)− ρ−1s} ≥ 0 and ζ+y ≡ inf

0≤s≤ρc
{Λ̃−1

y (s)− ρ−1s} ≤ 0. (13)

Note that the supremum and infimum in (13) are over the interval [0, ρc]. Because the

average arrival rate is ρ, Λ̃y(c) = Λ(c) = ρc and thus Λ̃−1
y (ρc) = c. Given that Λ is continuous

and strictly increasing, we can use properties of the inverse function as in §13.6 of Whitt

(2002) to determine an alternative representation of the bounds in terms of the reverse-time

cumulative arrival-rate function Λ̃y. We emphasize that these bounds depend on y.

Lemma 2. (alternative representation of the bounds) The constants ζ−y and ζ+y can also

be expressed as

ζ−y = −ρ−1 inf
0≤s≤c

{Λ̃y(s)− ρs}≥ 0 and ζ+y =−ρ−1 sup
0≤s≤c

{Λ̃y(s)− ρs}≤ 0. (14)

Proof. We use basic properties of inverse functions, as in §13.6 of Whitt (2002). First,

note that, for any homeomorphism φ on the interval [0, c],

sup
0≤s≤c

{φ(s)− s}= sup
0≤s≤c

{φ(φ−1(s))−φ−1(s)}= sup
0≤s≤c

{s−φ−1(s)}=− inf
0≤s≤c

{φ−1(s)− s}.
(15)

To treat ζ−y in (13), we apply (15) to Λ̃−1
y after rescaling time to get

sup
0≤s≤ρc

{Λ̃−1
y (s)− ρ−1s} = sup

0≤u≤c
{Λ̃−1

y (ρu)−u}=− inf
0≤u≤c

{ρ−1Λ̃y(u)−u}

= −ρ−1 inf
0≤s≤c

{Λ̃y(s)− ρs}. (16)

In (16), the first equality is by making the change of variables u= ρ−1s; the second equality

is by (15) plus Lemma 13.6.6 of Whitt (2002), i.e., (Λ̃−1
y ◦ ρe)−1 = (ρ−1e ◦ Λ̃y) = ρ−1Λ̃y; the

third equality is obtained by multiplying and dividing by ρ.

We now combine the one-sided extrema into an expression for the absolute value.

Corollary 1. (single bound) As a consequence,

|Wy −W | ≤ ζ ≡max{ζ−y ,−ζ+y }
= ρ−1‖Λ̃y − ρe‖c ≡ ρ−1 sup

0≤s≤c
{|Λ̃y(s)− ρs|}<∞. (17)
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Corollary 2. (bounds in the sinusoidal case) For the sinusoidal case in (4), the bounds

can be expressed explicitly as

ζ−y =
β(cos (γcy)+ 1)

γ
and ζ+y =

β(cos (γcy)− 1)

γ
. (18)

Proof. By (6),

Λ̃y(t)− ρt= (ρβ/γ) (cos (γ(cy− t))− cos (γcy)) , t≥ 0, (19)

from which (18) follows by choosing t to make cos (γ(cy− t)) =±1.

3.2. Tail Asymptotics for the Periodic Gt/G/1 Model

For many models, it is possible to obtain an approximation for W of the form

P (W > b)≈Ae−θ∗b, b≥ 0, (20)

based on the limit

lim
b→∞

eθ
∗bP (W > b) =A. (21)

For the GI/GI/1 model, the limit (21) is discussed in §XIII.5 of Asmussen (2003), where

the random variable Xk ≡ Vk − Tk is required to have a nonlattice distribution. However,

the limit (21) also has been established for much more general models, allowing dependence

among the interarrival times and service times; see Abate et al. (1994), Choudhury et al.

(1996) and references therein. If indeed, the limit (21) holds for W , then we easily get

corresponding bounds for Wy.

We remark that logarithmic asymptotics from Glynn and Whitt (1994) supports the

weaker approximation

P (Wy > b)≈ P (W >b)≈ e−θ∗b, b≥ 0. (22)

The following corollary draws implications from the limit (20), from the bounds we have

established, assuming that the limit (20) is valid.

Corollary 3. (tail-limit bounds) If eθ
∗bP (W > b)→A as b→∞ for some θ∗> 0, then

limsup
b→∞

eθ
∗bP (Wy > b) ≤ lim

b→∞
eθ

∗bP (W >b+ ζ+y ) =A+
y ≡Ae−ζ+y θ∗ and

lim inf
b→∞

eθ
∗bP (Wy > b) ≥ lim

b→∞
eθ

∗bP (W >b+ ζ−y ) =A−
y ≡Ae−ζ−y θ∗. (23)

as b→∞. If eθ
∗bP (Wy > b)→Ay as b→∞, then

A−
y ≤Ay ≤A+

y and A−
y ≤A≤A+

y . (24)
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For the GI/GI/1 model, we have the Cramer-Lundberg inequality for W in Theorem

XIII.5.1 of Asmussen (2003), yielding P (W > b)≤ e−θ∗b for all b.

Corollary 4. (periodic Cramer-Lundberg bound) For the periodic GIt/GI/1 model,

P (Wy > b)≤ e−θ∗(b+ζ+y ) for all b > 0.

4. Simulation Methodology for the GIt/GI/1 Model

We now apply the representation in (2) and the bounds in §3 to obtain an effective rare-

event simulation method for the periodic GIt/GI/1 queueing model. Our approach is

to first generate exponentially tilted interarrival times and service times until a process

involving them hits a given level b and then to calculate an estimate of tail probability using

these generated values for each simulation replication. Hence, the algorithm is primarily

deterministic calculations. We obtain estimates of statistical precision by performing a

large number of independent replications.

4.1. Exponential Tilting for the GI/GI/1 Model

We apply the familiar rare-event simulation method for the stationary GI/GI/1 model

using importance sampling with an exponential change of measure, as in §XIII of Asmussen

(2003) and §§V and VI of Asmussen and Glynn (2007). For the discrete-time waiting times

in the GI/GI/1 model based on {(ρ−1Uk, Vk)}, where {Uk} and {Vk} are independent

sequences of i.i.d. nonnegative mean-1 random variables, the key random variables are

Xk(ρ)≡ Vk−ρ−1Uk. We assume that Uk, Vk and thus Xk(ρ) have finite moment generating

functions (mgf’s) mU(θ), mV (θ), and mX(θ)≡mX(ρ)(θ), e.g., mV (θ)≡E[eθVk ], and prob-

ability density functions (pdf’s) fU , fV and fX ≡ fX(ρ). As usual, we define the twisted

pdf fX,θ(x) = eθxfX(x)/mX(θ) and for our simulation use the “optimal value” θ∗ such that

mX(θ
∗) = 1. That optimal tilting parameter coincides with the asymptotic decay rate θ∗

in Corollary 3.

There are several simplifications that facilitate implementation. First, as in Example

XIII.1.4 of Asmussen (2003), we can construct the tilted pdf fX,θ(x) by constructing asso-

ciated tilted pdf’s of fU and fV , in particular, because Xk(ρ)≡ Vk − ρ−1Uk, it suffices to

let fV,θ(x) = eθxfV (x)/mV (θ) and

f−U/ρ,θ(x) =
eθxf−U/ρ(x)

m−U/ρ(θ)
or

e−θy/ρρfU(y)

mU (−θ/ρ) (25)
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with the second expression obtained after making a change of variables, so that mX(θ) =

mV (θ)mU(−θ/ρ). We thus obtain the i.i.d. tilted random variables with pdf fX,θ∗(x) by

simulating independent sequences of i.i.d. random variables with the pdf’s fV,θ∗(x) and

f−U/ρ,θ∗(x).

Second, for all our examples, we consider common distributions that produce twisted

pdf’s having the same form as the original pdf’s; it is only necessary to change the parame-

ters. In particular, this property holds for the M , H2, Ek and M +D distributions that we

propose to exploit in §6.4. In particular, if V is a rate-μ exponential (M) random variable

with pdf fV (x) = μe−μx, then fV,θ(x) is again an exponential random variable with param-

eter μ− θ, where we are required to have μ> θ > 0. Moreover, for the M/M/1 queue with

arrival rate λ and service rate μ, the associated optimal tilted parameters are λθ∗ = μ and

μθ∗ = λ; i.e., the optimal tilting just switches the arrival and service rates; see Example

XIII.1.5 of Asmussen (2003).

If V has an H2 pdf fV (x) = pμ1e
−μ1x+(1−p)μ2e

−μ2x, having parameter triple (p,μ1, μ2),

then fV,θ(x) again has an H2 distribution, but with a new parameter triple (pθ, μ1,θ, μ2,θ),

where μj,θ = μj − θ and pθ = [pμ1/(μ1 − θ)/{[pμ1/(μ1− θ)] + [(1− p)μ2/(μ2− θ)]}. We

remark that the twisted H2 pdf does not inherit the balanced-means property of the orig-

inal H2 pdf and has a different squared coefficient of variation (scv, variance divided by

the square of the mean), but still c2 > 1.

We now turn to the pdf’s with scv c2 < 1. First, a twisted Ek distribution is again

Ek. More generally (because Ek is a special gamma distribution), if V has a gamma

pdf fV (x;α,μ) = μαxα−1e−μx/Γ(α), then fV,θ(x) has a gamma pdf with parameter pair

(αθ, μθ) = (α,μ− θ); see §V.1.b of Asmussen and Glynn (2007). Finally, if V is an M +D

distribution with parameter pair (d,μ), then the twisted distribution is an M +D distri-

bution with parameter pair (d,μ− θ).

As a consequence, we can generate the tilted random variables in the standard way given

underlying uniform random variables; e.g., we can apply the function h(x) =− log (1−x)/μ

to a vector of uniform random variables to obtain the corresponding vector of exponential

random variable with mean 1/μ. For each H2 random variable we can use two uniforms, one

to select the exponential component and the other to generate the appropriate exponential;

i.e., a random variable X with the H2 distribution having parameter triple (p,μ1, μ2) can

be expressed in terms of the pair of i.i.d. uniforms (Z1, Z2) as

X =−((1/μ1)1{Z1≤p}+(1/μ2)1{Z1>p}) log (Z2), (26)
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where 1A is the indicator variable with 1A = 1 on the event A.

4.2. Rare-Event Simulation for Stationary Waiting Time in GI/GI/1 Model

LetW ∗ denote the steady-state discrete-time waiting time, which coincides with the steady-

state continuous-time workload W in the GI/GI/1 model for Poisson arrivals, but not

otherwise. The heavy-traffic limits coincide, as can be seen from Theorem 9.3.4 of Whitt

(2002).

The standard simulation for rare-event probability of large waiting times in the GI/GI/1

model is achieved by performing the change of measure using the tilted interarrival times

and service times, as indicated in §4.1, where the tilting parameter θ∗ coincides with the

asymptotic decay rate in §3.2, as described in Ch. XIII of Asmussen (2003) and §VI.2a of

Asmussen and Glynn (2007).

To implement the simulation, we generate the random variables Uk and Vk from their

tilted distributions with θ∗. We estimate the tail probability of stationary waiting time

P (W ∗ > b) by its representation as P (τSb <∞), where τSb is the first hitting time of Sn

at level b, with Sn ≡ ∑n
k=1Xk(ρ). The tail probability can be expressed in terms of the

stopped sum SτSb
using the underlying probability measure Pθ∗. Note that SτSb

= b+Y (b),

where Y (b) is the overshoot of b by {Sn}, all under Pθ∗. Under the new probability measure

Pθ∗, Sn hits b with probability 1, so we only need to estimate the likelihood ratio. Thus

the tail probability of the GI/GI/1 steady-state waiting time W ∗ can be expressed as

P (W ∗> b) = P (τSb <∞) =Eθ∗[I{τSb <∞}LτSb
(θ∗)] =Eθ∗[LτSb

(θ∗)]

=Eθ∗[mX(θ
∗)τ

S
b e

−θ∗S
τS
b ] =Eθ∗[e

−θ∗S
τS
b ] = e−θ∗bEθ∗[e

−θ∗YS(b)], (27)

where LτSb
(θ∗) is the likelihood ratio of {Xk(ρ)}1≤k≤τSb

with respect to Pθ∗ . The second

moment of this estimator is Eθ∗[LτSb
(θ∗)2] = Eθ∗[e

−2θ∗S
τS
b ]. Theorem XIII.7.1 of Asmussen

(2003) shows that the rare-event estimator of P (W > b) has relative error that is uniformly

bounded in b as b→∞. (The proof of Theorem XIII.7.1 relies on Theorems XIII.5.1-3; the

pdf assumption implies that X has a nonlattice distribution.)

4.3. Rare-Event Simulation for Stationary Workload in GI/GI/1 Model

We are interested in the rare-event probability of large stationary workload W as in (10),

where arrival process N is an equilibrium renewal process, because this is the process that

we used to develop bounds of Wy in section 3. The classical exponential tilting method
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applies to simulating the rare-event probability of stationary waiting time W ∗ as reviewed

in §4.2. The stationary waiting time is as in (10) with N being the renewal process with-

out the exceptional first inter-renewal time. To apply this exponential tilting method to

stationary workload W , we need to make a slight modification of the algorithm above.

Now the equilibrium renewal process N has the exceptional first interarrival time and a

constant rate ρ. We still use the usual partial sum process Sn ≡
∑n

k=1(Vk − ρ−1Uk), where

Vk are still i.i.d with distribution V , but U1 has the equilibrium distribution of Ue and

Uk, k≥ 2 are i.i.d with distribution U . We do the same tilting for all Xk(ρ)’s still using Pθ∗,

with dPθ∗(x) = [eθ
∗x/mX(θ

∗)]dP (x). Note that θ∗ is solved from mXk
(θ∗) = 1, where k≥ 2

and when k= 1, this equation may not hold. Now the likelihood ratio becomes

LτSb
(θ∗) = mX1(θ

∗)×mX2(θ
∗)× ...×mX

τS
b

(θ∗)/(e
θ(X1+X2+...+X

τS
b
)
)

= mX1(θ
∗)e

−θS
τS
b ,

where the second line follows because mXk
(θ∗) = 1.

Then we need to add a constant multiplier mX1(θ
∗) to equation (27):

P (W > b) = P (τSb <∞)

= Eθ∗[LτSb
(θ∗)]

= Eθ∗[mX1(θ
∗)mX(θ

∗)τ
S
b −1e

−θ∗S
τS
b ]

= Eθ∗[mX1(θ
∗)e

−θ∗S
τS
b ]

= mX1(θ
∗)e−θ∗bEθ∗[e

−θ∗YS(b)]. (28)

Note that (28) is also different from (27) in that the first X1(ρ) in the partial sum SτSb
may

have a different distribution from {Xk(ρ), k≥ 2}. The exact form of mX1(θ
∗) is as below

mX1(θ
∗) = E{exp{θ∗V − θ∗ρ−1Ue}}

= E{exp{−θ∗ρ−1Ue}}/E{exp{−θ∗ρ−1U}}.

where the second line still follows from mXk
(θ∗) = 1 and thus E{exp{θ∗V }} =

1/E{exp{−θ∗ρ−1U}}.
Given that the estimator in (27) has bounded relative error as b goes to infinity, the

estimator in (28) has bounded relative error as b goes to infinity as well. This is because
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when b is large, the first X1 does not influence the distribution of the overshoot YS(b) and

thus YS(b) has the same distribution under Pθ∗ in both estimators.

Table 1 shows simulation estimates for the workload tail probabilities P (W > b) and the

associated waiting-time tail probabilities P (W ∗> b) using the algorithms in §4.3 and §4.2
respectively. In both cases, we refer to the estimates as P (W > b)≡ p̂=Ae−θ∗b, where θ∗

is common to both. We use a very small ρ= 0.1 here so that workload and waiting time

probabilities are very different. These numerical results match the exact values of p̂ and A

calculated from Theorem X.5.1 of Asmussen (2003).

Table 1 Comparison of the steady-state workload and waiting-time tail probabilities for b= 4,20 in the

stationary H2/M/1 queue with ρ= 0.1. The exact values are calculated from Theorem X.5.1 of Asmussen (2003).

workload waiting time workload waiting time
ρ 0.1 0.1 0.1 0.1
θ∗ 0.8690 0.8690 0.8690 0.8690
exact A 0.1 0.1310 0.1 0.1310
exact p 0.003093 0.004050 2.83E-09 3.70E-09
b 4 4 20 20
p̂ 0.003104 0.004055 2.84E-09 3.69E-09
e−θ∗b 0.0309 0.0309 2.83E-08 2.83E-08
A 0.1004 0.1311 0.1004 0.1305
s.e. 2.73E-05 3.55E-05 2.49E-11 3.25E-11
%95 CI lb 0.003050 0.003985 2.79E-09 3.63E-09
%95 CI ub 0.003157 0.004125 2.89E-09 3.76E-09
r.e. 0.008788 0.008765 0.008771 0.008792

4.4. Applying the Bounds to Treat the Periodic Case

From (2), we see that any positive b must be hit for the first time at an arrival time. Thus,

we have the alternative discrete-time representation

Wy = sup
n≥0

{ n∑
k=1

Vk − Λ̃−1
y (N−1(n))

}
= sup

n≥0

{ n∑
k=1

Vk − Λ̃−1
y (

n∑
k=1

Uk)
}
, (29)

where Uk is the kth interarrival time in the equilibrium renewal process N , i.e. U1 assumes

the equilibrium distribution Ue while {Uk, k≥ 2} are i.i.d. with distribution U .

For the periodic GIt/GI/1 model with λ̄= ρ, we can apply a variant of the exponential

change of measure for the waiting times in the GI/GI/1 model in §4.1 above. We use the

underlying measure Pθ∗ determined for GI/GI/1. we use the usual partial sum process

Sn ≡
∑n

k=1Xk(ρ) for GI/GI/1 and the associated process

Rn ≡
n∑

k=1

Vk − Λ̃−1
y (

n∑
k=1

Uk). (30)
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We estimate the tail probability P (Wy > b) by its representation as P (τRb <∞), where τRb

is the first hitting time of Rn at level b. Under the new probability measure, Rn hits b

with probability 1, so we only need to estimate the likelihood ratio. We still twist Xk(ρ) =

Vk − ρ−1Uk in the same way, which is equivalent to twisting Vk and ρ−1Uk separately, as

discussed in §4.1. Then the likelihood ratio for {Xk(ρ) : 1≤ k ≤ n} is the same as before,

i.e., Ln(θ) =mX1(θ)mX(θ)
(n−1)e−Sn . As a consequence, we obtain the representation

P (Wy > b) = P (τRb <∞) =Eθ∗[LτRb
(θ∗)]

= Eθ∗[mX1(θ
∗)mX(θ

∗)(τ
R
b −1)e

−θ∗S
τR
b ] =mX1(θ

∗)Eθ∗[e
−θ∗S

τR
b ]. (31)

Still note that the first X1(ρ) in the partial sum SτRb
has a different distribution from

{Xk, k≥ 2}.
At first glance, (31) does not look so useful, because the random sum SτRb

involves the

hitting time τRb for {Rn} instead of {Sn}, but we can shift the focus to RτRb
because we

can bound the difference between SτRb
and RτRb

.

Lemma 3. (bound on difference of random sums) Under the assumptions above,

|SτRb
−RτRb

| ≤ ζ ≡max{|ζ+y |, ζ−y }, (32)

where ζ+y and ζ−y are the one-sided bounds in (13) and (14). In addition, τSb−ζ ≤ τRb ≤ τSb+ζ.

Proof. The bound in (32) follows immediately from (13) and (14), because

|Rn−Sn|= |
( n∑

k=1

Vk − Λ̃−1
y

n∑
k=1

Uk

)
−
( n∑

k=1

Vk −
n∑

k=1

ρ−1Uk

)
| ≤ ζ ≡max{|ζ+y |, ζ−y } (33)

for all n≥ 1, where ζ+y and ζ−y are the one-sided bounds in (13) and (14).

Lemma 3 allows us to focus on RτRb
, where τRb is the hitting time for {Rn}. To do so,

we impose an additional regularity condition. The regularity condition requires the excess

service-time distribution in probability measure Pθ∗ be bounded above in stochastic order

by a proper cdf, i.e.,

Pθ∗(V > t+x|V > t)≡ Pθ∗(V > t+x)

Pθ∗(V > t)
≤Gc(x) for all t≥ 0, (34)

where Gc(x)≡ 1−G(x)→ 0 as x→∞. For example, it suffices for the service time to be

bounded. It also suffices for the service-time distribution to have an exponential tail, which

holds if there is a constant η > 0 such that

eηxPθ∗(V > x)→L, 0<L<∞ as x→∞. (35)
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If (35) holds, then
eη(t+x)Pθ∗(V > t+x)

eηtPθ∗(V > t)
→ 1 as t→∞, (36)

so that (34) holds asymptotically with Gc(x) ≡ e−ηx. It holds over any bounded interval

because the ratio is continuous and bounded, given (35). Of course, condition (34) would

not hold if xpPθ∗(V > x)→L as x→∞ for 0<L<∞ and p > 0.

Theorem 1. (bounded relative error) The rare-event simulation algorithm for the tail

probability P (Wy > b) in the periodic GIt/GI/1 queue is unbiased and, if the service-time

distribution satisfies condition (34), then the rare-event simulation algorithm produces rel-

ative error that is uniformly bounded in b, just as for the stationary GI/GI/1 model, pro-

vided that the conditions for the rare-event simulation in the GI/GI/1 model are imposed

so that the estimates are unbiased with bounded relative error.

Proof. The unbiasedness follows from (31). Lemma 3 allows us to focus on RτRb
. The

remaining result parallels Theorem XIII.7.1 in Asmussen (2003) for the GI/GI/1 model,

which draws on Theorems XIII.5.1-3. Just as SτSb
= b+YS(b), where YS(b) is the overshoot

of b upon first passage to b in the random walk {Sn}, so is RτRb
= b+ YR(b), where YR(b)

is the overshoot of b upon first passage to b in the sequence {Rn}. The results for the

stationary case are based on the well developed theory for that overshoot, which depend

on the random walk structure. In contrast, less is known for {Rn}. However, we do see

from (29) that the overshoot can be regarded as an excess-distribution of the last service

time. Thus, under the extra condition (34), we can again apply the proof in Asmussen

(2003), using

e−kθ∗b ≥Eθ∗[e
−kθ∗R

τR
b ]≥ e−kθ∗bEθ∗[e

−kθ∗YR(b)]≥ ce−kθ∗b

for 0< c< 1, where c=E[e−kθ∗Z ], P (Z > x) =Gc(x), x≥ 0, and k is a positive integer.

4.5. The Mean and Variance

We now show how tail-integral representations of the mean and higher moments on p. 150

of Feller (1971) can be exploited to obtain corresponding rare-event simulations of these

related quantities. Recall that, for any nonnegative random variable X , the mean can be

expressed as

E[X ] =

∫ ∞

0

P (X > t)dt, (37)
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while the corresponding representation of the pth moment for any p > 1 is

E[Xp] =

∫ ∞

0

ptp−1P (X > t)dt. (38)

To obtain a finite algorithm, it is natural to approximate the integrals for the mean and

the second moment by finite sums plus a tail approximation, i.e.,

E[Wy] ≈
n∑

k=0

(P (Wy > kδ)δ)+
P (Wy >nδ)

θ∗

E[W 2
y ] ≈

n∑
k=0

(2P (Wy > kδ)kδ)+ 2P (Wy >nδ)(
nδ

θ∗
+

1

(θ∗)2
). (39)

In each case, the second term is based on applying the tail integral formula over [nδ,∞)

with the approximation

P (Wy >nδ+x)≈ P (Wy >nδ)e
−θ∗x (40)

and integrating.

To understand how to choose the discretization parameter δ in (39), suppose that P (W >

t) = ae−θ∗t. In that case, the infinite sum for the mean can be expressed as

∞∑
k=0

aδe−θ∗kδ =
a

θ∗

(
1+ θ∗

δ

2
+O(δ2)

)
as δ ↓ 0,

so that the relative error for the mean is θ∗(δ/2) + O(δ2). Similarly, the corresponding

calculation for the second moment indicates an asymptotic relative error proportional to

θ∗δ. The subsequent truncation approximations involving n imposes no additional error,

provided that the tail is exponential, which is likely to hold in view of §3.2. Thus, the
truncation is good provided that approximation (40) is good, which can be checked with

the algorithm.

In closing, we remark that because θ∗(ρ) tends to be of order 1−ρ as ρ ↑ 1, as explained
in §2.2 of Ma and Whitt (2016), we can maintain fixed relative error in the discretization

if we let δ be inversely proportional to 1− ρ or θ∗(ρ) as ρ ↑ 1. That can be useful because

otherwise the computational complexity increases as ρ increases, as we show in the next

sections. We illustrate letting δ increase with increasing ρ in Table 10.
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4.6. The Algorithm

This exponential tilting algorithm to estimate tail probabilities P (Wy > b) in the GIt/GI/1

queue is based on equation (31) with the following steps. (We elaborate on Steps 4 and 5

in Ma and Whitt (2016).) Without loss of generality, we assume service rate is μ= 1 and

thus λ̄= ρ.

Step 1. Before we conduct the simulation, we first construct a table of the inverse

cumulative arrival-rate function ρΛ̃−1
y , i.e., the inverse of the reverse-time cumulative

arrival-rate function Λ̃y in (3) scaled by ρ, for each time yc in the cycle to be considered.

For that purpose, we use Algorithm 1 in Ma and Whitt (2015). That algorithm constructs

an approximation Jy to the inverse function ρΛ̃−1
y for one cycle from the interval [0, c] to

the interval [0, c]. This table is the same for a fixed y no matter what value ρ takes, which

will be used for efficiently calculating Λ̃−1
y later. The computational complexity has shown

to be of order O(c/ε), where c is the length of a cycle of the periodic arrival-rate function

and ε is an allowed error tolerance.

Step 2. Again, before we conduct the simulation, we determine the required number

of partial sums needed in each replication, which we denote by ns. Note that we need

this step because Matlab is much faster in vector operations than in loops. However, if

another software is used to implement this algorithm, we can skip this step and generate

exponentially twisted service times and interarrival times one by one in a loop until the hit-

ting time τRb is reached. Given the largest b under consideration, we estimate the expected

number byms ≡ b/Eθ∗[Vk−ρ−1Uk] by approximating the sum by Brownian motion which is

asymptotically correct as b gets large, e.g. by §5.7.5 of Whitt (2002). If we use a Brownian

motion approximation for the random walk, then we can get that the approximate mean

and variance by applying Theorems 5.7.13 and 5.7.9 of Whitt (2002). For the canonical

Brownian motion in Theorem 5.7.13, the variance of the first passage time is equal to

the mean, but in general the ratio of the variance to the mean is proportional to the scv

c2X ≡ V ar(X)/E[X ]2. Hence, we use ns =max{C,Lms}, where C is a minimum number

like 100 and L is a safety-factor multiplier to account for the stochastic variability, which

might be taken to be simply 10, but could be constructed more carefully. The largest value

of b will depend on the case. If we want to treat multiple cases at once for simulation

efficiency, we need to determine the largest required value of ns. If ms is large, then it is

natural to use ns =ms +5
√
c2Xms instead of ns = 10ms, because then 5

√
c2Xms is about 5

standard deviations, which should be sufficient, and beneficial if 5
√
c2Xms << (L− 1)ms.
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Step 3. As the first part of the actual stochastic simulation, for each replication we now

generate the required random vectors of tilted interarrival times and service

times; For each replication, generate Ṽ ≡ (V1, ..., Vn) and ρ
−1Ũ ≡ (ρ−1U1, ..., ρ

−1Un) where

n= ns from step 2 above, Vk are i.i.d. random variables from F θ∗
V , the exponentially tilted

distribution of Vk with parameter θ∗ and ρ−1Uk i.i.d. from F−θ∗
ρ−1U , the exponentially tilted

distribution of ρ−1Uk with parameter −θ∗. The distributions of Vk and Uk under the tilted

probability measure Pθ∗ were discussed in §4.1.
Step 4. Using vector operations, we calculate the associated vectors of partial sums

and transformed partial sums. Use Algorithm 2 in Ma and Whitt (2015) to calculate

the time-transformed arrival times.

Step 5. Use (31) to calculate the tail probability P(Wy > b). If ns is not large

enough to reach hitting times τRb , we repeat Step 3 to generate additional vectors of Ṽ and

ρ−1Ũ and repeat Step 4 to calculate additional partial sums and transformed partial sums.

We treat the cases of the tail probability for a single value of b differently from multiple

values of b, as required when we estimate moments. For multiple values of b, we use one

loop to find all stopping times at each element of the vector b.

Step 6. We run the algorithm for N i.i.d. replications. Estimate P (Wy > b), EWy

and EW 2
y by the sample averages over the N replications. We estimate the associated

confidence intervals in the usual way, using the Gaussian distribution if N is large enough

and the Student-t distribution otherwise.

In conclusion, we point out that there is flexibility in the order of the steps specified

above. We can re-use random variables if we generate the random vectors in an early step.

We can avoid storage problems if we perform calculations for each replication separately.

As usual, there is a tradeoff in storage requirements and computation efficiency.

4.7. Computational Complexity and Running Times

We implemented the algorithm using matlab on a desktop computer. All examples were

for the sinusoidal arrival-rate function λ in (4) with associated reverse-time cumulative

arrival-rate function Λ̃y in (6). Because we used matlab, it was important to use vector

calculations in step 3 to avoid loops.

We now specify the computational complexity of the algorithm above. Given the

inverse function table for Λ̃−1
y computed in advance using the algorithm in Ma and Whitt

(2015), the remaining algorithm has an approximate linear computational complexity of
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O(b/Eθ∗[Vk − ρ−1Uk]), Specifically for the Mt/M/1 model, the computational complexity

is O(bρ/(1− ρ)), being directly proportional to b and inversely proportional to 1− ρ. This
can be made precise as b ↑∞ or as ρ ↑ 1, and presumably in some joint limit as b/(1−ρ) ↑,
but we do not do that here. For b large or for ρ large, we can perform asymptotics to make

the following approximations valid.

The hitting time τb of the random walk Sn as defined in (30) has expectation E(τb) =

b/(Eθ∗(Vk − ρ−1Uk)) by approximating Sn by a Brownian motion, for b that is very large

compared to the step size of the random walk. Now consider the hitting time τb of Rn as

defined in (30). Since the average arrival rate λ̄= ρ, the expected value of this hitting time

is approximately the same as that for Sn.

When both Vk and ρ−1Uk are exponential random variables with rates 1 and ρ respec-

tively, under the new measure θ∗, they are still exponential with rates ρ and 1 respectively.

Thus b/Eθ∗(Vk − ρ−1Uk) = b/(1/ρ− 1)= bρ/(1− ρ).

It can be advantageous to estimate the tail probabilities P (Wy > b) for multiple values

of b simultaneously. This can be done for each b by keeping track of the passage times for

them while considering the largest value of b. This is very useful when we want to plot the

cdf or its probability density function (pdf), or when we want to calculate the mean.

We now describe our experiments with running times on a desktop computer. Before

conducting the simulation, we did step 1, constructing the table of the inverse function

ρΛ̃−1
y in one cycle, which takes computational time of O(c/ε) =O(1/γε) by Theorem 3.1

of Ma and Whitt (2015), where c is the cycle length of the arrival rate function, γ is the

parameter in the sinusoidal arrival-rate function and ε is the error bound we choose for

the inverse function table. The longest cycle we consider has γ = 0.00025 (for (42) with

ρ= 0.99), or c= 25,120. For ε= 10−4, it took 0.08 seconds to form the table needed for a

single value of y.

In each replication, we can quickly determine the required length of the random variable

vector, generate the vectors of random variables and calculate the partial sums, which are

steps 2 to 4. The most time is required for step 5, searching for the stopping time for one

b, or for all stopping times for a long vector of b. When we do the search for one b, the

computational time is O(b/(Eθ∗[Vk−ρ−1Uk]), which is the approximate expected stopping

time. When we do this for a long vector of b, we use a big loop which takes time linear in

the maximum stopping time and the length of vector b, i.e., O(max(b)/(Eθ∗[Vk−ρ−1Uk]+
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length(b)). Specifically, for the Mt/M/1 queue, the computational times are O(bρ/(1− ρ)

and O(max(b)ρ/(1− ρ) + length(b)) respectively. For example, in Mt/M/1 queue, when

ρ = 0.8, we choose max(b) = log(1000)/θ∗ = log(1000)/(1− ρ), δ = 0.0002/(1− ρ), then

maximum stopping time O(max(b)ρ/(1− ρ)) is negligible compared to the length of the

vector b. The first part of time increases as ρ increases while the second part does not

depend on ρ as both the largest b and δ are inversely proportional to (1− ρ). In this case,

when we did 40,000 replications, the run time was 127 seconds on the desktop to find all

stopping times, whereas it took about 10 seconds to find one stopping time for the largest

b.

5. Simulation Examples

We now give examples to illustrate the new simulation algorithm. All our examples are

for the sinusoidal arrival-rate function in (4) with parameter triple (λ̄, β, γ). More results

appear in the online supplement.

5.1. Estimating the Tail Probabilities P (Wy > b)

We start by illustrating the efficiency of the rare-event simulation estimator of the tail

probability P (Wy > b), which gets exponentially small as b increases, and thus is pro-

hibitively hard to estimate accurately by direct simulation. Table 2 shows that the relative

errors of simulation estimates of P (Wy > b) for the Mt/M/1 model in several cases are

approximately independent of b. That property held in all models considered.

In particular, Table 2 shows estimates of p̂≡ P (Wy > b)≡Aye
−θ∗b and the components

Ay and e−θ∗b for the special case y = 0.0 based on 5000 i.i.d. replications. Table 2 also

shows estimates of the standard error (s.e.) of p̂, the upper and lower bounds of the 95%

confidence interval (CI), and the relative error (r.e.), which is the s.e. divided by the

estimate of the mean. For Table 2, we used the arrival-rate function (4) with λ̄= 1, and

E[V1] = 0.8, so that ρ= 0.8. We let β = 0.2 and consider three values of γ: 10, 1 and 0.1,

making cycle lengths of 0.628, 6.28 and 62.8. The rapid fluctuation with γ = 10 makes

the arrival process very similar to a homogeneous Poisson process, because the cumulative

arrival-rate function approaches a linear function; see Theorem VIII.4.10 in Jacod and

Shiryaev (1987), Problem 1 on p. 360 of Ethier and Kurtz (1986) and Whitt (2016). We

also simulated the M/M/1 model with β = 0 to verify simulation correctness.
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Table 2 shows that the rare-event simulation is effective for estimating P (W0 > b),

because the relative error is approximately independent of b for each γ, ranging from about

0.0029 for γ = 10 to about 0.0055 for γ = 0.1.

Table 2 Estimates of p̂≡P (Wy > b)≡Aye
−θ∗b in the Mt/M/1 model with sinusoidal arrival-rate function in (4)

as a function of γ and b for: ρ= 0.8, λ̄= 1, μ=1.25 and β = 0.2 based on 5000 replications.

b p̂ exp(−θ∗b) A0(b) s.e. 95% CI (lb) (ub) r.e.
γ =10 10 0.0654 0.0821 0.797 1.87E-04 0.0651 0.0658 0.00286

20 0.00537 0.00674 0.797 1.55E-05 0.00534 0.00540 0.00289
40 3.61E-05 4.54E-05 0.795 1.05E-07 3.59E-05 3.63E-05 0.00290
80 1.64E-09 2.06E-09 0.796 4.82E-12 1.63E-09 1.65E-09 0.00294

γ =1 10 0.0628 0.0821 0.765 1.87E-04 0.0624 0.0632 0.00298
20 0.00516 0.00674 0.766 1.51E-05 0.00513 0.00519 0.00292
40 3.49E-05 4.54E-05 0.769 1.00E-07 3.47E-05 3.51E-05 0.00287
80 1.58E-09 2.06E-09 0.767 4.65E-12 1.57E-09 1.59E-09 0.00294

γ =0.1 10 0.0413 0.0821 0.503 2.33E-04 0.0409 0.0418 0.00565
20 0.00360 0.00674 0.535 1.98E-05 0.00356 0.00364 0.00550
40 2.50E-05 4.54E-05 0.551 1.37E-07 2.47E-05 2.53E-05 0.00548
80 1.12E-09 2.06E-09 0.545 6.20E-12 1.11E-09 1.14E-09 0.00552

5.2. Unified Numerical Results Via Heavy-Traffic Scaling

We produce unified numerical results by exploiting heavy-traffic scaling. In particular, we

scale the arrival rate function so that the performance measures have heavy-traffic limits

as ρ ↑ 1, which we explain in §6. In the special case of (4), we consider an arrival-rate

function scaled by the overall traffic intensity ρ, specifically,

λρ(t) = ρ+(1− ρ)ρβ sin (γ(1− ρ)2t), t≥ 0, (41)

so that the cycle length in model ρ is cρ = c∗(1− ρ)−2 = 2π/(γ(1− ρ)2). After scaling, the

cycle length is c∗ = 2π/γ.

When we consider the periodic steady-state workload, we include spatial scaling by 1−ρ
Hence, to have asymptotically convergent models, we should choose parameter four-tuples

(λ̄ρ, βρ, γρ, bρ) indexed by ρ, where

(λ̄ρ, βρ, γρ, bρ) = (ρ, (1− ρ)β, (1− ρ)2γ, (1− ρ)−1b), (42)

where (β, γ, b) is a feasible base triple of positive constants with β < 1. (We must constrain

βρ ≤ 1 so that λρ(t)≥ 0 for all t.) Hence, we have the ρ-dependent constraint ρb = (1−ρ)β ≤
1. There is no problem if β ≤ 1, but we may want to consider β > 1. In that case, βρ is

only well defined for ρ≥ 1− (1/β). For example, if β = 5.0, then we require that ρ≥ 0.8.
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Example 1. (Using Mt/M/1 to estimate the performance of RPBM)

To illustrate how we can apply simulations of the Mt/M/1 model with increasing traffic

intensities, let the base parameter triple be (β, γ, b) = (1.0,2.5,4.0). Then the parameter

4-tuple for ρ= 0.8 is

(λ̄ρ, βρ, γρ, bρ) = (0.8, (1− 0.8)β, (1− 0.8)2γ, (1− 0.8)−1b) = (0.8,0.2,0.1,20.0). (43)

The associated parameter 4-tuple for ρ= 0.9 is (0.90,0.10,0.025,40.00).

Let W be the steady-state workload in the stationary M/M/1 model with the same

scaling, which has an exponential distribution except for an atom 1−ρ at the origin. Table

3 shows estimates of the ratio P (Wy > bρ)/P (W > bρ) for 5 different values of 1−ρ, where
we successively divide 1−ρ by 2, and 8 different values of the position y within the cycle in

theMt/M/1 model with sinusoidal arrival-rate function in (41) with the parameter 4-tuple

in (42) using the base parameter triple (β, γ, b)= (1.0,2.5,4.0). (The paramter 4-tuples for

ρ= 0.8 and ρ= 0.9 are shown above.)

Table 3 Comparison of the ratios P (Wy > bρ)/P (W > bρ), where W is for the stationary model, for 5 different

values of 1− ρ and 8 different values of the position y within the cycle in the Mt/M/1 model with sinusoidal

arrival-rate function in (41) with the parameter 4-tuple in (42) using the base parameter triple

(β,γ, b) = (1.0,2.5,4.0).

y 1− ρ= 0.16 1− ρ= 0.08 1− ρ= 0.04 1− ρ= 0.02 1− ρ= 0.01
0.000 0.96364 0.96523 0.96424 0.96357 0.96344
0.125 0.97619 0.97686 0.97504 0.97493 0.97482
0.250 1.00456 1.00450 1.00255 1.00251 1.00305
0.375 1.03278 1.03264 1.03035 1.03152 1.03152
0.500 1.04565 1.04470 1.04278 1.04346 1.04405
0.625 1.03213 1.03096 1.03230 1.03150 1.03204
0.750 1.00225 1.00404 1.00425 1.00277 1.00241
0.875 0.97371 0.97696 0.97629 0.97457 0.97545

avg diff 0.00037 0.00112 0.00015 -0.00019
avg. abs. dif 0.00099 0.00121 0.00081 0.00039

rmse 0.00116 0.00134 0.00096 0.00049

Table 3 shows that, for each fixed y, all estimates as a function of ρ serve as reasonable

practical approximations for the others as well as for the RPBM limit developed in §6. The
convergence in Table 3 is summarized by showing the average difference, average absolute

difference and root mean square error (rmse) of the entry with the corresponding estimate

for ρ = 0.99 in the final column, taken over 40 evenly spaced values of y in the interval

[0,1).
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5.3. Hyperexponential Examples

We now present results from simulation experiments with nonexponential service times

and interarrival times in the base process N . In particular, we work with hyprexponential

(H2) examples.

Tables 4, 5 and 6 show estimates of P (Wy > b) for theMt/M/1,Mt/H2/1 and (H2)t/M/1

models, respectively. All three tables show results for y = 0.0 and y = 0.5 as a function of

1− ρ with base parameter triple (β, γ, b) = (1,2.5,4) in (42) based on 40,000 replications.

The mean service time is fixed at μ−1 =1, so that λ̄= ρ in all cases. The scv of the H2 cdf

is always c2 = 2. The scaling in (42) is performed as a function of ρ in order to produce

nearly stable results in each row.

We start by showing the estimate of the tail probability p̂≡ P (Wy > b)≡Aye
−θ∗b. Then

we show the corresponding estimates for the components e−θ∗b and Ay ≡ eθ
∗bp̂. We then

show the lower and upper bounds in (23) of Corollary 3. We then show the s.e., the

associated 95% CI bounds (lb and ub), and the r.e. In all cases the relative error is less

than 0.0015 or 0.15%.

For the two cases y= 0.0 and y=0.5, we also display estimates of scaled tail probabilities,

P (Wy > b)/P (W > b), where P (W > b) is the corresponding estimate for the stationary

model. We do this because we seek estimates that are more stable as functions of 1−ρ, and
thus support approximations for the limiting RPBM tail probability, which is the scaled

limit as ρ ↑ 1. In Tables 5 and 6 for the Mt/H2/1 and (H2)t/M/1 models we also show the

alternative ratios P (Wy > b)/ρ; we do not show that for Mt/M/1 in Table 4 because the

ratios are proportional, because P (W > b) = ρe−θ∗b for M/M/1 and θ∗(ρ) = 1− ρ. Tables

5 and 6 show that greater stability is achieved with the ratio P (Wy > b)/(W >b).

Tables 4, 5 and 6 strongly support the heavy-traffic limit in Theorem 2, establishing

convergence to RPBM as ρ ↑ 1. The stability of the scaled quantities is especially clear

through the ratios P (Wy > b)/P (W > b). For the ratios at the bottom of the tables, we

also show the difference and absolute difference of the value with value in the final column

of the table.

A close examination of Tables 5 and 6 show that there is a consistent sign in the differ-

ences in the second-to-last row, being positive for the Mt/H2/1 in Table 5 and negative

for the (H2)t/M/1 model Table 6. These consistent signs in Tables 5 and 6 suggest that

the two cases Mt/H2/1 and (H2)t/M/1 serve as one-sided bounds on RPBM. We provide
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Table 4 Simulation estimates of p̂≡ P (Wy > b)≡Aye
−θ∗b in the Mt/M/1 model for y =0.0 and y = 0.5 as a

function of 1− ρ with base parameter triple (β,γ, b) = (1,2.5,4) in (42) based on 40,000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01
p̂ for y= 0.0 0.011053 0.012192 0.012814 0.013122 0.013263
e−θ∗b 0.0183 0.0183 0.0183 0.0183 0.0183
Ay 0.604 0.666 0.700 0.716 0.724
A−

y LB in (23) 0.377 0.413 0.431 0.440 0.445
A+

y UB in (23) 0.840 0.920 0.960 0.980 0.990
s.e. 1.75E-05 1.69E-05 1.71E-05 1.73E-05 1.74E-05
95% CI (lb) 0.01102 0.01216 0.01278 0.01309 0.01323
(ub) 0.01109 0.01223 0.01285 0.01316 0.01330
r.e. 0.001582 0.001387 0.001333 0.001319 0.001313
P (Wy > b)/P (W >b) 0.71845 0.72356 0.72879 0.73103 0.73144
diff w.r.t. last column 0.01298 0.00788 0.00264 0.00041 0.00000
abs diff 0.01298 0.00788 0.00264 0.00041 0.00000
p̂ for y= 0.5 0.025888 0.028396 0.029551 0.030110 0.030430
e−θ∗b 0.0183 0.0183 0.0183 0.0183 0.0183
Ay 1.413 1.550 1.613 1.644 1.661
A−

y LB in (23) 0.840 0.920 0.960 0.980 0.990
A+

y UB in (23) 1.869 2.047 2.137 2.181 2.203
s.e. 3.87E-05 3.74E-05 3.80E-05 3.86E-05 3.89E-05
95% CI (lb) 0.02581 0.02832 0.02948 0.03003 0.03035
(ub) 0.02596 0.02847 0.02963 0.03019 0.03051
r.e. 0.001496 0.001318 0.001286 0.001281 0.001279
P (Wy > b)/P (W >b) 1.68266 1.68517 1.68068 1.67751 1.67821
diff w.r.t. last column -0.00445 -0.00696 -0.00247 0.00071 0.00000
abs diff 0.00445 0.00696 0.00247 0.00071 0.00000

Table 5 Simulation estimates of p̂≡ P (Wy > b)≡Aye
−θ∗b in the Mt/H2/1 model for y= 0.0 and y= 0.5 as a

function of 1− ρ with base parameter triple (β,γ, b) = (1,2.5,4) in (42) based on 40,000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01
θ∗(ρ) 0.101 0.0519 0.0263 0.0132 0.00664
p̂ for y= 0.0 0.050594 0.052946 0.054024 0.054544 0.054904
e−θ∗b 0.0807 0.0747 0.0720 0.0707 0.0701
Ay 0.627 0.708 0.750 0.771 0.783
A−

y LB in (23) 0.477 0.532 0.560 0.573 0.580
A+

y UB in (23) 0.789 0.894 0.947 0.974 0.987
s.e. 7.49E-05 5.64E-05 5.13E-05 5.03E-05 5.01E-05
95% CI (lb) 0.05045 0.05284 0.05392 0.05445 0.05481
(ub) 0.05074 0.05306 0.05412 0.05464 0.05500
r.e. 0.001480 0.001065 0.000950 0.000923 0.000913
P (Wy > b)/P (W >b) 0.79534 0.79246 0.79200 0.79200 0.79377
diff w.r.t. last column -0.00158 0.00131 0.00177 0.00177 0.00000
abs diff 0.00158 0.00131 0.00177 0.00177 0.00000
Ay/ρ 0.74662 0.76999 0.78125 0.78680 0.79107
diff w.r.t. last column 0.04445 0.02108 0.00982 0.00427 0.00000
abs diff 0.04445 0.02108 0.00982 0.00427 0.00000
p̂ for y= 0.5 0.086646 0.092721 0.095707 0.096711 0.097186
e−θ∗b 0.0807 0.0747 0.0720 0.0707 0.0701
Ay 1.074 1.241 1.329 1.367 1.386
A−

y LB in (23) 0.789 0.894 0.947 0.974 0.987
A+

y UB in (23) 1.305 1.502 1.603 1.654 1.679
s.e. 1.25E-04 9.42E-05 8.49E-05 8.28E-05 8.28E-05
95% CI (lb) 0.08640 0.09254 0.09554 0.09655 0.09702
(ub) 0.08689 0.09291 0.09587 0.09687 0.09735
r.e. 0.001442 0.001016 0.000887 0.000856 0.000852
P (Wy > b)/P (W >b) 1.36208 1.38777 1.40307 1.40428 1.40505
diff w.r.t. last column 0.04297 0.01728 0.00198 0.00077 0.00000
abs diff 0.04297 0.01728 0.00198 0.00077 0.00000
Ay/ρ 1.27865 1.34842 1.38403 1.39507 1.40028
diff w.r.t. last column 0.12163 0.05186 0.01625 0.00521 0.00000
abs diff 0.12163 0.05186 0.01625 0.00521 0.00000
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Table 6 Simulation estimates of p̂≡P (Wy > b)≡Aye
−θ∗b in the (H2)t/M/1 model for y =0.0 and y =0.5 as a

function of 1− ρ with base parameter triple (β,γ, b) = (1,2.5,4) in (42) based on 40,000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01
θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669
p̂ for y= 0 0.038876 0.046701 0.050799 0.053020 0.053985
e−θ∗b 0.0593 0.0645 0.0670 0.0682 0.0689
Ay 0.655 0.724 0.758 0.777 0.784
Ay LB 0.477 0.532 0.559 0.573 0.580
Ay UB 0.840 0.920 0.960 0.980 0.990
s.e. 4.36E-05 4.56E-05 4.73E-05 4.88E-05 4.95E-05
95% CI (lb) 0.03879 0.04661 0.05071 0.05292 0.05389
(ub) 0.03896 0.04679 0.05089 0.05312 0.05408
r.e. 0.001123 0.000976 0.000932 0.000920 0.000917
P (Ay > b)/P (A> b) 0.78051 0.78763 0.78988 0.79280 0.79187
diff 0.01136 0.00424 0.00199 -0.00093 0.00000
abs diff 0.01136 0.00424 0.00199 0.00093 0.00000
Ay/ρ 0.78015 0.78747 0.78988 0.79279 0.79186
diff 0.01171 0.00439 0.00198 -0.00094 0.00000
abs diff 0.01171 0.00439 0.00198 0.00094 0.00000
p̂ for y= 0.5 0.071241 0.084111 0.090923 0.094201 0.096045
e−θ∗b 0.0593 0.0645 0.0670 0.0682 0.0689
Ay 1.201 1.305 1.357 1.380 1.395
Ay LB 0.840 0.920 0.960 0.980 0.990
Ay UB 1.477 1.592 1.648 1.677 1.691
s.e. 7.61E-05 7.71E-05 7.93E-05 8.13E-05 8.21E-05
95% CI (lb) 0.07109 0.08396 0.09077 0.09404 0.09588
(ub) 0.07139 0.08426 0.09108 0.09436 0.09621
r.e. 0.001068 0.000917 0.000873 0.000863 0.000855
P (Ay > b)/P (A> b) 1.43030 1.41856 1.41378 1.40857 1.40881
diff -0.02149 -0.00975 -0.00497 0.00024 0.00000
abs diff 0.02149 0.00975 0.00497 0.00024 0.00000
Ay/ρ 1.42963 1.41826 1.41378 1.40856 1.40878
diff -0.02085 -0.00948 -0.00500 0.00023 0.00000
abs diff 0.02085 0.00948 0.00500 0.00023 0.00000

strong theoretical support for this idea in Theorem 1 and Corollary 1 of Ma and Whitt

(2016). Those results show that the one-sided bounds apply exactly to the asymptotic

decay rates θ∗, which is the dominant part of the actual tail probability. For the cases

considered in Table 6, it is natural to wonder if the refinement of the rare-event algorithm

for the first non-exponential interarrival time makes much difference. We show that it does

not for these cases with higher ρ in §4.6 of Ma and Whitt (2016).

Tables 4, 5 and 6 show that the bounds A−
y and A+

y in (23) are not too close, and thus

not good approximations for the actual Ay. Experiments show that the average of the two

bounds is not a consistently good approximation for Ay either.

Simulation results over a wide range of y show that P (Wy > b) consistently increases

from a minimum at y = 0 to a maximum at y = 0.5 and then decreases to back to the

minimum at y= 1, with The values for y= 1/4 and y= 3/4 being approximately equal to

P (W > b). It remains to establish theoretical supporting results.
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5.4. Estimating the Moments of Wy

We now apply the extension of the algorithm in §4.5 to estimate the first two moments

of Wy, reporting the estimated mean and standard deviation. In Table 7 we first show

preliminary results for the stationary M/M/1 model, so that we can judge the algorithm

Table 7 Estimated mean E[W ] and standard deviation SD(W ) as a function of 1− ρ for five cases of the

stationary M/M/1 queue: μ=1, λ̄= ρ

1− ρ 0.16 0.08 0.04 0.02 0.01
ns in (39) 40,000 40,000 40,000 40,000 40,000
δ in (39) 0.001 0.001 0.001 0.001 0.001
largest b 41 86 173 345 691
P (W > 0) 0.8396 0.9201 0.9601 0.9799 0.9900
exact 0.8400 0.9200 0.9600 0.9800 0.9900
s.e. of P (W > 0) 6.86E-04 3.71E-04 1.93E-04 9.73E-05 4.98E-05
%95 CI of P (W > 0) [0.8383, 0.8410] [0.919, 0.921] [0.9598, 0.9605] [0.9797, 0.9801] [0.9899, 0.9901]
E[W ] 5.249 11.499 23.999 49.000 99.000
exact 5.250 11.500 24.000 49.000 99.000
s.e. of E[W ] 1.59E-03 1.27E-03 9.51E-04 6.93E-04 4.94E-04
%95 CI of E[W ] [5.246, 5.252] [11.497, 11.502] [23.997, 24.001] [48.999, 49.001] [98.999, 99.001]
E[W |W > 0] 6.251 12.497 24.995 50.003 100.005
%95 CI of E[W |W > 0] [6.238,6.265] [12.485, 12.510] [24.983, 25.007] [49.992, 50.014] [99.994, 100.015]
E[W 2] 65.624 287.494 1199.982 4899.957 19,800.03
exact 65.625 287.500 1200.000 4900.000 19,800.00
s.e. of E[W 2] 1.50E-02 2.33E-02 3.40E-02 4.92E-02 7.04E-02
%95 CI of E[W 2] [65.595, 65.654] [287.449, 287.540] [1199.92, 1200.05] [4899.86, 4900.05] [19,799.89, 19,800.17]
SD[W ] 6.170 12.460 24.981 49.990 99.995
exact 6.1695 12.450 24.980 49.990 99.995
P (W > 0)/ρ 0.9995 1.0002 1.0001 0.9999 1.0000
exact 1.0000 1.0000 1.0000 1.0000 1.0000
(1− ρ)E[W ] 0.8398 0.9200 0.9600 0.9800 0.9900
(1− ρ)SD[W ] 0.9873 0.9968 0.9992 0.9998 0.9999
(1− ρ)E[W ]/ρ 0.9998 0.9999 0.9999 1.0000 1.0000
(1− ρ)SD[W ]/ρ 0.8293 0.9171 0.9593 0.9798 0.9899
(1− ρ)E[W |W > 0] 1.0002 0.9998 0.9998 1.0001 1.0000
(1− ρ)SD[W |W > 0] 1.0002 1.0000 1.0000 1.0000 1.0000

against known exact results. For ease of comparison, we show the corresponding known

exact values for P (W > 0), E[W ], E[W 2] and SD(W ). The first section of Table 7 with

three rows shows the algorithm parameters. The final seven rows of Table 7 are included

to show alternatives ways of scaling aimed at achieving stable values across all values of

1− ρ. In this case, knowing that W has an exponential distribution except for an atom of

mass 1− ρ at the origin, we are not surprised to see that the final two rows provide the

best scaling. We will use those rows in the following tables for time-varying arrival-rate

functions.

Tables 8 and 9 show corresponding estimates of the time varying mean E[Wy] and

standard deviation SD(Wy) for the special case of y = 0.5 for associated Mt/M/1 model

with arrival-rate function in (4) for base parameter pairs (β, γ) = (1,2.5) and (β, γ) =

(4,2.5) using the scaling convention in (42). Both have cycle length 2π/γ, which equals
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6.28/0.1= 62.8 for ρ= 0.8. The higher relative amplitude in Table 9 leads to much larger

mean values at y = 0.5, which tends to produce the largest values in the cycle. As can

be seen from the online supplement, much lower values occur for y = 0, which tends to

produce the least values.

Table 8 Estimated mean E[Wy] and standard deviation SD(Wy) as a function of 1− ρ for five cases of the

Mt/M/1 queue at y= 0.5: μ=1, λ̄= ρ and base parameter pair (β,γ) = (1,2.5)

1− ρ 0.16 0.08 0.04 0.02 0.01
ns in (39) 40,000 40,000 40,000 40,000 40,000
δ in (39) 0.001 0.001 0.001 0.001 0.001
largest b 41 86 173 345 691
P (Wy > 0) 0.8801 0.9411 0.9714 0.9851 0.9930
s.e. of P (Wy > 0) 9.85E-04 6.54E-04 4.51E-04 2.92E-04 2.19E-04
%95 CI of P (Wy > 0) [0.8782, 0.8820] [0.9399, 0.9424] [0.9705, 0.9723] [0.9845, 0.9856] [0.9926, 0.9934]
E[Wy] 6.839 14.927 31.194 63.667 128.411
std of E[Wy] 6.42E-03 1.20E-02 2.36E-02 4.69E-02 9.30E-02
%95 CI of E[Wy] [6.827, 6.852] [14.903, 14.950] [31.147, 31.240] [63.575, 63.759] [128.228, 128.593]
E[Wy|Wy > 0] 7.771 15.860 32.113 64.632 129.315
%95 CI of E[Wy|Wy > 0] [7.740, 7.803] [15.814, 15.907] [32.036, 32.189] [64.501, 64.763] [129.075, 129.554]
E[W 2

y ] 97.057 427.685 1795.344 7344.665 29,673.77
std of E[W 2

y ] 7.81E-02 0.302 1.207 4.829 19.314
%95 CI of E[W 2

y ] [96.90, 97.21] [427.09, 428.28] [1793.0, 1797.7] [7335.2, 7354.13] [29,636, 29,712]
SD[Wy] 7.091 14.314 28.676 57.369 114.824
P (Wy > 0)/ρ 1.0478 1.0230 1.0119 1.0052 1.0030
(1− ρ)E[Wy|Wy > 0] 1.2434 1.2688 1.2845 1.2926 1.2931
(1− ρ)SD[Wy|Wy > 0] 1.1301 1.1395 1.1433 1.1452 1.1472

Table 9 Estimated mean E[Wy] and standard deviation SD(Wy) as a function of 1− ρ for five cases of the

Mt/M/1 queue at y =0.5: μ= 1, λ̄= ρ and base parameter pair (β,γ) = (4,2.5) having larger relative amplitude

1− ρ 0.16 0.08 0.04 0.02 0.01
ns in (39) 40,000 40,000 40,000 40,000 40,000
δ in (39) 0.001 0.001 0.001 0.001 0.001
largest b 41 86 173 345 691
P (Wy > 0) 0.9728 0.9883 0.9967 0.9965 0.9993
s.e. of P (Wy > 0) 3.61E-03 2.69E-03 2.05E-03 1.16E-03 8.52E-04
%95 CI of P (Wy > 0) [0.9657, 0.9799] [0.9831, 0.9936] [0.9927, 1.0000] [0.9943, 0.9988] [0.9976, 1.0000]
E[Wy] 15.148 33.583 70.677 145.183 294.222
std of E[Wy] 5.58E-02 1.13E-01 2.27E-01 4.59E-01 9.15E-01
%95 CI E[Wy] [15.04, 15.26] [33.36, 33.81] [70.23, 71.12] [144.3, 146.1] [292.4, 296.0]
E[Wy|Wy > 0] 15.572 33.980 70.909 145.690 294.437
%95 CI of E[Wy|Wy > 0] [15.35, 15.80] [33.58, 34.39] [70.2, 71.6] [144.5, 147.0] [292.4, 296.7]
E[W 2

y ] 331.868 1528.127 6547.951 27,092.17 110,239.9
std of E[W 2

y ] 1.023 4.263 17.227 69.632 0.785
%95 CI of E[W 2

y ] [329.9, 333.9] [1519.8, 1536.5] [6514, 6582] [26,955, 27,228] [109,691, 110,787]
SD[Wy] 10.119 20.007 39.405 77.551 153.861
P (Wy > 0)/ρ 1.1581 1.0743 1.0383 1.0169 1.0094
(1− ρ)E[Wy|Wy > 0] 2.4915 2.7184 2.8364 2.9138 2.9444
(1− ρ)SD[Wy|Wy > 0] 1.5892 1.5830 1.5704 1.5442 1.5371

Finally, Table 10 shows estimates of the time varying mean E[Wy] and standard deviation

SD(Wy) for the special case of y = 0.5 for associated (H2)t/M/1 model with arrival-rate

function in (4) for base parameter pairs (β, γ) = (1,2.5), but here we let δ increase as 1−ρ
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decreases. Table 10 shows that the precision remains good for all ρ. (For the cases consid-

ered in Table 10, the refinement of the rare-event algorithm for the first non-exponential

interarrival time does not make too much difference, but it matters more than for Table

6, as we show in §4.6 of Ma and Whitt (2016).)

Table 10 Estimated mean E[Wy] and standard deviation SD(Wy) as a function of 1− ρ for five cases of the

(H2)t/M/1 queue at y =0.5: μ=1, λ̄= ρ and base parameter pair (β,γ) = (1,2.5).

1− ρ 0.16 0.08 0.04 0.02 0.01
θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669
ns 40,000 40,000 40,000 40,000 40,000
δ 0.001 0.002 0.004 0.008 0.016
largest b 41 86 173 345 691
P (Wy > 0) 0.8721 0.9382 0.9691 0.9853 0.9923
s.e. of P (Wy > 0) 7.36E-04 4.81E-04 3.18E-04 2.34E-04 1.51E-04
%95 CI of P (Wy > 0) [0.8707, 0.8736] [0.9373, 0.9391] [0.9685, 0.9697] [0.9848, 0.9857] [0.9920, 0.9926]
E[Wy] 9.125 20.501 43.720 88.613 179.456
std of E[Wy] 5.56E-03 1.05E-02 2.07E-02 4.07E-02 8.18E-02
%95 CI of E[Wy] [9.114, 9.135] [20.480, 20.521] [43.162, 43.243] [88.533, 88.693] [179.296, 179.616]
E[Wy|Wy > 0] 10.462 21.851 45.114 89.937 180.845
%95 CI of E[Wy|Wy > 0] [10.432, 10.492] [21.807, 21.895] [44.510, 44.651] [89.814, 90.060] [180.630, 181.061]
E[W 2

y ] 175.380 814.768 3489.720 14,425.330 58,633.918
std of E[W 2

y ] 8.65E-02 0.350 1.424 5.703 23.026
%95 CI of E[W 2

y ] [175.210, 175.549] [814.081, 815.455] [3,486.928, 3,492.511] [14,414, 14,436] [58,588, 58,679]
SD[Wy] 9.598 19.862 40.289 81.074 162.571
P (Wy > 0)/ρ 1.0383 1.0198 1.0095 1.0054 1.0023
(1− ρ)E[Wy] 1.4599 1.6401 1.7488 1.7723 1.7946
(1− ρ)SD[Wy] 1.5357 1.5889 1.6116 1.6215 1.6257
(1− ρ)E[Wy]/ρ 1.7380 1.7827 1.8216 1.8084 1.8127
(1− ρ)SD[Wy]/ρ 1.2900 1.4618 1.5471 1.5891 1.6095
(1− ρ)E[Wy|Wy > 0] 1.6739 1.7481 1.8045 1.7987 1.8085
(1− ρ)SD[Wy|Wy > 0] 1.5316 1.5818 1.5828 1.6189 1.6243

6. The Supporting Heavy-Traffic FCLT for Periodic Queues

To explain the unified numerical results in §5, we now review and extend the heavy-traffic

(HT) functional central limit theorem (FCLT) for periodic Gt/G/1 queues in Theorem 3.2

of Whitt (2014). An extension of the HT FCLT in Whitt (2014) is needed because that

HT FCLT is stated for the scaled arrival process and the scaled queue-length process, but

not the scaled workload process that we consider here. A similar argument applies to the

workload process, jointly with the other processes, but it is more natural to apply Theorem

9.3.4 of Whitt (2002) than Iglehart and Whitt (1970), because the workload process is

defined there in §9.2 essentially the same way as the workload is defined in §2.
The innovative part of Whitt (2014) is the new HT scaling in (41) to capture the impact

of the periodicity in an interesting and revealing way, as demonstrated by the tables in §5.
As shown in Whitt (2014), the periodicity has no impact on the heavy-traffic limit if this

additional scaling is not included. (That elementary observation was made earlier by Falin

(1989); the main contribution of Whitt (2014) is the new scaling.)
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6.1. The Heavy-Traffic FCLT

We assume that the rate-1 arrival and service processes N and V specified in §2 are

independent and each satisfies a FCLT. To state the result, let N̂n and Ŝv
n be the scaled

processes defined by

N̂n(t)≡ n−1/2[N(nt)−nt] and Ŝv
n(t)≡ n−1/2[

�nt�∑
i=1

Vk −nt], t≥ 0, (44)

with ≡ denoting equality in distribution and 
x� denoting the greatest integer less than

or equal to x. We assume that

N̂n ⇒ caBa and Ŝv
n ⇒ csBs in D as n→∞, (45)

where D is the usual function space of right-continuous real-valued functions on [0,∞)

with left limits and ⇒ denotes convergence in distribution, as in Whitt (2002), while Ba

and Bs are independent standard (mean 0, variance 1) Brownian motion processes (BM’s).

The assumed independence implies joint convergence in (45) by Theorem 11.4.4 of Whitt

(2002).

We emphasize that GI assumptions are not needed, but that is an important special

case. If the service times Vk are i.i.d. mean-1 random variables with variance = scv c2s,

then the limit in (45) holds with service variability parameter cs. Similarly, if the base

arrival process is a renewal process or an equilibrium renewal process with times between

renewals having mean 1 and variance = scv c2a, then the limit in (45) holds with arrival

variability parameter ca. (See Nieuwenhuis (1989) for theoretical support in the case of an

equilibrium renewal process.)

Theorem 9.3.4 of Whitt (2002) refers to the conditions of Theorem 9.3.3, which requires

a joint FCLT for the partial sums of the arrival and service processes, notably (3.9) on p.

295. That convergence follows from the FCLT’s we assumed for N and V in (45) above.

In particular, the assumed FCLT for N implies the associated FCLT for the partial sums

of the interarrival times by Theorem 7.3.2 and Corollary 7.3.1 of Whitt (2002).

We create a model for each ρ, 0< ρ< 1, by defining the arrival-rate function

λρ(t)≡ ρ+(1− ρ)λd((1− ρ)2t), t≥ 0, (46)

where λd is a periodic function with period c∗ satisfying

λ̄d ≡ 1

c∗

∫ c∗

0

λd(s)ds≡ 0. (47)
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As a regularity condition, we also require that the function λd be an element of D. As a

consequence of (46) and (47), the average arrival rate is λ̄ρ = ρ, 0< ρ< 1. Hence, (41) is a

special case of (46); see §6.3 below.

We can also work with cumulative functions and let the cumulative arrival-rate function

in model ρ be

Λρ(t)≡ ρt+(1− ρ)−1Λd((1− ρ)2t), t≥ 0, (48)

where

Λd(t)≡
∫ t

0

λd(s)ds, (49)

for λd again being the periodic function in (47). From (48)-(49), we see that the associated

arrival-rate function obtained by differentiation in (48) is (46).

The time scaling in (46) and (48) implies that the period in model ρ with arrival-rate

function λρ(t) in (46) is cρ = c∗(1− ρ)−2, where c∗ is the period of λd(t) in (47). Thus the

period cρ in model ρ is growing with ρ.

Now let Aρ(t)≡N(Λρ(t)) be the arrival process, using the cumulative arrival-rate func-

tion Λρ in (48) in place of Λ in (1). Let Qρ(t) and Wρ(t) be the associated queue length

process and workload process in the Gt/G/1 model with arrival process Aρ(t) in (46) and

service times from the fixed service process V , constructed as in §9.2 of Whitt (2002). Then

let associated scaled arrival, queue length and workload processes be defined by

Âρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t)− (1− ρ)−2t], (50)

Q̂ρ(t) ≡ (1− ρ)Qρ((1− ρ)−2t) and Ŵρ(t)≡ (1− ρ)Wρ((1− ρ)−2t), t≥ 0.

The scaled processes in (50) and the HT limit all have cycle length c∗.

The following heavy-traffic FCLT states that Âρ converges to periodic Brownian motion

(PBM), while Q̂ρ and Ŵρ converge to a common reflected periodic Brownian motion

(RPBM). To explain, let e be the identity function with e(t) = t, t ≥ 0. By a PBM, we

mean a process cB + Λ− e ≡ {cB(t) + Λd(t)− t : t ≥ 0}, where B is a BM and Λd is of

the form (49), so that the process has periodic deterministic drift λd(t)− 1. Let ψ be the

usual one-dimensional reflection map as on pp. 87, 290 and 439 of Whitt (2002). Given

that cB +Λ− e is a PBM, ψ(cB+Λ− e) is a RPBM. To state the HT FCLT, let Dk be

the k-fold product space of D with itself and let
d
= denote equality in distribution.
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Theorem 2. (heavy-traffic limit extending Whitt (2014)) If, in addition to the defini-

tions and assumptions in (44)-(50) above, the system starts empty at time 0, then

(Âρ, Q̂ρ, Ŵρ)⇒ (Xa, Z,Z) in D3 as ρ ↑ 1, (51)

where

Xa ≡ caBa+Λd − e, X ≡Xa− csBs and Z ≡ ψ(X), (52)

with Ba and Bs being independent BM’s, Λd in (49) and ca and cs being the variability

parameters in (45), so that X
d
= cxB, where cx ≡

√
c2a + c2s and B is a BM.

The joint limit for (Âρ, Q̂ρ) is established in Theorem 3.2 of Whitt (2014), which in

turn follows quite directly from Iglehart and Whitt (1970). (We remark that there is

a typographical error in the translation term on the first line of (13) in the proof of

Theorem 3.2 of Whitt (2014); it should be −(1− ρ)−2t as in equation (11) there instead

of −(1− ρ)−2ρt.) To treat the workload, we apply Theorem 9.3.4 of Whitt (2002), which

implies that the limit for Ŵρ is the same as for the limit for Q̂ρ.

Unfortunately, the periodic feature makes the RPBM complicated, so that it remains

to derive explicit expressions for its transient and periodic steady-state distributions. The

present paper contributes by developing an effective algorithm to calculate the periodic

steady-state distribution.

6.2. Approximations for the Periodic Steady State Workload

Our algorithm for the periodic steady-state distribution of RPBM calculates the periodic

steady-state distribution of the scaled workload process in a GIt/GI/1 queue for suitably

large ρ and uses Theorem 2 for justification. While that approach is intuitively reasonable,

there are steps that remain to be justified. Proper justification requires an additional limit

interchange argument, which has been done in some contexts, e.g., see Budhiraja and Lee

(2009), but here is left for a topic of future research.

Hence, we assume that those steps are justified. In particular, we assume that the work-

load process and the limiting RPBM have proper periodic steady-state distributions for

each ρ and that there is convergence in distribution of the scaled periodic steady state

workload to the periodic steady state of RPBM as ρ ↑ 1. In particular, in addition to the

limit Ŵρ ⇒Z in D as ρ ↑ 1 established in Theorem 2, we assume that

Wρ((k+ y)cρ)⇒Wρ,y(∞) in R as k→∞, (53)



Ma and Whitt: Periodic Queues
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 33

where P (Wρ,y(∞)<∞) = 1 for all ρ and y, 0<ρ< 1 and 0≤ y < 1, or, equivalently,

Ŵρ((k+ y)c∗)⇒ Ŵρ,y(∞) in R as k→∞, (54)

where P (Ŵρ,y(∞)<∞) = 1 for all ρ and y, 0<ρ< 1 and 0≤ y < 1, and

Z((k+ y)c∗)⇒Zy(∞) in R as k→∞, (55)

where P (Zy(∞) <∞) = 1 for all y, 0 ≤ y < 1. With these assumptions, our algorithm

applies to RPBM using the approximation

P (Zy(∞)>x)≈ P (Ŵρ,y(∞)>x) (56)

where ρ is chosen to be suitably large.

6.3. Application to the Sinusoidal Arrival-Rate Function

For the sinusoidal example in (4), we let

λd(t)≡ λ̄β sin (γt), t≥ 0, (57)

for λd(t) in (47), so that the cycle length is c∗ = 2π/γ. With (57) and λ̄≡ ρ, (46) becomes

(41), so that the cycle length in model ρ is cρ = c∗(1− ρ)−2 = 2π/(γ(1− ρ)2). When we

consider the periodic steady-state workload, the time scaling is gone but we still have the

spatial scaling. When the traffic intensity is ρ, we multiply by 1− ρ; i.e., we have

Ŵρ,y(∞) = (1− ρ)Wρ,y(∞). (58)

Hence, to have asymptotically convergent models, we should choose parameter four-tuples

(λ̄ρ, βρ, γρ, bρ) indexed by ρ as indicated in (42).

6.4. Approximations for the Periodic Gt/G/1 Model

To apply the heavy-traffic FCLT to generate approximations for the performance of the

periodic steady-state workload in a general periodic Gt/G/1 model (without i.i.d. assump-

tions), we assume that the assumptions in §6.1 are satisfied so that Theorem 2 is valid. We

then approximate the model by a GIt/GI/1 model which has the same HT FCLT limit

process. In other words, we approximate the underlying rate-1 arrival counting process N

by a renewal process with i.i.d. mean-1 times between renewals having scv c2a, where ca is
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the arrival process variability parameter in the assumed FCLT (45). Similarly, we approx-

imate the sequence of mean-1 service times {Vk} by a sequence of mean-1 i.i.d. random

variables with a scv equal to c2s, where cs is the service variability parameter in the assumed

FCLT (45). Both approximations are exact for GI.

To construct the specific GI arrival and service processes, we follow the approximation

scheme in §3 of Whitt (1982). We apply the same method for the interarrival times Uk

of N as we do to the service times Vk, so we only discuss the service times. If c2s ≈ 1,

then we use a mean-1 exponential (M) distribution; if c2s > 1, then we use a mean-1

hyperexponential (H2) distribution with pdf fV (x) = p1μ1e
−μ1x+p2μ2e

−μ2x, with p1+p2 =

1, having parameter triple (p1, μ1, μ2). To reduce the parameters to two (the mean and

scv), we assume balanced means, i.e., p1/μ1 = p2/μ2, as in (3.7) of Whitt (1982). If c2s < 1

and if c2s ≈ 1/k for some integer k, then we use a mean-1 Erlang (Ek) distribution (sum

of k i.i.d. exponential variables), otherwise if c2s < 1, then we use the D+M distribution,

i.e., a sum of a deterministic constant (D) and an exponential (M) distribution with rate

μ, which has pdf fV (x) = μe−μ(x−d), x≥ d, as in (3.11) and (3.12) of Whitt (1982).

7. Conclusions

We have developed a new algorithm to calculate the distribution of the periodic steady-

state remaining workload Wy, at time yc within a periodic cycle of length c, 0≤ y < 1, in

a general GIt/GI/1 single-server queue with periodic arrival-rate function. The key model

assumption is the representation in (1) of the arrival process as a time-transformation of

a rate-1 process. The algorithm is based on the new representation of Wy in (2) derived

in §1.1 and §2. In §4 we developed an algorithm for computing the exact tail probabilities

P (Wy > b) in the GIt/GI/1 model based on the established rare-event simulation algorithm

for the associated stationary GI/GI/1 model. That connection is supported by the close

relation between the two models, established in §3.
We also have shown that the algorithm can be applied together with the heavy-traffic

FCLT inWhitt (2014) reviewed in §6 to also calculate the periodic steady-state distribution
and moments of reflected periodic Brownian motion (RPBM). In addition, the algorithm

can be applied to approximate the tail probabilities in the more general Gt/G/1 model

by choosing special parameters (the squared coefficients of variation (scv) of interrenewal

times) in the GIt/GI/1 model to insure that the two systems obey the same heavy-traffic

FCLT.
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We have verified the effectiveness of the algorithm for GIt/GI/1 queues and RPBM

by conducted extensive simulation experiments for the GIt/GI/1 model with sinusoidal

arrival rate in §1.3 and a range of traffic intensities. Some of these are reported in §5 and

in the online supplement Ma and Whitt (2016). It remains to investigate the algorithm for

Gt/G/1 queues more general than GIt/GI/1.
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