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In this tutorial, we present a general model linking the data provided by any optical diffraction microscope to the
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1. INTRODUCTION

Optical diffraction microscopy is a valuable tool for imaging
micrometer-scale objects non-invasively. Since its invention
three centuries ago, many configurations have been proposed
using a variety of light sources (from white-light lamps to
pulsed lasers) and a variety of detection methods (from single
detectors to cameras). Basically, two principal modalities have
emerged: the scanning mode, which raster scans a focused spot
and detects the scattered light with a single detector, and the
full-field mode, which illuminates the sample across a full field
of view with either coherent or partially coherent light, and
detects the scattered light with a camera. As will be discussed
below, these configurations are formally equivalent.

The purpose of this paper is to present a general, unified
description of optical diffraction microscopy using a common
theoretical framework. Our goal is not to delve into the details
of the many different microscopy variations, nor to discuss how
they can be implemented in practice, but rather to show how
seemingly disparate variations can be summarized and catego-
rized using two very basic concepts: the Helmholtz principle of
reciprocity and the Green time-reversal identity. Our formalism
applies to essentially all diffraction microscopes, whether they
be transmitting or reflecting, scanning or full-field, coherent or
partially coherent, provided only that they be linear. For sim-
plicity, a scalar treatment of light fields is utilized throughout
the body of this paper. A fully vectorial treatment is relegated to
the appendix.

Most of the results in this paper are not new and have been
presented in some form or other in the literature, the most
influential of which is the seminal work by Streibl [1]. On
the other hand, our translation from a scalar to a fully vector
formalism has not, to our knowledge, been presented before in
such a condensed form. We begin with a brief overview of the
basic principles underlying our discussion, followed by a der-
ivation of the general Green’s functions associated with various
microscope modalities, followed finally by specific examples
making use of lenses and pupils.

2. EQUIVALENCE PRINCIPLES

The following equivalence principles are useful for
grouping microscopy techniques together and establishing their
commonalities.

A. Equivalence of Continuous and Pulsed
Illumination with Equal Spectrum

Assuming that the integration time of the detector is longer
than the laser pulse duration, we can invoke Parseval’s theorem.
The integration over time of a pulse intensity is thus equal to
the integration over frequency of the pulse intensity spectrum.
We conclude that, regardless of whether the illumination is
pulsed or continuous, the imaging properties of a microscope
can be analyzed using monochromatic illumination and per-
forming an integration over frequency at the very end of the
derivation.
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B. Equivalence of Full-Field Incoherent and
Scanning Modes

In a scanning microscope the illumination originates from a
single point source, placed at i, and the field intensity is
detected by a single detector, which can be point-like (in
the confocal mode) or extended. We call Γ the detector domain
over which the field intensity is integrated. In a full-field inco-
herent microscope the field intensity is detected on camera pix-
els placed at the observation points o and the extended
illumination is generated by many mutually incoherent point
sources. We call Ω the domain of incoherent sources from
which the illumination is generated.

Assuming the field to be scalar and satisfying the inhomo-
geneous Helmholtz wave equation, the reciprocity theorem (de-
rived in Appendix A) states that the field observed at o radiated
by a source placed at i, E�o, i� is equal to the field observed at i
radiated by the same source placed at o, namely, E�o, i� �
E�i, o�. In the scanning mode, one records

R
Γ jE�o,i�j2d2o,

while in the full-field mode one records
R
Ω jE�o,i�j2d2i. If Γ

and Ω are made equal, these two measures are identical [2]—
see Fig. 1 for an illustration of the microscope.

In the vectorial case, the equivalence between scanning and
full-field incoherent modes requires more caution as the polari-
zation of the source must be accounted for (see Appendix B). In
practice, scanning and full-field modes are equivalent when
polarizers are placed in the illumination and detection paths,
or when the three canonical polarizations are used in the scan-
ning mode to account for the unpolarized detection of the
full-field mode. To simplify our derivation, we consider only
scalar fields in the main body of the paper, and defer an exten-
sion of this derivation to vectorial fields in Appendix B.

We conclude that the properties of any diffraction micro-
scope can be obtained by studying only the scanning mode.

3. LINK BETWEEN THE MICROSCOPE
MEASUREMENT AND THE SAMPLE

Hereafter, we only consider microscopes in which the illumi-
nation is provided by a scalar monochromatic point source of
wavelength λ placed at i and the image data is recorded on a
single detector (point-like or extended). To simplify our analy-
sis, we assume that a volumetric image is formed by displacing
the sample in three dimensions. In practice, this scanning

technique is seldom utilized, and 3D imaging is generally ob-
tained by movement of the microscope elements, such as tilting
mirrors or a translating lens to displace the scanning point. In
the ideal case where the optical properties of the microscope are
translationally invariant, both approaches are equivalent.

A. Modeling the Field Intensity at the Detector

We define E�o, i� to be the field observed at the detector posi-
tion o in the presence of the sample and G�o, i� the field observed
at o in the absence of the sample; see Fig. 1. From the different
inhomogeneous Helmholtz equations satisfied by E and G (see
Appendix A for the derivation), one obtains the exact integral
equation for E :

E�o, i� � G�o, i� � k20

Z
W
G�o, r�δϵ�r�E�r, i�d3r, (1)

where G�o, r� is the field radiated at o by a point source placed
at r in the absence of the sample, E�r, i� is the field radiated at r
by the point source at i in the presence of the sample, δϵ is the
permittivity variation resulting from the sample, and k0 �
2π∕λ. Note that δϵ is null outside the support of the sample,
denoted by W .

According to Eq. (1), the observed field E is non-linearly
linked to the sample δϵ, which is a problem endemic to any
imaging technique. Fortunately, when the sample is weakly
scattering (which is generally the case, for example, with bio-
logical samples) one can assume that the field in the sample
E�r, i� is only slightly perturbed relative to the field that would
exist in the absence of the sample, G�r, i�. In this case, a linear
dependence between the field and sample can be restored with
the well-known Born approximation [1,3]:

E�o, i� � G�o, i� � δE�o, i�,

δE�o, i� ≈ k20

Z
W
G�o, r�δϵ�r�G�r, i�d3r: (2)

But detectors are sensitive to intensities rather than complex
fields. The detected intensity is given here by

jE�o,i�j2 � jG�o,i�j2 � jδE�o,i�j2 � 2R�G��o, i�δE�o, i��:
(3)

Thus, the quasi-linearity between the recorded microscope
data and the sample resides only within the interference term
2R�G��o, i�δE�o, i��. Essentially all microscopes rely on this
term to form meaningful images, though with some notable
exceptions such as reflectance confocal and dark-field micro-
scopes, whose particularities will be addressed at the end of
the discussion.

In general, the performance of a microscope critically de-
pends on its ability to distinguish the interference term from
the background. In this regard, interferometric microscopes,
which use two independent arms to produce the sample field
δE and reference field G�o, i�, represent a better option than
non-interferometric microscopes since they provide flexibility
in both the phase and amplitude of G�o, i�. By adjusting
the phase of G�o, i�, a fully complex measurement of δE
can be constructed from a sequence of intensity measurements,
thus circumventing the restriction that comes from taking only
the real part of the interference term. Moreover, by adjusting

Fig. 1. General configuration of a microscope. The microscope op-
tical elements are depicted in gray while the sample is in yellow. W is
the domain over which the permittivity variations resulting from the
sample, δϵ, are non-zero. i is a point source in the illumination domain
Ω and o a detection point of the observation domain Γ.
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the amplitude of G�o, i�, the reference field can be tuned large
enough that the non-linear term jδE�o,i�j2 in Eq. (3) can rig-
orously be neglected. Optical coherence tomography (OCT) is
the most widespread example of this kind of interferometric
microscope.

B. Point Spread Functions of Interferometric
Microscopes

We assume here that the complex interference term can be
extracted from the intensity measurements and provide its
connection with the sample permittivity distribution δϵ.

From Eq. (3), we infer that an interferometric microscope
with an extended detector Γ and an illumination point source
placed at i provide the complex data:

D �
Z
Γ
G��o, i�δE�o, i�d2o, (4)

where dependencies on i are hereafter suppressed.
Translating the sample by −x in three dimensions yields a

3D image D�x� which, using the expression of δE given by
Eq. (2), can be recast as the correlation of δϵ with a complex
point spread function H [4]:

D�x� �
Z

H �r�δϵ�x � r�d3r,

H �r� � k20G�r, i�
Z
Γ
G��o, i�G�o, r�d2o: (5)

Equation (5) represents the complex point spread function
H of any interferometric microscope. For non-interferometric
microscopes, the link between the sample and the recorded data
is provided by the real part of D.

When the detector is point-like, the expression for H
reduces to

H point�r� ∝ k20G�r, i�G�o, r�: (6)

In a confocal configuration in which i is conjugated to o
one can further simplify the expression using the reciprocity
theorem:

H confocal�r� ∝ k20G
2�r, i�: (7)

When the detector is so large that it can collect all the light
from the microscope, on either the reflected or transmitted side,
it is also possible to derive a simplified expression for H.

For this derivation we first define the transmission and re-
flection sides by introducing a plane that separates the illumi-
nation point i from the sample domainW . The optical axis z is
then defined as the normal to this plane directed from the
source to the sample. The extended detector that collects all
the light on the reflection (transmission) side, ΓR�T �, can be
modeled as a half-sphere in the far field of the microscope with
negative (positive) z, as illustrated in Fig. 2.

Second, we invoke the time-reversal Green identity [5] (see
Appendix A), which states that, if the microscope itself (i.e.,
without the sample) does not cause absorption,Z

ΓR�ΓT

G��o, i�G�o, r�d2o � 1

2ik0
�G�r, i� − G��r, i��, (8)

where ΓR � ΓT is the far-field sphere formed by the union of
ΓR and ΓT enclosing the microscope.

Third, we distinguish the integrals over the half-spheres ΓR
and ΓT . Because G�o, r� � G�r, o�, by virtue of reciprocity,
one can interpret the term

R
ΓR�T �

G��o, i�G�o, r�d2o� as the
field observed at r in the sample domain radiated by sources
with amplitude G��o, i� located on the reflection (transmis-
sion) detector. In general, this field can be modeled as a
sum of plane waves propagating exclusively toward positive
(negative) z, as shown in Fig. 2, left. We assume further that
G�r, i� (G��r, i�) can also be described as a sum of plane waves
propagating exclusively toward positive (negative) z, as shown
in Fig. 2, right.

An identification of the waves propagating in the positive
(negative) z directions in both sides of Eq. (8) leads toZ

ΓR

G��o, i�G�o, r�d2o � 1

2ik0
G�r, i�,

Z
ΓT

G��o, i�G�o, r�d2o � −
1

2ik0
G��r, i�: (9)

Note that Eq. (9) does not require ΓR�T � to be half-spheres.
A sufficient condition is that the detectors should encompass all
the points for which the reference field G��o, i� ≠ 0. In other
words, the detectors should be large enough to collect all the
light propagating toward positive or negative z, in the absence of
the sample.

Inserting Eq. (9) into Eq. (8) yields the point spread func-
tion in the reflection configuration,

HR�r� �
k0
2i

G2�r, i�, (10)

and in the transmission configuration,

HT �r� � −
k0
2i

jGj2�r, i�: (11)

The expressions (5)–(7), (10), and (11) are the main results
of this paper. They describe the behavior of most existing mi-
croscopes as will be discussed in the next section.

Fig. 2. Illustration of the key assumptions used for deriving the
point spread function of a microscope with extended detectors on
the transmission, ΓT , or reflection, ΓR , side: (1) The microscope with-
out the sample has no absorbing components; (2) (left) the field in the
absence of the sample created by a point source located on the reflection
(transmission) detector at any point inside the sample domain,
G�r, o�, is assumed to be a sum of plane waves propagating exclusively
in the positive (negative) z directions; (3) (right) the field G�r, i� cre-
ated by the illumination source i at any point inside the sample
domain is assumed to be a sum of plane waves propagating exclusively
in the positive z direction. As a consequence, G��r, i� is a sum of plane
waves propagating toward negative z.
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4. DISCUSSION

To evaluate the point spread function of a specific microscope,
one needs the expression for the field observed at u created by a
point source at v in the absence of the sample, G�u, v�. In an
often encountered situation, u and v are situated on opposite
sides of a tube lens and objective with pupil function pv→u in a
4f configuration—see Fig. 3. In this case, a precise expression
of G can be obtained using the Weyl expansion of the Green
function in a homogeneous medium [6]. Assuming unit mag-
nification, one obtains

G�u, v� � i
8π2

Z
pv→u�k⊥�

γ
exp�ik · �u − v 0��d2k⊥, (12)

where k � k⊥ � γẑv→u, with γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k

2
⊥

p
, v 0 is the conju-

gate point of v, and ẑv→u is the unit vector along the optical axis
oriented from v to u. We note that G, which is the field created
by a point source (i.e., a Green function), differs from the gen-
erally used amplitude point spread function, which is a field
propagation operator, essentially by a factor of i. The pupil
function pv→u has a bounded support in the transverse
Fourier plane normal to ẑv→u (encompassed by k⊥). It is usually
a disk of radius k0NA, where NA � sin θ is the numerical
aperture of the objective with collection angle θ. In this case,
the support of the 3D Fourier transform of G�u, v� with
respect to u is a cap of sphere of radius k0 in the positive
ẑv→u half-space, whose projection onto the plane normal to
ẑ is a disk of radius k0NA, as illustrated in Fig. 3.

Inserting Eq. (12) into Eqs. (5)–(7), (10), and (11) permits
the calculation of the point spread functionH of most scanning
or full-field microscopes. Hereafter, we provide a simple analy-
sis of the resolution of several microscopes by estimating the
support of the 3D Fourier transform of H , namely, the optical
transfer function (OTF). Throughout this paper, we define the
transverse (in the plane normal to ẑ) and axial resolutions of the
microscope to be inversely proportional to the span of the OTF
along these directions.

A. Point Detection: Transmission Holography and
Full-Field Coherent OCT

Let us first consider a configuration with a point detector and
point source for which the point spread function reads
H point�r� ∝ k20G�r, i�G�o, r�, where �i, o, r� indicate points
in the illumination, observation, and sample domains, respec-
tively. This configuration corresponds to any full-field coherent
microscope in which the sample is illuminated by a coherent

plane wave G�r, i� � exp�iki · r�, stemming from a point
source in the far field, and the interference term is detected
on camera pixels. Examples are full-field coherent OCT [3]
and transmission-mode holography [7].

The support of the OTF in this simple case is the cap of
sphere corresponding to the Fourier transform of G�o, r� trans-
lated by ki—see Fig. 4(a).

In the reflection configuration where ki � −k0ẑr→o, the
OTF is a cap of sphere passing through the point 2k0ẑr→o.
In the transmission configuration, where ki � k0ẑr→o, the
OTF is a cap of sphere passing through the origin. In both
cases, the transverse extension of the OTF is 2k0NA, yielding
a transverse resolution about λ∕�2NA�, and the axial extension
is �k0 − kmin�, where kmin � k0 cos θ � k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − NA2

p
.

Despite the surface shape of the OTF, which impedes 3D
imaging in general, one can estimate an approximate axial res-
olution of about 2λ∕NA2 for small NA and samples comprising
point objects. However, neither case provides optical sectioning
since the image of a thin transverse object becomes infinitively
extended along the z direction.

To obtain axial sectioning the use of white or pulsed light is
mandatory. Denoting as �k�, k−� the spectral range of the source
(in wavenumber units) and recalling the equivalence of pulsed
and continuous illumination of equal spectral range, the point
spread function becomes proportional to

R
k�
k− H point�r, k0�dk0,

where the dependency of H point on k0 is now made explicit.
The extension of the OTF along kz in the reflection configu-
ration is now 2�k� − k−� [see Fig. 4(b) (blue)], which provides
both optical sectioning and an axial resolution of about
π∕�k� − k−�. However, this benefit that comes from a broad
spectral range largely disappears in the transmission configura-
tion, as shown in Fig. 4(b) (red). In particular, the OTF exten-
sion at k⊥ � 0 remains null, meaning that optical sectioning is

Fig. 3. Illustration of G�v, u� in a standard microscope mounted in
a 4f configuration. The 3D Fourier transform of G, FT3D�G�, is rota-
tionally invariant about the kz axis.

Fig. 4. Support of the OTF of various microscopes.
(a) Monochromatic transmission and reflection holography using
plane-wave illumination. (b) Same as (a) but with pulsed or white
light (corresponding to full-field coherent OCT in reflection).
(c) Monochromatic reflection holography using focused or incoherent
illumination (scanning OCT, full-field incoherent OCT, confocal re-
flectance microscopy). (d) Same as (c) but in transmission (corre-
sponding to classical bright-field transmission microscopy). All the
OTFs are rotationally invariant about the kz axis.
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not recovered. As a result, white-light illumination in transmis-
sion digital holography does not significantly outperform
monochromatic illumination.

B. Full Reference-Field Detection

We now consider configurations where the detector is large
enough to collect the full reference field G�o, i� (i.e., the field
existing in the absence of the sample) propagating toward the
positive (in the transmission configuration) or negative (in the
reflection configuration) z. In this case, the point spread func-
tions are given by �HR ,HT � in Eqs. (10) and (11).

In practice, these configurations can be achieved by placing
the detector in the observation pupil (i.e., the observation
Fourier plane) and ensuring that its size fully encompasses all
the pupils within the microscope. As a result, the point spread
function depends only on the illumination pupil pi→r with
numerical aperture NA. In the (equivalent by reciprocity)
full-field configuration with extended incoherent sources, the full
reference-field detection imposes that the illumination pupil is
similar or larger than the collection pupil. In the usual terminol-
ogy, this corresponds to fully incoherent illumination [1].

1. Reflection Configuration: Scanning and Full-Field
Incoherent OCT

The reflection configuration with a point source and large
detector corresponds to conventional time-domain scanning
OCT, which scans a focused beam inside the sample (corre-
sponding to a source located in a plane conjugate to the focal
plane) and collects all the reflected light [8]. Because of the
reciprocity theorem, it also corresponds to full-field incoherent
OCT where the illumination is provided by a surface of inco-
herent sources and the reflected field is detected by a camera, as
described in [9]. In this case, the roles of i and o are reversed.
For equal NA, scanning OCT [8], full-field incoherent OCT
[9], and,HR being similar to H confocal, interferometric confocal
microscopy (such as an optical coherence microscope [10]),
theoretically provide the same resolution.

The reflection point spread function is given by HR�r� �
k0
2i G

2�r, i� [Eq. (10)]. Hence, the support of the OTF is given
by the self-convolution of the cap of sphere of radius k0 cor-
responding to G�r, i�, which results in a filled-in section of a
ball of radius 2k0, as depicted in Fig. 4(c). The extension of the
OTF in the transverse plane is 4k0NA, which yields a theoreti-
cally achievable resolution about 0.25λ∕NA [11], while that in
the axial direction is about 2k0�1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −NA2

p
�, which yields a

resolution about λ∕�4NA2�.
The extension of the OTF along the z-axis being non-null

for k⊥ � 0, these kinds of microscopes exhibit optical section-
ing even with monochromatic illumination. Indeed, as long as
k� − k− < 2k��1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −NA2

p
� the angular diversity of the

illumination at the highest frequency is sufficient to provide
an axial resolution equivalent to that of the polychromatic
microscope. Thus, using white light or pulsed laser will not
improve significantly the optical sectioning if NA > 0.85.

2. Transmission Configuration: Bright-Field Transmission
Microscopy

A same analysis can be carried out for the transmission configu-
ration. Scanning and full-field incoherent interferometric

microscopes in transmission mode are less prevalent than their
reflection counterparts, though some implementations using an
independent reference arm exist [12]. On the other hand, with-
out the complex interference measurement, the full-field inco-
herent configuration in transmission is very widespread as it
corresponds to the conventional bright-field microscope [1].

The transmission point spread function is given byHT �r� �
− k0

2i jGj2�r, i� [Eq. (11)]. Hence, the support of the OTF is given
by the self-correlation of the cap of sphere corresponding to
G�r, i�. The result is a torus-shaped volume of diameter
4k0NA, as depicted in Fig. 4(d), yielding a transverse resolution
similar to the reflection mode of about λ∕�4NA�. On the other
hand, because the extension of the OTF along the z-axis is null
for k⊥ � 0, optical sectioning remains impossible regardless of
whether the illumination is white-light or pulsed.

Manifestly, there is a major difference between the reflection
and the transmission configurations. Comparing the OTFs in
Figs. 4(c) and 4(d), one can easily point out their associated
advantages and drawbacks. The reflection OTF allows optical
sectioning but filters out the low axial sample frequencies. The
transmission OTF does not allow optical sectioning but is
adapted to smooth, slowly varying samples.

We have assumed throughout this section that interferomet-
ric measurements enabled a retrieval of the complex interfer-
ence term D, Eq. (4). This complex term, in turn, provides
sample absorption (δϵ is imaginary) and phase (δϵ is real) maps,
though usually with different point spread functions since H is
complex. In a standard bright-field microscope, only the real
part R�D� of the interference term is detected. Accordingly,
since the point spread function of the microscope given by
Eq. (11) is purely imaginary, only the sample absorption
map can be retrieved from the data (appearing as a shadow
in a bright background) [1].

C. Partial Reference-Field Detection: Phase
Microscopy

We now turn to the more complex configuration where, in the
absence of the sample, the detector does not collect all the refer-
ence field. This occurs when the observation pupil, where the
detector resides, does not fully encompass all other pupils
within the microscope. In the (equivalent by reciprocity)
full-field configuration with extended incoherent sources, it
corresponds in particular to illumination pupils that are smaller
than the collection pupil, namely, to partially coherent illumi-
nation [1]. In this case, the microscope point spread function is
given by Eq. (5). Examples of microscopes based on partial
reference-field detection are Zernike phase contrast [13] (where
the illumination pupil is annular and included within the ob-
servation pupil, and we invoke the reciprocity theorem to ex-
change the roles of o and i) or oblique-field microscope (where
the illumination and detection pupils are laterally shifted rela-
tive to one another [14,15]). All these microscopes take advan-
tage of the fact that the point spread function given by Eq. (5) is
complex, enabling them to perform phase imaging.

D. No Reference-Field Detection: Dark-Field and
Reflectance Confocal Microscopy

Finally, we consider the particular case where, in the absence of
the sample, the detector does not collect anything; that is,
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G�o, i� � 0 whatever o ∈ Γ. This occurs when the illumina-
tion and observation pupils do not intersect, as in dark-field
or reflectance confocal microscopy. In these cases, the detector
is sensitive to jδE�o,i�j2, as obtained from Eq. (3), which reads

jδE�o,i�j2�k40

Z
W ×W

F �o,r1,r2�δϵ�r1�δϵ��r2�F �i,r1,r2�dr31dr32,

(13)

where F�a, r1, r2� � G�a, r1�G��a, r2�. The measurement is
thus non-linearly linked to δϵ, meaning that, except for slowly
varying samples that are homogeneous over the typical size of
the focus spotG�r, i�, there is no simple link between the image
and the object.

APPENDIX A: SCALAR FIELDS

In this appendix, we provide derivations of the volume integral
equation satisfied by the field in the presence of the sample, the
reciprocity theorem, and the time-reversal identity.

Let ϵm be the relative permittivity distribution in the micro-
scope without the sample and ϵm � δϵ be the relative permit-
tivity in the presence of the sample. We call E�r, i� the field
created in the microscope in the presence of the sample by
a point source placed at i. E is the solution to the equation

∇2E�r, i� � k20ϵm�r�E�r, i� � −δ�r − i� − k20δϵ�r�E�r, i�,
(A1)

which satisfies an outgoing wave boundary condition. We now
introduce the Green function of the microscope, G�r, r 0�,
which is the solution of

∇2
rG�r, r 0� � k20ϵm�r�G�r, r 0� � −δ�r − r 0�, (A2)

which also satisfies an outgoing wave boundary condition.
We readily obtain the domain integral equation for E, valid
for all o:

E�o, i� � G�o, i� � k20

Z
W
G�o, r�δϵ�r�E�r, i�d3r: (A3)

The reciprocity theorem is demonstrated from the scalar
Green identity, which states that for anyU �r 0� and V �r 0� fields,Z

Vol

U∇2 V −V∇2Ud3r 0 �
Z
S
�U∇V −V∇U � ·nd2r 0, (A4)

where Vol is a volume delimited by the surface S and n�r 0� is
the normal to S pointing outwards. We take S to be a far-field
sphere enclosing the microscope elements, the sample, the
source, and the detectors. In this case, n � r̂ 0 where
r̂ 0 � r 0∕r 0. We also take U �r 0� � E�r 0, i�, V �r 0� � E�r 0, o�.
Bearing in mind that in the far-field ∇E�r 0� � ik0E�r 0�r̂ 0,
one easily shows that the right-hand term of Eq. (A4) is equal
to 0. Using Eq. (A1) on the left-hand side of Eq. (A4), one
obtains the reciprocity relation:

E�o, i� � E�i, o�: (A5)

The time-reversal identity is obtained in a similar manner by
taking U �r 0� � G��r 0, i� and V �r 0� � G�r 0, r� in Eq. (A4)
and S a sphere large enough to be in the far field of both r
(which belongs to the sample domain) and i (which belongs
to the illumination domain). In practice, S represents the de-
tector surface over which the field intensity is integrated.

Now, in the far field ∇G��r 0, i� � −ik0G��r 0, i�r̂ 0 while
∇G�r 0, r� � ik0G�r 0, r�r̂ 0 so that the right-hand term of
Eq. (A4) no longer cancels, but instead becomes
2ik0

R
S G�r 0, r�G��r 0, i�d3r 0. Assuming that ϵm is real so that

both G and G� satisfy Eq. (A2), the left-hand side of
Eq. (A4) yields �G�r, i� − G��r, i��. One finally obtainsZ

S
G��r 0, i�G�r 0, r�d2r 0 � 1

2ik0
�G�r, i� − G��r, i��: (A6)

APPENDIX B: VECTOR FIELDS

In this appendix, we describe the extension of our analysis to
the full vectorial case. For more generality, the microscope and
sample can contain anisotropic elements. We introduce ϵm the
relative permittivity tensor of the microscope without the sam-
ple, and ϵm � δϵ the relative permittivity in the presence of the
sample. Hereafter, we assume that the permittivity tensor of the
microscope is reciprocal, meaning that tϵm � ϵm.

We call E�r, i� the vectorial field created at r in the micro-
scope in the presence of the sample by the vectorial point source
pi placed at i. The field E is the solution of the equation

∇ × ∇ × E�r, i� − k20ϵm�r�E�r, i� � piδ�r − i� � k20δϵ�r�E�r, i�,
(B1)

which satisfies an outgoing wave boundary condition.
We now introduce the Green tensor of the microscope,

G�r, r 0�, which is the solution of

∇ × ∇ × G�r, r 0� − k20ϵm�r�G�r, r 0� � δ�r − r 0�I, (B2)

which satisfies an outgoing wave boundary condition. We readily
obtain the domain integral equation for E, valid for all o,

E�o, i� � G�o, i�pi � k20

Z
W
G�o, i�δϵ�r�E�r, i�d3r, (B3)

from which we obtain the expression of the scattered field under
the Born approximation,

δE�o, i� ≈ k20

Z
W
G�o, r�δϵ�r�G�r, i�pid3r: (B4)

The reciprocity theorem is demonstrated from the vectorial
Green identity, which states that for any vectorial field U�r 0�
and V�r 0�,Z

Vol

U · ∇ × ∇ × V − V · ∇ × ∇ ×Ud3r 0, (B5)

�
Z
S
�V × ∇ ×U − U × ∇ × V� · nd2r 0, (B6)

where Vol is a volume delimited by the surface S and n is the
normal to S pointing outwards.

Following the same procedure as in the scalar case, we con-
sider S to be a far-field sphere encompassing the microscope,
the sample, the sources, and the detectors. The reciprocity
theorem is obtained by taking U�r 0� � E�r 0, i� and
V�r 0� � E�r 0, o�. Bearing in mind that, in the far field, ∇ ×
E�r 0� � ik0r̂ 0 × E�r 0� and E�r 0� · r 0 � 0, one easily shows that
the right-hand term of Eq. (B6) is equal to 0. Inserting Eq. (B1)
in the left-hand side of Eq. (B6) and using the property

Tutorial Vol. 35, No. 5 / May 2018 / Journal of the Optical Society of America A 753



MV · U � tMU · V (B7)

with tϵm � ϵm, the left-hand side of Eq. (B6) is
then E�o, i� · po − E�i, o� · pi.

Equating the left- and right-hand sides of the Green identity,
one obtains the vectorial reciprocity theorem valid for any
reciprocal inhomogeneous medium [16]:

E�o, i� · po � E�i, o� · pi: (B8)

The time-reversal identity is obtained in a similar manner
by taking U�r 0� � G��r 0, i�p�i and V�r 0� � G�r 0, r�pr in
Eq. (B6). Now, in the far field ∇ × G��r 0, i�p�i �
−ik0r̂ 0 × G��r 0, i�p�i while ∇ × G�r 0, r�pr � ik0r̂ 0 × G�r 0, r�pr,
so that the right-hand term of Eq. (B6) no longer cancels
but instead becomes −2ik0

R
S G

��r 0, i�p�i · G�r 0, r�prd3r 0.
Using Eq. (B7), the right-hand term can also be written
as −2ik0pr ·

R
S G�r, r 0�G��r 0, i�pid2r 0.

Assuming that ϵm is real so that G��r 0, i� satisfies also
Eq. (B2), the left-hand side of Eq. (B6) can be written as
G�i, r�pr · p�i − G��r, i�p�i · pr, which is equal to �G�r, i�p�i −
G��r, i�p�i � · pr.

Equating the two sides of the vectorial Green identity yields
the vectorial time-reversal identity [5]:Z

S
G�r,r 0�G��r 0,i�p�i d2r 0�

1

2ik0
�G�r,i�p�i −G��r,i�p�i �: (B9)

Following the same demonstration as in the scalar case,
Eq. (B9) can be readily used to provide the point spread func-
tion of the vectorial microscope when the detector is large
enough to collect all the light on either side of the microscope
(reflection or transmission).

We first derive the expression of the complex interference
term D between the scattered field, Eq. (B4), and the reference
field integrated over the detector,

D�
Z
Γ
G��o,i�p�i ·k20

Z
W
G�o,r�δϵ�r�G�r,i�pid3rd2o, (B10)

which can be rewritten, using the reciprocity theorem,

D�k20

Z
W
δϵ�r�G�r,i�pi ·

Z
Γ
G�r,o�G��o,i�p�i d2od3r: (B11)

Then, using Eq. (B9) and the propagation properties of the
vectorial fields illustrated in Fig. 2, one obtains in transmission,

DT � −
k0
2i

Z
W
δϵ�r�G�r, i�pi · G��r, i�p�i d3r, (B12)

and in reflection,

DR � k0
2i

Z
W
δϵ�r�G�r, i�pi · G�r, i�p�i d3r: (B13)

In the simplified case where the sample can be described by
a scalar permittivity contrast δϵ, one can define a point spread
function in transmission,

HT �r� � −
k0
2i

jG�r,i�pij2, (B14)

and in reflection,

HR�r� �
k0
2i

G�r, i�p�i · G�r, i�pi: (B15)

When the detector is a point placed at o, the recorded
interference term D reads

Dpoint � k20G
��o, i�p�i ·

Z
W
G�o, r�δϵ�r�G�r, i�pid3r: (B16)

For a microscope in a confocal configuration and a sample
described by a scalar permittivity contrast, Eq. (B16) leads to
the confocal point spread function, which is, as expected, sim-
ilar to HR :

H confocal ∝ k20G�r, i�p�i · G�r, i�pi: (B17)

To our knowledge, these are the first derivations of fully
vectorial point spread functions that make allowances for aniso-
tropic samples.
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