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Abstract

The paper contains the complete analysis of the Galton-Watson models with im-
migration, including the processes in the random environment, stationary or non-
stationary ones. We also study the branching random walk on Zd with immigration
and prove the existence of the limits for the first two correlation functions.

1 Introduction

A problem with many single population models of population dynamics involving processes
of birth, death, and migration is that the populations do not attain steady states or do so
only under critical conditions. One solution is to allow immigration, which can stabilize the
population when the birth rate is less than the mortality rate.

Here, we present analysis of several models that incorporate immigration. The first two
are spatial Galton-Watson processes, the first with no migration and the second with finite
Markov chain spatial dynamics (see section 2 and 3 respectively). The third model allows
migration on Zd (see section 4). The remaining models all involve random environments in
some way (see section 5). Two are again Galton-Watson processes, the first with a random
environment based on population size and the second with a random environment given by
a Markov chain. The last two models have birth, death, immigration, and migration in a
random environment allowing in some way non-stationarity in both space and time. We
study in this paper only first and second moments. We will return to the complete analysis
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of the models with immigration in another publication. It will include a theorem about the
existence of steady states and an analysis of the stability of these states.

2 Spatial Galton-Watson process with immigration.

No migration and no random environment.

2.1 Moments

Assume that at each site for each particle we have birth of one new particle with rate β and
death of the particle with rate µ. Also assume that regardless of the number of particles at
the site we have immigration of one new particle with rate k (this is a simplified version of the
process in [14]). Assume that β < µ, for otherwise the population will grow exponentially.
Assume we start with one particle at each site. In continuous time, for a given site x, x ∈ Zd,
we can obtain all moments recursively by means of the Laplace transform with respect to
n(t, x), where n(t, x) is the population size at time t at x

ϕt(λ) = E e−λn(t,x) =
∞∑
j=0

P{n(t, x) = j}e−λj.

Specifically, for the jth moment, mj

mj(t, x) = (−1)j
∂jϕ

∂λj
|λ=0. (2.1)

A partial differential equation for ϕt(λ) can be derived using the forward Kolmogorov
equations

n(t+ dt, x) = n(t, x) + ξdt(t, x) (2.2)

where the r.v. ξ is defined

ξdt(t, x) =


+1 βn(t, x)dt+ kdt
−1 µn(t, x)dt
0 1− ((β + µ)n(t, x) + k)dt

(2.3)

In other words, our site (x) in a small time interval (dt) can gain a new particle at rate β
for every particle at the site or through immigration with rate k; it can lose a particle at
rate µ for every particle at the site; or no change at all can happen. Because our model is
homogeneous in space, we can write n(t) for n(t, x). This leads to the general differential
equation

∂ϕt(λ)

∂t
= ϕt(λ)

(
µn(t)eλ − ((β + µ)n(t) + k) + (βn(t) + k)e−λ

)
ϕ0(λ) = e−λ
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from which we can calculate the recursive set of differential equations

∂ϕt(λ)(j)

∂t
= ϕt(λ)(j)

(
µn(t)eλ − ((β + µ)n(t) + k) + (βn(t) + k)e−λ

)
+

+

j∑
i=1

(
j

i

)
ϕt(λ)(j−i) (µn(t)eλ + (−1)i(βn(t) + k)e−λ

)
ϕ0(λ)(j) = (−1)je−λ

Applying 2.1 we obtain a set of recursive differential equations for the moments

dmj(t)

dt
=

j∑
i=1

(
j

i

)(
(β + (−1)iµ)mj−i+1 +mj−i

)
= j(β − µ)mj + sj (2.4)

mj(0) = 1

where sj denotes a linear expression involving lower order moments and where we define
m0 = 1. For example, the differential equations for the first and second moments are

dm1(t)

dt
= (β − µ)m1(t) + k

m1(0) = 1

and

dm2(t)

dt
= 2(β − µ)m2(t) + (β + µ+ 2k)m1(t) + k

m2(0) = 1

These have the solutions:

m1(t) =
k

µ− β
+ (1− k

µ− β
)e−(µ−β)t

and

m2(t) =
k(k + µ)

(µ− β)2
+
µ2 − 2k2 − β2 + kµ− 3kβ

(µ− β)2
e−(µ−β)t+

+
k2 + 2β2 + 3kβ − 2µβ − 2kµ

(µ− β)2
e−2(µ−β)t

Again, given that we have assumed that µ > β, in other words, the birth rate is not high
enough to maintain the population size, as t→∞

m1(t) −−−→
t→∞

k

µ− β

m2(t) −−−→
t→∞

k(k + µ)

(µ− β)2
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and

Var(n(t)) = m2(t)−m2
1(t) −−−→

t→∞

µk

(µ− β)2
.

Moreover, it is clear from Eq. 2.4 that all the moments are finite.
In other words, the population size will approach a finite limit, which can be regulated

by controlling the immigration rate k, and this population size will be stable, as indicated
by the fact that the limiting variance is finite. Without immigration, i.e., if k = 0, the pop-
ulation size will decay exponentially. Another possibility, because all sites are independent
and there are no spatial dynamics, is for there to be immigration at some sites, which there-
fore reach stable population levels, and not at others, where the population thus decreases
exponentially. Of course, if the birth rate exceeds the death rate, β > µ, m1(t) increases
exponentially and immigration has negligible effect, as shown by the solution for m1(t).

2.2 Local CLT

Setting λn = nβ+k, µn = nµ, we see that the model given by Eqs. 2.2 and 2.3 is a particular
case of the general random walk on Z1

+ = {0, 1, 2, · · ·} with generator

Lψ(n) = ψ(n+ 1)λn − (λn + µn)ψ(n) + µnψ(n− 1), n > 0 (2.5)

Lψ(0) = kψ(1)− kψ(0) (2.6)

The theory of such chains has interesting connections to the theory of orthogonal poly-
nomials, the moments problem, and related topics (see [5]). We recall several facts of this
theory.

a. Equation Lψ = 0, x > 1, (i.e., the equation for harmonic functions) has two linearly
independent solutions:

ψ1(n) ≡ 1

ψ2(n) =


0 n = 0
1 n = 1
1 + µ1

λ1
+ µ1µ2

λ1λ2
+ · · ·+ µ1µ2···µn−1

λ1λ2···λn−1
n > 2

(2.7)

b. Denoting the adjoint of L by L∗, equation L∗π = 0 (i.e., the equation for the stationary
distribution, which can be infinite) has the positive solution

π(1) =
λ0

µ1

π(0) (2.8)

π(2) =
λ0λ1

µ1µ2

π(0) (2.9)

· · · (2.10)

π(n) =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
π(0) (2.11)
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This random walk is ergodic (i.e., n(t) converges to a statistical equilibrium, a steady
state) if and only if the series 1 + λ0

µ1
· · ·+ λ0λ1

µ1µ2
+ · · ·+ λ0λ1···λn−1

µ1µ2···µn converges. In our case,

xn =
λ0 · · ·λn−1

µ1 · · ·µn
=
k(k + β) · · · (k + (µ− 1))β

µ(2µ) · · · (nµ)
.

If β > µ, then, for n > n0, for some fixed ε > 0, k+(n−1)β
nµ

> 1 + ε, that is, xn ≥ Cn, for

C > 1 and n ≥ n1(ε), and so
∑
xn = ∞. In contrast, if β < µ, then, for some 0 < ε < 1,

k+(n−1)β
nµ

< 1−ε, and xn ≤ qn, for 0 < q < 1 and n > n1(ε); thus,
∑
xn <∞. In this ergodic

case, the invariant distribution of the random walk n(t) is given by the formula

π(n) =
1

S̃

λ0 · · ·λn−1

µ1 · · ·µn
,

where

S̃ = 1 +
k

µ
+
k(β + k)

µ(2µ)
+ · · ·+ k(k + β) · · · (β(n− 1) + k)

µ(2µ) · · · (nµ)
+ · · · .

Theorem 2.1 (Local Central Limit theorem). Let β < µ. If l = O(k2/3), then, for the
invariant distribution π(n)

π(n0 + l) ∼ e−
l2

2σ2

√
2πσ2

as k →∞ (2.12)

where σ2 = µk
(µ−β)2

, n0 ∼ k
µ−β .

Proof.

π(n) =
1

S̃

k(k + β) · · · (k + β(n− 1))

µ(2µ) · · · (nµ)

=
1

S̃

(
β

µ

)n k
β
( k
β

+ 1) · · · ( k
β

+ n− 1)

n !

=
1

S̃

(
β

µ

)n Γ( k
β

+ n)

Γ( k
β
)n !

.

We see S̃ is a degenerate hypergeometric series, thus

S̃ =

(
1− β

µ

)− k
β

.

Set

an =

(
β

µ

)n Γ( k
β

+ n)

Γ( k
β
)n !

. (2.13)
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Then, π(n) =
an

S̃
. We have

an+l = an

(
β

µ

)l
(1 +

k
β
− 1

n+ 1
)(1 +

k
β
− 1

n+ 2
) · · · (1 +

k
β
− 1

n+ l
)

= an

l∏
i=1

β

µ
(1 +

k
β
− 1

n+ i
)

= an

l∏
i=1

1 + β(i−1)(µ−β)
µk

1 + i(µ−β)
k

= an

l∏
i=1

β
µ
(n+ i− 1) + k

µ

n+ i

and because an0 ∼ k
µ−β

an0+l ∼ an0

l∏
i=1

β
µ
( k
µ−β + i− 1) + k

µ

k
µ−β + i

= an0

l∏
i=1

β(i− 1)(µ− β) + kµ

i(µ− β)µ+ kµ

= an0

l∏
i=1

1 + β(i−1)(µ−β)
kµ

1 + i(µ−β
k

= an0e

l∑
i=1

[ln(1+
β(i−1)(µ−β)

µk
)−ln(1+

i(µ−β)
k

)]

We consider
l∑

i=1

ln(1 + β(i−1)(µ−β)
µk

) =
∫ l

1
ln(1 + (x−1)(µ−β)β

µk
)dx+O(ln(1 + (l−1)(µ−β)β

µ
)) and

l∑
i=1

ln(1 + i(µ−β)
k

)dx =
∫ l

1
ln(1 + x(µ−β)

k
)dx+O(ln(1 + l(µ−β)

k
))

We integrate the series ln(1 + x) = x− 1
2
x2 + 1

3
x3 − · · · , and take l = O(k2/3)

∫ l

1

ln

(
1 +

(x− 1)(µ− β)β

µk

)
dx

=

∫ l

1

(x− 1)(µ− β)β

µk
dx− 1

2

∫ l

1

(
(x− 1)(µ− β)β

µk

)2

dx+ · · ·

=
(µ− β)β

µk

(
l2

2
− l
)
− (u− β)2β2

6µ2k2
(l − 1)3 + · · ·

=
(µ− β)β

µk
l2 +O(1)

and
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∫ l

1

ln(1 +
x(µ− β)

k
)dx

=

∫ l

1

x(µ− β)

k
dx− 1

2

∫ l

1

(
x(µ− β

k

)2

dx+ · · ·

=
1

2

µ− β
k

l2 +O(1).

Hence

an0+l ∼ an0e
(µ−β)β

2µk
l2− 1

2
µ−β
k
l2 = an0e

− l2

2kµ

(µ−β)2 ,

or, setting σ2 = kµ
(µ−β)2

an0+l ∼ an0e
− l2

2σ2 .

From Eq.2.13

an0 =

(
β

µ

)n0 Γ( k
β
) + n0

Γ( k
β
)n0 !

and, using Stirling’s formula and the fact that n0 ∼ k
µ−β

an0 =

(
β

µ

)n0

√
2π

k
β

+n0√
2π
k
β

(
k
β

+n0

e
)
k
β

+n0

(
k
β

e
)
k
β
√

2πn0(n0/e)n0

∼
(
β

µ

) k
µ−β

√
2π

k
β

+ k
µ−β√

2π
k
β

(
k
β

+ k
µ−β
e

)
k
β

+ k
µ−β(

k
β

e

) k
β √

2π k
µ−β ( k

µ−β/e)
k

µ−β

=
1√
2πσ

(
1 +

β

µ− β

) k
β

where σ =
√

µk
(µ−β)2

. Thus

an0

S̃
∼

1√
2πσ

(1 + β
µ−β )

k
β

(1− β
µ
)1− k

β

=
1√
2πσ

(
(1 +

β

µ− β
)(1− β

µ
)

) k
β

=
1√
2πσ

(
µ

µ− β
µ− β
µ

) k
β

=
1√
2πσ
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and so

π(n0 + l) =
an0+l

S̃
∼ an0

S̃
e−

l2

2σ2 ∼ 1√
2πσ

e−
l2

2σ2 as n0 →∞.

2.3 Global Limit Theorems

A functional Law of Large Numbers follows directly from Theorem 3.1 in Kurtz (1970 [12]).
Likewise, a functional Central Limit Theorem follows from Theorems 3.1 and 3.5 in Kurtz
(1971 [13]). We state these theorems here, therefore, without proof.

Write the population size as nk(t), a function of the immigration rate as well as time.
Set n∗k = k

µ−β , the limit of the first moment as t → ∞. Define a new stochastic process for

the population size divided by the immigration rate, Zk(t) := nk(t)
k

. Set z∗ =
n∗k
k

= 1
µ−β .

We define the transition function, fk(
nk
k
, j) := 1

k
p(nk, nk + j). Thus,

fk(z, j) =


βnk+k
k

= βz + 1 j = 1
µnk
k

= µz j = −1
(not needed) j = 0

Note that fk(z, j) does not, in fact, depend on k and we write simply f(z, j).

Theorem 2.2 (Functional LLN). Suppose lim
k→∞

Zk(0) = z0. Then, as k →∞, Zk(t)→ Z(t)

uniformly in probability, where Z(t) is a deterministic process, the solution of

dZ(t)

dt
= F (Z(t)), Z(0) = z0. (2.14)

where
F (z) :=

∑
j

jf(z, j) = (β − µ)z + 1.

This has the solution

Z(t, z) =
1

µ− β
+ (z0 −

1

µ− β
)e−(µ−β)t = z∗ + (z0 − z∗)e−(µ−β)t, t ≥ 0.

Next, define Gk(z) :=
∑
j

j2fk(z, j) = (b + µ)z + 1. This too does not depend on k and

we simply write G(z).

Theorem 2.3 (Functional CLT). If lim
k→∞

√
k (Zk(0)− z∗) = ζ0, the processes

ζk(t) :=
√
k(Zk(t)− Z(t))

converge weakly in the space of cadlag functions on any finite time interval [0, T ] to a Gaus-
sian diffusion ζ(t) with:

1) initial value ζ(0) = ζ0,
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2) mean

Eζ(s) = ζ0Ls := ζ0e

s∫
0

F ′(Z(u,z0))du
,

3) variance

Var(ζ(s)) = L2
s

s∫
0

L−2
u G(Z(u, z0))du.

Suppose, moreover, that F (z0) = 0, i.e., z0 = z∗, the equilibrium point. Then, Z(t) ≡ z0

and ζ(t) is an Ornstein-Uhlenbeck process (OUP) with initial value ζ0, infinitesimal drift

q := F ′(z0) = β − µ

and infinitesimal variance

a := G(z0) =
2µ

µ− β
.

Thus, ζ(t) is normally distributed with mean

ζ0e
qt = ζ0e

−(µ−β)t

and variance
a

−2q

(
1− e2qt

)
=

µ

(µ− β)2

(
1− e−2(µ−β)t

)
.

3 Spatial Galton-Watson process with immigration -

and finite Markov chain spatial dynamics

Let X = {x, y, . . .} be a finite set, and define the following parameters.

β(x) is the rate of duplication at x ∈ X.

µ(x) is the rate of annihilation at x ∈ X.

a(x, y) is the rate of transition x→ y.

k(x) is the rate of immigration into x ∈ X.

We define −→n (t) = {n(t, x), x ∈ X}, the population at moment t ≥ 0, with n(t, x) the

occupation number of site x ∈ X. Letting
−→
λ = {λx ≥ 0, x ∈ X}, we write the Laplace

transform of the random vector −→n (t) ∈ RN , N = Card(X) as u(t,
−→
λ ) = E e−(

−→
λ ,−→n (t)).

Now we derive the differential equation for u(t,
−→
λ ). Denote the σ-algebra of events before

or including t by F≤t. Setting −→ε (t, dt)) = −→n (t+ dt)−−→n (t)

u(t+ dt,
−→
λ ) = E e−(

−→
λ ,−→n (t+dt)) = E e−(

−→
λ ,−→n (t))E [e−(

−→
λ ,−→ε (t,dt))|F≤t] (3.1)

The conditional distribution of (
−→
λ ,−→ε ) under F≤t is given by the formulas
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a) P{(
−→
λ ,−→ε (t, dt)) = λx|F≤t} = n(t, x)β(x)dt+ k(x)dt

(the birth of a new offspring at site x or the immigration of a new particle into x ∈ X)

b) P{(
−→
λ ,−→ε ) = λy|F≤t} = n(t, y)µ(y)dt

(the death of a particle at y ∈ X)

c) P{(
−→
λ ,−→ε ) = λx − λz|F≤t} = n(t, x)a(x, z)dt; x, z ∈ X, x 6= z

(transition of a single particle from x to z. Then, n(t+dt, x) = n(t, x)−1, n(t+dt, z) =
n(t, z) + 1.)

d) P{(
−→
λ ,−→ε ) = 0|F≤t} = 1 − (

∑
x∈X

n(t, x)β(x))dt − (
∑
x∈X

k(x))dt − (
∑
y∈X

n(t, y)µ(y))dt −

(
∑
x6=z

n(t, x)a(x, z))dt

After substitution of these expressions into 3.1 and elementary transformations we obtain

∂u(t,
−→
λ )

∂t
=E

∑
x∈X

(e−λx − 1)e−(
−→
λ ,−→n (t))(β(x)n(t, x) + k(x))+∑

y∈X

(eλy − 1)e−(
−→
λ ,−→n (t))µ(y)n(t, y) +

∑
x,y;x6=y

(eλx−λy − 1)e−(
−→
λ ,−→n (t))a(x, y)n(t, x)

But

E e−(
−→
λ ,−→n (t))n(t, x) = −∂u(t,

−→
λ )

∂λx

I.e., finally

∂u(t,
−→
λ )

∂t
=
∑
x∈X

(e−λx − 1)(−∂u(t,
−→
λ )

∂λx
β(x) + u(t,

−→
λ )k(x)) +

∑
y∈X

(eλy − 1)µ(y)(−∂u(t,
−→
λ )

∂λy
)+

+
∑

x,z;x6=z

(eλx−λz − 1)a(x, z)(−∂u(t,
−→
λ )

∂λx
)

(3.2)

The initial condition is
u(0,
−→
λ ) = E e−(

−→
λ ,−→n (0))

(say, u(0,
−→
λ ) = e−(

−→
λ ,1) = e

∑
x∈X λx for n(0, x) = 1).

Differentiation of 3.2 and the substitution of
−→
λ = 0 leads to the equations for the

correlation functions (moments) of the field n(t, x), x ∈ X. Put

m1(t, v) = E n(t, v) = −∂u(t,
−→
λ )

∂λv
|−→
λ=0

, v ∈ X
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Then

∂m1(t, v)

∂t
= k(v) + (β(v)− µ(v))m1(t, v) +

∂

∂λv

(∑
z:z 6=v

(eλv−λz − 1)a(v, z)
∂u

∂λv

)
|−→
λ=0

+
∂

∂λv

(∑
z:z 6=v

(eλz−λv − 1)a(z, v)
∂u

∂λz

)
|−→
λ=0

= k(v) + (β(v)− µ(v)︸ ︷︷ ︸
V (v)

)m1(t, v) +
∑

a(z, v)m1(t, z)− (
∑
z:z 6=v

a(v, z))m1(t, v)

If a(x, z) = a(z, x) then finally

∂m1(t, x)

∂t
= Am1 + V m1 + k(x), m1(0, x) = n(0, x)

Here, A is the generator of a Markov chain A = [a(x, y)] = A∗.
By differentiating equation 3.2 over the variables λx, x ∈ X, one can get the equations

for the correlation functions

kl1...lm(t, x1, . . . , xm) = E nl1(t, x1) · · ·nlm(t, xm)

where x1, . . . , xm are different points of X and l1, . . . , lm ≥ 1 are integers. Of course

kl1...lm(t, x1, . . . , xm) = (−1)l1+···+lm ∂l1+···+lmn(t,−→x )

∂l1λx1 ...∂
lmλxm

|−→
λ=0

. The corresponding equations will be

linear. The central point here is that the factors (eλx−λz − 1), (eλy − 1), and (e−λx − 1) are

equal to 0 for
−→
λ = 0. As a result, the higher order (n > l1 + . . .+ lm) correlation functions

cannot appear in the equations for {kl1...lm(·), l1 + . . .+ lm = n}.
Consider, for instance, the correlation function (in fact, matrix valued function)

k2(t, x1, x2) =

[
E n2(t, x1, x1) E n(t, x1)n(t, x2)
E n(t, x1)n(t, x2) E n2(t, x2, x2)

]
The method based on generating functions is typical for the theory of branching processes.
In the case of processes with immigration, another, Markovian approach gives new results.
Let us start from the simplest case, when there is but one site, i.e., X = {x}. Then, the
process n(t), t ≥ 0 is a random walk with reflection on the half axis n ≥ 0.

For a general random walk y(t) on the half axis with reflection in continuous time, we
have the following facts. Let the process be given by the generator G = (g(w, z)), w, z ≥ 0,
where aw = g(w,w + 1), w ≥ 0; bw = g(w,w− 1), w > 0; g(w,w) = −(aw + bw), w > 0; and
g(0, 0) = −a0 (see Fig. 1).

The random walk is recurrent iff the series

S = 1 +
b1

a1

+ . . .+
b1 · · · bn
a1 · · · an

+ . . . (3.3)

diverges. It is ergodic (positively recurrent) iff the series

S̃ = 1 +
a0

b1

+ . . .+
a0 · · · an−1

b1 · · · bn
+ . . . (3.4)
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Figure 1: General Random Walk with Reflection at 0

converges. In the ergodic case, the invariant distribution of the random walk y(t) is given
by the formula

π(n) =
1

S̃

a0 · · · an−1

b1 · · · bn
(3.5)

(see [1]).

For our random walk, n(t)
g(0, 0) = −k, a0 = g(0, 1) = k

and, for n ≥ 1

bn = g(n, n− 1) = µn, g(n, n) = −(µn+ βn+ k), an = g(n, n+ 1) = βn+ k.

Proposition 3.1.

1. If β > µ the process n(t) is transient and the population n(t) grows exponentially.

2. If β = µ, k > 0 the process is not ergodic but rather it is zero-recurrent for k
β
≤ 1 and

transient for k
β
> 1.

3. If β < µ the process n(t) is ergodic. The invariant distribution for β < µ is given by

π(n) =
1

S̃

k(k + β) · · · (k + β(n− 1))

µ · 2µ · · ·nµ

=
1

S̃

(
β

µ

)n k
β
( k
β

+ 1) · · · ( k
β

+ n− 1)

n!

=
1

S̃

(
β

µ

)n
(1 + α)(1 +

α

2
) · · · (1 +

α

n
), α =

k

β
− 1

=
1

S̃

(
β

µ

)n
exp

(
n∑
j=1

ln (1 +
α

j
)

)
∼ 1

S̃

(
β

µ

)n
nα

where S̃ =
∞∑
j=1

k(k + β) · · · (k + β(j − 1))

µ · 2µ · · · jµ
.
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Proof. 1 and 3 follow from Eqs. 3.3, 3.4, and 3.5. If β = µ (but k > 0), i.e., in the critical
case, the process cannot be ergodic because, setting α = k

β
− 1, then α > −1 and as n→∞

S̃ ∼
∑
n

nα = +∞. The process is zero-recurrent, however, for 0 < k
β
≤ 1. In fact, for β = µ

b1 · · · bn
a1 · · · an

=
β · 2β · · ·nβ

(k + β) · · · (k + nβ)
=

1
n∏
i=1

(1 +
k

iβ
)

� 1

nk/β

and the series in Eq. 3.4 diverges if 0 < k
β
≤ 1. If, however, k > β the the series converges

and the process n(t) is transient.

Consider, now, the general case of the finite space X. Let N = CardX and −→n (t) be
the vector of the occupation numbers. The process −→n (t), t ≥ 0 is the random walk on
(Z1

+)N = {0, 1, ...)N with continuous time. The generator of this random walk was already

described when we calculated the Laplace transform u(t,
−→
λ ) = E e−(

−→
λ ,−→n (t)). If at the moment

t we have the configuration −→n (t) = {n(t, x), x ∈ X}, then, for the interval (t, t + dt) only
the following events (up to terms of order(dt)2) can happen:

a) the birth of a new particle at the site x0 ∈ X, with corresponding probability
n(t, x0)β(x0)dt+ k(x0)dt. In this case we have the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t+ dt) =

{
n(t, x), x 6= x0

n(t, x0) + 1, x = x0

b) the death of one particle at the site x0 ∈ X. This has corresponding probability
µ(x0)n(t, x0)dt and the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t+ dt) =

{
n(t, x), x 6= x0

n(t, x0)− 1, x = x0

(Of course, here n(t, x0) ≥ 1, otherwise µ(x0)n(t, x0)dt = 0).

c) the transfer of one particle from site x0 to site y0 ∈ X (jump from x0 to y0), i.e., the
transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t+ dt) =


n(t, x), x 6= x0, y0

n(t, x0)− 1, x = x0

n(t, y0) + 1, x = y0

with probability n(t, x0)a(x0, y0)dt for n(t, x0) ≥ 1.

The following theorem gives sufficient conditions for the ergodicity of the process −→n (t).

Theorem 3.2. Assume that for some constants δ > 0, A > 0 and any x ∈ X

µ(x)− β(x) ≥ δ, k(x) ≤ A.

Then, the process −→n (t) is an ergodic Markov chain and the invariant measure of this process

has exponential moments, i.e., E e(
−→
λ ,−→n (t)) ≤ c0 < ∞ if |

−→
λ | ≤ λ0 for appropriate (small)

λ0 > 0.

13



Proof. We take on (Z1
+)N = {0, 1, ...)N as a Lyapunov function

f(−→n ) = (−→n ,−→1 ) =
∑
x∈X

nx,
−→n ∈ (Z1

+)N ,

Then, with G the generator of the process, Gf(−→n ) ≤ 0 for large enough (−→n ,−→1 ) = ‖−→n ‖1.
In fact

Gf =
∑
x∈X

((β(x)− µ(x))nx + k(x)) < 0, for large ‖−→n ‖1.

(The terms concerning transitions of the particles between sites make no contribution: 1−1 =
0.)

Figure 2: Markov Model for Immigration Process

If β(x) ≡ β < µ ≡ µ(x) and k(x) ≡ k then (−→n ,−→1 ), i.e., the total number of the particles
in the phase space X is also a Galton Watson process with immigration and the rates of
transition shown in Fig. 2.

If t → ∞ this process has a limiting distribution with invariant measure (in which Nk
replaces k). That is

E (−→n ,−→1 ) −−−→
t→∞

Nk

µ− β

4 Branching process with migration and immigration

We now consider our process with birth, death, migration, and immigration on a countable
space, specifically the lattice Zd. As in the other models, we have β > 0, the rate of
duplication at x ∈ Zd; µ > 0, the rate of death; and k > 0, the rate of immigration. Here,
we add migration of the particles with rate κ > 0 and probability kernel a(z), z ∈ Zd, z 6= 0,
a(z) = a(−z),

∑
z 6=0

a(z) = 1. That is, a particle jumps from site x to x + z with probability

κa(z)dt. Here we put κ = 1 to simplify the notation.

14



For n(t, x) the number of particles at x at time t, the forward equation for this process
is given by n(t+ dt, x) = n(t, x) + ξ(dt, x), where

ξ(dt, x) =


1 w. pr. n(t, x)βdt+ kdt+

∑
z 6=0

a(z)n(t, x+ z)dt

−1 w. pr. n(t, x)(µ+ 1)dt
0 w. pr. 1− (β + µ+ 1)n(t, x)dt−

∑
z 6=0

a(z)n(t, x+ z)dt− kdt
(4.1)

Note that ξ(dt, x) is independent on F6t (the σ-algebra of events before or including t)
and

a) E[ξ(dt, x)|F6t] = n(t, x)(β − µ− 1)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt.

b) E[ξ2(dt, x)|F6t] = n(t, x)(β + µ+ 1)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt.

c) E[ξ(dt, x)ξ(dt, y)|F6t] = a(x− y)n(t, x)dt+ a(y − x)n(t, y)dt.

A single particle jumps from x to y or from y to x. Other possibilities have probability
O((dt)2) ≈ 0. Here, of course, x 6= y.

d) If x 6= y, y 6= z, and x 6= z, then E[ξ(dt, x)ξ(dt, y)ξ(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of moments
of order greater or equal to 3.

From here on, we concentrate on the first two moments.

4.1 First moment

Due to the fact that β < µ, the system has a short memory, and we can calculate all
the moments under the condition that n(0, x), x ∈ Zd, is a system of independent and
identically distributed random variables with expectation k

µ−β . We will select Poissonian

random variables with parameter λ = k
µ−β . Then, m1(t, x) = k

µ−β , t > 0, x ∈ Zd, and, as a

result, Lam1(t, x) = 0. Setting m1(t, x) = E[n(t, x)], we have

m1(t+ dt, x) = E[E[n(t+ dt, x)|Ft]] = E[E[n(t, x) + ξ(t, x)|Ft]]

= m1(t, x) + (β − µ)m1(t, x)dt+ kdt+
∑
z 6=0

a(z)[m1(t, x+ z)−m1(t, x)]dt

(4.2)
Defining the operator La(f(t, x)) =

∑
z 6=0

a(z)[f(t, x + z)− f(t, x)], then, from Eq. 4.2 we

get the differential equation{
∂m1(t, x)

∂t
= (β − µ)m1(t, x) + k + Lam1(t, x)

m1(0, x) = 0

15



Because of spatial homogeneity, Lam1(t, x) = 0, giving{
∂m1(t, x)

∂t
= (β − µ)m1(t, x) + k

m1(0, x) = 0

which has the solution

m1(t, x) =
k

β − µ
(e(β−µ)t − 1).

Thus, if β ≥ µ, m1(t, x)→∞, and if µ > β,

lim
t→∞

m1(t, x) =
k

µ− β
.

4.2 Second moment

We derive differential equations for the second correlation function m2(t, x, y) for x = y and
x 6= y separately, then combine them and use a Fourier transform to prove a useful result
concerning the covariance.

I. x = y

m2(t+ dt, x, x) = E[E[(n(t, x) + ξ(dt, x))2|F6t]]

= m2(t, x, x) + 2E[n(t, x)[n(t, x)(β − µ− 1)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)]dt]

+ E[n(t, x)(β + µ+ 1)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt]

Denote Laxm2(t, x, y) =
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y)).

From this follows the differential equation{
∂m2(t, x, x)

∂t
= 2(β − µ)m2(t, x, x) + 2Laxm2(t, x, x) + 2k2

µ−β + 2k(µ+1)
µ−β

m2(0, x, x) = 0

II. x 6= y
Because only one event can happen during dt

P{ξ(dt, x) = 1, ξ(dt, y) = 1} = P{ξ(dt, x) = −1, ξ(dt, y) = −1} = 0,

while the probability that one particle jumps from y to x is

P{ξ(dt, x) = 1, ξ(dt, y) = −1} = a(x− y)n(t, y)dt,

and the probability that one particle jumps from x to y is

P{ξ(dt, x) = −1, ξ(dt, y) = 1} = a(y − x)n(t, x)dt.
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Then, similar to above

m2(t+ dt, x, y) = E[E[(n(t, x) + ξ(t, x))(n(t, y) + ξ(t, y))|F6t]]

= m2(t, x, y) + (β − µ)m2(t, x, y)dt+ km1(t, y)dt+
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y))dt

+ (β − µ)m2(t, x, y)dt+ km1(t, x)dt+
∑
z 6=0

a(z)(m2(t, x, y + z)−m2(t, x, y))dt

+ a(x− y)m1(t, y)dt+ a(y − x)m1(t, x)dt

= m2(t, x, y) + 2(β − µ)m2(t, x, y)dt+ k(m1(t, y) +m1(t, x))dt+ (Lax + Lay)m2(t, x, y)dt

+ a(x− y)(m1(t, x) +m1(t, y))dt

The resulting differential equation is

∂m2(t, x, y)

∂t
= 2(β − µ)m2(t, x, y) + (Lax + Lay)m2(t, x, y) + k(m1(t, x) +m1(t, y))

+ a(x− y)[m1(t, x) +m1(t, y)]

(4.3)

That is

∂m2(t, x, y)

∂t
= 2(β − µ)m2(t, x, y) + (Lax + Lay)m2(t, x, y) +

2k2

µ− β
+ 2a(x− y)

k

µ− β

Because, for fixed t, n(t, x) is homogeneous in space, we can write m2(t, x, y) = m2(t, x−
y) = m2(t, u). Then, we can condense the two cases into a single differential equation{

∂m2(t, u)

∂t
= 2(β − µ)m2(t, u) + 2Laum2(t, u) + 2k2

µ−β + 2a(u) k
µ−β + δ0(u)2k(µ+1)

µ−β

m2(0, u) = En2(0, x)

Here u = x− y 6= 0 and a(0) = 0.

We can partition m2(t, u) into m2(t, u) = m21 +m22, where the solution for m21 depends
on time but not position and the solution for m22 depends on position but not time. Thus,
Laum21 = 0 and m21 corresponds to the source 2k2

µ−β , which gives

∂m21(t, u)

∂t
= 2(β − µ)m21(t, u) +

2k2

µ− β

As t→∞, m21 → M̄2 = m2
1(t, x) = k2

(µ−β)2
.

For the second part, m22 , ∂m22

∂t
= 0, i.e.

∂m22(t, u)

∂t
= 2(β − µ)m22(t, u) + 2Laum22(t, u) + 2a(u)

k

µ− β
+ δ0(u)

2k(µ+ 1)

µ− β
= 0
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As t → ∞, m22 → M̃2. M̃2 is the limiting correlation function for the particle field n(t, x),
t→∞. It is the solution of the “elliptic” problem

2LauM̃2(u)− 2(µ− β)M̃2(u) + δ0(u)
2k(µ+ 1)

µ− β
+ 2a(u)

k

µ− β
= 0

Applying the Fourier transform ̂̃M2(θ) =
∑
u∈Zd

M̃2(u)ei(θ,u), θ ∈ T d = [−π, π]d,

we obtain ̂̃M2(θ) =

k
µ−β + kâ(θ)

µ−β

(µ− β) + (1− â(θ)
.

We have proved the following result.

Theorem 4.1. If t→∞, then Cov(n(t, x), n(t, y)) = E[n(t, x)n(t, y)]− E[n(t, x)]E[n(t, y)]
= m2(t, x, y)−m1(t, x)m1(t, y), tends to M̃2(x− y) = M̃2(u) ∈ L2(Zd)
The Fourier transform of M̃2(·) is equal to

̂̃M2(θ) =
c1 + c2â(θ)

c3 + (1− â(θ))
∈ C(T d)

where c1 = k
µ−β , c2 = k

µ−β , c3 = µ− β

Let’s compare our results with the corresponding results for the critical contact model [2]
(where k = 0, µ = β). In the last case, the limiting distribution for the field n(t, x), t > 0,
x ∈ Zd, exists if and only if the underlying random walk with generator La is transient.
In the recurrent case, we have the phenomenon of clusterization. The limiting correlation
function is always slowly decreasing (like the Green kernel of La).

In the presence of immigration, the situation is much better: the limiting correlation
function always exists and we believe that the same is true for all moments. The decay of
M̃2(u) depends on the smoothness of â(θ). Under minimal regularity conditions, correlations
have the same order of decay as a(z), z → ∞. For instance, if a(z) is finitely supported or
exponentially decreasing, the correlation also has an exponential decay. If a(z) has power
decay, then the same is true for correlation M̃2(u), u→∞.

5 Processes in a Random Environment

The final four models involve a random environment. Two are Galton-Watson models with
immigration and lack a spatial component. In the first, the parameters are random functions
of the population size; in the second, they are random functions of a Markov chain on a
finite space. The last two models are spatial and feature immigration, migration, and, most
importantly, a random environment in space, still stationary in time for the third but not
stationary in time for the fourth.

18



5.1 Galton-Watson processes with immigration in random envi-
ronments

5.1.1 Galton-Watson process with immigration in random environment based
on population size

Assume that rates of mortality µ(·), duplication β(·), and immigration k(·) are random
functions of the volume of the population x ≥ 0. Namely, the random vectors (µ, β, k)(x, ω)
are i.i.d on the underlying probability space (Ωe,Fe, Pe) (e: environment).

The Galton-Watson Process is ergodic (Pe-a.s) if and only if the random series

S =
∞∑
n=1

k(0)(β(1) + k(1))(2β(2) + k(2)) · · · ((n− 1)β(n− 1) + k(n− 1))

µ(1)(2µ(2)) · · · (nµ(n))
<∞, Pe-a.s.

Theorem 5.1. Assume that the random variables β(x, ω), µ(x, ω), k(x, ω) are bounded from
above and below by the positive constants C±: 0 < C− ≤ β(x, ω) ≤ C+ < ∞. Then, the

process n(t, ωe) is ergodic Pe-a.s. if and only if 〈ln β(x,ω)
µ(x,ω)

〉 = 〈ln β(·)〉 − 〈ln(µ(·))〉 < 0

Proof. It is sufficient to note that

k(n− 1, ω) + (n− 1)β(n− 1, ω)

nµ(x, ω)
=

k(n−1,ω)−β(n−1,ω))
n

+ β(n− 1, ω)

µ(n, ω)
= elnβ(n−1)−lnµ(n)+o( 1

n
).

It follows from the strong LLN that the series diverges exponentially fast for 〈ln β(·)〉 −
〈lnµ(·)〉 > 0; it converges like a decreasing geometric progression for 〈ln β(·)〉−〈lnµ(·)〉 < 0;
and it is divergent if 〈ln β(·)〉 = 〈lnµ(·)〉. It diverges even when β(x, ωe) = µ(x, ωe) due to
the presence of k− ≥ C− > 0.

Note that ES <∞ if and only if 〈λ(x−1)
µ(x)
〉 = 〈λ〉〈 1

µ
〉 <∞, i.e., the fluctuations of S, even

in the case of convergence, can be very high.

5.1.2 Random non-stationary(time dependent) environment

Assume that k(t) and ∆ = (µ−β)(t) are stationary random processes on (Ωm, Pm) and that
k(t) is independent of ∆. For a fixed environment, i.e., fixed k(·) and ∆(·), the equation for
the first moment takes the form

dm1(t, ωm)

dt
= −∆(t, ωm)m1 + k(t, ωm)

m1(0, ωm) = m1(0)

Then

m1(t, ωm) = m1(0)e−
∫ t
0 ∆(u,ωm)du +

∫ t

0

k(s, ωm)e−
∫ t
s ∆(u,ωm)duds

Assume that 1
δ
> ∆(·) > δ > 0, 1

δ
> k(·) > δ > 0. Then

m1(t, ωm) =

∫ t

−∞
k(s, ωm)e−

∫ t
s ∆(u,ωm)duds+O(e−δt).
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Thus, for large t, the process m1(t, ωm) is exponentially close to the stationary process

m̃1(t, ω) =

∫ t

∞
k(s, ωm)e−

∫ t
s ∆(u,ωm)duds

Assume now that k(t) and ∆(s) are independent stationary processes and −∆(t) =
V (x(t)), where x(t), t > 0, is a Markov Chain with continuous time and symmetric geometry
on the finite set X. (One can also consider x(t), t > 0, as a diffusion process on a compact
Riemannian manifold with Laplace-Beltrami generator ∆.) Let

u(t, x) = Exe
∫ t
0 V (xs)dxf(xt)

= Exe
∫ t
0 −∆(xs)dxf(xt)

Then 
∂u

∂t
= Lu+ V u = Hu

u(0, x) = f(x)

(5.1)

The operator L is symmetric in L2(x) with dot product (f, g) =
∑
x∈X

f(x) ¯g(x). Thus,

H = L + V is also symmetric and has real spectrum 0 > −δ > λ0 > λ1 > · · · with
orthonormal eigenfunctions ψ0(x) > 0,ψ1(x) > 0, · · · Iinequality λ0 6 δ < 0 follows from
our assumption on ∆(·).

The solution of equation 5.1 is given by

u(t, x) =
N∑
n=1

eλktψk(x)(t, ψk).

Now, we can calculate < m̃1(t, x, ωm) >.

< m̃ >=

∫ t

−∞
< k(·) >< Eπe

∫ t
s V (xu)du > ds (5.2)

Here, π(x) = 1
N

= 1(x)
N

is the invariant distribution of xs. Then

< m̃ > =

∫ t

−∞
< k >

k=N∑
k=0

eλk(t−s)(ψkπ)(1ψk)ds

= − < k >
k=N∑
k=0

1

λk
(ψk1)2 1

N

= −< k >

N

N∑
k=0

(ψk1)2

λk
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5.1.3 Galton-Watson process with immigration in random environment given
by Markov chain

Let x(t) be an ergodic MCh on the finite space X and let β(x), µ(x), k(x), the rates of
duplication, annihilation, and immigration, be functions from X to R+, and, therefore,
functions of t and ωe. The process (n(t), x(t)) is a Markov chain on Z1

+ ×X.
Let a(x, y), x, y ∈ X, a(x, y) ≥ 0,

∑
y∈X

a(x, y) = 1 for all x ∈ X, be the transition function

for x(t). Consider E(n,x)f(n(t), x(t)) = u(t, (n, x)). Then

u(t+ dt, (n, x)) = (1− (nβ(x) + nµ(x) + k(x)− a(x, x))dt)u(t, x) + nβ(x)u(t, (n+ 1, x))dt

+ k(x)u(t, (n+ 1, x))dt+ nµ(x)u(t, (n− 1, x))dt+
∑
y:y 6=x

a(x, y)u(t, (n, y))dt

We obtain the backward Kolmogorov equation

∂u

∂t
=
∑
y:y 6=z

a(t, y)(u(t, (n, y))− u(t, (n, x))) + (nβ(x) + k(x))(u(t, (n+ 1, x))− u(t, (n, x)))

+ nµ(x)(u(t, (n− 1, x))− u(t, (n, x)))

u(0, (n, x)) = 0

Example. Two-state random environment.
Here, x(t) indicates which one of two possible states, {1, 2} the process is in at time t. The
birth, mortality, and immigration rates are different for each state: β1 and β2, µ1 and µ2,
and k1 and k2. For a process in state 1, at any time the rate of switching to state 2 is α1,
with α2 the rate of the reverse switch. This creates the two-state random environment. Let
G be the generator for the process, as diagrammed in Figure 3.

Figure 3: GW process with immigration with random environment as two states

The following theorem gives sufficient conditions for the ergodicity of the process -
(n(t), x(t)).
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Theorem 5.2. Assume that for some constants δ > 0 and A > 0

µi − βi ≥ δ, ki ≤ A, i = 1, 2

Then, the process (n(t), x(t)) is an ergodic Markov chain and the invariant measure of this
process has exponential moments, i.e., E eλn(t) ≤ c0 < ∞ if λ ≤ λ0 for appropriate (small)
λ0 > 0.

Proof. We take as a Lyapunov function f(n, x) = n.
Then, Gf(n(t), x(t)) = (βx−µx)n+ kx. So for sufficiently large n, specifically n > A

δ
, we

have Gf ≤ 0.

5.2 Models with immigration and migration in a random environ-
ment

For this most general case, we have migration and a non-stationary environment in space
and time. The rates of duplication, mortality, and immigration at time t and position x ∈ Zd
are given by β(t, x), µ(t, x), and k(t, x). As in the above models, immigration is uninfluenced
by the presence of other particles; also set δ1 ≤ k(t, x) ≤ δ2, 0 < δ1 < δ2 < ∞. The rate of
migration is given by κ, with the process governed by the probability kernel a(z), the rate
of transition from x to x+ z, z ∈ Zd.

If n(t, x) is the number of particles at x ∈ Zd at time t, n(t + dt, x) = n(t, x) + ξ(t, x),
where

ξ(t, x) =



1 w. pr. n(t, x)β(t, x)dt+ k(t, x)dt+
∑
z 6=0

a(−z)n(t, x+ z)dt

−1 w. pr. n(t, x)µ(t, x)dt+
∑
z 6=0

a(z)n(t, x)dt

0 w. pr. 1− (β(t, x) + µ(t, x))n(t, x)dt−
∑
z 6=0

a(z)n(t, x+ z)dt

−
∑
z 6=0

a(z)n(t, x)dt− k(t, x)dt

For the first moment, m1(t, x) = E[n(t, x)], we can write

m1(t+ dt, x) = E[E[n(t+ dt, x)|Ft]] = E[E[n(t, x) + ε(t, x)|Ft]]
= m1(t, x) + (β(t, x)− µ(t, x))m1(t, x)dt+ k(t, x)dt

+
∑
z 6=0

a(z)[m1(t, x+ z)−m1(t, x)]dt

and so, defining, as above, La(f(t, x)) =
∑
z 6=0

a(z)[f(t, x+ z)− f(t, x)], we obtain

{
∂m1(t, x)

∂t
= (β(t, x)− µ(t, x))m1(t, x) + k(t, x) + Lam1(t, x)

m1(0, x) = 0
(5.3)
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We consider two cases. The first is where the duplication and mortality rates are equal,
β(t, x) = µ(t, x). Because of the immigration rate bounded above 0, we find that the expected
population size at each site tends to infinity. In the second case, to simplify, we consider
β(t, x) and µ(t, x) to be stationary in time, and assume the mortality rate to be greater
than the duplication rate everywhere by at least a minimal amount. Here, we show that
the interplay between the excess mortality and the positive immigration results in a finite
positive expected population size at each site.

5.2.1 Case I

If β(t, x) = µ(t, x) {
∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x)

m1(0, x) = 0

Taking Fourier transforms,{
∂m̂1(t, v)

∂t
= k̂(t, v) + L̂a(v)m̂1(t, v)

m̂1(0, x) = 0

∂

∂t
(e−L̂a(v)tm̂1) = −L̂a(v)eL̂a(v)tm̂1 + e−L̂a(v)t∂m̂1

∂t
= eL̂a(v)tk̂(t, v)

e−κL̂a(v)tm̂1(t, v) =

∫ t

0

e−L̂a(v)sk̂(s, v)ds

m̂1(t, v) =

∫ t

0

e−(s−t)L̂a(v)k̂(s, v)ds

Taking the inverse Fourier transform,

m1(t, x) =
1

(2π)d

∫
Td

∫ t

0

e−(s−t)L̂a(v)k̂(s, v)dse−i(v,x)dv

=

∫ t

0

ds
∑
y∈Zd

k(s, y)p(t− s, x− y, 0) ≥
∫ t

0

δ1ds = δ1t

where

p(t, x, y) =
1

(2π)d

∫
T d
e−tL̂a(v)−i(v,x−y)dv =

1

(2π)d

∫
T d
e
−t

d∑
j=1

(cos (vj)−1)−i(v,x−y)

dv

As t → ∞, δ1t → ∞. Thus, when the birth rate equals the death rate, the expected
population at each site x ∈ Zd will go to infinity as t→∞.
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5.2.2 Case II

Here, β(t, x) 6= µ(t, x). For simplification we assume that only immigration, k(t, x), is not
stationary in time. In other words, we us assume that the duplication and mortality rates
are stationary in time and depend only on position: β(t, x) = β(x), µ(t, x) = µ(x) and
µ(x)− β(x) > δ1 > 0. From Eq. 5.3, we get{

∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x) + (β(t, x)− µ(t, x))m1(t, x)

m1(0, x) = 0

This has the solution

m1(t, x) =

∫ t

0

ds
∑
y∈Zd

k(s, y)q(t− s, x, y)

where q(t− s, x, y) is the solution for
∂q

∂t
= Laq + (β(t, x)− µ(t, x))q

q(0, x, y) = δ(x− y) =

{
1 y = x
0 y 6= x

By the Feynman-Kac formula,

q(s, x, y) = Ex[e
∫ s
0 (β(xu)−µ(xu))duδ(xs − y)]

= E[e
∫ s
0 (β(xu)−µ(xu)duδ(xs − y))|x0 = x]

= E[E[e
∫ s
0 (β(xu)−µ(xu)duδ(xs − y))|x0 = x, xs = y]|x0 = x]

= P (xs = y|x0 = x)Ex→y[e
∫ s
0 (β(xu)−µ(xu)du]

= p(s, x, y)Ex→y[e
∫ s
0 (β(xu)−µ(xu)du]

where

p(t, x, y) =
1

(2π)d

∫
T d
e−tL̂a(v)−i(v,x−y)dv.

Finally

lim
t→∞

m1(t, x) = lim
t→∞

∫ t

0

ds
∑
y∈Zd

k(s, y)Ex→y[e
∫ t−s
0 (β(xu)−µ(xu)du]p(t− s, x, y)

and letting w = t− s

≤ lim
t→∞

∫ t

0

dw‖k‖∞Ex→y[e
∫ w
0 (β(xu)−µ(xu)du]

≤ ‖k‖∞
∫ ∞

0

e−δ1wdw since β(x)− µ(x) ≤ −δ1 < 0

=
‖k‖∞
δ1

.

Thus, when µ(x)− β(x) > 0, lim
t→∞

m1(t, x) is bounded by 0 and ‖k‖∞
δ1

, so this limit exists

and is finite.
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