Spatial Models of Population Processes

Stanislav Molchanov and Joseph Whitmeyer

Abstract Recent progress has been made on spatial mathematical models of
population processes. We review a few of these: the spatial Galton—Watson model,
modern versions that add migration and immigration and thereby may avoid the
increasing concentration of population into an ever smaller space (clusterization),
models involving a random environment, and two versions of the Bolker—Pakala
model, in which mortality (or birth rate) is affected by competition.

Keywords Population process + Galton—Watson model - Mean-field model
Bolker—Pacala model - Random environment

1 Introduction

Recent advances have been made in developing mathematical models for population
processes over a large spatial scale, with application primarily to biological pop-
ulations other than humans (e.g., [2, 3, 15]). Here, we discuss some of this work
and its possible application to human populations. This work may be seen as the
development of baseline models, which show the processes and patterns that emerge
from basic regenerative and migration processes, prior to economic political, and
social considerations. Note that in keeping with the universality of these models as
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well as their simplicity, we will use the neutral terminology of “particles” for popu-
lation members. These models are in the spirit of a general approach to population
dynamics as part of statistical physics (e.g., work carried out by Y. Kondratiev and
his group [15, 16]).

We use these models to focus on two questions: the long-run spatial distribu-
tion and the temporal fluctuations of a population. We are particularly interested
in models that describe two common features of empirical populations, stationarity
in space and time and strong deviations from the classical Poissonian picture, i.e.,
spatial intermittency in the distribution of species (clusterization or “patches”). Let
us elaborate. By stationarity, we mean roughly that the stochastic process in question
depends neither on the time we begin observing it nor on the place where we observe
it. Mathematically, we will take this to mean that the mean and the variance of the
number of particles at a given location do not depend on either the location or the
time. Empirically, this is unlikely to be completely true, for there will be ecological
features that make some places more favorable to population growth than others, and
events such as climatic change occur that make some stretches of time more propi-
tious than others for population growth. Nevertheless, variation in such conditions
may not be very great and stationarity is often a reasonable first approximation for
many populations. Stationarity also may be a goal in some modern human societies.
As for clusterization, we note that random spatial placement of population members
will result in a spatial Poisson distribution, which we might describe as mild clump-
ing of the population. Nevertheless, a variety of empirical populations, from humans
to other biological populations (e.g., tropical arboreal ants [21]) to even stars, dis-
play a higher degree of clusterization than that; in the extreme, situations where there
are relatively sparse locations with high population concentrations isolated by vast
unpopulated regions.

Again, these are baseline, simple models. We assume an isolated population that
is not involved in complex multipopulation interaction (such as a predator—prey
scheme). Most of the models we discuss are branching processes or developments of
branching processes and, as is typical for these processes, exclude direct interaction
between particles, although in some the birth—death mechanism can create a kind of
mean-field attractive potential. We discuss a model that allows inhibition or stimula-
tion to particle reproduction due to the presence of existing particles. Both kinds of
models satisfy the Markov property, namely, that evolution of the system from time
t depends only on the state of the system at time ¢ and not additionally on its state
before time 7.

The organization of this paper is as follows. We begin with the background to these
models, the simple nonspatial Galton—Watson process. We then present nine mod-
els, roughly in order of increasing complexity. The first three lack spatial dynamics:
the spatial Galton—Watson process, which produces a high level of clusterization,
the same model but with immigration added, and a mean-field approximation to
the Bolker—Pacala model, which is characterized by intra-population competition.
The second set of six models allow migration in various ways, including one with
immigration as well, two involving something of a random environment, and a mul-
tilayered Bolker—Pacala model with migration between layers.
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2 Mean-Field Models

2.1 Galton-Watson Model

Recent applications of these models have been to organisms such as trees, crabgrass,
and butterflies. This line of work began, however, with humans. In 1873, Francis
Galton posed a problem [7] concerning the extinction of surnames, i.e., the extinction
of male lines of descendants. He wanted to know, given the probability of a given
number of male offspring per male, what proportion of surnames would disappear
and how many people would hold a surname that survived. In 1874, Galton and the
Reverend Henry William Watson published the first mathematical treatment of what
has become known as the Galton—Watson process [8].

The Galton—Watson (GW) process is a simple example of a branching process
[13], aterm for stochastic processes arising from incorporating probability theory into
population processes [ 12]. Both continuous- and discrete-time versions of this model
exist. In the continuous-time version of the GW process, a particle in an infinitesimal
period of time dt produces one offspring with probability 3 dr and disappears (dies)
with probability p dt. If it produced an offspring, then there are two particles, each
of which can produce an offspring or die, and the process continues in the same
fashion. It is well known that the entire population, encompassing all lines, becomes
extinct with probability 1 for ;» > 3. Equal birth and death rates, 3 = p, are known
as the critical case. Only when [ > p (the supercritical case), there is a positive
probability that extinction does not occur. In fact, in this case the population follows
the predictions of the Reverend Malthus [19] and grows exponentially: En(t) =
Noe~m7 where E means to take the expectation, n(r) denotes the population at
time ¢, and Nj is the initial population [11].

A model of population processes in space may be obtained by extending the
Galton—Watson process by considering independent GW processes occurring in
space. Specifically, we can consider a random point field n (¢, x) in the d-dimensional
lattice Z9, with a critical GW process at each occupied point and no interaction or
movement in space. It is possible also to consider the branching process models in
d-dimensional Euclidean space R?, but in this paper we treat only the lattice; results
are similar for the two settings. For our applications, generally, d = 2. Assume that
n(0, x) is the initial point field on Z¢, given by the Bernoulli law: for any indepen-
dentx € Z, P{n(0,x) = 1} = py, P{n(0,x) = 0} = 1 — py, where py is the initial
density of the population members. Assume now that each initial population mem-
ber (located at x for n(0, x) = 1) generates its own family, concentrated at the same
location x € Z¢. Assume that the corresponding Galton—Watson processes n(f, x),
t>0,x € Z¢, are critical, i.e., § = 1. The result is a field n(z, x) with independent
values and constant density: En(z, x) = po.

For large 7, in this model, the majority of the cells x € 74 will be empty because
P{n(t,x) =0} = % =1- [% + O(3) (which gives the formula P{n(t,x) =
0| n(0, x) = No} ~ e~N/8) [9]. The populated points, moreover, are increasingly



438 S. Molchanov and J. Whitmeyer

sparse (of order %) and contain increasingly large families (of order ). This is the
phenomenon of clusterization: the population consists of large dense groups of par-
ticles separated by large distances (the distances will be of order ¢/, so the square
root of ¢ in two dimensions). As t — oo, the clusterization becomes stronger and
stronger. Figure 1 illustrates this phenomenon by showing three progressive moments
of a simulated critical spatial Galton—Watson process in discrete time on a 10 x 10
lattice. The initial distribution is a spatial Poisson distribution (and so at ¢ = 1, the
distribution is still close to spatially Poissonian). Again, being critical, the birth and

death rates are equal: § = yu = %

2.2 Spatial Galton—Watson Process with Immigration

One simple addition to the spatial GW process is to allow immigration, that is, the
appearance of a new particle at a site, uninfluenced by the presence of particles at
that site or other sites. Adding immigration has two advantages. First, it increases
the realism of the model. Second, it helps to alleviate the concern that the total
population size is stable only in the critical case, that is, if the birth rate and death
rate are precisely and, in many situations, improbably equal (3 = ). An analysis of
this model may be found in Sect. 2.1 of the preceding chapter in this volume, by Han
et al. We refer the reader to that section.

2.3 Bolker-Pakala Model in Mean-Field Approximation

The fact that in the preceding branching process models the population is stable only
in a narrow critical condition, e.g., that b = p in the Galton—Watson model, or simply
due to immigration in the model with independent immigration, may not be entirely
satisfactory. In the first case, there is no obvious reason why the critical condition
should hold; in the second, the results seem to rest on the extreme simplicity of the
model of immigration.

One alternative model that yields a stable distribution more robustly is the Bolker—
Pacala model [2, 3]. The Bolker—Pacala model, well known in the theory of popula-
tion dynamics, is a stochastic spatial model that incorporates both spatial dynamics
and competition. The general Bolker—Pacala model can be formulated as follows.

Attime ¢t = 0, we have an initial homogeneous population, that is, a locally finite
point process

no(I") = #(individuals in I" at time t = 0),

where I' denotes a bounded and connected region in R¢. The simplest option is for
no(I') to be a Poissonian point field with intensity p > 0, i.e.,
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a) After 1 time step.

b) After 5 time steps.

c) After 20 time steps.

Fig. 1 Critical (8 = p = 1/2) spatial Galton—Watson process at three times
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(pIT

Pino() = k} = exp(=pIl')—7

,k=0,1,2,...

where |I'| is the finite Lebesgue measure of I'. The following rules dictate the evo-
lution of the field:

(i) Each population member, independent of the others, during time interval (¢, ¢ +
dt) can produce a new population member(offspring) with probability bdr =
ATdt, AT > 0. The initial individual remains at its initial position x but the
offspring jumps to x + z + dz with probability

at(2)dz, A+:/a+(x)dx.

R4

In the mean-field approximation, the spatial aspect is averaged and so the jump
of the offspring becomes irrelevant.

(i1) Each population member at point x during the time interval (7, t + dt) dies with
probability p dt, where p is the mortality rate.

(ii1) Mostimportant is the competition factor. If two population members are located
at the points x, y € R, then each of them dies with probability a~(x — y)dt
during the time interval (¢, r + dt) (we may assume that both do not die). This
requires that a~(-) be integrable; set

A” = /a‘(z)dz.

R4

The total effect of competition on a individual is the sum of the effects of
competition with all population members. For modern human populations, it is
probably more appropriate to include the suppressive effect of competition in
the birth parameter b than to add it to mortality. The probability of production
of a new population member at x, then, will become b(x — y), for it will depend
on the presence of individuals at points y.

In the Bolker—Pacala model, we have interacting individuals, in contrast to the usual
branching process. One can expect physically that for arbitrary nontrivial competition
(@~ € C(RY), A~ > 0), there will exist a limiting distribution of the population. At
each site x, with population at time # given by n(¢, x), three rates are relevant, the
birth rate » and mortality rate p, each proportional to n(t, x), and the death rate
due to competition, proportional to n(z, x)2. Heuristically, when n(z, x) is small, the
linear effects will dominate, which means that if b > p the population will grow.
As n(t, x) becomes large, however, the quadratic effect will become increasingly
dominant, which will prevent unlimited growth.

This can be seen in the mean-field approximation. We assume all particles on the
lattice in fact are contained in a large but finite box of size L. The total population
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inside the box is described by a continuous-time random walk, the transition rates
for which are

nkbdt + o(dt?) ifj=n+1
P (NL(t +dt) = jINL(t) =n) = { nkpdt + kyn*/Ldt +o(dt?) if j =n —1
o(dt?) if|j —n| > 1

In [1], we prove a set of limit theorems for this random walk and show that, appro-
priately normalized, as L — oo, the process approaches an Ornstein—Uhlenbeck
process, a well-known stochastic process that may be loosely described as fluctua-
tions around an evolving central tendency, which may be a fixed equilibrium, or may
be characterized by drift.

3 Models with Spatial Dynamics

3.1 KPP Model on 7¢ with Migration (Heavy Tails)

In order to avoid clusterization, the process must fill out empty space to compensate
for the degenerating families. One simple alternative to immigration is to add to the
branching process a simple random walk to nearest neighbors. Given that we are on
the lattice, this move is to one of two places in dimension 1, one of four places in
dimension 2, and so on. In mathematical terms, the model includes diffusion with
generator A, where A is the discrete or lattice Laplacian

Af) =D (f&)— f&x).

x':x'—x|=1

In high dimensions (d > 3), this simple random walk (diffusion) with generator A
is sufficient to eliminate clusterization. For d < 2, which is after all the appropriate
setting for most demographic or ecological applications, such local diffusion is not
sufficient and the clusterization still increases infinitely. If, however, we modify the
simple random walk to allow for “long jumps,” that is, moves an indefinitely long
distance, with sufficiently heavy tails and other conditions, then we can eliminate
clusterization even in two or fewer dimensions. This modified random walk may be
called “migration.”

We are interested in the evolution of the configuration N (¢, x), x € 74, meaning
the total number of individuals at position x in the d-dimensional lattice at time
t. The following models are similar to the Kolmogorov—Petrovskii—Piskunov (KPP)
model [14], a well-known and influential model from the 1930s. Two rather technical
differences that do not have much effect on the conclusions are that in the KPP model
the phase (or state) space is continuous (R instead of Z¢) and the underlying process
is Brownian motion instead of a random walk, but these are rather technical points.
More essential is that in the KPP model the initial population N (0, -) contains but
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a single individual. Under the condition of supercriticality, 3 > u, think of a novel,
superior gene that may spread through a species or a seed that may propagate in space.
We consider, in contrast, the critical case where 3 = p with an initial population that
is stationary in the phase space Z¢ with positive finite density, and, thus, is infinite.

The central simplifying assumption of these models is the absence of interaction
between individuals. As a result, we can write the total population at point y, N (¢, y),
as the sum of subpopulations as follows. Let n(z, y; x) be the particle field generated
by the initial 7(0, x) particles at the site x € Z¢. Then

N, y) = D n, y;x).

xezd

Each subpopulation, in turn, is the sum of the contribution (the progeny) of each
individual initially at the given site x, which we can write

n(0,x)

n(t, y;x) = D n(t, y; x).

i=1

The dynamics of the process includes three components, the familiar birth rate
( and death rate 1, and the migration of population members. Migration depends
on the probability kernel a(z), z € 74,7 #0, Z a(z) = 1 and a rate of migration,

z#0

which we can set to 1 by scaling time appropriztely. An individual located at time
t in some site x € Z¢, therefore, jumps to the point (x + z) € Z¢ with probability
a(z)dt, independently of the other population members.

To implement the heavy tails assumption for migration, we assume that a(z) takes

the form: ) .
(o ()
a(z) 2o ( + O EE ,2#0

with 0 <a <2, 0 =arg 5 € (-7, 7] = T', hy € C¥(TY), h; > 0. The second

moment of the spatial distribution a(z) is infinite. The stipulation that Z a(z) =1

z7#0
may be met by appropriate scaling of the bounded function /;. The heaviness of the

tails is controlled by .
The generator for the migration process £ is a generalization of the discrete
Laplacian. The operator L is defined:

Lfx) =D a@(f(x+2) = f(x))
z#0

For the study of subpopulation n(t, y; x), x, y € Z%, let us define the generating
functionu (t, x; y) = E 2" = 3% P{n(t, y; x) = j}z/. Thisisapolynomial
that is especially useful in generating moments. The nonlinear differential equation
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for u,(t, x; y) is [14]

Ous

o = L+ BuZ = (B + pu.+ p (3.1)
Z, X=Y

0,x;y) =

u(0, x; y) [1’ Xy

Repeated differentiation over z and the substitution z = 1 leads to the sequence
of moment equations for the factorial moments, given by

mi(t,x;y) = En(t,y; x)

ma(t, x;y) = Exn(t, y; x)(n(t, y; x) — 1)

m3(t, x;y) = Exn(t, y; x)(n(t, y; x) — D(a(t, y; x) — 2)
etc.

Then, for the critical case 3 = p

%zﬁml, mi(0,x;y) = 6,(x),
ot
where §;(j) =1 for i = j and O for i # j. This means m, (¢, x; y) = p(t, x, y),
where p(t, x, y) is the transition probability from x to y in time ¢, i.e., p(t, x, y) =
P.{x(t) = y} where x(¢) is the trajectory of the random walk (random jump!) with
generator L.

From here, we can obtain a theorem using what is known as the “method of
moments” to establish the existence of a stable distribution as t — co—in other
words, no exponential decay, no exponential growth, and no clusterization. We state
and explain the theorem here, but do not give the proof.

Let us note a well-known distinction concerning stochastic processes. A random
walk x (¢) is called “recurrent” if P{x(¢) returns to i infinitely often |x(0) =i} =1
and “transient” if P{x(¢) returns to i infinitely often |x(0) = i} = 0. An equivalent

oo

way of expressing this is x () is transient if and only if [p(z, x, x)dt < .
0

o0
Theorem 3.1 Suppose x(t) is transient, i.e., fp(t, x, x)dt < o0. Then,
0

EN(t,x) < cyn!
for some constant cy (Carleman conditions). For our model

EN@, x)(N({t,x)—1)---(N({t,x) =1+ 1) =m(t) ;?.;) m;(00)

and, therefore
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It
N(t, x) =, N (o0, x)
t—00

where N (00, x) is a steady state, that is, a random variable with a finite distribution.

Let us elaborate two points. The Carleman conditions are time-independent
bounds on the moments which, when satisfied as they are here, mean that the moments
uniquely define the distribution. In other words, it is possible to construct the field
N(t,-) and study its limiting behaviors ¢+ — oo using the moments. The last con-
clusion gives us the desired result that we will have a stable population, without
exponential growth or decay and without clusterization.

In the KPP case, a similar result goes back to [4, 18], who developed ideas
by R.L. Dobrushin [5] using a technique involving partial differential equations. For
branching random walks in R4, the case of so-called contact processes, [17] used what
are called the “forward Kolmogorov equations” to prove the existence of the steady
state N (0o, 00). Equation 3.1, in contrast, is constructed using the related “backward”
Kolmogorov equations. We proved the above theorem by using this method for
individual subpopulations n (¢, y; x), y € 74 and then combining the results, which
we were able to do because of the independence of these subpopulations.

The most convenient way to calculate the moments is by using the Fourier trans-
form. In Fourier representation

e,k y) = D ¢ “Pmy(t, x; y).

xezZ4

Note that, therefore
D mylt, x5 y) = (e, ks y)lk=o.

xeZ4

It is straightforward to show that ﬁ/f\(x) = ﬁ(k) f (k), where L= a(k) — 1; note,
also, a(0) = 1. As aresult

iy (t, k; y) = e~
and so

mit,y) = D mi(t,x;y) =iy (t, k; Y=o = 1.

xeZ4

For the second factorial moment, Eq. 3.1 gives

oms(t, x5 y)

o = Lmy(t, x;y) +20m (1, x; y)>.

Again, we use the Fourier transform to obtain
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S sty x; ) = it k; Ylico = / 2 (1 — e,

xezd Td

By using cumulants and their properties, it can be shown that m(f, y) = D . M2
(t, x;y) +o(l)+ 1.
Intermittency or full clusterization is identified by the property
nmy

—s —> OQ.
m% 1—>00

In fact, clusterization is evident if m, > m% In our situation, x(¢) is transient if

X ‘f(e) < 00, but the limiting distribution of particles will show some clusterization

1ff1 ~om > L

3.2 KKP Model on 7¢ with Multiple Offspring (Contact
Process)

This introduces only one complication of the previous model. Namely, the number
of offspring is no longer limited to two. When a particle splits, it may do so into j
particles, j =2, 3, ..., oo, with rates b;. We need only the assumption, setting

o] oo
B = ij and 8 = Zjbj,
j=2 j=2

that 8 < oo, 81 < 0.
With, as before, u, (¢, x; y) = E "9,

Ou > .

o = Lu: +j§b,»ug — B+ wuz +
Po —

u(O,x;y):[i ’ i#i

where py is the initial population density.
For the first moment

Oom(t,x;y)

o =L (x5 y) + 3 jbima (%3 ¥) = (B4 (1, %),

j=2

m1(0, x; y) =pody(x).
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As before, this is easily solved using the Fourier transform

ml(t, k; y) — poe(ﬁl—ﬂ—u)teﬁ(k)z

and
(Br—=B—wt .

my(t, y) = mi(t, k; Y=o = 1 = poe
This establishes 3; — 0 — p = 0 as the critical setting of parameters for this
process.

For the second factorial moment, we need to assume that 3, < 0o, where (3, =
2725 j(j — 1)b;. Using the Fourier transform

Yy — (s b _ b dg —21(1-a(0))
Zmz(t,x,)’)—mz(t,k,)’)h:o—?/1_—&(9) (1—6 )
xEZd Td

Then, as above, because m,(t, y) = erzd my(t, x; y) + o(1) + 1, the population
will be unstable due to intermittency, be stable with some clusterization, or be stable

without clusterization, depending on the evaluation of [ 1 dﬁa .
' 1-a®)
T

3.3 Stability Under a Single Point Perturbation

A natural next step is to probe the effect of perturbations on the stability created by
the critical condition of the KPP-type model of the previous section. We consider,
here, the same model with the critical condition that 3 = u everywhere on the lattice
74 except at a single point 0, that is,

Bx) = px) = ado(x), x € Z?

with o > 0. This model is due to Yarovaya (e.g., [20]).
The PDE for the first moment is then

om
8_1‘1 = Eml + 0'(5()()()]’1’11
m1(0,x) = 1.

The stability of this model hinges on the value of o. Specifically, there is a crit-
ical o such that if 0 < o, the population attains a stable state but if o > o, the
population does not stabilize but grows indefinitely.

This follows from spectral analysis, using Fourier transforms. The spectrum of
L, Sp(L) = [min(ﬁ), 0]. We define the Hamiltonian H = £ + odp(x). If H has
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discrete eigenvalue )y with eigenvector 1, then, H 1/30 = )\(ﬂﬁo. Thus, /3(9)1;0(9) +
o1y (0) = App(#). Rearranging, we obtain

~ apo(0)
0 = X
o (0) 20

Taking the inverse Fourier transform

op(0) [dfe 0
R ()

Po(x) =

1p(0) # 0, otherwise 1 (x) = 0, which means

1 1 df e 100
S = G [ = 0w
o @nd ) x\ = L)

Td

I1(0) > 0 and as )\ increases from 0, 7 ()\y) decreases monotonically. Conse-
quently, if (l,— > I1(0), thereisno Ay > 0. Put otherwise, we set o, = %0)' Then there
is a simple \o(0) > 0 iff 0 > o;.

The corresponding eigenfunction, up to a constant factor, is

Yolx) = — / 0 G0
x) = ~ =G, (0, x
0 eni ) x—L20)

Td

oo
where G (0, x) = f e M p(t, 0, x)dt is the Green function of the underlying random

0
walk, which is given by

ap(t,x,y)
(91‘ _ﬁp(t’-xay)

PO, x,y) = 0:(y).

Because of translation invariance, we may write p(t, y — x) = p(t, x, y)
Set (¢, x) =m(t,x) — 1.
op (1, x
% = Hm(t,x) = Luy + 0do(x) 1 + 0do(x)
,UJ](O, X) =0.
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We now have two cases:

(1) If \g(0) > 0,then p; = O(1) + €' 51y (0)1)y(x), and because ||| = 1 it fol-
lows that the population size is unstable and increases exponentially; there is no
steady-state population.

(2) If Ao(0) < 0, we may apply Duhamel’s principle to obtain

it =0 [ds 3 p =5 = D@ s. ) + @)
0 ¥4

t

= O’/p(t — 5, x)(u1(s,0) + 1)ds
0
t
my(t,x) =1 +O’/p(t —s,x)mq(s,0)ds

0

t ts

=1 +U/p(t—s,x)ds+02 /p(l—s,x)p(s —u,0)mq(u,0)duds
00

0
t N

t
:1+J/p(s,x)ds+02 /p(t—s,x) pu,0)duds + ...

0 0 0
o0

Foro < oy, 0 f p(s,0)ds < 1, and so the above series converges for all  and
0

ast — o0.
Turning to the second moment, the PDE for the second factorial moment is

Oma(t, x)
ot
my(0,x) =0.

= Lmy(t, x) + 08o(x)(ma(t, x) + 2m7i(t, x))

An analysis parallel to that for the first moment shows that m; (oo, x) < oo.
Consequently, for o < o, the population stabilizes.

3.4 Spatial Galton—-Watson Process with Immigration
and Finite Markov Chain Spatial Dynamics

We return to the spatial Galton—Watson process with immigration, but here with the
possibility of migration between sites and allowing birth, death, and immigration
rates to vary across sites. The number of sites is finite, which facilitates calculations.
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We present the main results, here, and sketch their rationale; for full analysis, see
[10] in this volume.

Let X = {x, y, ...} be afinite set. Define the following parameters. At x in X, let
((x) be the rate of duplication, p(x) be the rate of annihilation, and k(x) be the rate
of immigration. For x and y in X, let a(x, y) be the rate of transition x — y.

Define 7(t) = {n(t,x),x € X} to be the population at moment ¢ > 0, with
n(t, x) the occupation number of site x € X. Letting Y ={A\ >0,x € X}, we
write the Laplace transform of the random vector 7(t) e RY, N = Card(X) as

u(t, 3\)) —Ee X T0),
—
The differential equation for u(¢, \) is

— —
out N A u(t, \) — . u(t, \)
QG =™ = 1)(— P+ X)) + D (M = Dp(n)(— o)
xeX N yeX
+ 'Z;'(e*v*% — Da(x, z)(—%)
w0, X) = Ee~ X T
(3.2)

By differentiating Eq. 3.2 over the variables A\, x € X, one can get the equations for
the correlation functions

kl]...l,,l(tv Xlsenons xm) = Enll (t’ -xl) te 'n]m(ta xm)’
where xi, ..., x,, are different points of X and [y, ..., [, > 1 are integers. Specifi-
cally

It (1, %)

oyl N
kl]...lm(tvxlv-~~v-xm) - ( 1) 811Axl .,,8ZW‘AXW |>\:0'

The corresponding equations will be linear. The central point here is that the factors
(eM —1), (eM — 1), and (e~ — 1) are equal to 0 for X =0 Asa result, the
higher order (n > I; + ... + [,,) correlation functions cannot appear in the equations
for {ks, 4, (). i+ ...+ 1, =n}.

For the first moment, for example, if we assume the symmetry a(x, z) = a(z, x)
and define V (v) = B(v) — p(v), we obtain

om(t, x)

= Amy+Vmy +k(x), m(0,x)=n(0,x)

where A = [a(x, y)] = A* is the generator of a Markov chain.

An alternative approach to the generating function method is to treat the birth and
death process with immigration as a random walk with reflection on the half axis
n > 0.. If we start from the simplest case, when there is one site, i.e., X = {x}, then
application of known facts concerning random walks (see [6]) yields the following
result.
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Proposition 3.2

1. IfB > p, the process n(t) is transient and the population n(t) grows exponentially.
2. If B = p, k > 0, the process is not ergodic but rather it is zero-recurrent for % <1

and transient for % > 1.
3. If B < u, the process n(t) is ergodic. The invariant distribution for 3 < i is given
by
lLktk+08)---(k+Bn—1))
nly"

w(n) =

(o]

o~ kk+ B (k+ B — 1)
where S = - .
,Z:; o2 jp

Let us turn to the general case of the finite space X. Let N = Card X and (1)
be the vector of the occupation numbers. The process 7(t), t >0 is a random
walk on (Z})V = {0, 1, ..)" with continuous time. If at the moment 7 we have the
configuration 7(t) = {n(¢, x), x € X}, then, for the interval (¢, ¢ + dt), only the
following events (up to terms of order(dt)?) can happen:

(a) the appearance of a new particle at the site xo € X, due to birth or immigration,
with probability n(z, xo) 3(xo)dt + k(x)dt.

(b) the death of one particle at the site xo € X, with probability p(x¢)n (¢, x¢)dt, for
n(t, xo) > 1.

(c) the transfer of one particle from site xy to yp € X (jump from xy to yp), with
probability n (¢, xo)a(xg, yo)dt, for n(t, xo) > 1.

Theorem 3.2 in the preceding chapter in this volume, by Han et al., gives sufficient
conditions for the ergodicity of the process 7 (1). We refer the reader to that analysis.

3.5 Branching Process with Stationary Random Environment

The last of our models without interaction between particles is a recently developed
one that relaxes the artificiality of uniform birth and death rates, at § and p, for the
entire phase space. Working now in continuous space R¢, [16] stipulates a random
environment w,, for the process with birth rate and death rates given by b(x, w,,) and
m(x, wy,). Define the potential V (x, w,,) = b(x, wy,) — m(x, wy,). In addition, there
is migration but no immigration. Let the generator of the underlying migration £ be
the continuous version of our usual one with long jumps

Lfx)= /a(Z)(f(x +2) — f(x)dz.

Rd

The population density p(z, x) satisfies


http://dx.doi.org/10.1007/978-3-319-65313-6_3
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% = Lp(t.x) + V(x. wm)p(t. )
p(0, x) = po.

Suppose that b(x, wy) and m(x, w,,) are continuous, ergodic, homogeneous, and
nonnegative fields. Suppose also that (¢’?@“n)) < oo, where (-) indicates the expec-
tation over wy,. Then, if V (x, w,,) satisfies the condition that there exists a (small)
€o > 0 such that for any L > 0

P{V(Zv wm) > €, |Z| =< L} >0

Reference [16] show that for any open domain D € R?, with the measure of the
domain |D| < oo, n(t, D) — oo with probability 1.
11— 00

This is true, moreover, even if (V') < 0, in other words, if on average the death rate
exceeds the birth rate. The reason is that, despite the fact that most places the death
rate prevails and the population decays to 0, there are an infinite number of places
where the birth rate exceeds the death rate so that the population grows exponentially.
This is sufficient for the population as a whole to grow without limit.

3.6 Multilayer Bolker—Pacala Model

Some of the most intriguing population questions involve the interplay between
multiple populations. A model that can capture some of this is a generalization of the
mean-field approximation to the Bolker—Pacala model. We take the idea of a mean
field over a box of size L and extend that to a set of N boxes, each of size L.

As always, there are birth rates and death rates. With multiple boxes, they can
vary by box, although in simpler models we may keep them uniform across boxes.
Migration (the “jump of the offspring”), which was irrelevant in the one-box mean-
field approximation, here, can occur between boxes and so cannot be ignored as in
the simpler Bolker—Pacala model. Migration can be seen equivalently as two random
events, the birth of aindividual and its dispersal, as in Bolker and Pacala’s presentation
[2], or as a single random event, as in our model. (We stress that this differs from
the classical branching process, in which the “parental” individual and its offspring
commence independent motion from the same point.) We assume, of course, that all
offspring evolve independently according to the same rules.

Most interesting is the competition or suppression effect, which now can occur
both internally, the population in a given box suppressing its own population, and
externally, the population in one box suppressing the population of other boxes.
The migration and suppression parameters can vary across boxes, or, again, in the
simplest models, can be kept uniform across boxes.

Different general configurations of the parameters may be more appropriate
for different modeling scenarios. For example, if the multiple populations are
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geographical regions, migration rates and internal suppression or competition rates
may be relatively high, while external suppression rates would be low. Whereas if
the populations are human social classes, migration rates are likely to be low, while
external suppression rates, one class’s population constraining the growth of another
class’s population, might be relatively high. Moreover, these last rates might well be
nonuniform, with not all classes affecting other social classes equally.

The N-box Bolker—Pacala model gives rise to a random walk on

(Z+)N ={(ni,ny,...,ny):n; €Zy,1 <i <N}

Consider a system of N disjoint rectangles Q, ; C R% i=1,2,...,N, N fixed,
with
Qi NZ*| = L.

Parameters f3;, y; > 0 represent the natural (biological) birth and death rates of par-
ticlesinbox i,i = 1,..., N, respectively. The migration potential ™ and the com-
petition potential a~ also are constant on each Q; ;. Forx € Q; 1,y € O 1,

a; (x,y) =a;; /L% i,j=12,...,N, (3.3)

and
a{(x,y):a;;/L, i,j=1,2,...,N. (3.4)

Specifically, a;; indicates the supressive effect on the population in box i due to

the population in box j (such as due to competition between boxes i and j), while
a; (x,y) is the rate of migration fromx € Q; toy € Q; ;.
Let U,Nzl Qi1 = QOr. Then set

N N
Af=Y at ey =Y al AT= D 0 (Y=
yeo. j=1 yelu =

Assume that
Af A <A<

uniformly in L.
The population in each square Q; 1, i = 1, ..., N, at time ¢ is represented by

n(t) = {n (1), n2(1), ..., ny (1)}, (3.5

acontinuous-time random walk on (Z, )" with transitionrates, fori, j = 1,2,..., N
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n(t + diln (1) (3-6)
[ ¢; w. pr. Bin; (t)dt + o(dt?)
—e w. pr. fin; ()dt + "2 Zj‘vzl agn;j()dt + o(dt®)
ej —e; W.prL ni(t)a;j”-dt +odt?), j#i
0 w.pt. 1 = 3N (B + pini(0)dt
—1 X niOnj(Oagde + 3 ni (0] + o(dr?)
| other  w. pr. 0(d??)

=n(t) +

where e; is the vector with 1 in the ith position and 0 everywhere else.

This more general model exhibits some of the same characteristics of the simple
mean-field approximation but reveals some new effects as well. Once again, there is
convergence, as the size of the boxes L increases, to an Ornstein—Uhlenbeck process.
The N-dimensional random walk is geometrically ergodic, meaning that it shows
exponential convergence to a stable distribution. New, however, is that, for at least
N =2 and 3 (solutions become increasingly difficult to find as N increases), the
population level may have multiple nontrivial equilibria. This is true only for some
rate values, however. In particular, at least some of the values of the a;;, i # j, the
suppression of population across boxes, must be high enough.

This creates intriguing possibilities. For example, given the perpetual probabilistic
fluctuations in population size, there is a certain chance that a population fluctuating
about one equilibrium could swing wildly enough to put it into the attractive basin of
a different equilibrium. This phenomenon should be amenable to analysis although
it has not yet been done. Research into these models is ongoing.
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