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a  b  s  t  r  a  c  t

This  paper  presents  the  implementation  of a system  to capacitively  self-sense  the position  of  a comb
drive  based  MEMS  XY nanopositioner  from  a single  common  node.  The  nanopositioner  was  fabricated
using  the  multi-users  PolyMUMPs  process,  on  which  comb  capacitors  fringe  fields  are  large  and  out  of
plane  forces  cause  considerable  deflection.  An  extensive  analysis  of the  comb-drive  capacitance  including
the  levitation  effects  and  its correlation  to  the  measurements  is presented.  Each  axis  is independently
s
ners
etection

measured  using  frequency  division  multiplexing  (FDM)  techniques.  Taking  advantage  of  the symmetry
of  the  nanopositioner  itself,  the  sensitivity  is  doubled  while  eliminating  the intrinsic  capacitance  of  the
device.  The  electrical  measured  noise  is 2.5 aF/

√
Hz, for  a sensing  voltage  Vsen =  3Vrms and  fsen =  150  kHz,

which  is  equivalent  to  1.1  nm/
√

Hz lateral  displacement  noise.  This  scheme  can  also  be  extended  to
N-degree  of  freedom  nanopositioners.

©  2017  Elsevier  B.V.  All  rights  reserved.
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 based nanopositioners have become very attractive for
ision nanopositioning systems such as STM [1], AFM [2],
f optical elements [3], nano-manipulation [4,5] and probe
h density data storage [6] because of their low power con-
, fast dynamic response and their possibility for large scale
n.
are two commonly used driving systems for MEMS

used
pow
that
actu
and 

force
pow

A
able
tioners [2]: electrostatic and electro-thermal. In both
placement in the order of tens of microns can be achieved

 electrostatic actuation comb drive devices are typically
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 advantages of this type of actuation are the very low
nsumption (in the order of �W)  and fast dynamic response
e achieved with them. On the other hand, electrothermal

 (V-beam actuators, also called Chevron-type actuators;
arm thermal actuators) can generate significantly more
w actuation voltages with the cost of significantly higher
nsumption (in the order of mW).
b drive device can be represented electrically as a vari-
citor and electromechanically they can be used as actuator
sors. For nanopositioning, it is typical to use two comb
echanically and electrically connected where one gener-
mechanical displacement, while the other one sense the

ent [7,10,11]. However, it has been demonstrated that
e devices can work as actuators for nanopositioning while

eously sensing its own  displacement [12,13].
eral, for the capacitive read-out circuit differential config-

 used to reduce common-mode noise and parasitic effects.

ulti-electrode capacitive system, techniques such as fre-

ivision multiplexing (FDM) or time division multiplexing
n be used to sense each differential output. On the one
M is attractive because allows to implement the read-out
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he plane of the substrate actuated by the four comb drives connected to
he tethers. (b) 3D representation of comb drive device. The zoom in the

 area of the combs shows its typical dimensions.

sing standard logic circuits [14], but has some limitations,
sive crosstalk, each sensor is measured sequentially, con-

 increasing of noise due to the switching circuits. On the
d, FDM can be implemented purely with analog circuits
n lead to better noise and crosstalk reduction and also
rallel measurement of the array sensors [15].

 paper, FDM technique is used to capacitively self-sense
cement on a MEMS  comb drive driven XY nanoposition-
th directions (X and Y) from a single common-node. A
dout circuit and a lock-in amplifier can be used to sense
cement along either axis by simply switching the refer-
nel to the excitation frequency of the axis. This approach

trapolated to N-degrees of freedom.
citance analysis for thin comb drive devices where, levita-
ringe field effect are considerable is performed to validate
imental results. The discrepancy between experimental
the model obtained is less than 2%. The measured capac-
ise is 2.5 aF/

√
Hz, for a sensing voltage Vsen = 3Vrms and

 kHz. This result can be improved by increasing the sens-
ency up to 2 MHz  which is the upper bandwidth limit of
t implemented.

ositioner design

evice evaluated in this work was built using the Poly-
multi-user process [16] provided by MEMSCAP. This
ffers the possibility to design MEMS  devices using three
highly doped poly-silicon and a single metal layer. The
e substrate is isolated from the three layers by a 0.6 �m
on nitride layer. The final gold layer is used to form high
ectrical connection to the MEMS.
nopositioner consists on a central plate suspended over

rate by tethers that are mechanically and electrically con-
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that
 four identical comb drive actuators as shown in Fig. 1(a).
al plate can move in the plane of the substrate driven by

 drive actuators. Opposite comb drives form a pull–pull
guration to drive the central plate in one direction (e.g. X

If nec
in Refs. [
voltage h
maximum
1 (2018) 409–417

 the additional set of comb drives move it in the orthog-
ction (e.g. Y axis). Each direction is divided in positive (P)
tive (N) respect to the initial condition of all four comb
n-actuated (e.g. YP means the plate moving in Y direction
the positive (P) way).
ring constant of the tethers contribute about 10% of the

nstant in the transverse axis.

 drive actuator behavior

b drive is made up of two  parts, an array of fixed fingers
 to the substrate and another array of mobile interdig-
gers suspended by springs. The fingers of width w and

 t are separated by a gap g and overlapped by an initial
as is shown in Fig. 1(b). The comb drive behaves as an actu-
n a bias voltage Vact (actuation voltage) is applied between
le and the fixed combs. The mobile structure is electrostat-
acted to the fixed comb and as result the overlap between
le and the fixed fingers L0 increases to L0 + r. Where r is
cement intended to be use for nanopositioning proposes,
o as lateral displacement and can be calculated as:

C

r
V2

act = ırV2
act (1)

e spring constant in the r direction (which is a combina-
e two folded flexural springs constants in r direction and
gonal tethers and flexural springs constants), C the total
ce of the actuated comb drive and ır the lateral displace-

ctromechanical coupling coefficient.
lly, in thin film comb drives (i.e. when g ∼ t) as the

d using PolyMUMPs process, a grounding plane shorted
ly to the moving structure is placed underneath all the

 avoid unwanted charge accumulation in the substrate
ing potential which could adversely affect the stability of
romechanical response [17]. Secondary effects of having
ed plane beneath the fingers are: (1) the reduction of the
splacement electromechanical coupling from ır to ı′

r; and
mmetry of the electric field in the overlapped mobile and
ers area that induces a force normal to the plane of the

 and causes to the mobile structure to levitate.
ut-of-plane/vertical displacement (levitation) can be cal-
sing the following equations [18]:(
1 + r

L0

)
V2

act

z
m

(
1 + r

L0

)
V2

act

(2)

e asymptotic value of levitation, ız the vertical electrome-
coupling coefficient and the factor

(
1 + r

L0

)
represents the

ion of lateral displacement to the levitation. Thus, levita-
nds on lateral displacement. On the other hand, it can be

rated that lateral displacement is also levitation depen-
 appendix), then lateral displacement can be calculated

 �z)V2
act (3)

is the electromechanical coupling coefficient for a comb
h grounded plane underneath the fingers, and � a factor
putes the influence of levitation over lateral displacement.

essary, levitation can be reduced/controlled as described
18–20] or by pulling all four combs simultaneously at a
igher than 30 V, that is the voltage needed to reach the

 levitation.
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Fig. 2. (a) Electrical connection on one nanopositioner axis. By applying a balanced excitation signal, the device behaves electrically as capacitive bridge. The bias voltage
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ngle indicates the stages of the system integrated on the PCB prototype. (For interp
version of this article.)

taneous actuation and sensing scheme

sensing concept

usoidal voltage source Vsen(t) = Vsen sin(2�fsent) (sensing
s also added to actuation voltage Vact, a displacement cur-

ill flow through the comb drive capacitor. Notice that,
d fsen are fixed, and fsen � fres with fres the comb drive
al resonance frequency, the mechanical displacement due
sing signal can be negligible. As result, the contribution

nsing voltage to the comb drive capacitance C can also
ible [12], and the current icomb(t) will only be amplitude
d by the changes C due to its mechanical displacement as

 of the bias voltage Vact.

= C(Vact)
dVsen(t)

dt

=  2�fsenC(Vact)Vsen cos(2�fsent)
(4)

low us to utilize the comb drive as an actuator for nanopo-
while simultaneously acting as a detector of its own
ent.

nced excitation capacitive bridge

all comb drives of our nanopositioner are identical to each

with
site 

capa
a ch
amm

i(t) 

whe
and 

T
onal
with
quat
be in

4.3.  

W
the m
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only
ch axis can be represented electrically as two  identical
apacitors with the mobile structures as common node.
ng a sensing voltage Vsen(t) = Vsen sin(2�fsent) to one axis
. comb drive D1 in Fig. 2, and the same sensing voltage but

appendix

CD1 = CD1
lemented to sense and drive one axis of the nanopositioner. The dashed
on of the references to color in this figure legend, the reader is referred

osite phase ( ¯Vsen(t) = Vsen sin(2�fsent + �)) to the oppo-
 of the same axis, the system forms a balanced excitation

e bridge [21] and any displacement can be detected as
 in the current i(t) through the common node using an
:

1(t) + iD2(t)

�fsen Vsen cos(2�fsent)(CD1 − CD2)

�fsen Vsen cos(2�fsent)�C

(5)

1(t) and iD2(t) are the currents trough the comb drive D1
spectively, and CD1 and CD2 are its capacitances.
me bridge configuration can be applied to the orthog-

 of the nanopositioner. By exciting the orthogonal axis
equency fsen,j /=  fsen,i and fsen,j � fres,i, and using the ade-
ctronics, the displacement information on each axis can
ndently demodulated.

citance calculation

 applying an actuation voltage Vact to the comb drive D1,
le comb will displace laterally r and vertically z, producing
on comb drive capacitance CD1 that can be expressed as the
of the capacitance change due to the lateral displacement

 the capacitance change due to the levitation only (see

):

r + CD1z = 2ı′
rkr r + 2ızkz

zm

(
zm z − z2

2

)
(6)
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omb drives of the axis are mechanically and electrically
d by the tethers to the central plate, so that the opposite
ve displaces the same distance r but in this case moving
te direction relative to the fixed comb. Its been observed
ntally that the opposite comb drive is not influenced by

 since this displacement is absorbed by the tethers. Thus,
tance CD2 can be obtained as:

D2r = −2ı′
rkrr (7)

Eqs. (6) and (7), the capacitance of the bridge becomes:

− CD2 = CD1r + CD1z − (−CD2r ) (8)

+ 2ızkz

zm

(
zmz − z2

2

)

ing r and z from Eqs. (3) and (2) respectively in Eq. (8):

rı′2
r (1 + �z)V2

act + 2ızkz
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)
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act(
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2⎞
⎟⎠ (9)

n be seen, this is a recursive equation, with r and z
t of each other. A first iteration results in a very good
ation (less than 2% deviation).

m implementation

b) shows the PCB prototype built to drive and sense both
e nanopositioner. The diagram block of Fig. 2(c) shows a

 schematic of the implemented system for one axis of the
tioner.
lanced excitation signal needed for the bridge configura-
plemented using a LMH6551 differential amplifier. The
al amplifier specifies, as a characteristic of its differential
e output balance error. Ideally, a output balance error of

ll mean that both outputs have the same amplitude and a
ference of 180◦. For the LMH6551, the typical output bal-
r is −70 dB (a factor ∼0.0003), this ensures a very good

 excitation signal for our case. The LMH6551 is configured
ended input to differential output. The input of the dif-

amplifier is excited with a fixed AC sinusoidal voltage Vsen

ency fsen using a function generator. In common-mode,
ut is the half of the voltage input (i.e. Vsen/2).
C actuation signal stage was designed to be controlled
using I2C (e.g. with an Arduino) by controlling a digital to
nverter (DAC) DAC8574 integrated on the PCB prototype.
DAC outputs (0–5 V range) are amplified 21 times using
41a high voltage amplifier, so that the actuation voltage

ntrolled from 0 to 105 V (0–5 V × 21).
lly the driven voltage for comb drive devices is within this

 + DC coupler stage has the function of coupling the sens-
l (AC voltage) with the DC actuation voltage. For this task,
pex 341a is used, configured as an AC coupled inverting

 with the non-inverted input connected to the actuation
ource through a low pass filter. The same configuration is

Fig. 3
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 for the perpendicular axis of the nanopositioner.
tput current at the common node of the capacitive bridge

 using a low noise FET-input operational amplifier OPA657
d as a trans-impedance amplifier (TIA). The amplifier has

Fig. 2(c) 

was Vsen,
Vsen,X = 3V
to a time
lacement (levitation) by red dots. The lines are the fits using Eqs. (3) and
erpretation of the references to color in this figure legend, the reader is
the web version of this article.)

 bandwidth for a 200 k� trans-impedance gain. Thus, the
edance amplifier output voltage v(t) is:

0 k� i(t) (10)

, the trans-impedance amplifier voltage output is filtered
d using a lock-in amplifier SR-7124. The maximum oper-
uency of this lock-in is 150 kHz. Thus, this is maximum

y that can used to probe the bridge.

iments and results

cal characterization

l  and vertical displacements were optically characterized
mb drive of our nanopositioner, the results are shown in

e design dimensions for all comb drives are: L0 = 14 �m,
,  t = 3.5 �m,  g = 2 �m,  N = 68. Lateral displacement data is

 using an optical microscope Nikon Eclipse L200N. Images
bs overlap were taken after actuating the comb drive in

teps of 5 V and processed using a digital image correlation
 (DIC) to determinate the lateral displacement with sub-
lution. The uncertainty for this measurement is ±40 nm.

tation was measured with a optical perfilometer with an
ty of ±10 nm.
ta for vertical and lateral displacement were fitted using
nd (3) respectively. The lateral displacement electrome-
coupling (ı′

r) obtained from the fit is 1.77 nm/V2, while
nce of levitation over lateral displacement � is 0.04, thus
espised. The measured vertical displacement electrome-

coupling (ız) is 17.6 nm/V2 and the asymptotic value of
 zm is 1.59 �m.  As all comb drives are identical to each
se results can be extended to all of them.

rical characterization

er to electrically characterize the nanopositioner response
ctuation voltage Vact (DC only), the setup shown in

was  used. The sensing voltage applied to the Y axis

Y = 3Vrms, at a frequency fsen,Y of 150 kHz. For the X axis,
rms and fsen,X of 135 kHz. The lock-in output filter is set

 constant (TC) of 10 ms  and slope of 6 dB/octave for both
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shows the mechanical response of YP as a function of Vact
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ich directly affect the sensitivity and the bandwidth of the
 system.

 case, the bandwidth reduction is not critical since we are
at a relatively low frequency (150 kHz) while the roll-off
y due to the parasitic capacitances is on the order of tens of
e that the bandwidth of the detection stage is defined by

width of the Apex-341a (about 2 MHz) used to couple the
nd actuation signals. Regarding the sensitivity, it is very
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 right is a zoom in to XP data.



414 P.G. del Corro et al. / Sensors and Actuators A 27

zero base
at the dif
differenti
nanoposi
ing signa

The va
a capacit
mechanic
this case
data poin
and filter
was calcu
capacitan
capacitan

On th
shows no
voltage v
mechanic
the top le
the actua
measured

about 90
order effe

The  d
placemen
measurin
measured
be seen, l
eral disp
but as th
relations
lute meas
by calibra
error ass
detected
(±10 nm)

From 

output of
sensing v
cannot fu

e in
ted o
z. In

, redu

Late

he m
 MHz

 �s s
proto
onse
of th
g. 7.
he  na
ed u

axis w
nally
was 

litud
s. The lock-in amplifier was  configured in Tandem Mode. This
e perform two demodulations in series. The output filter of the
Fig. 6. Lateral displacement as a function of the capacitance.

line can be also caused by a poor output balance error
ferential amplifier output, mismatched components after
al output and capacitive coupling (crosstalk) between the
tioner common-node (sensing path) and the applied sens-
l Vsen.
lue obtained at the lock-in output can be converted to
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 nm.  The deviation observed can be attributed to second
cts not considered in the approximation of Eq. (9).
esired relation of the nanopositioner is lateral dis-
t vs capacitance. This correlation can be calibrated by
g the deflection optically and plotting the results vs the
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tion certainty of the optical measurement (±40 nm). The

ociated to the linear fit is about ±60 nm. While the noise
 at the output of the lock-in is about 20 nm peak to peak

 or 1.1 nm/
√

Hz.
Eq. (4) it can be seen that the current i(t) sensed at the

 the capacitive bridge can be increased by increasing the
oltage amplitude Vsen or frequency fsen. In our case, Vsen

rther be increased (3Vrms is the maximum voltage allowed
put of the differential amplifier), but fsen can be incre-
ver a factor 10 since the bandwidth of the circuit is about
creasing i(t) will result in a better signal to noise relation-
cing the noise at the lock-in amplifier output.

ral displacement mechanical resonance

easured bandwidth of the PCB prototype is about
 (from 30 kHz to 2 MHz) and the measured step response
ettling time with 15% overshoot. In order to compare the
type step response with nanopositioner mechanical step

, the lateral displacement mechanical resonance of one
e nanopositioner was measured. The results can be seen

nopositioner was  connected to the circuit prototype and
p as shown in Fig. 2(c). The sensing voltage applied to
as Vsen= 3Vrms, at a frequency fsen of 150 kHz generated

 by the lock-in. Instead of a pure DC actuation voltage,
configured with 40 V bias voltage and 1.5Vrms sine wave
e, and its frequency was  sweep from 1 to 6 kHz in 20 Hz
odulator is configured with a low time constant (10 �s)
o filter the excitation signal of 150 kHz without affecting

ateral displacement mechanical resonance.
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Fig. 8. FEA simulation of a comb drive electrostatic force over the mobile

requency signal amplitude. The second demodulator is
 to the Vact sine wave signal and configured with a 50 ms
tant output filter.
echanical resonance frequency obtained is 3.704 kHz

 at standard conditions of pressure and temperature. Sim-
ts have been reached by using a high speed camera to
measure the mechanical response of a single comb drive
lse signal.
verting the mechanical resonance frequency obtained to
le, the device settling time is about 270 �s, which means
ircuit prototype settling time is 10 times faster than the
tioner mechanical response. The relative speed of the self-
nd the mechanical response means that this method is

 active feedback control. This can minimize the settling
. Alternatively an accurate device characterization will

 for efficient feed forward drive technique o be imple-
23].

arison with other capacitive position sensors

pacitive sensitivity achieved with our setup (2.5 aF/
√

Hz)
mpared with other references. In Ref. [7] a 14 aF minimum
deviation is reported for a bandwidth of 0.5 Hz using the
d out configuration (trans-impedance amplifier followed
-in amplifier), while Ref. [10] obtained a 10 aF resolution
00 samples average). A different approach for nanopo-

sensing is proposed in Ref. [13]: they use an LC circuit to
anges in frequency as the comb drive capacitance changes,
nsitivity is reported. Results of using commercial capaci-
sors are also reported in Refs. [24,11], 30 aF/

√
Hz (using a

hip) and 4 aF/
√

Hz (using a MS3110 chip) respectively.
 all these approaches lead to similar results as our imple-
n, Ref. [10] does not allow simultaneous actuation and

 (one comb drive is used for actuation and the other
detection), and using commercial capacitance sensors
pproach proposed by [13] does not permit to sense
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degree of freedom from a single sensor. Our method
combines: (a) simultaneous actuation and detection, (b)

e (2.5 aF/
√

Hz or 1.1 nm/
√

Hz) and (c) the possibility of
ctrode sensing from a single read-out circuit.

where

dC

dr
=  2˛,
ure in r and z direction for a applied voltage of 1 V.

usions

been shown that, with our MEMS  nanopositioner design, it
e to use the nanopositioner itself to obtain information of
isplacement and take advantage of its geometrical struc-
plement a balanced excitation capacitive bridge. It has
onstrated that the two axes displacement can be sensed
ently from the same common node and sensing circuit.
guration can be extended to N-axes excited at different

ies. Optical and electrical characterization of the nanopo-
esponse to the actuation voltage have been carried out.
ve self-sense actuation and detection method have been

 with FDM techniques to implement the nanopositioner
 drive system. The electrical measurement results have

ussed and compared to previous publications. The capac-
ror obtained is 35 aF peak to peak or 2.5 aF/

√
Hz, for a

oltage Vsen = 3Vrms and fsen = 150 kHz. This result can be
 by increasing the sensing frequency up to 2 MHz  which
er bandwidth limit of the circuit implemented.

x A. Capacitive relation to in and out of plane

 section, an analytic model of the comb drive capacitance
 as a function of Vact will be developed.
tal electrostatic force 	FE over the mobile fingers in a comb

V2
act; 	∇C =

(
∂C

∂r
r̂,

∂C

∂z
ẑ

)
. (11)

rce in the r and z directions can be calculated as [19,18]:

C

r
V2

act = ˛V2
act, (12)

C

z
V2

act = ˇ
zm − z

zm
V2

act .
dC

dz
=  2ˇ

zm − z

zm
. (13)
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mb drive capacitance C is given by the line integral of the
	∇C:

	∇C(dr, dz) =
∫

S

(
∂C

∂r
dr̂,

∂C

∂z
dẑ

)
∂C

∂r
dr  +

∫
S

∂C

∂z
dz.

(14)

e curve that describes the comb drive displacement from
l overlap between fingers to r and z values of lateral and
isplacement respectively.
ining (13) with (14):

C − C0 = 2˛r + 2ˇ

zm

(
zmz − z2

2

)
, (15)

e comb drive capacitance at zero actuation voltage (initial
etween fingers) and �C the change of capacitance due to

 drive displacement.
ectrostatic forces are balanced by the mechanical spring
as described by Hooke’s law:

rr, FMz = −kzz. (16)

d kz the comb drives spring constant in r and z directions
ely.
(12) and (16), the lateral and vertical displacements can
ined as:

C

r
V2

act = ˛

kr
V2

act = ı′
rV2

act, (17)

V2
act

ˇ
zzm

V2
act

= ızV2
act

1 + ız
zm

V2
act

,

e lateral displacement electromechanical coupling for a
ve with a grounded plane underneath the fingers, zm the
ic value of levitation, ız the vertical displacement elec-
nical coupling.
lyzing the force in lateral displacement direction over a

nger while this levitates, it can be shown that lateral dis-
t increases with levitation (see Fig. 8). This relationship

en expressed as:

+ �z′)V2
act, (18)

−1] a factor that represents the influence of z′ over the
splacement, where z′ is the vertical displacement as a
of lateral displacement [18]:(

1 + r′
L0

)
V2

act

ız
zm

(
1 + r′

L0

)
V2

act

. (19)

bining (15), (18) and (19), the total capacitance can be
s:

r′ + 2ˇ

zm

(
zmz′ − z′2

2

)
. (20)

quation is recursive since r′ and z′ are dependent of each
ery good approximation can be obtained (with a deviation
an 2%) by replacing r′ and z′ with r and z respectively after

teration:

˛ı′
r(1 + �z)V2

act + 2ˇ
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·
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