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Deep Learning Segmentation of Optical
Microscopy Images Improves 3D Neuron

Reconstruction
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Abstract—Digital reconstruction, or tracing, of 3-dimensional (3D) neuron structure from microscopy images is a critical step toward

reversing engineering the wiring and anatomy of a brain. Despite a number of prior attempts, this task remains very challenging,

especially when images are contaminated by noises or have discontinued segments of neurite patterns. An approach for addressing

such problems is to identify the locations of neuronal voxels using image segmentation methods prior to applying tracing or

reconstruction techniques. This preprocessing step is expected to remove noises in the data, thereby leading to improved

reconstruction results. In this work, we proposed to use 3D Convolutional neural networks (CNNs) for segmenting the neuronal

microscopy images. Specifically, we designed a novel CNN architecture that takes volumetric images as the inputs and their voxel-wise

segmentation maps as the outputs. The developed architecture allows us to train and predict using large microscopy images in an

end-to-end manner. We evaluated the performance of our model on a variety of challenging 3D microscopy images from different

organisms. Results showed that the proposed methods improved the tracing performance significantly when combined with different

reconstruction algorithms.

Index Terms—Deep learning, image denoising, image segmentation, neuron reconstruction, BigNeuron.
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1 INTRODUCTION

MORPHOLOGY of neurons plays a critical role in the
function of the brain. In the nervous system, the

electrical impulses and chemical materials are transported
through pathways between connected neurons. The study of
3D morphology of individual neurons allows for a precise
identification of neuronal pathways and functions, includ-
ing the neuron phenotype, connectivity, synaptic integra-
tion, firing properties, and ultimately the role in neural
circuits. Therefore, characterizing the 3D morphology of
individual neurons is fundamentally important for under-
standing the organization of neurons and, furthermore, the
mechanism of the nervous system. Recently, many efforts
have been devoted to develop automatic or semi-automatic
neuron reconstruction algorithms based on microscopy im-
ages. However, this reconstruction task remains very chal-
lenging when a 3D microscopy image has low signal-to-
noise ratio (SNR) and discontinued segments of neurite
patterns. Indeed, microscopy image sets with low SNR are
quite common for the nervous systems of different animals
[1], [2], [3], [4]. Therefore, an effective and automatic de-
noising algorithm for these challenging situations would
substantially amplify the impact of neuron morphology
reconstruction.

Currently, most of prior methods for neuronal structure
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reconstruction on noisy images have used the raw images in
an unsupervised way [5], [6], [7], [8]. [1] developed a graph-
augmented deformable model to reconstruct the 3D struc-
ture of a neuron when the neuron contains a broken struc-
ture and/or fuzzy boundary. However, this method still has
difficulties on some noisy patterns, e.g., when two parallel
tracts are very close and one is brighter than the other. In [1],
[9], [10], fast-marching based methods were combined with
different pruning techniques to handle 3D noisy images.
However, these methods either have low accuracy when
the images are anisotropic or are time-consuming when
the number of noisy voxels is large. The recently published
work [11] developed an automatic tracing framework with
training steps to refine the reconstruction results generated
by an initial tracing algorithm. One main bottleneck of this
method is its relatively high computational complexity.

In this work, we proposed to use the convolutional
neural networks (CNNs) for improving the reconstruction
performance of existing methods on noise-contaminated
images over different organisms. CNNs are a type of fully
trainable models that learn a hierarchy of features through
nonlinear mappings between multiple stacked layers. CNNs
have been widely used in a number of applications and
achieved state-of-the-art performance on tasks including
large-scale image and video recognition [12], [13], [14],
[15], digit recognition [16], and object recognition tasks
[17]. Recently, many attempts have been made to extend
these models to the field of image segmentation, leading to
improved performance [18], [19], [20], [21], [22], [23]. One
appealing property of CNNs is that the learned features
through trainable parameters can capture highly nonlinear
relationship between inputs and outputs. Therefore, the
reconstruction methods based on CNNs can be broadly
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applied to a variety of different data sets.
Specifically, we built a voxel CNN classifier that predicts

the probability of every individual voxel in a given image
being a part of neuron or not. CNNs have been primarily
applied on 2D images in the prior studies. To effectively
incorporate the 3D spatial information in neuronal struc-
tures, we propose to perform 3D convolution in the con-
volutional layers of CNNs so that discriminative features
along three spatial dimensions are all captured. Considering
the large varieties of neuron morphologies among samples,
we adopt residual learning and inception learning to build
the deep network containing multi-scale information of
neural structures. We also use fully convolutional network
for increasing the application flexibility of proposed net-
work on different input sizes. Our CNN classifier accepts
raw voxel intensities as input without any preprocessing
and learns highly discriminative features automatically for
producing final probability maps. These probability maps
were integrated later with the raw intensities to produce
the final adjusted image as input for tracing algorithms. In
addition, to obtain the predictions of CNNs on test images,
the conventional approaches used patch-based predictions.
This approach resulted in significant redundancy in compu-
tation, thus making the prediction of large images very time-
consuming. To reduce the computational complexity, we
applied a stack of deconvolution layers in the CNN archi-
tecture that can produce a dense pixel-wise prediction very
efficiently. We compared the performance of our approach
with that of commonly used tracing methods on a number
of challenging 3D neuronal images from different model
organisms. Results showed that the proposed deep learning
model could enhance the input to existing tracing methods,
which thus significantly improved the neural reconstruction
performance of prior methods.

2 MATERIAL AND METHODS

2.1 BigNeuron atlas

The BigNeuron [24] is a community-contributed project for
defining and advancing the state-of-the-art of single neuron
reconstruction. It was motivated by a number of recent
progresses in neuroinformatics field such as the worldwide
neuron reconstruction contest named DIADEM [25], [26].
Currently, BigNeuron provides a large community-oriented
neuron morphology database and reconstruction algorithms
contributed by many research labs worldwide. There are
about 20,000 volumetric optical microscopy images from a
variety of species including fruit fly, fish, turtle, chicken,
mouse, rat, and human. The neurons in these images are
mainly located in regions such as cortical and subcortical
areas, retina, and peripheral nervous system. Each image in
BigNeuron has single color channel, and contains a single
neuron or disconnected multiple neurons having relatively
clear separation in their arborization patterns. Some images
have the corresponding reconstructions manually curated
and/or proofread to be used as references or ‘gold stan-
dards’ for evaluating the automatically produced recon-
structions. BigNeuron also provides an open-source cross-
platform package ‘Vaa3D’ [27] for facilitating the bench-
testing of neuron tracing algorithms developed by world-
wide researchers. A total of 23 neuron-tracing algorithms

for neuron quantifications have already been ported to
Vaa3D as plug-ins including manual, semi-automatic, and
completely automated digital tracing.

2.2 Overview of CNNs

Convolutional neural networks (CNNs) are a class of deep
learning models that attempt to compute high-level repre-
sentations of data using multiple layers of nonlinear trans-
formations. CNNs mimic the visual information processing
in the vision system of the brain by applying local filters to
the input. Such filters can be trained to extract various local
features. To generate specific features of the entire visual
field, a sliding filter is applied across entire visual field.
Such feature extraction method is also known as parameter
sharing and leads to dramatic reduction in the number of
trainable parameters. CNN models usually consist of alter-
nating combination of convolutional layers and local neigh-
borhood pooling layers, resulting in complex hierarchical
representations of the inputs. These properties make CNN
a powerful tool in image-related applications. Prior studies
have shown that CNNs achieved superior performance on
object recognition [28] and classification tasks in natural
images [13]. In addition, CNNs have been used in biological
applications such as restoring and segmenting volumetric
electron microscopy images [16], [18], [19]. In this study, we
propose to use CNNs on 3D optical microscopy images for
neuron reconstruction. Through the proposed CNN, we ob-
tained the prediction of neuron segmentation efficiently and
accurately, which significantly improved the performance of
neuron morphology reconstruction.

2.3 Fast prediction of CNNs

One major challenge of using CNNs on neuronal image
segmentation is that the volumetric images usually have
large sizes and thus could be computational expensive to
segment. A common way of generating image segmentation
using CNNs is to extract patches from images and use those
patches as inputs to the trained network. The output of
each patch is a single label of the center pixel of that patch.
Such patch-based prediction results in a huge amount of
redundant computations. It is thus desirable to design a
fast prediction algorithm that can segment the whole image
directly without generating patches.

In [29], a fast prediction algorithm was proposed by
creating a group of fragments over the feature maps gener-
ated from each max-pooling layer. Each fragment contains
information independent of other fragments, and the output
fragments at the last layer were reorganized to generate
the final prediction of the whole image. Although this
fast prediction algorithm does not require patch extraction,
some duplicate computations still exist when generating
different fragments. In [30] the d-regularly sparse kernels
were introduced to eliminate the redundant computations in
convolutional and pooling layers. Those sparse kernels con-
verted convolution and pooling kernels with various strides
into operations with a single stride. This conversion ensured
continuous memory access and increased the computational
efficiency on GPUs. However, this sparse kernel prediction
method is not applicable to architectures in which feature
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maps are padded before each convolutional layer to retain
their sizes.

In this study, we employed a novel network to obtain
image predictions efficiently. In particular, we applied de-
convolution operations to offset the size reduction caused
by convolution and max-pooling operations. Contrary to the
convolution operation that connects multiple input activa-
tions using a convolution kernel to produce a single output,
the deconvolution associates a single input with multiple
outputs using a deconvolution transformation. One signifi-
cant advantage of using deconvolutional layers is that they
allow the output feature map to have the same size as
the input image by using carefully selected deconvolution
kernels and stride sizes. Specifically, we used multiple de-
convolution operations at different intermediate layers to
ensure a same size for feature maps at those layers. The
deconvolved same-size feature maps were then combined
to form a multi-scale representation of the model input.
Through such design, our network is capable of generating
an end-to-end mapping between inputs and outputs and
leads to dense pixel-wise prediction over images without
any computational redundancy.

2.4 3D fully convolutional neural networks

Another major challenge of using CNNs for neuronal image
segmentation is the large diversity of the images in the
BigNeuron database. First, the complicated structures of
neurons require the network to be able to learn features
from multiple scales. For example, the recognition of neuron
skeleton needs large filters, since neurons can be very thin
yet projecting to long distance in 3D space. On the other
hand, the fine neuronic structures like branches or bifurca-
tions needs small filters to capture the local information in a
small neighborhood. Second, images in BigNeuron datasets
are contributed by different research groups and acquired
using different imaging techniques on various species such
as fruit fly, fish, etc. This results in a large amount of
differences of neuron morphologies among these images.
Hence, the network is expected to extract the essential com-
mon characteristics of neurons over those various samples.
Third, the qualities of images in BigNeuron are dramatically
different, which introduced an extra difficulty for the model
training. For example, the signal levels of key neurite in
some images might be strong and thus easy to detect, but
these signals might be weak in other images because of
multiple factors such as inappropriate exposure, noises from
non-neuronal cells, or limitations of experimental devices.

To overcome the above-mentioned difficulties, we pro-
posed a novel 3D CNN for reconstructing neurons accu-
rately. Prior studies have demonstrated the superior per-
formance of CNNs on classification about natural images.
However, in those applications, 2D convolutions are applied
to mimic the visual information processing. When applied
to the neuron reconstruction problems, convolutions are
expected to be 3 dimensional since neurons are naturally
in 3D space. Architectures with 3D convolutions have been
successfully used in video analysis [12], [31], [32], [33], in
which the video data was viewed as a 3D volume where
time acts as the third dimension. In [34], 3D filters were
used to build nonlinear mappings between different image

modalities, but its architecture was too shallow and ineffi-
cient for our neuron tracing task. In order to tackle the large
variance of neuronal structures in 3D space, we proposed a
fully convolutional network (FCN) with 3D convolutions to
localize the neurons in the BigNeuron database. FCNs are
variants of CNNs by replacing convolutional layers with
fully connected layers. Such model allows the network to
operate on inputs of any size and produce outputs of cor-
responding spatial dimensions. Fully convolutional layers
together with deconvolutional layers ensure the feasibility
of end-to-end training and testing. Furthermore, in order
to improve the performance of networks, the strategy of
stacking more layers is widely used in literature. Such
strategy has two major drawbacks. One is deeper network
typically means a larger number of parameters, which in-
creases the risk of overfitting. The other drawback is the
dramatically increased computational complexity. In this
study, we proposed to use two powerful deep learning
techniques introduced in the following to overcome these
limitations.

2.5 Inception learning

One typical way for overcoming the above mentioned two
limitations of deeper networks is to introduce small kernels
instead of large kernels. However, large kernels are still
necessary for capturing information of large regions in
the input. In order to deal with this dilemma, inception
networks [35] used multiple kernel sizes and max pooling in
parallel in each stage, and then aggregated their outputs for
the next stage. In each inception module, prior to expensive
convolutions with large filter sizes, convolutions with small
kernels are inserted to reduce the dimensionality such as
the number of feature maps. An advantage of such design
is that it allows for increasing the number of units at each
stage significantly without an uncontrolled blow-up in com-
putational complexity at later stages. Meanwhile, the use of
multiple filter sizes ensures that the hidden information can
be processed at various scales simultaneously.

2.6 Residual learning

The residual learning technique [36] was initially proposed
to solve the degradation problem in which the training
accuracy decreases when using too many stacked layers.
Formally, we use H(x) to denote the desired nonlinear map-
ping between the input feature map x and the output feature
map after applying stacked layers. In residual learning, the
stacked convolutional layers were considered to only fit
H(x)’s nonlinear residual F (x) := H(x)−x. In other word,
the mapping H(x) can be reformulated as F (x) + x and
realized by adding a shortcut identity mapping connection
between the input feature map and the output map. Such
design ensures that residual networks can achieve more
accurate results using deeper models but the training will
be still very fast. This is because previous layers are reused
by subsequent layers through shortcut connections, which
makes each layer learns less than a plain network but
utilized more information.

In this study, we used residual learning for segmenting
the neuron morphology from optical microscopy images. In
addition to its excellent performance in dealing with the
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Fig. 1: Detailed architecture of the proposed method for dense prediction. For each module in the architecture, convolutional
layers are denoted by filter sizes and number of feature maps in the brackets. Except for those layers with a stride size of
2, which are indicated by ‘s=2’, the stride sizes in other layers are all 1. The filter sizes in the third dimension are all 1, and
thus are skipped in the figure. The orange arrows indicate the shortcuts in residual learning.

degradation problem, another motivation of using residual
learning is the limited number of samples for training. Al-
though the number of images in the BigNeuron database is
large, only a small number of them have manual reconstruc-
tions by experts. For segmentation tasks over 2D natural
images, transfer learning could be used to borrow weights
from pre-trained models on other similar data sets. How-
ever, transfer learning may not work in the segmentation
of 3D neuron images because of the absence of pre-trained
models for transferring. This lack of training samples re-
stricted the depth of the model since deep models with
limited samples may overfit. Due to the appealing property
of residual learning, we employed shortcut connections
between both convolutional and deconvolutional layers to
construct the hierarchical representation of neurons.

2.7 The proposed deep model architecture

We provided the detailed configuration of our proposed
deep network in Figure 1. The whole network contains 6
modules, and each of them used multiple paths for realizing
inception learning. In particular, we used 3 modules (incep-
tion A, B, C in Figure 1) mainly for building the nonlinear
relationship between input and output, and an additional
3 modules mainly for reducing the sizes of feature maps
(reduction A, B, C in Figure 1). Multiple deconvolutional
layers were used for up-sampling the intermediate feature
maps to have the same size as the input. All outputs of
deconvolutional layers were summed together to form a
multi-scale representation of input. In those 3 inception
modules, residual learning was applied for improving the
performance and also reducing the computation complexity.

The network is 48-layer deep when counting only layers
with parameters. The overall number of layers (including
scaling and batch normalization) used for the construc-
tion of the network is over 200. The whole network has
11,408,852 parameters in total.

All convolutional layers, including those inside incep-
tion modules, and deconvolutional layers used the recti-
fied linear activation. Considering the limited number of
foreground neuron voxels in original 3D images, we ran-
domly sampled background voxels for each training subject
in order to control the numbers of positive and negative
samples. Intuitively, voxels around the neuron boundary are
more difficult to classify correctly than other distant voxels.
Therefore, most of background samples are drawn around
the neuron boundary. Also the ratio between numbers of
foreground and background voxels is kept within an accept-
able level. Note that the numbers of voxels in foreground
and background classes are not balanced. If the contribution
of each class to the loss is treated equally during the training,
the obtained network will mainly capture the discriminative
features of the majority class which is the background class
in our case. To this end, in the loss layer, we applied different
weights to foreground and background classes to overcome
this imbalance problem. To be specific, for each 3D training
sample, we firstly computed individual percentages of fore-
ground and background classes contained and then used
the inverses of these percentages as weights of correspond-
ing classes for computing the training loss. Through this
way, the importance of majority class, i.e. the background
class, is decreased and the training accuracy could be more
meaningful for monitoring the network performance. We



SUBMISSION TO IEEE TRANSACTIONS ON MEDICAL IMAGING 5

Original image Probability map Adjusted image Reconstruction

CNN Tracing 

Fig. 2: The pipeline of our method for automated reconstruction of neuronal structures.

trained our deep network with stochastic gradient decent.
We used a mini-batch size of 256, a momentum of 0.9
and a weight decay of 0.0005. The weights are initialized
randomly following a gaussian distribution with zero mean
and standard deviation of value 0.01. The biases were initial-
ized to either 0 or 1. We firstly set the base learning rate to be
10−3 and then decreased its value following a polynomial
decay for each iteration. We stopped the training when
the relative accuracy difference between two consecutive
iterations is less than 0.01. Experimentally, we found that
the model requires around 37,000 iterations of training to
achieve the desired accuracy using the publicly available
package ’Caffe’ [37] on an NVIDIA K80 GPU with 12GB
memory. The whole training time on the data set containing
augmented images took roughly 74 hours. For testing phase,
the segmentation time varies from 20 seconds to 150 seconds
on GPU for each subject, depending on the input image size.
For example, when the input image size is 984 × 980 × 74,
the segmentation took 143 seconds using GPU.

2.8 Image adjustment

For each microscopy neuron image, we can generate its
probability map P having the same size as the image. Each
element of P indicates the probability of the corresponding
voxel as neuron, known as foreground probability. A natural
way to use the probability map is to apply the tracing algo-
rithm directly to detect the neuronal structure. In this study,
we combined the original image and the probability map
together to get a combined representation for suppressing
the noise signal effectively. Specifically, for an input image
I(x) where x is a voxel, we screened the probability map by
a threshold δ chosen empirically to identify the foreground
voxels. If the foreground probability P (x) of the voxel x is
less than δ, we set the intensity I(x) to be zero, otherwise
we keep its original intensity value unchanged. Thus, an
intermediate intensity image Ĩ(x) is defined as

Ĩ(x) =

{

I(x) if P (x) > δ,
0 if P (x) ≤ δ.

In order to further use the probability map, we constructed a
new probability image P̃ (x) by multiplying the probability
value P (x) with 255 and then rounding the decimal value
to the closest integer. The final adjusted image F (x) by our
method is written as

F (x) = αĨ(x) + (1− α)P̃ (x) (1)

where α is a weight to control the contributions of the
original intensity and the probability map. Then the tracing

algorithm will be applied on the adjusted image to trace the
final neuronal reconstruction. The detailed pipeline of the
proposed method is illustrated in Figure 2.

3 EXPERIMENTAL RESULTS

3.1 Experimental setup

In this study, we selected 68 subjects from BigNeuron
database. These subjects are from a variety of species, and
each subject has the corresponding expert manual recon-
struction as our ground truth for training and evaluation.
Out of these 68 3D images, more than half of them contain
clearly visible noise in the images. We randomly sampled
3/4 of these 68 subjects for training the proposed models.
Then the model was evaluated on remaining subjects to
compute the neuron tracing performance. The training and
testing split was performed in a stratified way in terms
of data source to avoid the scenario that all subjects from
some research labs are all either in training or test sets.
The training patch size is selected as 160*160*8 considering
computational resources and also unequal image sizes along
three directions. For the testing phase, we used the whole
testing image as the input, thus the input size would be
changed according to the size of testing image.

During the training phase, we trimmed off the back-
ground margins of training images according to the ground
truth for saving computational resources. In order to im-
prove model performance, we used data augmentation to
enlarge the training data set. The data augmentation in-
cludes transformations of original images with rotation and
flipping along different dimensions. During the test phase,
we empirically selected the probability threshold value δ
in 1 to be 0.2. The coefficient α in Equation 1 was tuned
through line-search over test images and the value of 0.85
was used. We applied three distance scores to measure
the difference between a particular reconstruction and the
ground truth. These scores were defined in [1] and are
known as ‘entire structure average’, ‘different structure av-
erage’ and ‘percentage of different structures’. Specifically,
they are calculated in following ways. For each node in
manual reconstruction, we calculated the minimal spatial
distance between this node and all nodes in the recon-
structed nodes generated by computational methods. The
entire structure average is obtained by averaging all these
reciprocal minimal spatial distances; the different structure
average only sums those distances that are larger than 2 vox-
els since the difference of two nodes that is less than 2 voxels
is hardly distinguished visually. The percentage of different
structures captures the percentage of pairs of nodes whose
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Images with Images adjusted CNN+APP APP
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Fig. 3: Comparisons of tracing performance on images with artificial noises. The first column shows the raw images with
different levels of added Gaussian white noises. The variance values are 0.001, 0.005, 0.01, respectively, from top to bottom.
The second column shows the corresponding adjusted images after applying our CNN model to remove the noise voxels.
The third column shows the reconstruction results by the APP method on the adjusted images. The fourth column shows
the reconstruction results by the APP method on the contaminated images. The up-right boxes in the fourth column show
the parts of the corresponding images. The distances between the tracing result and the ground truth is also give in each
image in the third and fourth columns.

reciprocal minimal spatial distances are more than 2 voxels.
For all of these three scores, larger values indicate higher
discrepancy between the tracing results and the manual
reconstruction. Note that the main contribution of our work
is to provide a framework for enhancing the input quality of
tracing methods. In order to demonstrate the performance
improvement of our proposed method, we adapted APP
and its variant APP2, since these methods are widely used
and have been shown excellent robustness over noise [9]. We
also chose SmartTracing in our experiments since it is also a
learning-based method newly developed and has excellent
performance when the noise and broken structures exist. We
didn’t show the results of other tracing methods because of
the page limit and also the great popularity of the above 3
methods. Both APP and APP2 methods reconstruct the 3D
morphology of a neuron generally in two steps. They firstly
produce an initial over-reconstruction using shortest paths
between pixels and seed locations by a fast-marching algo-
rithm. Then, they refine the initial reconstruction by pruning

redundant segments. Compared with APP, APP2 has some
improvements from the following aspects. Firstly, APP2 pro-
poses a gray-weighted image distant transformation on the
raw image, which is absent in APP. Secondly, APP2 creates
a parental map to generate shortest paths instead of using a
large graph which appears in APP. Thirdly, APP2 employs a
hierarchical pruning with a new coverage ratio computation
formula motivated by APP. In addition, considering the
unbalanced image sizes in different directions, i.e. the height
and width of images are usually much larger than the depth,
we showed the visual experimental results with almost
front view. We believe using this angle can bring better
visualizations about comparison results between different
methods.

3.2 Performance on images with artificial noise

A major advantage of our proposed CNN model is that
we can obtain accurate segmentations of neurons. Such
segmentations can enhance the signal of neurons from a
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Raw image Manual tracing CNN+APP2 APP2 SmartTracing

Fig. 4: Comparisons with different neuron tracing methods for two images in BigNeuron database. The first row shows
results for the subject No. 31 and the second row is for the subject No. 52. The first column shows the original images. The
second column shows the expert manual reconstruction results. The third column is the reconstructions using APP2 on
adjusted images with our CNN model. The fourth column is the results by applying APP2 directly on the original images.
The fifth column shows the results by SmartTracing method on the original images. Note that, for the last three columns,
we overlayed computational reconstructions in blue with manual reconstruction results which are denoted by red.

noisy image, which improves the neuron tracing applied
in the following. In order to demonstrate the robustness of
our CNN models with respect to different levels of noises,
we randomly select one testing raw image because of the
page limit, and added Gaussian white noise of mean 0
and different variance γ. We then used each image con-
taminated with artificial noise as the input to our CNN
model, and generated the corresponding adjusted image as
described in Section 2.8. For both contaminated images and
adjusted images by CNN models, we applied APP as the
tracing method to reconstruct the neuron structures. In the
following experiments, we mainly used APP2 as the tracing
methods, since APP2 is more popular than APP even though
they both used similar idea for tracing. The reason of not
using APP2 here is that it couldn’t generate visible results
in a reasonable time when the level of noise is high. The
visualization results for three values of γ = 0.001, 0.005 and
0.01 are given in Figure 3. Note that, the figures in this work
are all shown in 3D space. This could be seen from the light
blue axis shown in the above Figure 3.

We can observe that after applying our proposed seg-
mentation model, the numbers of noise pixels in adjusted
images are significantly decreased. The reconstructions on
adjusted images are visually close to the ground truth by
human experts. In contrast, the reconstructions on contam-
inated images without adjustments contain many unnec-
essary spurs because of the noise signals. In addition, we
computed the distances between the reconstructions and the
ground truth. We can see that for different levels of noise,
the performance on adjusted images is consistently better
than that on contaminated images. This shows that our
trained CNN models could be potentially used to improve
the accuracy of neuron tracing, especially if the microscopy
images are contaminated by noise.

3.3 Performance on real images

In order to further demonstrate the advantage of our CNN
models on denoising neuron microscopy images, we used
two real images with visible noise contributed by different
research labs. In addition, we compared our method with
SmartTracing method [11] which is another learning-based
tracing framework. We used APP2 as the tracing method
applied on original and adjusted images, since SmartTracing
is also based on APP2. The reconstruction results of different
methods are given in Figure 4.

We can see that the tracing results on adjusted images
are visually more similar to the ground truth than those
on original images. The probability maps of our CNN
model captured those bright noise voxels, which facilitated
the reconstructions applied subsequently. In contrast, many
redundant branches and bifurcations are still wrongly kept
as neuron segments by APP2 on the original images. Al-
though SmartTracing is also a learning based method, it
used local features with complicated transformations to
train the model. In contrast, CNNs employed stacked layers
with different filter sizes to extract multi-scale information
of objects in the image. The advantage of our model over
SmartTracing can be observed in Figure 4 as well.

3.4 Comparison with other methods

In order to evaluate the proposed method quantitatively,
we compared the tracing performance of APP2 and Smart-
Tracing with and without adjustment by our CNN model
respectively. The results on all 17 test subjects are reported
in Table 1, 2, and 3 with different measures. We can observe
that, for both APP2 and SmartTracing, their performance
on adjusted images is better than that based on original
images for all three measurements. Specifically, APP2 with
CNN adjustment outperformed APP2 on original images
for all subjects with respect to the measure ‘entire structure
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TABLE 1: Quantitative comparisons of tracing performance
by APP2 and SmartTracing method with and without the
adjustment by my CNN model respectively. The results
reported in this table are based on the measure ‘entire
structure average’.

entire structure average
CNN+APP2 APP2 CNN+ST ST

Sub. 3 1.4667 19.1914 1.9345 13.253
Sub. 4 1.4608 20.4576 2.2307 N/A
Sub. 5 2.9562 3.4425 2.9451 2.8185
Sub. 7 1.7715 4.1832 2.2249 4.1815

Sub. 16 1.7643 2.7168 2.1222 2.3085
Sub. 17 1.5133 1.5218 1.9180 1.9883
Sub. 18 1.9768 2.1165 2.5506 2.4962
Sub. 19 1.7361 1.6803 2.0086 1.9669
Sub. 20 2.2600 4.4414 2.5101 3.0851
Sub. 21 1.9406 2.9079 1.7357 1.9998
Sub. 22 2.0178 2.1073 2.0318 2.0717
Sub. 25 15.1363 25.2285 16.9098 18.8010
Sub. 29 2.3182 4.3457 2.5062 4.2284
Sub. 31 1.5740 13.4657 1.8931 10.0305
Sub. 35 3.0737 31.0310 3.4451 N/A
Sub. 50 8.6395 21.3847 7.8424 13.3103
Sub. 52 4.3104 17.6192 3.3240 12.0861

TABLE 2: Quantitative comparisons of tracing performance
by APP2 and SmartTracing method with and without the
adjustment by my CNN model respectively. The results
reported in this table are based on the measure ‘different
structure average’.

different structure average
CNN+APP2 APP2 CNN+ST ST

Sub. 3 3.7271 24.3327 3.8273 17.6276
Sub. 4 2.9812 24.4982 3.6339 N/A
Sub. 5 5.7559 6.6293 4.1684 4.0008
Sub. 7 3.1334 7.6208 4.8516 7.8795

Sub. 16 4.2014 6.9710 4.2785 5.2957
Sub. 17 2.7030 2.8417 2.8988 3.0038
Sub. 18 3.1877 3.3327 4.8305 4.7152
Sub. 19 2.7909 2.7932 3.0154 2.9459
Sub. 20 3.2338 6.3721 3.9653 5.1144
Sub. 21 3.0792 5.3018 2.9771 3.7801
Sub. 22 3.3857 3.5341 3.2598 3.5386
Sub. 25 18.9222 29.3581 20.0443 22.1727
Sub. 29 3.7772 7.1298 4.4599 8.1930
Sub. 31 5.3058 23.2479 4.0464 13.5121
Sub. 35 6.6046 32.0973 5.2681 N/A
Sub. 50 9.8630 22.5079 9.1288 14.4537
Sub. 52 17.4785 37.7065 9.8060 25.2226

average’. Even for other two measures, there are only one or
two subjects on which APP2 without CNN yielded slightly
better performance. Similar performance gains by our CNN
models are also observed on the results using SmartTracing.
In addition, we can see that for those images with a large
amount of noise such as Subject 3, 4, 31, and 52, the tracing
results after using our CNN models are significantly better
than those on original images. These results further demon-
strated that the proposed 3D CNN method is very effective
in improving neuronal reconstruction on noisy images.

4 CONCLUSION AND FUTURE WORK

In this study, we aimed at improving neuronal reconstruc-
tion based on microscopy images. This was achieved by
employing novel deep architectures to segment the neu-
ronal voxels. The CNNs used the original 3D microscopy

TABLE 3: Quantitative comparisons of tracing performance
by APP2 and SmartTracing method with and without the
adjustment by my CNN model respectively. The results re-
ported in this table are based on the measure ‘% of different
structure’.

% of different structure
CNN+APP2 APP2 CNN+ST ST

Sub. 3 0.2075 0.5347 0.3153 0.5339
Sub.4 0.2226 0.7012 0.4178 N/A
Sub.5 0.3472 0.3483 0.5080 0.4974
Sub.7 0.2178 0.3920 0.2686 0.3629
Sub.16 0.2099 0.2916 0.2488 0.2204
Sub.17 0.2096 0.2019 0.2968 0.3134
Sub.18 0.3353 0.3645 0.3125 0.3023
Sub.19 0.3010 0.2748 0.3276 0.3036
Sub.20 0.4588 0.5684 0.4092 0.4130
Sub.21 0.3498 0.4163 0.2346 0.2446
Sub.22 0.3298 0.3474 0.3188 0.2901
Sub.25 0.5443 0.5727 0.6387 0.6101
Sub.29 0.3663 0.5017 0.3452 0.3948
Sub.31 0.1683 0.3807 0.2483 0.4712
Sub.35 0.3622 0.7447 0.5120 N/A
Sub.50 0.8442 0.9089 0.8286 0.9116
Sub.52 0.2492 0.4283 0.2723 0.3845

images as input and generated the segmentation maps as
output. We compared the performance of our approach with
that of commonly used tracing methods. Results showed
that our proposed model significantly outperformed prior
methods on other neuron tracing methods on microscopy
images. Overall, our results demonstrated that our proposed
method produced more accurate results on neuronal mor-
phology reconstruction.

In this study, we considered the CNN model for neuron
segmentation. There are also other deep architectures that
achieved promising performance on image-related tasks. It
would be interesting to apply other deep models for 3D im-
age segmentation. For example, recent studies showed that
recurrent neuron networks (RNNs) yielded very promising
performance on visual recognition tasks. We will explore
RNNs in the field of neuronal reconstruction in the future.
In the current experiments, we only used a small number
of images for training the CNN models. Prior studies have
shown that the success of deep learning models relies on a
large training data set. As more and more data with manual
reconstruction are collected in the BigNeuron project, we
will explore CNNs with deeper architectures in the future.
The current work used CNN models for neuronal image
segmentation and improved the quality of subsequent re-
construction. In the future, we will explore the possibility of
using CNNs on neuron tracing directly.
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