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Abstract. The note contains several results on the existence of limits for the
first two moments of the popular model in the population dynamics: branching
random walk on multidimensional lattices with immigration and infinite number
of initial particles. Additional result concerns the Lyapunov stability of the
moments with respect to small perturbations of the parameteres of the model
such as mortality rate, the rate of the birth of (k− 1) offsprings and, finally, the
immigration rate.
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1. Introduction

The models we will study below give good description of the demo-
graphic situations in such European countries as Germany, Sweden, Den-
mark etc. However we will use the neutral terminology: particle, reactions,
transformations.

2. Main section

The subject of our study is the particle field n(t, x), t ≥ 0, x ∈ Zd.
We assume that n(0, x) are independent identically distributed random
variables with the finite exponential moment (say, Poissonian distribution
with the parameter λ > 0). The evolution of the field n(t, x), t > 0 includes
several independent ingredients.

Migration (random walk). Each particle at the moment t > 0 in
the point x ∈ Zd spends in this point the random time τ up to the first
transformation, at the moment (t+ τ + 0) there are several options:
1. First it can be the jump x→ x+ z with probability a(z). We assume

that a(z) = a(−z) and the intencity of the jumps (diffusivity) equals
κ > 0. The generator of the corresponding (underlying) random walk



has the form

(Lψ)(x) = κ
∑
z 6=0

[ψ(x+ z)− ψ(x)]a(z), a(z) = a(−z),
∑
z 6=0

a(z) = 1

2. Secondly, each particle can die, the mortality rate we denote µ > 0
(i.e during time (t, t+dt) particle annihilate with the probability µdt).

3. Each particle (independent on others) can produce n new particles
(i.e, if you wish, the parental particle produces n−1 new particles and
still stays in the point x ∈ Zd). Let βn, n ≥ 0 is the intencity of the
transformation for the single parental particle into n particles. Let’s
introduce the corresponding infinitesimal generating function

F (z) = µ− (µ+
∑
n≥2

βn)z +
∑
n≥2

βnz
n

We will assume that F (z) is an analytic function in the circle
|z| < 1 + δ, δ > 0 (i.e the intencities βn as the functions of n are
exponentially decreasing).
We assume that new particles (offsprings) start their evolution from

the same birth place independenlty on others (like in classical Kol-
mogorov-Petrovski-Piskunov paper [1])

4. The new moment in our model is the immigration. For any x ∈ Zd
and time interval (t, t + dt) the new particle (independently on the
n(t, x), x ∈ Zd) can appear in the site x with probability kdt (k is the
rate of immigration).

In the usual case of branching random walk (the contact model in the
terminology of [2]) there is no immigration (k ≡ 0) and β2 = µ (critical
case). Then under condition of transience of the random walk with genera-
tor L (see [4]) there is the limiting state (steady state) n(∞, x) for t→∞.
The study of this state can be based on the direct Kolmogorov equations
like in [2] or on the backward equations (which are much simpler), see
[4].

But in the presence of the immigration we have to use forward Kol-
mogorov equations. Their derivation is based on the representations:

n(t+ dt, x) = n(t, x) + ξ(dt, x)



where ξ(dt, x) is the random variable

ξ(dt, x) =



n− 1, with probability βnn(t, x)dt, n ≥ 3

1, with probability β2n(t, x)dt+ kdt+ κ
∑
z 6=0 a(−z)×

×n(t, x+ z)dt

−1, with probability µn(t, x)dt+ κn(t, x)dt

0, with probability 1−
∑
n≥3 βnn(t, x)dt−

−(β2 + µ+ κ)n(t, x)dt− kdt−

−
∑
z 6=0 a(−z)n(t, x+ z)dt

Applying the method of the conditional expectations we can derive now
the equations for the first two moments m1(t, x) = En(t, x), m2(t, x, y) =
En(t, x)n(t, y).

Equation for m1(t, x) has the form

∂m1

∂t
= Lm1 + (β − µ)m1 + k, m1(0, x) = En(0, x) ≡ a > 0

Here β =
∑
n≥2(n − 1)βn. Exactly the same equations cover the case

when β = β(x), µ = µ(x), k = k(x) are the bounded functions on the
lattice Zd.

In the case of constant coefficients β, µ, k the equation for the first
moment can be solved:

m1(t, x) =
k

β − µ
(e(β−µ)t − 1) + e(β−µ)ta.

Thus m1(t, x)→∞, t→∞ for β ≥ µ, k > 0. And for µ > β

m1(t, x)→ k

µ− β
, t→∞

independently on the initial conditions.
The next result presents the Lyapunov stability of the first moment.

Theorem 1 Let coefficients βn(x), n ≥ 2, µ(x), k(x), x ∈ Zd are bounded
and µ(x) − β(x) ≥ δ1 > 0, k(x) ≥ δ2 > 0. Then for the bounded initial
condition there exists

m1(∞, x) = lim
t→∞

m1(t, x)

Let’s stress that in the co-called contact model (see [1], [4]) the limiting
state exists only in the critical case µ(x) = β(x) and this state is unstable



with respect of any sufficiently small in L∞-norm perturbations (including
random perturbations) of the parameteres of the model.

The equation for the second correlation function

m2(t, x, y) = En(t, x)n(t, y)

is more complex:

∂m2

∂t
= κLxm2+κLym2+2(β−µ)m2+2κa(x−y)Φ(m1)+δ(x−y)Ψ(m1)

The functions Φ(x) and Ψ(x) depend linearly on the first moment, i.e
can be considered as known ones.

The equation for m2(t, x, y) and the initial data (due to translation
invariance of the problem) can be simplified since m2(t, x, y) = f(t, x− y)
and for z = x− y

∂f

∂t
= 2Lzf + 2(β − µ)f + s(t, z)

s(t, z) is the known function (related to the first moment m1(t, z)). If
µ > β and k > 0 the second moment has a limit if t→∞ and

f(∞, z) =

(
k

µ− β

)2

+ f̃(z)

and the limiting correlation function f̃(z) is exponentially decreasing.
In the case of the binary branching β = β2 (i.e βn = 0, n ≥ 3) equations

for the second moment studied in [3].
We already have expression for the limit of the third correlation func-

tion m3(t, x1, x2, x3) = En(t, x1)n(t, x2)n(t, x3) and can prove the conver-
gence together with asymptotic formulas for

m3(∞, x1, x2, x3) = m̃(x1, x2, x3).

3. Conclusions

The proof of all results, formulated above and their developments (in-
cluding the study of the higher correlation functions and the existence
uniqueness theorem for the steady state) will be published in one of the
applied probability journals.
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