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Abstract 

Artificial photosynthesis via solar water splitting provides a promising approach to storing 

solar energy in the form of hydrogen on a global scale. However, an efficient and 

costeffective solar hydrogen production system that can compete with traditional methods 

using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell 

consisting of a p-type photocathode and an n-type photoanode, with the photovoltage 

provided by the two photoelectrodes, is an attractive route to achieve highly efficient 

unassisted water splitting at a low cost. In this article, we provide an overview of recent 

developments of semiconductor materials, including metal oxides, nitrides, chalcogenides, 

Si, III–V compounds and organics, either as photocathodes or photoanodes for water 

reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC 

tandem system for unassisted water splitting are outlined. The importance of developing a 

single-photon photocathode and photoanode that can deliver high photocurrent in the low 

bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future 

development of photoelectrode materials, and viable solutions to realize highly efficient 

PEC water splitting device for practical applications. 

Export citation and abstract  

1. Introduction 
Sunlight is the most abundant renewable energy resource and considered to be the ultimate 

solution to address the global energy problem: 'The Terawatt Challenge.' However, the 
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vision of solar energy providing a substantial fraction of global energy infrastructure is still 

far from being realized. The major challenge is to develop an efficient and cost-effective 

approach for storing solar energy that can be used on demand on a global scale. Solar water 

splitting provides a scalable route to store solar energy in the form of energy-dense 

hydrogen fuel [1], which can be directly used in a fuel cell with water as the only emission 

or as a reactant for well-established industrial processes, such as ammonia synthesis 

(Haber−Bosch reaction) or methanol production (CO2/CO hydrogenation reaction). For 

solar water splitting systems, there are three major categories: photochemical (PC) system, 

photoelectrochemical (PEC) cell, and photovoltaic-electrolysis (PV-E), as shown in figure 

1. 

PV-E is a straightforward strategy of connecting two existing developed technologies: 

photovoltaic (PV) cell and water electrolyzer. Although PV-E have been demonstrated with 

high solar-to-hydrogen (STH) conversion efficiencies over 10% [2–9], this route is still too 

costly to compete with traditional methods using fossil fuels (e.g. steam reforming of 

natural gas) [10]. Considering the technological maturity of PV-E, further improvement in 

the efficiency has been limited. Therefore, the development of alternative and cost-effective 

routes to produce solar hydrogen is of particular interest. PC approach is a simple and 

lowcost process for potential solar hydrogen production, but this route is inefficient with a 

STH efficiency typically at least one order of magnitude lower (<1%), and produces a 

potentially explosive mixture of H2 and O2, which requires an external high-cost process to 

separate them to avoid back reactions [11]. In this context, PEC system, which lies 

intermediate between PV-E and PC, offers a high STH efficiency at an affordable cost [12–

14]. The PEC approach integrates the light absorption and electrochemical process of PV-E 

process into a single and monolithic unit via a direct semiconductor–electrolyte interface to 

reduce the cost, while having a distinct advantage over PC system in that the H2 and O2 

evolution halfreactions occur on two different electrodes and are separated physically. 

Recent technoeconomic analysses have shown that PEC water splitting can achieve 

substantially lower overall system cost compared to PV-E approach, and can become 

economically competitive with existing fossil-fuel derived hydrogen if the efficiency and 

lifetime are substantially improved to >10% and >5 years, respectively [14–16]. 
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A simple PEC configuration includes one semiconductor photoelectrode (as either 

photocathode or photoanode) and one standard metallic (dark) electrode (e.g. Pt). Ideally, 

the semiconductor should have an appropriate bandgap and band structure to encompass a 

large portion of solar spectrum while providing sufficient potentials to accomplish the 

overall water splitting reaction, as well as excellent charge transport properties and 

longterm stability during the operation. Despite the fact that many materials have been 

explored over nearly half a century, there is currently no single material that can fulfill all of 

the key criterion. Since overall water splitting consists of two half-reactions, i.e., water 

oxidation and proton reduction, it is natural to use a 2-photon dual-electrode system, which 

is analogous to the Z-scheme in natural photosynthesis. Compared to the PV-biased PEC 

tandem device, a simple tandem system consisting of spatially separated p-type 

photocathode and n-type photoanode is preferred in terms of cost, complexity and stability 

[17–19]. The energy band diagram for this type of device in a 'wireless' configuration is 

shown in figure 2. There are two designs of the device, depending on whether the wider 

bandgap material is a photoanode or a photocathode. In both designs, the longer wavelength 

photons that are not absorbed by the top large bandgap absorber are transmitted and 

harvested by the bottom low bandgap absorber. Owing to the band bending, the 

photogenerated electrons in p-type photocathodes and holes in n-type photoanodes migrate 

toward the semiconductor–liquid interface to reduce and oxidize water, respectively, while 

holes in the photocathode and electrons in the photoanode recombine at the ohmic contact 

that connects both photoelectrodes. As each material is responsible for the relevant half 

reaction of water splitting, the tandem system allows the use of smaller bandgap material 

Figure 1.  Schematic of three types of solar water splitting system: PC system, PEC 

cell, and PV-E. PC and PV-E have the respective limitations of low efficiency and 

high cost, while PEC lies intermediate for achieving high efficiency at an affordable 

cost. 



5/10/2018 Roadmap on solar water splitting: current status and future prospects - IOPscience 

http://iopscience.iop.org/article/10.1088/2399-1984/aa88a1 5/75 

and relaxes the stringent requirement of band edge positions to straddle the water redox 

potentials. Therefore, the PEC tandem device can achieve potentially higher efficiency than 

the single absorber system, with large solar spectral coverage and a wide window of 

suitable materials to choose from (figure 3) [20–23]. Recently, various theoretical modeling 

studies have evaluated the achievable STH efficiency of this tandem system by considering 

different bandgap combinations [24–31]. Despite the varying results of the different models 

which include accounting for variable losses (e.g. kinetic overpotentials, solution ohmic 

resistance and parasitic light loss), it is generally accepted that such a tandem device can 

yield an STH efficiency over 25%. To achieve STH efficiency >20%, the optimal top and 

bottom semiconductor absorbers in a tandem device are with bandgaps of approximately 

1.6–1.8 eV and 0.9–1.2 eV, respectively. The maximum STH efficiency of ~27% was 

predicted using the 1.7/1.1 eV bandgap combination [31], which can cover the major 

portion of solar spectrum with a current matching condition between the two 

photoelectrodes, as shown in figure 4. 

 

Figure 2.  Schematic of tandem PEC water splitting device with (a) a large bandgap 

photoanode and a small bandgap photocathode and (b) a large bandgap 

photocathode and a small bandgap photoanode. 
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In this review article, we focus on the recent progress in the development of promising 

semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III–V 

compounds and organics, either as photocathodes or photoanodes to construct potentially 

efficient p–n PEC tandem system for unassisted water splitting. First, the fundamental 

Figure 3.  Bandgaps and band edge positions of various semiconductors with respect 

to the redox potentials of water splitting (pH = 0). The wide and narrow bandgap 

materials can be used as top and bottom absorbers, respectively. RHE: reversible 

hydrogen electrode. CB: conduction band. VB: valence band. CBTS: Cu BaSnS . 

CZTS: Cu ZnSnS . CIGSe: Cu(InGa)Se . 
2 4 

2 2 2 

Figure 4.  Solar spectrum (AM 1.5 G) coverage by a tandem PEC water splitting 

device with optimum bandgaps of ~1.7 and ~1.1 eV. Inset is the illustration of the 

tandem device. 
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principles of solar water splitting at a semiconductor/liquid junction (SCLJ), including 

different cell configurations and merits of parameters are introduced. Then great emphasis 

is focused on the design and development of efficient p- and n-type semiconductor 

materials as photocathode and photoanode for water reduction and oxidation, respectively. 

In addition, efforts to form a PEC tandem device by combining p-type photocathode and 

ntype photoanode for unassisted water splitting are summarized in terms of their STH 

efficiency and stability. Finally, conclusions and future prospects of solar water splitting for 

achieving a practical artificial photosynthesis device are presented. 

2. Basic principles of solar water splitting 

2.1. Semiconductor photoelectrochemistry 

Semiconductor photoelectrochemistry deserves special attention because the system 

features a highly unique interface—the SCLJ. For a typical system where the Fermi level of 

the semiconductor is not at the same level as the electrochemical potential of the electrolyte 

prior to contact (figure 5(a)), the formation of the junction suggests that one or both of the 

energy levels should move to reach equilibrium. As the charge density of the electrolyte is 

typically several orders of magnitude higher than that of the semiconductor, hence 

semiconductor Fermi level is moved to align with the electrochemical potential of the 

electrolyte. While the same description would be true for a metal/liquid junction, the 

semiconductor is unique because it can form a relatively wide depletion region (up to μm's, 

depending on the dielectric constant, the carrier density, and the energy difference) [32, 33]. 

As is seen in figure 5(b), a SCLJ with a bent band is effectively a Schottky-type diode that 

can 

separate photogenerated charges. This junction is the fundamental reason why 

semiconductor photoelectrochemistry is interesting. 
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 Figure 5. Schematic of the band diagrams under different conditions. (a) Prior to 

contact between the semiconductor and the electrolyte. (b) Upon contact under 

equilibrium conditions without light. (c) Quasi-equilibrium with illumination. The 

various processes are labeled as follows. (1) Charge excitation by light; (2) 

electron extraction through back contact; (3) hole transfer to surface states; (4) 

hole transfer to the electrolyte; (i) bulk recombination; (ii) surface recombination; 

(iii) electron trap by surface states. 

 

 

On a practical level, semiconductor photoelectrochemistry also represents a useful tool to 

understand the detailed processes that govern the operation of a photocatalytic system. 

Consider solar water splitting as an example. In order to achieve high efficiencies, we desire 

to have a system that is efficient in all three major processes: absorbing light, separating 

charges, and driving hydrogen and oxygen evolution reactions. Careful studies of the SCLJ 

can help us understand which parts of the system are responsible if a system fails to deliver 

the expected performance. For instance, the performance of a photoanode as shown in 

figure 6 may be limited by any of the following processes. First, the recombination of 

electrons and holes in the bulk is too severe. Second, the direct recombination of electrons 

and holes in the conduction and valence bands, respectively, near the surface is too fast. 

More explicitly, charge distribution near the surface differs from the bulk. When majority 

charge carriers deplete from semiconductor to liquid, the minority charge concentration 

increases in this near-surface region forming an inversion layer, opening up additional 

recombination channels [34]. Third, surface mediated electron and hole recombination 

contributes significantly to the annihilation of photogenerated charge carriers. Fourth, 

charge carrier transfer from the semiconductor to the electrolyte is too sluggish to compete 
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with charge recombination processes as outlined above. Being able to accurately describe 

the various processes is critical to the understanding and, ultimately, solving the various 

issues for high-efficiency solar water splitting. Below, we will briefly present the equations 

that are useful to describe the SCLJ in a semiconductor PEC system. 

 

 

For the ease of discussions, we choose to use a photoanode system as shown in figure 5 as a 

prototypical platform to lay out the details. Upon contact, the SCLJ results in the formation 

of a space charge region (depletion region of electrons), whose width (Wsc) depends on the 

difference between the Fermi level of the semiconductor in vacuum and the electrochemical 

potential of the electrolyte (Δ sc), the relative permittivity (ε) and the doping density (Nd): 

 

The capacitance of the space charge region can be derived from the variation of the space 

charge (Qsc) with the potential drop (Δ sc), Csc = dQsc/dΔ sc, as described by the Mott– 

Schottky equation: 

 

Figure 6.  Idealized photocurrent–voltage relationship of a photoelectrode (broken 

line) and the one for a realistic system (solid line). 
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Because the electrical field generated within the space charge region varies linearly from 

distance x = Wsc to the surface (x = 0), the variation of electrical potential will be 

proportional to x2 and can be represented as band bending (figure 5(b)). The degree of band 

bending is governed by the Fermi level difference between the semiconductor and the redox 

pair. This is analogous to a Schottky junction formed between a semiconductor and a high 

work function metal [35]. Under reverse bias conditions (positive potentials), the Schottky 

barrier is increased, which makes it more difficult for electrons to transfer from the 

semiconductor to the electrolyte. For an anode system, such charge transfer would be 

considered back electron transfer and should be minimized. Meanwhile, the enhanced band 

bending under reverse bias makes it easy for holes to transport to the surface for driving 

oxidation reactions. Conversely, under forward bias (more negative potential applied on 

semiconductor), the band bending will be reduced and it becomes easier for electron 

transport from conduction band for oxidizing redox species (a reduction reaction). Similar 

to a Schottky diode of an n-type semiconductor, however, holes are minority carriers, 

meaning that the current under reverse bias is limited. As such, we expect a photoanode to 

exhibit low reverse bias current. That is, negligible oxidation reactions would take place on 

a photoanode without illumination. 

Upon illumination (hν > Eg), electron–hole pairs are generated within the semiconductor as 

a result of electrons excitation from the valance band to the conduction band (process 1 in 

figure 5(c)). At thermal equilibrium, the generation of electron–hole pairs from photon 

excitation is balanced by the recombination on a timescale >10−9 s. Because these 

photogenerated charge carriers can equilibrate with the lattice vibration (phonons) on a 

timescale <10−12 s, the populations can be described by Fermi–Dirac statistics [36]. A 

quasiFermi level can then be derived by simply interpreting the steady-state carrier 

concentration of holes as representing a quasi-equilibrium situation (EF,p in figure 5(c)). 

Similarly, a quasiFermi level of electrons is also obtained (EF,n in figure 5(c)). But since the 

electron concentration is expected to be similar to the equilibrium value, EF,n is typically 

close to that under equilibrium. From a thermodynamics perspective, the driving force for 

water oxidation on a photoanode originates from the free energy difference between 

electron and hole quasi-Fermi levels. The physical model of band bending near surface is 

still valid under such a circumstance. The magnitude of the quasi Fermi levels splitting 

determines the maximum photovoltage (Vph) one photoanode can provide. Under the likely 

assumption that one can probe the EF,n through back contact under equilibrium conditions 

(e.g., through the measurement of the open circuit voltage, Voc), the difference between the 
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EF (under dark, figure 5(b)) and the EF,n (under illumination, figure 5(c)) represents the Vph 

[37–40]. 

The recombination of photogenerated electron–hole pairs can take place either in bulk 

(process i in figure 5(c)) or near surface (processes ii and iii in figure 5(c)), which may 

involve processes such as Shockley–Read–Hall recombination (through levels associated 

with defects or impurities), radiation (band to band) recombination or Auger recombination 

[41]. The recombination in bulk follows a pseudo first order rate law due to the excess of 

majority carriers (electrons in n-type semiconductor), and is characterized by the minority 

carrier lifetime τmin. This value ranges from nanoseconds in many compound 

semiconductors to milliseconds in ultrapure silicon [42]. Since the electrical field in bulk is 

limited, the minority carriers (holes in n-type semiconductor) generated in this region can 

only diffuse a certain distance before they are recombined, trapped or transferred to the 

electrolyte to drive oxidation reaction. This is one important bulk property of a 

semiconductor and characterized as minority carrier diffusion length Lmin, which is 

determined by the diffusion coefficient Dmin, the mobility of minority carriers μmin and τmin: 

 

Ideally, a photoanode should have long Lmin, comparable or greater than the characteristic 

thickness of the material, so that most photogenerated holes could diffuse to the surface to 

drive the desired oxidation reactions. By assuming hole–electron recombination in the space 

charge region is negligible, and that the recombination on the surface is minimum due to 

rapid interfacial holes transfer, we can calculate the hole flux Jh to the surface, and the 

incident photon to current conversion efficiency (IPCE) or external quantum efficiency 

(EQE), as follows, 

 

 

where α is the absorption coefficient at a given wavelength. Of course, as an oversimplified 

description for an idealized situation, the Gartner equation would be inadequate to describe 

actual systems. It nonetheless defines the upper limit of the achievable quantum efficiencies 

based on the measurable photophysical constants of a material. The current voltage 

characteristics as predicted by the Gärtner equation is shown in figure 6. The current– 

voltage relationship for a realistic system is different primarily due to the loss of 

photogenerated holes. Specifically, the onset-potential (where the photocurrent starts) will 

be shifted toward the more positive direction (as depicted in figure 6). In addition, 
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recombination in the space charge region (process ii in figure 5(c)) can proceed through 

defects close to mid-band gap. The analytical expressions with these considerations were 

previously discussed by Reichman and El Guibaly et al [43–46]. Surface recombination 

(process iii in figure 5(c)) is yet another important factor to be considered. The situation is 

particularly important when surface hole concentrations are high due to reasons such as 

slow interfacial hole transfer. Surface states can also arise from crystal defects, surface 

dangling bonds and/or chemisorbed species. Further, the photogenerated holes trapped by 

surface states can be annihilated through recombination with electrons. It is important to 

note that the definition of surface states used here is rather broad. They may refer to 

electronic states within the band gap caused by a number of reasons, including surface 

chemisorbed species as a result of chemical reactions. 

In a way, the Gartner equation and the Reichman correction consider the photophysical 

properties of the semiconductor, both in the bulk and near/on the surface, and predict the 

rate at which photogenerated charges that can potentially drive the chemical reactions in the 

electrolyte. The charges that are actually transferred to the electrolyte may be calculated by 

the charge transfer efficiency. Assuming the likely scenario that surface processes are first 

order relative to charge concentrations, we have, 

 

where TE is the transfer efficiency, ktran is the forward charge transfer rate constant, and krec 

is the charge recombination rate constant. The measured photocurrent densities can then be 

calculated as: 

 

2.2. PEC cell configurations 

In the introduction, we discussed three types of solar water splitting systems: PC, PEC, and 

PV-E. Here, we will focus on different PEC cell configurations, which can be constructed 

either from a single p-type semiconductor as photocathode (or n-type semiconductor as 

photoanode), or two semiconductors connected separately (or in series). 

For a single semiconductor PEC cell where only a half-reaction occurs on the working 

electrode, a counter electrode is required for the other half-reaction to complete the 

electrical circuit. Often, a reference electrode is connected to the working electrode to 

characterize external applied voltage. If necessary, to avoid product crossover, two 

compartments or ion exchange membrane will be present to separate the working and 

counter electrode. This three-electrode configuration is depicted in figure 7(a). To overcome 
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the thermodynamic barrier of water splitting and the potential loss caused by recombination 

processes, the working electrode should have a band gap of at least 1.6 eV [22]. However, if 

the band gap is too wide, the visible light absorption efficiency will be low. Other potential 

loss mechanisms include back contact and overpotential induced by poor catalytic activity. 

To address this issue, the semiconductor material should be deposited on highly conductive 

substrate to form a good Ohmic contact, which allows rapid injection of majority carriers 

from working electrode to counter electrode. Additionally, HER or OER catalyst is required 

to facilitate surface kinetics accordingly. 

 

As seen here, it is challenging for a single photoelectrode to achieve sufficient photovoltage 

for solar water splitting. The combination of dual semiconductors will be more 

advantageous. A second photoelectrode can replace the counter electrode where the other 

half-reaction occurs, and compensate the insufficient photovoltage (shown in figure 7(b)). 

The illumination should be directed from the larger band gap photoelectrode (transparent 

substrate) to the smaller band photoelectrode for better light utilization. Alternatively, these 

two semiconductors can form a wireless back-to-back Ohmic contact, sharing one 

transparent conductive substrate [21]. By doing this, potential loss in electrolyte and pH 

gradient between two photoelectrodes can be reduced [47]. Similarly, the illumination 

should pass through a larger band gap material to a smaller one. This tandem cell 

configuration is shown in figures 2 and 7(c), promising a relatively cost-effective device 

structure. 

Figure 7.  Schematic of basic components of PEC cell for (a) a single band gap 

photoanode with a metal cathode. (b) A photoanode and a photocathode connected 

separately in a tandem configuration. (c) A photoanode and a photocathode 

electrically connected in series in a back-to-back configuration. 
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2.3. Calculation of efficiencies 

To evaluate performance of solar water splitting, it is well acknowledged to compare onset 

potentials, and photocurrent density (normalized to projected surface area of 

photoelectrode) at 1.23 V versus RHE for photoanode and 0 V versus RHE for 

photocathode. Normalized metrics based on energy input, product conversion, etc. are of 

equal significance. Since the value-added product of water splitting is hydrogen, STH 

efficiency is the most critical figure of merit for measuring the performance and efficiency 

of solar water splitting on practical device level. It is defined as the ratio of output 

chemical/electric energy to input solar energy via the following equation: 

 

where ΦH2 is the hydrogen gas production rate,  is the Gibbs free energy of hydrogen 

gas (237 kJ mol−1 at 25 °C) and Plight is the total solar irradiation input. The light source 

should match solar spectrum of air mass 1.5 global (AM 1.5 G). As mentioned, a STH 

efficiency over 20% is desired for large-scale application in the future, and a maximum 

27% STH efficiency has been predicted for a 1.7 eV/1.1 eV tandem cell configuration with 

optimal light absorption (figure 4) [31]. Alternatively, output chemical energy can be 

substituted by electric energy that multiplies short-circuit current density jsc and the redox 

potential of interest (1.23 V for water oxidation). Since 100% of the current may not 

contribute to the redox reaction, Faradaic efficiency must be considered in the equation. 

Faradaic efficiency (ηF) describes the efficiency of passing charges contributing to desired 

electrochemical reaction, which is defined as the ratio of the measured product quantity and 

the theoretical value derived by passing charges. 

 

In general, the value of jsc can be replaced by the externally measured current density at 

zero applied potential under steady-state conditions, which is analogous to short circuit 

conditions. 

The STH efficiency is of particular interest to evaluate the performance of unassisted 

overall solar water splitting system. Extensively, to evaluate the performance of a single 

photoelectrode independently, where extra applied potential is often required from a second 

photoelectrode or external power supply, another concept of conversion efficiency can be 

introduced. At a certain jsc and ηF, applied bias photon to current conversion efficiency 

(ABPE) can be written as follows: 
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where Vapp is the applied potential between photoelectrode and counter electrode. 

In addition to the conversion efficiencies characterized by the entire solar spectrum on a 

device level, it is important to understand the efficiency of electrons/holes converted from 

photons at individual wavelengths of light on a single photoelectrode material level. To 

serve this purpose, IPCE or EQE mentioned above can be written in an alternative format as 

follows: 

 

in which λ is the single wavelength light source, Pλ is the power of irradiation, h is Plank's 

constant, c is the speed of light, and jph is the photocurrent density. To acquire IPCE, a 

monochromator (single wavelength light source) and a three-electrode configuration are 

essential, that jph at the identical applied potential with individual wavelengths of light can 

be obtained accurately. Generally, the onset wavelength is closely related to the bandgap of 

semiconductor. In addition, by integrating the IPCE values with the standard AM 1.5 G 

solar spectrum, the total photocurrent density under solar illumination can be estimated as, 

 

where e is the elementary electron (C) and λ is photon flux of irradiation (m2 s). 

3. Advances in the development of PEC water splitting 

3.1. Photocathode materials 

3.1.1. Metal oxide 

Because of its earth abundance, nontoxicity, high mobility, good and natural p-type electric 

conductivity and close to optimum direct bandgap of 2.1 eV, cuprous oxide, Cu2O, is 

considered a promising candidate for photocathodes for PEC water splitting, with a 

theoretical maximum photocurrent of 14.5 mA cm−2 and a STH efficiency of about 18% 

[48–50]. Though Cu2O has favorable band energy positions for water splitting, its 

application as an efficient and durable photocathode for water splitting has been inhibited 

by its poor photostability in aqueous electrolytes and low photocatalytic efficiency caused 

by fast recombination of minority carriers (electrons). Extensive research efforts have been 

made to improve the photostability by employing protective layers, such as ZnO, TiO2, and 

SnO2 [50–53], to reduce recombination of carriers by coupling with other semiconductors 
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such as CuO, Ga2O3, WO3, and Al-doped ZnO (AZO) [50, 53–56], to form p–n 

heterojunctions and enhance charge transfer by applying co-catalysts, such as Pt, RuO2, and 

MoS2 [50, 57–59]. In 2011, Grätzel and co-workers showed that a Cu2O photocathode 

could be significantly stabilized with protective coatings of AZO and TiO2 deposited by 

atomic layer deposition (ALD) [50]. Recently, using a Cu2O nanowire photocathode with 

AZO/TiO2 protection layers and RuOx catalyst, Grätzel and co-workers reported 

photocurrent density as high as 10 mA cm−2 at −0.3 V versus RHE [60]. The photocurrent 

density was maintained for over 55 h. The results demonstrate the promise of Cu2O as a 

photocathode for PEC water splitting. 

In terms of photovoltage, Cu2O was reported with a relatively negative onset potential 

(typically 0.4–0.6 V versus RHE), which need to be combined with photoanodes that can 

provide large photovoltage to form PEC tandem device for unassisted water splitting. 

Recently, by introducing a Ga2O3 buffer layer between the Cu2O and TiO2 protective layer, 

an extremely positive onset potential of 1.02 V versus RHE was produced [61], which 

represents an important step to pair with a narrow bandgap photoanode such as Si. 

Besides binary Cu2O, there are many efforts to develop Cu-based ternary oxides as 

photocathodes, such as CuFeO2 and CuBi2O4. CuFeO2 is an attractive material due to its 

earth abundant composition and suitable bandgap of 1.5 eV. Read et al first reported 

CuFeO2 photocathode, prepared by a facile electrochemical process, produced a highly 

positive onset potential of 0.98 V versus RHE but a low photocurrent density of 0.3 mA 

cm−2 at 0.4 V versus RHE [62]. Later, Jang et al demonstrated a much-enhanced 

photocurrent of 2.4 mA cm−2 at 0.4 V versus RHE by using strategies including post-

annealing and electrocatalyst modification to improve the poor charge transport properties 

and surface reaction kinetics, respectively [63]. Notably, CuFeO2 has been demonstrated 

with stable operation for 40 h in the presence of O2-sacrificial electron scavenger [64]. 

CuBi2O4 is another promising photocathode material, which features a suitable bandgap of 

1.6–1.8 eV as the ideal top light absorber in the PEC tandem device. CuBi2O4 was first 

identified as a potential photocathode material by Arai et al in 2007 through a combinatorial 

screening study [65], which was later experimentally confirmed by Hahn et al [66]. 

Recently, a photocurrent of 1.2 mA cm−2 at 0.1 V versus RHE was reported by using Pt as 

the co-catalyst [67]. It is worth mentioning that CuBi2O4 can produce an extremely positive 

onset potential >1.0 V versus RHE due to its positive flat-band potential above 1.3 V [68, 

69], which makes it a very promising photocathode material as the top cell in the PEC 

tandem device if the charge carrier properties and catalytic activity can be further improved. 
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3.1.2. III–V group materials 

III–V materials hold record efficiencies for both single-junction and multiple-junction solar 

cells [70]. Owing to their tunable optoelectronic properties, high light absorption 

coefficient, and exceptional charge-transport properties, III–V semiconductors, including 

GaP, InP, and their alloy compounds such as GaInP, are reported with extremely high 

efficiency as photocathode materials [71]. However, III–V semiconductors suffer severely 

from rapid photocorrosion in the electrolyte, which requires additional protection layers to 

prevent the direct contact from the electrolyte. Lee et al demonstrated the stable operation 

of p-InP nanopillars photocathode coated with a thin layer of TiO2 (3–5 nm) grown by 

ALD, in conjunction with Ru co-catalyst [72]. It was reported that the photocathode had a 

high conversion efficiency of ~14% under simulated AM 1.5 G illumination. In addition to 

the role as the surface protection layer, Lin et al found the thin TiO2 layer could reduce the 

surface recombination and enhance the photovoltage of planar-based InP photocathodes 

[73]. After the deposition of TiO2, there was an anodic shift of 200 mV, which produced a 

high onset potential over 800 mV. Recently, Gao et al developed a periodic array of InP 

nanopillars photocathode with a buried p–n+ junction [74]. Owing to the rational control of 

interface energetics and minimization of light reflectance, the photocathode produced an 

unprecedented onset potential of 850 mV (figure 8(a)), which was close to the open-circuit 

potential of InP homojunction solar cells (0.939 V) [70]. Moreover, the device yielded a 

high photocurrent over 25 mA cm−2 at a positive potential as high as 0.6 V versus RHE and 

a benchmarking power conversion efficiency of 15.8% for single junction photocathodes, 

which promises high efficiency unassisted water splitting when paired with a 

highperformance photoanode. With the protection of a thin layer of TiO2 (4 nm), the 

photocathode exhibited stability for at least 6 h, in contrast with the fast decay of sample 

without TiO2 protection (figure 8(b)). 
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 Figure 8. (a) Photocurrent density–potential (J–V) curve (black solid line) and 

power conversion efficiency (η, blue squares) of Pt/n+/p-InP photocathode in 1 M 

HClO4 under chopped AM 1.5 G illumination. (b) Stability test of Pt/n+/p-InP 

(black line) and Pt/TiO2/n+/p-InP (red line) at 0 V versus RHE in 1 M HClO4 

under continuous AM 1.5 G illumination. [74] John Wiley & Sons. 

 

 

Recently, III-nitride semiconductors, e.g. GaN and InGaN, have emerged as a new 

generation of materials for solar hydrogen production [75–81]. In contrast to the poor PEC 

stability of conventional III–V compounds, wherein the chemical bonds are mostly 

covalent, III-nitrides exhibit extreme stability in aqueous solution due to their ionic bonding 

character [82, 83]. In addition, they possess similar, or even better optical, electrical, and 

structural properties than conventional III–V compounds. For example, InGaN is the only 

known semiconductor material whose bandgap can be tuned while straddling the water 

redox potentials over a wide range of solar spectrum (UV, visible, and even near-infrared 

light) [84]. Also, spontaneous polarization can be obtained in III-nitrides with N-terminated 

surfaces, which could enhance the charge transport and separation for efficient overall solar 

water splitting and protect the surface against oxidation and photocorrosion [85]. Moreover, 

compared to the high cost of conventional III–V compounds, it is worth mentioning that III-

nitride materials, widely used in the semiconductor industry including solid-state lighting 

and power electronics, are much more attractive for cost-effective and scalable production. 

In 2005, Fuji et al demonstrated the great potential of p-GaN as photocathode for H2 

evolution [86]. Afterwards, Aryal et al reported higher photocurrent density on p-InGaN 
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compared to p-GaN, and its excellent stability for a prolonged period of 24 h in HBr 

solution without any protection layer [87]. Recently, Fan et al developed an integrated 

InGaN/Si photocathode for efficient and stable H2 evolution [88]. In conjunction with Pt co-

catalyst, the monolithic device exhibited a high photon-to-current efficiency of 8.7% with 

unity faradic efficiency for H2 generation. Moreover, without any additional protection 

layer, it showed stable operation without degradation for at least 3 h, promising high 

potential to construct a PEC tandem water splitting system. 

3.1.3. Cu-based chalcogenides 

Cu-based chalcogenides such as chalcopyrites and kesterites have demonstrated their 

potential for fabricating efficient thin-film PV solar cells [70], owing to their excellent 

properties such as high optical absorption, suitable bandgap, and defect tolerance [89–94]. 

Since PV and PEC water splitting share the same fundamental working principle on photon 

absorption and charge carrier generation and separation, Cu-based chalcopyrites and 

kesterites are naturally considered promising candidates for efficient PEC water splitting. 

Owing to their suitable conduction band edge for hydrogen evolution, Cu chalcopyrites and 

kesterites have been extensively studied in the last decade as photocathodes for PEC water 

reduction. 

The Cu chalcopyrites have a general compositional formula of I-III-VI2 (I = Cu, II = In, Ga; 

VI = S, Se), for example CuInSe (CISe), CuInS2 (CIS), CuGaSe2 (CGSe), and CuGaS2 

(CGS) [95]. The chalcopyrites can be considered derivatives of the II–VI compounds such 

as ZnS by replacing the two group II atoms by one group I atom and one group III atom. 

The chalcopyrite structure resembles the zinc-blend structure, in which the cations are 

tetrahedrally coordinated by four group VI anions. The kesterites can be further considered 

derivatives from the chalcopyrites by replacing two group III atoms by one group II and one 

group IV atoms, giving a general compositional formula of I2-II-IV-VI4 (II = Zn; IV = Sn), 

i.e., Cu2ZnSnS2 (CZTS) and Cu2ZnSnSe2 (CZTSSe) [96]. The kesterite structure resembles 

the chalcopyrite. The atomic structures of CIS chalcopyrite and CZTS kesterite are shown 

in figures 9(a) and (b), respectively. Cu2BaSnS4 (CBTS) exhibits a trigonal crystal structure 

with space group P31 (see figure 9(c)) [97], in which each Cu and Sn is tetrahedrally 

surrounded by sulfur ions. Two Cu-derived and one Sn-derived tetrahedrons share a corner 

and thus each sulfur atom is three-fold coordinated with two Cu and one Sn. Ba atoms are 

located at the interstitial sites in the tetrahedral framework, forming rows along the [100] 

and [010] directions. The orthorhombic Cu2BaSnSe4 (CBTSe) has very similar structure as 

the trigonal CBTS, but it crystallizes in space group Ama2 [97], shown in figure 9(d). 
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Cu chalcopyrites and kesterites have direct bandgaps, while trigonal CBTS and 

orthorhombic CBTSe have nearly direct bandgaps, i.e., the difference between the direct 

and indirect bandgap values is very small [98, 99]. The bandgaps of the four quaternary Cu 

chalcopyrites are 1.00 eV (CISe), 1.54 eV (CIS), 1.68 (CGSe), and 2.43 eV (CGSe). The 

alloyed chalcopyrites of Cu(In, Ga)(S, Se)2 can cover the bandgap range from 1.0–2.4 eV, 

by tuning the In/(In + Ga) and S/(S + Se) atomic ratios, as shown in figure 10 [93]. The 

bandgaps of the two quarternary Cu kesterites are 1.0 eV (CZTSe) and 1.5 eV (CZTS). The 

alloyed kesterites of CZT(S, Se) can cover the bandgap range from 1.0–1.5 eV, by tuning 

the S/(S + Se) ratio. The bandgap value is about 1.95 eV for trigonal CBTS and 1.64 for 

orthorhombic CBTSe. The alloyed system of CBT(S, Se) shows a bowing effect with a 

phase transition at the composition of around Cu2BaSnSe3S. The smallest bandgap was 

found to be 1.52–1.55 eV [100]. 

Figure 9.  Crystal structures of (a) chalcopyrite CIS; (b) kesterite CZTS, (c) trigonal 

CBTS, and (d) orthorhombic CBTSe. 
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Figure 10. (a) Optical band gap energies of the complete Cu(In1−xGax)(SySe1−y)2 

chalcopyrite system for 0 <= x <= 1 and 0 <= y <= 1. The colors correspond to the 

light sensation of the human eye. Reprinted with permission from [93]. Copyright 

2004, AIP Publishing LLC. (b) Evolution of band gap values, obtained using diffuse 

reflectance data on powder (bulk) samples, with increasing Se content in the 

BaCu2SnSexS4–x (0 ≤ x ≤ 4) solid solution (green and blue lines marked with 

triangles for direct and indirect band gap fits, respectively) and calculated 

fundamental gaps (HSE06 functional with spin–orbit coupling) using the 

experimental lattice parameters with internal atomic positions optimized using the 

HSE06 functional (red line, circles). Reprinted with permission from [100]. 

Copyright 2016 American Chemical Society. 

For PEC water splitting applications, non-radiative recombination is highly undesirable 

since the recombination will reduce the photovoltage of PEC device, resulting in a reduced 

conversion efficiency. The non-radiative recombination is mostly caused by defects with 

energy levels deep in the bandgap of the absorber. It has been shown that the high 

efficiencies of CIGSe thin-film solar cells are primarily attributed to the defect tolerance 

properties of CIGSe absorbers [92]. Theoretical studies have shown that the antibonding 

coupling between fully occupied Cu 3d and Se 4p orbitals raises the valence band 

maximum of CIGSe, which consequently makes Cu vacancies (VCu) very shallow acceptors 

[94]. Furthermore, the antibonding nature energetically favors the formation of Cu 

vacancies, making them the dominant defects in CIGSe [91]. However, for chalcopyrites 

with larger bandgaps such as CGSe, the defect tolerance is decreased due to the formation 

of Cu and Ga antisite defects [92]. CZTSe and CZTS also exhibits antibonding coupling 
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between fully occupied Cu 3d and Se 4p/S 3p orbitals and the Cu vacancies are also shallow 

acceptors [90]. However, recently, density functional theory calculations have shown that 

trigonal CBTS and orthorhombic CBTSe have larger bandgaps suitable for PEC water 

splitting and exhibit defect tolerance properties better than wide-bandgap Cu chalcopyrites 

such as CGSe and CGS and kesterites CZTS and CZTSe. Due to the very different 

electronic properties between the cations, the CBTS and CBTSe do not easily form the 

cation–cation defects [98, 99]. Therefore, CBTS and CBTSe and their alloys are promising 

candidates for the applications of efficient PEC water splitting. 

Recently, Cu chalcopyrite and kesterite photocathodes have been extensively investigated 

[101–112]. Some noticeable results reported in literature are summarized in table 1. The 

highest photocurrent reported for CGSe photocathode without n-type partners and catalysts 

is 10.6 mA cm−2 at 0 V versus RHE [101]. The CZTS photocathodes produced much lower 

photocurrents without n-type partners and catalysts. The highest photocurrent was reported 

only 1.3 mA cm−2 at 0 V versus RHE [110]. Using CdS as a n-type partner and Pt as 

catalyst, CIS, CIGS, and CZTS photocathodes showed much improved photocurrents. For 

example, the photocathode of Pt/Mo/Ti/CIGSe has shown a photocurrent of 30 mA cm−2 at 

0 V versus RHE and a power conversion efficiency of 8.5% [106]. A Pt/In2O3/CdS/CZTS 

photocathode showed a photocurrent of 9.3 mA cm−2 at 0 V versus RHE and a power 

conversion efficiency of 1.63% [112]. Very recently, the PEC performance of CBTS and 

CBTSSe photocathodes have also been reported [113–117]. So far the 

TiO2/ZnO/CdS/CBTS photocathode showed the highest photocurrent, about 7.2 mA cm−2 

at 0 V versus RHE under Xe lamp irradiation (100 mW cm−2), reported by Ge et al [114]. 

Table 1.  Representative results of Cu-based chalcogenide photocathodes under AM 1.5 

G simulated one sun illumination. 

 Photocathode Electrolyte Photocurrent at 

0 V versus 

RHE 

Power 

conversion 

efficiency 

Year 

[reference] 

 

CGSe 

Pt/CdS/CGSe 

0.5 M H2SO4 

0.1 M Na2SO4 pH 9 

10.6 mA cm−2 

7.5 mA cm−2 

— 

0.83% (0.2 V 

versus RHE) 

2008 

[101] 

2013 

[102] 
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 Photocathode Electrolyte Photocurrent at 

0 V versus 

RHE 

Power 

conversion 

efficiency 

Year 

[reference] 

 

Pt/In2S3/CIS 0.1 M Na2SO4 pH 9 

Pt/TiO2/CdS/CIS 0.1 M NaH2PO4 pH 10 

Pt/ZnO/CdS/CIGS 0.5 M Na2SO4 pH 9 

Pt/Mo/Ti/CIGSe 0.5 M H2SO4 + 0.25 M 

Na2HPO4 + 0.25 M 

NaH2PO4 pH 6.8 

Pt/CdS/CIGS 0.2 M NaH2PO4 pH 10 

Pt/TiO2/CdS/CIS(Bi) 0.5 M Na2SO4/0.25 M 

NaH2PO4/0.25 M NaH2PO4 

pH 6.1 

Pt/TiO2/CdS/CZTS 0.1 M Na2SO4 pH 9.5 

CZTS 0.3 M Na2SO4 pH 9.5 

Pt/CdS/CZTS 0.2 M NaH2PO4 pH 10 

Pt/In2S3/CdS/CZTS 0.2 M NaH2PO4/NaH2PO4 

pH 6.5 

15 mA cm−2 

13 mA cm−2 

32.5 mA cm−2 

30 mA cm−2 

6.0 mA cm−2 

8.0 mA cm−2 

9.0 mA cm−2 

1.3 mA cm−2 

1.2 mA cm−2 

9.3 mA cm−2 

1.97% (0.28 

V versus 

RHE) 

1.82% (0.25 

V versus 

RHE) 

— 

8.5% (0.38 V 

versus RHE) 

0.66% (0.21 

V versus 

RHE) 

— 

1.2% (0.22 V 

versus RHE) 

— 

— 

1.63% (0.31 

V versus 

RHE) 

2014 

[103] 

2014 

[104] 

2015 

[105] 

2015 

[106] 

2015 

[107] 

2016 

[108] 

2010 

[109] 

2015 [110] 

2016 [111] 

2015 [112] 

    

3.1.4. Si 

Si, the most widely used semiconductor in PV industry, is suited for the bottom light 

absorber in the PEC tandem system, given its narrow bandgap of ~1.1 eV. Its appropriate 

conduction band edge for hydrogen evolution, which in principle can produce a relatively 

large photovoltage, renders it an attractive candidate for a photocathode [118]. Despite the 

high-performance for solar hydrogen evolution, bare Si photocathode undergoes rapid 
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etching or oxidization when in direct contact with electrolyte. To overcome the issue of 

instability, a conformal-coated protective layer, including metallic layer and metal oxide 

layer, have been employed to passivate the surface states of Si to improve their stability. 

Despite the parasitic light absorption/reflection issue, metals can be employed as protection 

layers without compromising charge carrier transport owing to their excellent conductive 

properties. Maier et al demonstrated a 60 d long-term stable operation in 1 M HCl (aq) 

using Pt-coated p-Si photocathode [119]. Transparent metal oxides (e.g. TiO2) have recently 

been widely investigated as protective layers due to their high intrinsic chemical stability 

and optical transmittance in the visible light region. Owing to the alignment of TiO2 

conduction band with respect to the Si conduction band and hydrogen evolution potential, 

TiO2 facilitate the electron transfer from Si to electrocatalyst surface with negligible 

resistance [120]. It was found that the TiO2 protected p–n+ Si photocathode could keep 

working for over 30 d of operation under red-light (38.6 mW cm−2; λ > 635 nm) filtered, 

simulated sunlight (as the bottom cell in the PEC tandem device) [121]. 

Onset potential is an important parameter to evaluate the potential of a photoelectrode to 

construct a PEC tandem system. Crystalline p-Si yielded a low onset potential of at most 

400 mV, even in conjunction with Pt co-catalyst [122]. By introducing a buried 

metallurgical n+– p junction, the onset potential was increased up to 560 mV due to the 

larger band bending at the n+/p interface relative to the p-Si/electrolyte interface [123]. 

Recently, by using ultrathin amorphous Si (a-Si) as the passivation layer, a high positive 

onset potential of 640 mV was observed on buried junction crystalline Si (c-Si) 

photocathode [124]. In addition, the a-Si/cSi heterojunction produced a STH conversion 

efficiency of 13.26%, which is the highest among the reported Si-based photocathodes. In 

terms of onset potential, the highest value of 930 mV was reported on a-Si based 

photocathode, which largely attributed to the enlarged bandgap of a-Si (~1.7 eV) and an 

optimized solid junction for charge carrier separation [125]. In conjunction with a TiO2 

protection layer and Pt co-catalyst, the a-Si photocathodes exhibited an impressive 

photocurrent of over 10 mA cm−2 at a positive potential as high as 0.6 V versus RHE under 

simulated one sun illumination (figure 11). In addition, the photocathode showed a high 

stability for at least 12 h of operation. 
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3.1.5. Other emerging materials 

Recently, semiconducting transition metal dichalcogenides (TMDs) such as WS2, WSe2, 

MoS2 and MoSe2 have emerged as very promising materials for solar hydrogen evolution 

owing to their distinct properties including suitable bandgap energy (1–2 eV), high light 

absorption coefficients (105–106 cm–1) and chemical robustness without additional 

protection layer [126–128]. The layered crystal structure of TMDs can be exfoliated into 

mono- or few-layer two-dimensional (2D) sheets, with the bandgap to be finely tuned as the 

top/bottom light absorber according to the number of atomic layers. In 1983, Baglio et al 

reported Pt-coated p-WS2 (1.3 eV) photocathode with a hydrogen evolution efficiency of 

6%–7% and an open-circuit potential of ~800 mV in 6 M H2SO4 [129]. Recently, McKone 

et al reported p-WSe2 (1.2 eV) as photocathode with a solar energy conversion efficiency 

over 7% and excellent stability with a Pt–Ru co-catalyst [130]. With controlled doping, 

surface engineering, and increased understanding of the role of edge states and defects, it is 

Figure 11.  (a) Scanning electron microscope image shows the cross-section of an a- 

Si photocathode with Pt as catalyst. Scale bar is 400 nm. (b)  J – V  plots of a 

representative a-Si photocathode under different simulated solar illumination 

intensities in 0.5 M aqueous potassium hydrogen phthalate solution. Reprinted with 

permission from [ 125 ] . Copyright 2013 American Chemical Society. 
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envisaged that the performance of these 2D TMDs can be further improved in the 

foreseeable future. 

In addition to the TMDs, semiconducting organic materials (e.g. conjugated polymers) have 

recently received increasing attention for solar hydrogen production due to their chemical 

versatility and facile low-cost solution processability [131–134]. Their electronic and 

optical structure can be rationally controlled at the molecular level towards suitable 

bandgap and energy levels to match well with the water redox potentials [135–138]. 

Although PV cells with power conversion efficiencies over 10% have been demonstrated 

[70, 139], solar energy conversion efficiencies over 1% for PEC water splitting have only 

been realized very recently 

[140, 141]. For example, Rojas et al reported a relatively high photocurrent of 8 mA cm−2 at 

0 V versus RHE with an onset potential of ~0.7 V versus RHE on a poly(3- 

hexylthiophene):phenyl-C 61-butyric acid methyl ester (P3HT:PCBM) bulk 

heterojunctionbased photocathode enclosed between a cuprous iodide hole-selective layer 

and a Ptdecorated nanostructured TiO2 layer [141]. The photodegradation of the device was 

partially suppressed by the addition of a polyethyleneimine protective coating layer. It is 

noteworthy that the performance of organic photocathode is far from being optimized and 

further development can be expected by rational choice of the building block, hole/electron 

selective layer, protection layer and co-catalyst. 

3.2. Photoanode materials 

3.2.1. Metal oxides 

Metal oxides are extensively studied as photoanode materials due to their high photostablity 

and low-cost preparation. Early studies were mainly focused on wide bandgap materials, 

such as TiO2 (Eg = 3.0–3.2 eV) and SrTiO3 (Eg = 3.2 eV), which features excellent stability 

and favorable band edge positions straddling the water redox potentials [142–145]. 

However, the large bandgaps limit the light absorption mainly in the ultraviolet region, 

which accounts for only ~4% of the solar spectrum. Although doping can extend the light 

absorption into the visible region, limited success has been achieved due to the accelerated 

charge recombination and reduced stability associated with doping. Recently, great 

attention has been paid to the intrinsically visible-light-responsive materials, such as Fe2O3 

(Eg = 2.0–2.2 eV) and BiVO4 (Eg = 2.4 eV) [146–149]. 

α-Fe2O3 (hematite) has been considered as a promising photoanode material owing to its 

near-ideal bandgap for visible light harvesting, excellent chemical stability against 
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photocorrosion, low cost and abundance [150–153]. However, there are several drawbacks, 

including: (1) short hole collection length (2–4 nm); (2) short carrier lifetime (<10 ps); (3) 

low absorption coefficient (on the order of 103 cm−1); (4) poor surface water oxidation 

kinetics and (5) relatively low conduction band position (~0.4 V versus RHE at pH = 0) 

with respect to the water reduction potential. Several strategies including doping, 

nanostructuring and co-catalyst modification were applied to address the above-mentioned 

limitations. As most of the studies focused on a single specific aspect of these 

modifications, the overall performance remains relatively low. Recently, by considering the 

synergistic effects of Pt-doping to improve the electrical conducting property, single-

crystalline 'wormlike' nanostructure to shorten hole diffusion distance towards electrolyte, 

and Co–Pi modification to enhance the oxygen evolution reaction, a high photocurrent of 

4.32 mA cm−2 was reported at 1.23 V versus RHE [154]. Very recently, by using a unique 

nanosheet morphology with a Co–Pi co-catalyst, together with plasmonic Ag nanoparticles 

to enhance the light absorption and charge transfer, a record photocurrent of 4.68 mA cm−2 

was achieved at 1.23 V versus RHE [155]. This photocurrent corresponds to ~37% of the 

maximum theoretical limit expected for 2.1 eV bandgap hematite, indicating there are still 

much room for further improvement. To construct a PEC tandem device with a 

photocathode, the highly positive turn-on potential (typically at 0.8–1 V versus RHE) of 

hematite is an important disadvantage [156]. Recently, Wang and coworkers developed a 

facile re-growth strategy, together with decorations of NiFeOx co-catalyst, a record onset 

potential of 0.45 V versus RHE was achieved [157], which approached the flat band 

potential of hematite (~0.4 V versus RHE). 

Another metal oxide that has gained significant attention recently is BiVO4 [158–163]. The 

most appealing property offered by BiVO4 is the relatively negative band edge positions, 

permitting a photovoltage >1 V. While a similar photovoltage has also been obtained on 

TiO2, BiVO4 absorbs significantly more visible light than TiO2 (absorption cut-off at λ = 

510 nm versus 380 nm) [164]. And compared to hematite, hole diffusion length is less of a 

limitation for BiVO4 (~100 nm) [165]. However, owing to the existence of electron and 

hole polarons, unmodified BiVO4 was reported with a low charge carrier mobility of 0.04 

cm2 V−1 s−1 [166]. To increase the low charge carrier mobility, doping is an effective 

strategy to enhance the carrier concentration in BiVO4. For example, Luo et al reported Mo 

doping as shallow energy levels can enhance the conductivity of BiVO4 by 80 times 

compared with undoped BiVO4, resulting in a much improved PEC performance in natural 

seawater [158]. Recently, by using a nanoporous structure consisting of small BiVO4 

nanoparticles of 76 nm, a high charge separation efficiency of 90% was obtained at 1.23 V 
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versus RHE, indicating the bulk recombination was minimized [167]. With the application 

of two water oxidation catalysts, FeOOH and NiOOH, the resulting photoanode featured an 

onset potential as low as 0.2 V versus RHE and a photocurrent of 2.73 mA cm−2 at 0.6 V 

versus RHE [167]. With additional Mo doping, Qiu et al prepared nanoporous 

BiVO4/Fe(Ni)OOH on a cone-shaped nanostructured substrate, which showed a 

photocurrent of 5.82 mA cm−2 at 1.23 V versus RHE [168]. In addition, recently, Kuang et 

al demonstrated a nanoworm BiVO4 with a photocurrent of 3.2 mA cm−2 at 0.6 V versus 

RHE and long-term stability up to 10 h [169]. 

For better charge separation, constructing heterojunction has been proven as an effective 

strategy for various photoelectrodes [170, 171]. A core–shell heterojunction of BiVO4/WO3 

was reported by Pihosh et al with Co–Pi as a water oxidation co-catalyst. This configuration 

allowed for a photocurrent of 6.72 mA cm−2 at 1.23 V versus RHE [172]. A recent study by 

Kim et al combined BiVO4 and Fe2O3 as hetero-type dual photoanode, which reported a 

record photocurrent density of 7 mA cm−2 at 1.23 V versus RHE (figure 12) [173]. 

 

Using BiVO4 as a model case, some other ternary metal oxides with a smaller bandgap (Eg 

< 2.4 eV) have been investigated recently as promising photoanode materials to achieve 

higher theoretical STH efficiency, such as spinel ferrites (MFe2O4, M = Cu, Mg, Zn, etc) 

(Eg = 1.4–2.0 eV) [47, 174–178], CuWO4 (Eg = ~2.3 eV) [179–184] and FeVO4 (Eg = ~2.0 

eV) [185–188]. Despite promising high theoretical photocurrent densities, however, the 

reported performance of these complex metal oxide photoanodes is still very low (typically 

Figure 12.  (a) Wavelength-selective solar light absorption by hetero-type dual 

photoanode consisted of BiVO  and Fe O . (b)  J – V  curves in 1.0 M KCi at pH = 9.2 

under 1 sun illumination. Reproduced from [ 173 ] . CC BY  4.0. 
4 2 3 
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sub-mA cm−2 at 1.23 V versus RHE under simulated one sun illumination), which is 

largely limited by strong bulk recombination, unfavorable surface states that mediate water 

oxidation, and poor surface reaction kinetics. It is highly desirable to improve the 

performance by developing novel methods to synthesize/grow high quality complex metal 

oxides free from impurities/defects, and applying various strategies including 

nanostructuring, doping and co-catalyst modification to overcome the limitations. 

3.2.2. Metal nitrides 

Because of the lower electronegativity of N than O, the valance band consisting of N 2p 

orbitals is expected to be more negative than that of O 2p orbitals. Indeed, a number of 

nonoxide semiconductors have been shown to be more suitable for complete water splitting 

from a band edge position perspective [80, 189]. Among them, Ta3N5 is a prototypical 

material that deserves special attention. With a direct band gap of 2.1 eV, Ta3N5 promises 

overall water splitting at efficiency higher than 15% [190, 191]. It is noteworthy that 

neartheoretical limit photocurrent density has been reported (12.1 mA cm−2 at 1.23 V 

versus RHE) [191]. As is true for most non-oxide semiconductors, the most important 

challenge in using Ta3N5 for water splitting is its poor stability. Significant efforts have 

been attracted to address this challenge. For instance, Co3O4 [192], Co(OH)x [193, 194], 

Co–Pi [195] and NiFe-layered double hydroxide [196] have been shown to improve the 

stability of Ta3N5 to a certain extent. Notably, by using a GaN coating strategy to form a 

crystalline nitride-onnitride structure, a benchmarking 10 h stable operation with a high 

photocurrent density of 8 mA cm−2 was achieved, in conjunction with Co–Pi co-catalysts 

[197]. Nevertheless, the long-term stability of the Ta3N5-based photoanode remains to be 

improved for practical applications. Another challenge presented by Ta3N5 is the typical 

positive onset potential of ~0.6 V versus RHE, even though the band edge positions would 

predict a much more negative value. Some successes have been reported in this aspect. For 

example, a slight improvement of photovoltage (a 50 mV cathodic shift of onset potential) 

was achieved by Seo et al by using the combination of doping and surface treatment [198]. 

The origin of the two issues, poor stability and low photovoltage, however, has not been 

answered until very recently by Wang and coworkers [199]. It was found that the photo-

oxidation of Ta3N5 is a self-limiting process rather than photocorrosion. A quantitative 

correlation between the degree of surface oxidation and the extent of surface Fermi level 

pinning was established, as shown in figure 13. As a result, the charge separation 

capabilities are dramatically undermined upon exposure to PEC water oxidation conditions. 
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Figure 13.  Schematic of how surface oxidation influences the electronic structures of 

Ta N . (I) Clean Ta N  features negative Fermi levels relative to normal hydrogen 

electrode (NHE). (II) Chemisorption of hydroxides positively shifts the Fermi level 

to 0.2 V versus NHE. (III) The Fermi level is further shifted toward the positive 

direction when Ta N  is immersed in H O. (IV) Photoelectrochemical reactions 

lead to non-reversible surface changes (the formation of TaON )  that shift the Fermi 

level more positive. Reprinted from [ 199 ] , Copyright 2016, with permission from 

Elsevier. 
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In addition to Ta3N5, complex metal (oxy)-nitrides such as LaTiO2N (Eg = 2.1 eV) [200– 

204], BaTaO2N (Eg = 1.9 eV) [205, 206] and SrNbO2N (Eg = 1.8 eV) [207], are promising 

photoanode materials as the top cell in a tandem device. For example, BaTaO2N, modified 

with a Co co-catalyst, was reported to produce a photocurrent of 4.2 mA cm−2 at 1.2 V 

versus RHE with a stability for 6 h [206]. More importantly, the onset potential was 

observed below 0.2 V versus RHE, which is an advantage to integrate with a photocathode 

for realizing unassisted water splitting. To construct such a tandem device, it is important to 

use a transparent conductive substrate to transmit long wavelength light to the bottom cell. 

However, the high-performance nitride photoanode materials are generally synthesized 

under harsh conditions (>900 °C with NH3) that are not compatible with typical transparent-

conducting-oxide substrates, such as FTO (F-doped SnO2), ITO (Sn-doped In2O3), and 

AZO (Al-doped ZnO). Recently, Hamann and co-workers reported the first example of 

Ta3N5 electrode directly synthesized on a transparent conductive substrate, Tadoped TiO2 

(TTO) [208]. This work represents a significant step towards constructing efficient tandem 

devices based on nitride photoanodes. 

Recently, InGaN photoanodes have also been studied [209–217]. For example, Luo et al 

first demonstrated the high photostability of visible-light-responsive InGaN in aqueous HBr 

solution [210]. The IPCE was reported about 9% at 400–430 nm. In a subsequent study, by 

removing In-rich InGaN region using a simple electrochemical surface treatment, the IPCE 

was improved to 42% at 400 nm [212]. It was found that the In-rich InGaN phases played a 

major role as surface recombination centers of photogenerated charge carriers. As discussed 

previously, the energy bandgap of InGaN can be tuned across nearly the entire solar 

spectrum by varying the alloy compositions. However, due to the large lattice mismatch 

between InN and GaN (~11%), the synthesis of high-quality In-rich InGaN has remained 

difficult. Recently, Fan et al have shown that In0.5Ga0.5N nanowires with nearly 

homogeneous indium distribution could be achieved by plasma-assisted molecular beam 

epitaxy [215]. Under AM 1.5 G one sun illumination, the InGaN nanowire photoanode 

exhibited a photocurrent density of 7.3 mA cm−2 at 1.2 V (versus NHE) in 1 M HBr. The 

IPCE is above 10% at 650 nm, which is not possible for most metal oxide photoanodes due 

to their wide bandgap. With the formation of InGaN/GaN core–shell structures, the 

photoanodes also exhibited a high level of stability, due to the surface passivation and 

protection by a thin GaN shell layer [216]. Recently, the atomic origin of the long-term 

stability and high efficiency of  oriented III-nitride nanowire arrays for overall water 

splitting was investigated both experimentally and theoretically [85]. It was revealed that 

the 
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GaN nanowires exhibited N-termination, not only for their  top faces but also for their 

 side faces. Such N-terminated surfaces passivate the GaN nanowires against corrosion 

by air/aqueous electrolytes. More recently, Fan et al demonstrated an InGaN/Si double-band 

photoanode, with the nearly ideal bandgap configuration of 1.75 eV/1.13 eV for maximum 

STH conversion [217]. Under AM 1.5 G one sun illumination, the saturated photocurrent 

density reached 16.3 mA cm−2, which is among the highest values reported for 

monolithically integrated tandem cells of such a nearly ideal energy bandgap configuration. 

The maximum power conversion efficiency of the InGaN nanowire/Si tandem photoanode 

was 8.3% at 0.5 V versus NHE in 1 M HBr solution. 

3.2.3. Si and III–V group materials 

Benefiting from the narrow bandgap and excellent charge carrier properties, Si and III–V 

group materials are also widely studied as photoanode materials. These materials, however, 

are less favorable to serve as photoanodes for water oxidation, compared to photocathodes 

for proton reduction. This is because the valence band edge positions of Si and most III–V 

semiconductors are too negative for water oxidation, which requires a high bias to proceed 

the reaction. For example, Si photoanode was reported with a typical onset potential of 0.9– 

1.1 V versus RHE [218–221], which is a challenge to pair with any high-performance 

photocathodes. In addition, Si and most III–V semiconductors can undergo photocorrosion 

under water oxidation conditions in aqueous electrolyte. Transparent conductive oxides 

have been shown to be very effective in passivating Si surface [222–227]. For example, the 

application of a highly uniform, 2 nm thick layer ALD TiO2 coupled with Ir water oxidation 

catalysts, the stability of Si photoanode was extended to over 8 h under conditions with 

various pH [228]. The ultrathin TiO2 layer allows the facile hole transport via tunneling 

mechanism. A novel study was presented by Kenney et al in which 2 nm Ni film on n-Si 

with native oxides was shown to serve as both a protection layer and a catalyst (figures 

14(a) and (b)) [229]. In 1 M KOH, the resulting photoanode exhibited high PEC activity 

with an onset potential of 1.07 V versus RHE. The stability was examined in both 1 M 

KOH (up to 24 h) and LiBi–KBi electrolyte at intermediate pH (over 80 h). In a separate 

study, Hu et al demonstrated the utility of a novel 'leaky' amorphous TiO2 layer (4–143 nm 

thick) deposited by ALD [230]. With the addition of Ni catalyst (which should be 

transformed to NiOx upon oxidation and then to NiOOH upon PEC reactions), the Si 

photoanode enabled high photocurrent density (over 30 mA cm−2 with 100% Faradaic 

efficiency for O2 production) over 100 h in 1 M KOH (figures 14(c) and (d)). Further study 

indicated that holes transported the defective TiO2 layer though the mid-gap states and an 

ohmic contact was formed at the interface between TiO2 and Si [231]. 
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Similarly, transparent conductive oxides are commonly used as the protective layers for III– 

V photoanodes [230, 232, 233]. For example, 'leaky' TiO2 layer are used to stabilize GaAs 

and GaP photoanodes for more than 100 h [230]. It is noteworthy that over 40 h stable 

operation with over 10% STH efficiency has been recently demonstrated on a 

Figure 14.  The stability of Si photoanode can be improved by thin Ni film (also as 

catalyst) or thick TiO  film (with Ni catalyst). (a) Cyclic voltammograms of various 

thickness Ni-coated n-Si anodes in 1 M KOH under illumination. From [ 229 ]. 

Reprinted with permission from AAAS. (b) Stability test fixed at constant current 

density of 10 mA cm , of 2 nm Ni/n-Si anodes in 1 M KOH and 1 M K-borate 

under constant illumination. From [ 229 ] . Reprinted with permission from AAAS. 

c) Cyclic voltammograms of various thickness TiO ( - coated n-Si anodes in 1 M 

KOH under illumination. From [ 230 ] . Reprinted with permission from AAAS. (b ) 

Stability test fixed at 0.93 V versus SCE of 44 nm TiO /n-Si anodes in 1 M KOH 

under constant illumination. From [ 230 ] . Reprinted with permission from AAAS. 
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TiO2protected buried GaAs/InGaP photoanode, in conjunction with Ni-based 

electrocatalysts [234]. 

3.2.4. Other emerging materials 

Conjugated polymers emerged as a new type of photoanode material, although it is not 

favorable at the beginning because of the stability concerns. Recently, considerable efforts 

have been devoted to graphitic carbon nitride (g-C3N4)-based materials owing to its robust 

framework that established in photochemical water splitting since the pioneer work of 

Wang et al [235]. Initial studies by directly depositing the g-C3N4 powder on substrate 

resulted in a very small photocurrent (on the order of μA cm−2), which was ascribed to the 

deleterious grain boundary effect and poor contact between g-C3N4 and substrates [236–

238]. Very recently, using a vapor deposition approach to directly grow g-C3N4 film on 

substrates, an enhanced photocurrent of ~0.1 mA cm−2 at 1.23 V versus RHE was reported 

[239, 240]. In addition to g-C3N4, a ladder polymer, 

poly(benzimidazobenzophenanthroline), known as BBL, was also investigated as a 

photoanode [241]. A photocurrent up to 0.23 mA cm−2 was produced at 1.23 V versus RHE 

in the presence of sacrificial hole acceptor  while H2O2 or OH production instead of 

O2 was observed for solar water oxidation. Although still at its early stage, further 

developments of polymer-based photoanodes are expected if the quality of film, poor 

conductivity and surface reaction kinetics are improved. 

Recently, considerable efforts have also been devoted to investigating TMDs material such 

as MoS2 as photoanode for water oxidation [242–244]. For example, MoS2 nanosheet arrays 

photoanode was shown a high photocurrent up to 10 mA cm−2 at 1.23 V versus RHE and 

power conversion efficiency of 1.27% [244]. 

3.3. PEC tandem system 

In the PEC tandem system, a p-type photocathode and an n-type photoanode with 

complementary bandgap absorption are integrated for the reduction and oxidation of water, 

respectively. Such a simple configuration offers potential advantages over PV-biased PEC 

tandem devices in terms of cost, complexity and stability. The intersection of the 

overlapped 

J–V curves of photocathode and photoanode is the maximum operating current density (JOP) 

for the overall water splitting system (no bias). As such, the overall water splitting activity 

largely depends upon the performance of individual photoelectrodes for each half reaction, 

particularly in the low bias region. Figure 15 shows a comparison of two hypothetical 
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photoanodes and photocathodes to construct a PEC tandem device. Although photoanode B 

and photocathode D give higher photocurrent densities at the high bias region, photoanode 

A and photocathode C are preferred electrodes to construct a more efficient tandem device 

as demonstrated by a higher JOP. This clearly highlights the importance of achieving high 

photocurrent density at the low bias region for each photoelectrode in constructing efficient 

tandem device. Note that JOP is the theoretical value estimated without considering Ohmic 

loss between the two photoelectrodes and parasitic optical loss caused by the top light 

absorber. 

 

In the tandem device, there are two illumination modes: parallel illumination (Mode P) and 

tandem illumination (Mode T), as shown in figure 16. In Mode P, each photoelectrode is 

exposed to one beam of light, which allows the use of non-transparent substrate. While in 

Mode T, the solar energy is utilized more efficiently as the longer wavelength photons that 

are transmitted by the top absorber are absorbed by the bottom absorber. In this review, we 

focus on Mode T configuration, because of its potential advantages for high efficiency and 

low cost solar H2 production in the long term. A detailed comparison and analysis of the 

two different illumination modes were studied by a recent article [245]. 

 

Figure 15.  A comparison of  J – V  curves of four hypothetical photoelectrodes, 

including two photoanodes and two photocathodes, to construct a PEC tandem 

device. The combination of photoanode A and photocathode C gives the most 

efficient tandem device in terms of maximum operating current density ( J ). 
OP 
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Despite promising a high theoretical efficiency up to 30% of the PEC tandem water splitting 

device, the reported experimental STH efficiency of PEC tandem cells were generally very 

low (<1%), as listed in table 2. The poor performance of tandem system was largely due to 

the low photoactivity of the individual photoanode or photocathode. Compared to the water 

reduction on photocathode, the water oxidation on photoanode is more kinetically 

challenging due to the complicated four-electron transfer process. A number of studies used 

TiO2 or SrTiO3 as the photoanode, due to their excellent stability and large produced 

photovoltage, to couple with p-GaP [246–248], CuTiOx [249] or Si-based [250–252] 

photocathode. However, the efficiencies are very low (<1%), which are largely due to the 

wide bandgap of photoanode material (>3.0 eV) to match with the solar spectrum. 

Consequently, various visible-light-responsive photoanode, including WO3 [55, 253–255], 

BiVO4 [256–261] and Fe2O3 [157, 253], were studied to enhance the light harvesting and 

current matching with photocathode. Limited success has been achieved with WO3-based 

PEC tandem cell, due to the relatively large bandgap of WO3 (2.8 eV) and the unfavorable 

conduction band position with respect to the hydrogen evolution potential [55, 253–255]. In 

contrast, BiVO4 has emerged as the high-performance photoanode material to construct the 

PEC tandem device, largely due to its relatively negative onset potential (0.2–0.3 V versus 

RHE) compared to other visible-light responsive oxide-based photoanodes. Bornoz et al 

coupled BiVO4 photoanode with Cu2O photocathode as a tandem cell for unassisted solar 

water splitting [256]. Despite promising a maximum theoretical STH efficiency of 8% 

based on the current matching approach, a STH efficiency of 0.5% was demonstrated on 

this alloxide tandem system, which is largely due to the low performance of the individual 

Figure 16.  Schematic of PEC tandem cell under parallel (Mode P) and tandem 

( Mode T) illumination. 
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electrodes and transmission loss from the front BiVO4 layer. BiVO4 was also combined 

with high-performance InP [257], Cu-based chalcogenides photocathode, such as 

(CuGa)0.5ZnS2 [258] and (Ag, Cu)GaSe2 [259], or Si-based photocathode [260, 261]. 

However, the system exhibited a low efficiency of <1%, which is largely limited by the low 

performance of photoanode, particularly in the low bias region. 

Table 2.  Performance comparison of different PEC tandem devices of photoanode– 

photocathode combinations for solar water splitting. 

 Photoanode Photocathode STH 

(%) 

Stability Electrolyte Reference  
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TiO2 

TiO2 

TiO2 

TiO2 

IrOx/TiO2 

TiO2 

TiO2 

SrTiO3 

WO3 

WO3 

WO3 

WO3/FTO/p+n Si 

Co–Pi/W:BiVO4 

Co–Pi/BiVO4 

CoOx/BiVO4 

GaP 

GaP 

GaP 

CuTiOx 

Pt/Si 

Fe2O3/TiO2/Si 

np+Si 

GaP 

GaInP2 

NiOx/Cu2O 

Pt/n+p Si 

Pt/TiO2/Ti/n+p Si 

RuOx/TiO2/Al:ZnO 

/Cu2O 

Pt/TiO2/Zn-InP 

Ru/(CuGa)0.5ZnS2 

N/A 

0.25 

0.098 

0.3 

0.12 

0.18 

0.39 

0.67 

0.0025 

0.04 

0.15 

0.24 

0.5 

0.5 

0.016 

Unstable 

N/A 

Unstable 

4–5 h, 

stable 

1.5 h, 30% 

loss 

N/A 

24 h, 15% 

loss 

10 h, stable 

N/A 

Unstable 

10 min, 

stable 

> 20 h 

stable 

5000 s, 

90% loss, 

N/A 

7 h stable 

1 M NaOH 

0.2 M H2SO4 

1 M NaOH 

KOH/Pi 

0.5 M H2SO4 

Na2SO4/Pi 

(pH 7) 

1 M KOH 

1 M NaOH 

3 M H2SO4 

Na2SO4 (pH 

6) 

KH2PO4 (pH 

7) 

1 M HClO4 

Na2SO4/Pi 

(pH 6) 

Pi (pH 7) 

Pi (pH 8) 

[246] 

[247] 

[248] 

[249] 

[250] 

[251] 

[252] 

[248] 

[253] 

[55] 

[254] 

[255] 

[256] 

[257] 

[258] 

 Photoanode Photocathode STH Stability 

(%) 

Electrolyte Reference  
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NiOOH/FeOOH 

/Mo:BiVO4 

CoOx/TiO2/BiVO4 

Co–Pi/Mo:BiVO4 

Fe2O3 

NiFeOx/Fe2O3 

IrOx/ZnS/CdS/TiO2 

CdS/ZnO 

Pt/CdS/CuGa3Se5/(Ag, 

Cu)GaSe2 

NiO/Ni(OH)2/TiO2/Si 

Pt/Si 

GaInP2 

Pt/a-Si 

CdSe/NiO 

Cu2S/Cu2O 

0.67 2 h stable 

0.05 5 h, 50% 

loss 

0.57 3.5 h, 74% 

loss 

0.00022 N/A 

0.91 10 h stable 

0.17 20 min, 

30% loss 

0.38 1 h, 90% 

loss 

Pi (pH 7) 

Bi/K2SO4 

(pH 9.2) 

Pi (pH 5.5) 

KNO3/Pi(pH 

5.7) 

Pi (pH 11.8) 

0.5 M 

Na2SO4 

0.5 M 

Na2SO4 

[259] 

[260] 

[261] 

[253] 

[157] 

[267] 

[268] 

     

Although BiVO4 has been set as the case example for photoanode material, it is noteworthy 

that it suffers from an intrinsic limitation of relatively large bandgap (indirect ~2.4–2.5 eV 

and direct ~2.7 eV) [262, 263], corresponding to a maximum of ~9% STH effciency that 

can be theoretically achieved [264]. In addition, BiVO4 is only chemically stable at near 

neutral condition and dissolves in strong basic and acidic solutions, which make the 

operating conditions of BiVO4 incompatible with some high-performance catalyst or 

photocathode conduct optimally only under basic or acidic conditions. Moreover, the 

buildup of significant pH gradient near the electrode surfaces in neutral solution even with 

the assistance of additional supporting electrolytes or buffers would fundamentally limit the 

efficiency [265, 266]. Alternatively, Fe2O3 has attracted much interest due to its favorable 

properties such as relatively narrow bandgap (2.0–2.2 eV), adequate stability in strong 

alkaline solution, and earth abundance composition. Wang et al paired Fe2O3 photoanode 

with InGaP photocathode as a tandem cell for unassisted water splitting, however, the 

device performance is extremely low (~0.0002%), which is largely due to the high requisite 

overpotential of ~0.8 V and low performance of Fe2O3 photoanode [253]. Recently, Jang et 

al reported a benchmark Fe2O3 onset potential around 0.45 V versus RHE using a facile 

regrowth strategy to reduce surface disorders, which enabling unassisted solar water 

splitting when pairing with an amorphous Si photocathode (figure 17) [157]. A meaningful 

efficiency of 0.91% and long-term stability of 10 h was achieved by the tandem system 

based on hematite and Si, which are both earth-abundant. 
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Compared to metal oxide materials, there are also some examples of PEC tandem device 

using chalcogenide [267, 268] and nitride-based [269] photoanodes. For example, Yang et 

al developed a tandem cell composed of CdS quantum dot (QD) modified TiO2 nanorod 

photoanode and a CdSe QD modified NiO nanosheet photocathode, obtaining a STH 

efficiency of 0.17% [267]. With the assistance of a ZnS passivation layer and an IrOx OER 

co-catalyst, the device efficiency and stability were greatly enhanced. In another study, 

AlOtaibi et al designed a PEC tandem cell consisting of GaN/InGaN nanowire photoanodes 

and a Si/InGaN nanowire photocathode, which achieved a high STH efficiency of 1.5% in 1 

M HBr [269]. The distinct advantage of nanowire photoelectrodes, together with the 

parallel illumination strategy by splitting the solar spectrum spatially and spectrally, 

enhanced the solar energy conversion efficiency for unassisted water splitting. 

4. Conclusions and outlook 
Artificial photosynthesis via solar water splitting, which mimics the natural photosynthesis, 

is a promising approach to directly convert sunlight into energy-rich chemical fuel (i.e. H2) 

on a global scale. The light-harvesting semiconductor material, as an artificial leaf, plays an 

Figure 17.  (a) Steady-state current density-potential behaviors of various hematite 

photoelectrodes. The current densities of Si photocathode placed behind the 

hematite photoanode are shown to illustrate the meeting points. rgH II denotes 

hematite samples subjected to the regrowth treatments two times. (b) Schematics of 

overall unassisted water splitting by hematite photoanode (right) and amorphous Si 

photocathode (left) in a tandem configuration. Reproduced from [ 157 ] . CC BY  4.0. 
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essential role in determining the performance of artificial photosynthesis devices. Recently, 

three parallel approaches have been pursued to achieve a material system with both high 

efficiency and robust stability: (i) making stable materials more efficient, (ii) enabling 

efficient materials are more stable, and (iii) discovering new materials that are intrinsically 

stable and highly efficient. 

Metal oxides are generally reported to be very stable and exhibit a high-level resistance to 

photocorrosion. But they usually suffer from relatively large bandgap and low absorption 

coefficient, poor electrical conductivity, short charge carrier lifetime and diffusion length, 

which significantly limit the performance. For example, the optical absorption depths of 

metal oxides (usually hundreds of nanometers) are often larger than the hole diffusion 

lengths (e.g. less than 5 and 20 nm for Fe2O3 and TiO2, respectively) [270]. Nanostructuring 

techniques such as the fabrication of nanowires, nanotubes or nanopores can alleviate this 

issue by shortening the carrier diffusion distance toward the electrolyte solution. Recently, 

this strategy has been demonstrated with remarkable success in the case of BiVO4 

photoanode, together with other strategies such as doping and co-catalyst modification 

[271]. Using BiVO4 as a model case, it is highly desirable to apply similar strategies on 

other metal oxides with a lower bandgap (<2.4 eV), both as photoanodes and 

photocathodes, to achieve the goal of STH efficiency >10%. 

Si, III–V and chalcopyrite semiconductors, which usually have a narrow bandgap and can 

be obtained with high-quality (relatively low defects, low impurity incorporation, and high 

controllability of doping), have been reported with high efficiency for water splitting. 

However, they are chemically unstable and suffer from photocorrosion when directly in 

contact with an aqueous electrolyte solution. Recent developments on surface protection 

technology greatly improve the stability of these classic PV materials by decoupling the 

light absorption sites with electrochemical reaction sites [272, 273]. Metal oxides such as 

TiO2 are extensively used as the protection layers owing to the high stability over a wide 

range of pH and excellent optical transmittance (Eg > 3.0 eV). ALD technique, which 

allows for conformal coating with precisely controlled thickness, has been demonstrated 

with great success for achieving high stability solar water splitting system [274], e.g. over 

2200 h stable operation has been proved on Si-based photoanode with an ALD-TiO2 

protection layer [275]. A similar concept can also be pursued using simple, cost-effective 

and scalable protection approaches (e.g. solution-based sol-gel and chemical bath) [276]. It 

is worth noting that the parasitic light absorption from the protection layer needs not to be 
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considered in the case of the bottom absorber, which allows the wide choice of protection 

materials such as metals. 

Recently, nitrides, TMDs and organic materials have emerged as promising photoelectrodes 

for water splitting due to their unique optoelectronic properties. For example, InGaN is the 

only known semiconductor material whose bandgap can straddle the redox potentials of 

water splitting under deep visible and near-infrared light irradiation [84]. Nearly two orders 

of magnitude enhancement in the quantum efficiency for photocatalytic overall water 

splitting on (In)GaN nanowires has been demonstrated [77, 78]. Unique to such III-nitride 

nanowire structures synthesized by molecular beam epitaxy is the presence of a 

Ntermination, not only for their  top faces but also for their  side faces [85]. The 

Ntermination of all exposed surfaces (top-polar and side-nonpolar) protects the nanowires 

against attack by the electrolyte (oxidation and photocorrosion). Although the studies of 

these emerged materials are still in the early stage, they have already shown great promise. 

Further developments will enable their great success. In parallel, it is important to discover 

other new materials that are intrinsically stable and with favorable optoelectronic properties 

for PEC water splitting (e.g. suitable bandgap and high charge carrier mobility). For 

example, 8000 and 700 000 compound materials are available for ternary and quaternary 

metal oxides respectively, with most of them are yet to be investigated for PEC water 

splitting [277]. The large number of untested elemental combinations gives hope that ideal 

materials are still ahead of us. Applying advanced combinational methods, as well as the 

state-of-the-art theoretical calculations to potential complex materials will be crucial for 

speeding up the discovery of high-performance photoelectrodes for water splitting. 

To achieve efficient and cost-effective unassisted solar water splitting, a PEC tandem 

device consisting of a photoanode and photocathode is a promising configuration. The 

theoretical modeling of using a combination of 1.6–1.8 eV top absorber and 0.9–1.2 eV 

bottom absorber to achieve high efficiency has been validated using high-quality III–V 

materials. By tuning the bandgap combination, benchmarking STH efficiencies of 16% and 

19% were reported in a monolithic 1.8/1.2 eV GaInP/GaInAs tandem device from Deutsch's 

group [29] and Atwater's group [278], respectively. Further improvement of STH efficiency 

towards >20% is possible using a 1.7/1.1 eV optimal bandgap combination. Si is nearly 

ideal as the bottom light absorber in the tandem device owing to its energy bandgap of 1.1 

eV, earth abundance, and prevalence in PV industry. By controlled doping with P and B, Si 

can be fabricated with n-type and p-type as photoanode and photocathode, respectively. The 

PEC performance of state-of-the-art Si-based photoanode and photocathode with a single 
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junction are shown in figure 18. To pair with the Si photocathode, BiVO4 is currently the 

best photoanode in terms of operating current density. Developing a low-bandgap 

photoanode close to 1.7 eV that gives higher photocurrent at the low bias region (e.g. below 

0.6 V versus RHE) would be highly desired. To couple with the Si photoanode, there is still 

no prominent photocathode that can give a meaningful operating point. High-performance 

photocathodes including InP, due to the low produced photovoltage, are not able to intersect 

with the Si photoanode. Recently, a positive onset potential of >1 V versus RHE was 

obtained on Cu2O [61] and CuBi2O4-based photocathodes [68, 69]. However, the 

photocurrent performance of the photocathodes is relatively low. Efforts therefore are 

needed to develop a photocathode that can deliver high photocurrent at a positive potential 

(e.g. above 0.9 V versus RHE) for constructing efficient tandem device with Si photoanode. 

Owing to their bandgap tenability, suitable band edge positions, high material quality and 

well-controlled doping to achieve n-type or p-type, III–V semiconductors can potentially 

overcome the efficiency bottleneck that are commonly seen by other materials. The 

integration of III–V materials, particularly III-nitride nanostructures with Si, largely 

leverages the well-established semiconductor manufacturing processes (e.g. solid-state 

lighting and power electronics) with low cost and large area Si solar cell platform, which 

promises a viable approach for large-scale solar hydrogen production from water splitting. 

 

Figure 18.   J – V  curves of state-of-the-art p–n  Si-based photocathode [ 124 , n–p ]  Si- 

based photoanode [ 221 ] , InP-based photocathode  [ 74 ]  and BiVO - based 

photoanode [ 162 ]  to construct a PEC tandem device based on Si bottom cell. The  J – 

V  curves of the ideal photocathode and photoanode are also projected. Note that the 

+ + 
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 parasitic light absorption from the top light absorber and current match condition 

between the top and bottom light absorber should be taken into account in the real 

tandem device. 
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