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Abstract

Artificial photosynthesis via solar water splitting provides a promising approach to storing
solar energy in the form of hydrogen on a global scale. However, an efficient and
costeffective solar hydrogen production system that can compete with traditional methods
using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell
consisting of a p-type photocathode and an n-type photoanode, with the photovoltage
provided by the two photoelectrodes, is an attractive route to achieve highly efficient
unassisted water splitting at a low cost. In this article, we provide an overview of recent
developments of semiconductor materials, including metal oxides, nitrides, chalcogenides,
Si, [1I-V compounds and organics, either as photocathodes or photoanodes for water
reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC
tandem system for unassisted water splitting are outlined. The importance of developing a
single-photon photocathode and photoanode that can deliver high photocurrent in the low
bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future
development of photoelectrode materials, and viable solutions to realize highly efficient
PEC water splitting device for practical applications.
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1. Introduction
Sunlight is the most abundant renewable energy resource and considered to be the ultimate

solution to address the global energy problem: 'The Terawatt Challenge.' However, the
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vision of solar energy providing a substantial fraction of global energy infrastructure is still
far from being realized. The major challenge is to develop an efficient and cost-effective
approach for storing solar energy that can be used on demand on a global scale. Solar water
splitting provides a scalable route to store solar energy in the form of energy-dense
hydrogen fuel [1], which can be directly used in a fuel cell with water as the only emission
or as a reactant for well-established industrial processes, such as ammonia synthesis
(Haber—Bosch reaction) or methanol production (CO,/CO hydrogenation reaction). For
solar water splitting systems, there are three major categories: photochemical (PC) system,
photoelectrochemical (PEC) cell, and photovoltaic-electrolysis (PV-E), as shown in figure
1.
PV-E is a straightforward strategy of connecting two existing developed technologies:
photovoltaic (PV) cell and water electrolyzer. Although PV-E have been demonstrated with
high solar-to-hydrogen (STH) conversion efficiencies over 10% [2—9], this route is still too
costly to compete with traditional methods using fossil fuels (e.g. steam reforming of
natural gas) [10]. Considering the technological maturity of PV-E, further improvement in
the efficiency has been limited. Therefore, the development of alternative and cost-effective
routes to produce solar hydrogen is of particular interest. PC approach is a simple and
lowcost process for potential solar hydrogen production, but this route is inefficient with a
STH efficiency typically at least one order of magnitude lower (<1%), and produces a
potentially explosive mixture of H, and O,, which requires an external high-cost process to
separate them to avoid back reactions [11]. In this context, PEC system, which lies
intermediate between PV-E and PC, offers a high STH efficiency at an affordable cost [ 12—
14]. The PEC approach integrates the light absorption and electrochemical process of PV-E
process into a single and monolithic unit via a direct semiconductor—electrolyte interface to
reduce the cost, while having a distinct advantage over PC system in that the H, and O,
evolution halfreactions occur on two different electrodes and are separated physically.
Recent technoeconomic analysses have shown that PEC water splitting can achieve
substantially lower overall system cost compared to PV-E approach, and can become
economically competitive with existing fossil-fuel derived hydrogen if the efficiency and

lifetime are substantially improved to >10% and >5 years, respectively [ 14—16].
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Figure 1. Schematic of three types of solar water splitting system: PC system, PEC
cell, and PV-E. PC and PV-E have the respective limitations of low efficiency and
high cost, while PEC lies intermediate for achieving high efficiency at an affordable
cost.

A simple PEC configuration includes one semiconductor photoelectrode (as either
photocathode or photoanode) and one standard metallic (dark) electrode (e.g. Pt). Ideally,
the semiconductor should have an appropriate bandgap and band structure to encompass a
large portion of solar spectrum while providing sufficient potentials to accomplish the
overall water splitting reaction, as well as excellent charge transport properties and
longterm stability during the operation. Despite the fact that many materials have been
explored over nearly half a century, there is currently no single material that can fulfill all of
the key criterion. Since overall water splitting consists of two half-reactions, i.e., water
oxidation and proton reduction, it is natural to use a 2-photon dual-electrode system, which
1s analogous to the Z-scheme in natural photosynthesis. Compared to the PV-biased PEC
tandem device, a simple tandem system consisting of spatially separated p-type
photocathode and n-type photoanode is preferred in terms of cost, complexity and stability
[17—19]. The energy band diagram for this type of device in a 'wireless' configuration is
shown in figure 2. There are two designs of the device, depending on whether the wider
bandgap material is a photoanode or a photocathode. In both designs, the longer wavelength
photons that are not absorbed by the top large bandgap absorber are transmitted and
harvested by the bottom low bandgap absorber. Owing to the band bending, the
photogenerated electrons in p-type photocathodes and holes in n-type photoanodes migrate
toward the semiconductor—liquid interface to reduce and oxidize water, respectively, while
holes in the photocathode and electrons in the photoanode recombine at the ohmic contact
that connects both photoelectrodes. As each material is responsible for the relevant half

reaction of water splitting, the tandem system allows the use of smaller bandgap material

http://iopscience.iop.org/article/10.1088/2399-1984/aa88a1 4/75



5/10/2018 Roadmap on solar water splitting: current status and future prospects - [OPscience
and relaxes the stringent requirement of band edge positions to straddle the water redox
potentials. Therefore, the PEC tandem device can achieve potentially higher efficiency than
the single absorber system, with large solar spectral coverage and a wide window of
suitable materials to choose from (figure 3) [20—23]. Recently, various theoretical modeling
studies have evaluated the achievable STH efficiency of this tandem system by considering
different bandgap combinations [24—31]. Despite the varying results of the different models
which include accounting for variable losses (e.g. kinetic overpotentials, solution ohmic
resistance and parasitic light loss), it is generally accepted that such a tandem device can
yield an STH efficiency over 25%. To achieve STH efficiency >20%, the optimal top and
bottom semiconductor absorbers in a tandem device are with bandgaps of approximately
1.6-1.8 ¢V and 0.9-1.2 eV, respectively. The maximum STH efficiency of ~27% was
predicted using the 1.7/1.1 eV bandgap combination [31], which can cover the major
portion of solar spectrum with a current matching condition between the two

photoelectrodes, as shown in figure 4.
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Figure 2. Schematic of tandem PEC water splitting device with (a) a large bandgap
photoanode and a small bandgap photocathode and (b) a large bandgap
photocathode and a small bandgap photoanode.
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Figure 3. Bandgaps and band edge positions of various semiconductors with respect
to the redox potentials of water splitting (pH = 0). The wide and narrow bandgap
materials can be used as top and bottom absorbers, respectively. RHE: reversible
hydrogen electrode. CB: conduction band. VB: valence band. CBTS: Cu 2BaSnS4.
CZTS: Cu2ZnSnS2. CIGSe: Cu(InGa)Sez.
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Figure 4. Solar spectrum (AM 1.5 G) coverage by a tandem PEC water splitting
device with optimum bandgaps of ~1.7 and ~1.1 eV. Inset is the illustration of the
tandem device.

In this review article, we focus on the recent progress in the development of promising
semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, [1I-V
compounds and organics, either as photocathodes or photoanodes to construct potentially

efficient p—n PEC tandem system for unassisted water splitting. First, the fundamental
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principles of solar water splitting at a semiconductor/liquid junction (SCLJ), including
different cell configurations and merits of parameters are introduced. Then great emphasis
is focused on the design and development of efficient p- and n-type semiconductor
materials as photocathode and photoanode for water reduction and oxidation, respectively.
In addition, efforts to form a PEC tandem device by combining p-type photocathode and
ntype photoanode for unassisted water splitting are summarized in terms of their STH
efficiency and stability. Finally, conclusions and future prospects of solar water splitting for

achieving a practical artificial photosynthesis device are presented.

2. Basic principles of solar water splitting

2.1. Semiconductor photoelectrochemistry

Semiconductor photoelectrochemistry deserves special attention because the system
features a highly unique interface—the SCLJ. For a typical system where the Fermi level of
the semiconductor is not at the same level as the electrochemical potential of the electrolyte
prior to contact (figure 5(a)), the formation of the junction suggests that one or both of the
energy levels should move to reach equilibrium. As the charge density of the electrolyte is
typically several orders of magnitude higher than that of the semiconductor, hence
semiconductor Fermi level is moved to align with the electrochemical potential of the
electrolyte. While the same description would be true for a metal/liquid junction, the
semiconductor is unique because it can form a relatively wide depletion region (up to um's,
depending on the dielectric constant, the carrier density, and the energy difference) [32, 33].
As is seen in figure 5(b), a SCLJ with a bent band is effectively a Schottky-type diode that
can

separate photogenerated charges. This junction is the fundamental reason why

semiconductor photoelectrochemistry is interesting.
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Figure 5. Schematic of the band diagrams under different conditions. (a) Prior to
contact between the semiconductor and the electrolyte. (b) Upon contact under
equilibrium conditions without light. (c) Quasi-equilibrium with illumination. The
various processes are labeled as follows. (1) Charge excitation by light; (2)
electron extraction through back contact; (3) hole transfer to surface states; (4)
hole transfer to the electrolyte; (i) bulk recombination; (ii) surface recombination;
(iii) electron trap by surface states.

On a practical level, semiconductor photoelectrochemistry also represents a useful tool to
understand the detailed processes that govern the operation of a photocatalytic system.
Consider solar water splitting as an example. In order to achieve high efficiencies, we desire
to have a system that is efficient in all three major processes: absorbing light, separating
charges, and driving hydrogen and oxygen evolution reactions. Careful studies of the SCLJ
can help us understand which parts of the system are responsible if a system fails to deliver
the expected performance. For instance, the performance of a photoanode as shown in
figure 6 may be limited by any of the following processes. First, the recombination of
electrons and holes in the bulk 1s too severe. Second, the direct recombination of electrons
and holes in the conduction and valence bands, respectively, near the surface is too fast.
More explicitly, charge distribution near the surface differs from the bulk. When majority
charge carriers deplete from semiconductor to liquid, the minority charge concentration
increases in this near-surface region forming an inversion layer, opening up additional
recombination channels [34]. Third, surface mediated electron and hole recombination
contributes significantly to the annihilation of photogenerated charge carriers. Fourth,

charge carrier transfer from the semiconductor to the electrolyte is too sluggish to compete
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with charge recombination processes as outlined above. Being able to accurately describe
the various processes is critical to the understanding and, ultimately, solving the various
issues for high-efficiency solar water splitting. Below, we will briefly present the equations
that are useful to describe the SCLJ in a semiconductor PEC system.

space charge recombination
or surface recombination

Fotential

Figure 6. Idealized photocurrent—voltage relationship of a photoelectrode (broken

line) and the one for a realistic system (solid line).

For the ease of discussions, we choose to use a photoanode system as shown in figure 5 as a
prototypical platform to lay out the details. Upon contact, the SCLJ results in the formation
of a space charge region (depletion region of electrons), whose width (W) depends on the
difference between the Fermi level of the semiconductor in vacuum and the electrochemical

potential of the electrolyte (At?ﬁsc), the relative permittivity (€) and the doping density (Ng):

W = (0= )l (1)

The capacitance of the space charge region can be derived from the variation of the space

charge (Qsc) with the potential drop (APy.), Cse = dQy/dAP ., as described by the Mott—
Schottky equation:

MLE—— (i'tsé“,_ — u) (2)
5 iy EEp q
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Because the electrical field generated within the space charge region varies linearly from
distance x = W to the surface (x = 0), the variation of electrical potential will be
proportional to x> and can be represented as band bending (figure 5(b)). The degree of band
bending is governed by the Fermi level difference between the semiconductor and the redox
pair. This is analogous to a Schottky junction formed between a semiconductor and a high
work function metal [35]. Under reverse bias conditions (positive potentials), the Schottky
barrier is increased, which makes it more difficult for electrons to transfer from the
semiconductor to the electrolyte. For an anode system, such charge transfer would be
considered back electron transfer and should be minimized. Meanwhile, the enhanced band
bending under reverse bias makes it easy for holes to transport to the surface for driving
oxidation reactions. Conversely, under forward bias (more negative potential applied on
semiconductor), the band bending will be reduced and it becomes easier for electron
transport from conduction band for oxidizing redox species (a reduction reaction). Similar
to a Schottky diode of an n-type semiconductor, however, holes are minority carriers,
meaning that the current under reverse bias is limited. As such, we expect a photoanode to
exhibit low reverse bias current. That is, negligible oxidation reactions would take place on

a photoanode without illumination.

Upon illumination (hv > E,), electron—hole pairs are generated within the semiconductor as
a result of electrons excitation from the valance band to the conduction band (process 1 in
figure 5(c)). At thermal equilibrium, the generation of electron—hole pairs from photon
excitation is balanced by the recombination on a timescale >10-9 s. Because these
photogenerated charge carriers can equilibrate with the lattice vibration (phonons) on a
timescale <10~12 s, the populations can be described by Fermi—Dirac statistics [36]. A
quasiFermi level can then be derived by simply interpreting the steady-state carrier
concentration of holes as representing a quasi-equilibrium situation (Er in figure 5(c)).
Similarly, a quasiFermi level of electrons is also obtained (Er, in figure 5(c)). But since the
electron concentration is expected to be similar to the equilibrium value, Er ,, 1s typically
close to that under equilibrium. From a thermodynamics perspective, the driving force for
water oxidation on a photoanode originates from the free energy difference between
electron and hole quasi-Fermi levels. The physical model of band bending near surface is
still valid under such a circumstance. The magnitude of the quasi Fermi levels splitting
determines the maximum photovoltage (V,n) one photoanode can provide. Under the likely
assumption that one can probe the Er,, through back contact under equilibrium conditions

(e.g., through the measurement of the open circuit voltage, Vo), the difference between the
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Er (under dark, figure 5(b)) and the Er, (under illumination, figure 5(c)) represents the Vpp,
[37-40].

The recombination of photogenerated electron—hole pairs can take place either in bulk
(process 1 in figure 5(c)) or near surface (processes ii and iii in figure 5(c)), which may
involve processes such as Shockley—Read—Hall recombination (through levels associated
with defects or impurities), radiation (band to band) recombination or Auger recombination
[41]. The recombination in bulk follows a pseudo first order rate law due to the excess of
majority carriers (electrons in n-type semiconductor), and is characterized by the minority
carrier lifetime Tmin. This value ranges from nanoseconds in many compound
semiconductors to milliseconds in ultrapure silicon [42]. Since the electrical field in bulk is
limited, the minority carriers (holes in n-type semiconductor) generated in this region can
only diffuse a certain distance before they are recombined, trapped or transferred to the
electrolyte to drive oxidation reaction. This is one important bulk property of a
semiconductor and characterized as minority carrier diffusion length Ly, which is

determined by the diffusion coefficient Dy;n, the mobility of minority carriers pmin and Tmin:

Lnin = yDrinTin = "'I'J" Honin Tinin - (3)

Ideally, a photoanode should have long Lmin, comparable or greater than the characteristic
thickness of the material, so that most photogenerated holes could diffuse to the surface to
drive the desired oxidation reactions. By assuming hole—electron recombination in the space
charge region 1s negligible, and that the recombination on the surface is minimum due to
rapid interfacial holes transfer, we can calculate the hole flux J; to the surface, and the
incident photon to current conversion efficiency (IPCE) or external quantum efficiency
(EQE), as follows,

Jo = Io1 — <2, (1)

1+ elmy

.Jl:l exp(—e W b

IPCE == =1 5 ol

(5)
Iy ’

where a is the absorption coefficient at a given wavelength. Of course, as an oversimplified
description for an idealized situation, the Gartner equation would be inadequate to describe
actual systems. It nonetheless defines the upper limit of the achievable quantum efficiencies
based on the measurable photophysical constants of a material. The current voltage
characteristics as predicted by the Gértner equation 1s shown in figure 6. The current—
voltage relationship for a realistic system is different primarily due to the loss of
photogenerated holes. Specifically, the onset-potential (where the photocurrent starts) will

be shifted toward the more positive direction (as depicted in figure 6). In addition,
http://iopscience.iop.org/article/10.1088/2399-1984/aa88a1 12/75
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recombination in the space charge region (process ii in figure 5(c)) can proceed through
defects close to mid-band gap. The analytical expressions with these considerations were
previously discussed by Reichman and El Guibaly et al [43—46]. Surface recombination
(process iii in figure 5(c)) is yet another important factor to be considered. The situation is
particularly important when surface hole concentrations are high due to reasons such as
slow interfacial hole transfer. Surface states can also arise from crystal defects, surface
dangling bonds and/or chemisorbed species. Further, the photogenerated holes trapped by
surface states can be annihilated through recombination with electrons. It is important to
note that the definition of surface states used here is rather broad. They may refer to
electronic states within the band gap caused by a number of reasons, including surface

chemisorbed species as a result of chemical reactions.

In a way, the Gartner equation and the Reichman correction consider the photophysical
properties of the semiconductor, both in the bulk and near/on the surface, and predict the
rate at which photogenerated charges that can potentially drive the chemical reactions in the
electrolyte. The charges that are actually transferred to the electrolyte may be calculated by
the charge transfer efficiency. Assuming the likely scenario that surface processes are first
order relative to charge concentrations, we have,

TE = klril]l .-":':.klr:m T 't'rn.]'- i6)

where TE is the transfer efficiency, kiman 1s the forward charge transfer rate constant, and kyec
is the charge recombination rate constant. The measured photocurrent densities can then be

calculated as:

;I1I|.':I:| — .-rh ", .[-F.. {T_I

2.2. PEC cell configurations

In the introduction, we discussed three types of solar water splitting systems: PC, PEC, and
PV-E. Here, we will focus on different PEC cell configurations, which can be constructed
either from a single p-type semiconductor as photocathode (or n-type semiconductor as

photoanode), or two semiconductors connected separately (or in series).

For a single semiconductor PEC cell where only a half-reaction occurs on the working
electrode, a counter electrode is required for the other half-reaction to complete the
electrical circuit. Often, a reference electrode is connected to the working electrode to
characterize external applied voltage. If necessary, to avoid product crossover, two
compartments or ion exchange membrane will be present to separate the working and

counter electrode. This three-electrode configuration is depicted in figure 7(a). To overcome
http://iopscience.iop.org/article/10.1088/2399-1984/aa88a1 13/75
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the thermodynamic barrier of water splitting and the potential loss caused by recombination
processes, the working electrode should have a band gap of at least 1.6 eV [22]. However, if
the band gap is too wide, the visible light absorption efficiency will be low. Other potential
loss mechanisms include back contact and overpotential induced by poor catalytic activity.
To address this issue, the semiconductor material should be deposited on highly conductive
substrate to form a good Ohmic contact, which allows rapid injection of majority carriers
from working electrode to counter electrode. Additionally, HER or OER catalyst is required

to facilitate surface kinetics accordingly.

(a) (b) (©)
reference
electrode
H; H;
g A Hy0 " ‘
working  counter photoanscde  photocathode photoanode  photocathode

electrode  electrode

Figure 7. Schematic of basic components of PEC cell for (a) a single band gap
photoanode with a metal cathode. (b) A photoanode and a photocathode connected
separately in a tandem configuration. (c) A photoanode and a photocathode

electrically connected in series in a back-to-back configuration.

As seen here, it is challenging for a single photoelectrode to achieve sufficient photovoltage
for solar water splitting. The combination of dual semiconductors will be more
advantageous. A second photoelectrode can replace the counter electrode where the other
half-reaction occurs, and compensate the insufficient photovoltage (shown in figure 7(b)).
The illumination should be directed from the larger band gap photoelectrode (transparent
substrate) to the smaller band photoelectrode for better light utilization. Alternatively, these
two semiconductors can form a wireless back-to-back Ohmic contact, sharing one
transparent conductive substrate [21]. By doing this, potential loss in electrolyte and pH
gradient between two photoelectrodes can be reduced [47]. Similarly, the illumination
should pass through a larger band gap material to a smaller one. This tandem cell
configuration is shown in figures 2 and 7(c), promising a relatively cost-effective device

structure.
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2.3. Calculation of efficiencies
To evaluate performance of solar water splitting, it is well acknowledged to compare onset
potentials, and photocurrent density (normalized to projected surface area of
photoelectrode) at 1.23 V versus RHE for photoanode and 0 V versus RHE for
photocathode. Normalized metrics based on energy input, product conversion, etc. are of
equal significance. Since the value-added product of water splitting is hydrogen, STH
efficiency is the most critical figure of merit for measuring the performance and efficiency
of solar water splitting on practical device level. It is defined as the ratio of output

chemical/electric energy to input solar energy via the following equation:

iy dmal 5~ m s I'-l:.'||.-:k| micd "y :
st = [ - Wm0 ' (8)
|'|.F|.-I'|'-. m=y AM 150

where @y is the hydrogen gas production rate, G'it is the Gibbs free energy of hydrogen
gas (237 kJ mol~1 at 25 °C) and Pjign 1s the total solar irradiation input. The light source
should match solar spectrum of air mass 1.5 global (AM 1.5 G). As mentioned, a STH
efficiency over 20% is desired for large-scale application in the future, and a maximum
27% STH efficiency has been predicted for a 1.7 eV/1.1 eV tandem cell configuration with
optimal light absorption (figure 4) [31]. Alternatively, output chemical energy can be
substituted by electric energy that multiplies short-circuit current density jsc and the redox
potential of interest (1.23 V for water oxidation). Since 100% of the current may not
contribute to the redox reaction, Faradaic efficiency must be considered in the equation.
Faradaic efficiency (1nr) describes the efficiency of passing charges contributing to desired
electrochemical reaction, which is defined as the ratio of the measured product quantity and

the theoretical value derived by passing charges.

| Ao fmAem fpw 1,23V s g
flstTH = Prg (MW m ™7} AN L5G %)

In general, the value of jsc can be replaced by the externally measured current density at
zero applied potential under steady-state conditions, which is analogous to short circuit

conditions.

The STH efficiency is of particular interest to evaluate the performance of unassisted
overall solar water splitting system. Extensively, to evaluate the performance of a single
photoelectrode independently, where extra applied potential is often required from a second
photoelectrode or external power supply, another concept of conversion efficiency can be
introduced. At a certain jsc and N, applied bias photon to current conversion efficiency
(ABPE) can be written as follows:

http://iopscience.iop.org/article/10.1088/2399-1984/aa88a1 15/75
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ABPE — I:':“' [mA e %) o (1,23 I'.-..I.] = 7y ] . I:_]U_I
AL 150G

P (MW m ™)

where Vgpp 1s the applied potential between photoelectrode and counter electrode.
In addition to the conversion efficiencies characterized by the entire solar spectrum on a

device level, it is important to understand the efficiency of electrons/holes converted from
photons at individual wavelengths of light on a single photoelectrode material level. To
serve this purpose, IPCE or EQE mentioned above can be written in an alternative format as

follows:

..:II_-;ul."‘\. et | o bW )

]F(_:[.-':'.-\ul:' . EQ]:r)ﬂ — electrom flug (mol 55

photon flux (meol s T PoimW om =3 = Alnm)

(11}

in which A is the single wavelength light source, Py is the power of irradiation, h is Plank's
constant, ¢ is the speed of light, and jph is the photocurrent density. To acquire IPCE, a
monochromator (single wavelength light source) and a three-electrode configuration are
essential, that jp, at the identical applied potential with individual wavelengths of light can
be obtained accurately. Generally, the onset wavelength is closely related to the bandgap of
semiconductor. In addition, by integrating the IPCE values with the standard AM 1.5 G
solar spectrum, the total photocurrent density under solar illumination can be estimated as,

Tams = J.R]P{:E\_ % gy % e)dA (12)

where e is the elementary electron (C) and by is photon flux of irradiation (m? s).

3. Advances in the development of PEC water splitting

3.1. Photocathode materials

3.1.1. Metal oxide

Because of its earth abundance, nontoxicity, high mobility, good and natural p-type electric
conductivity and close to optimum direct bandgap of 2.1 eV, cuprous oxide, Cu;0, is
considered a promising candidate for photocathodes for PEC water splitting, with a
theoretical maximum photocurrent of 14.5 mA cm~2 and a STH efficiency of about 18%
[48—-50]. Though Cu,0 has favorable band energy positions for water splitting, its
application as an efficient and durable photocathode for water splitting has been inhibited
by its poor photostability in aqueous electrolytes and low photocatalytic efficiency caused
by fast recombination of minority carriers (electrons). Extensive research efforts have been
made to improve the photostability by employing protective layers, such as ZnO, TiO», and

SnO; [50-53], to reduce recombination of carriers by coupling with other semiconductors
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such as CuO, Ga;03, WO3, and Al-doped ZnO (AZO) [50, 53-56], to form p—n
heterojunctions and enhance charge transfer by applying co-catalysts, such as Pt, RuO,, and
MoS; [50, 57-59]. In 2011, Gritzel and co-workers showed that a Cu,O photocathode
could be significantly stabilized with protective coatings of AZO and TiO, deposited by
atomic layer deposition (ALD) [50]. Recently, using a Cu,0 nanowire photocathode with
AZO/TiO; protection layers and RuOy catalyst, Gritzel and co-workers reported
photocurrent density as high as 10 mA cm=2 at —0.3 V versus RHE [60]. The photocurrent
density was maintained for over 55 h. The results demonstrate the promise of Cu,0 as a

photocathode for PEC water splitting.

In terms of photovoltage, Cu,O was reported with a relatively negative onset potential
(typically 0.4-0.6 V versus RHE), which need to be combined with photoanodes that can
provide large photovoltage to form PEC tandem device for unassisted water splitting.
Recently, by introducing a Ga,O3 buffer layer between the Cu,O and TiO; protective layer,
an extremely positive onset potential of 1.02 V versus RHE was produced [61], which

represents an important step to pair with a narrow bandgap photoanode such as Si.

Besides binary Cu,0, there are many efforts to develop Cu-based ternary oxides as
photocathodes, such as CuFeO; and CuB1,04. CuFeO; is an attractive material due to its
earth abundant composition and suitable bandgap of 1.5 eV. Read et al first reported
CuFeO; photocathode, prepared by a facile electrochemical process, produced a highly
positive onset potential of 0.98 V versus RHE but a low photocurrent density of 0.3 mA
cm™2 at 0.4 V versus RHE [62]. Later, Jang et al demonstrated a much-enhanced
photocurrent of 2.4 mA cm™2 at 0.4 V versus RHE by using strategies including post-
annealing and electrocatalyst modification to improve the poor charge transport properties
and surface reaction kinetics, respectively [63]. Notably, CuFeO; has been demonstrated
with stable operation for 40 h in the presence of O;-sacrificial electron scavenger [64].
CuB1,04 1s another promising photocathode material, which features a suitable bandgap of
1.6—-1.8 eV as the ideal top light absorber in the PEC tandem device. CuB1,04 was first
identified as a potential photocathode material by Arai et al in 2007 through a combinatorial
screening study [65], which was later experimentally confirmed by Hahn et al [66].
Recently, a photocurrent of 1.2 mA c¢cm=2 at 0.1 V versus RHE was reported by using Pt as
the co-catalyst [67]. It is worth mentioning that CuBi,04 can produce an extremely positive
onset potential >1.0 V versus RHE due to its positive flat-band potential above 1.3 V [68,
69], which makes it a very promising photocathode material as the top cell in the PEC

tandem device if the charge carrier properties and catalytic activity can be further improved.
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3.1.2. III-V group materials
III-V materials hold record efficiencies for both single-junction and multiple-junction solar
cells [70]. Owing to their tunable optoelectronic properties, high light absorption
coefficient, and exceptional charge-transport properties, [II-V semiconductors, including
GaP, InP, and their alloy compounds such as GalnP, are reported with extremely high
efficiency as photocathode materials [71]. However, III-V semiconductors suffer severely
from rapid photocorrosion in the electrolyte, which requires additional protection layers to
prevent the direct contact from the electrolyte. Lee et al demonstrated the stable operation
of p-InP nanopillars photocathode coated with a thin layer of TiO, (3—5 nm) grown by
ALD, in conjunction with Ru co-catalyst [72]. It was reported that the photocathode had a
high conversion efficiency of ~14% under simulated AM 1.5 G illumination. In addition to
the role as the surface protection layer, Lin et al found the thin TiO; layer could reduce the
surface recombination and enhance the photovoltage of planar-based InP photocathodes
[73]. After the deposition of TiO,, there was an anodic shift of 200 mV, which produced a
high onset potential over 800 mV. Recently, Gao et al developed a periodic array of InP
nanopillars photocathode with a buried p—n" junction [74]. Owing to the rational control of
interface energetics and minimization of light reflectance, the photocathode produced an
unprecedented onset potential of 850 mV (figure 8(a)), which was close to the open-circuit
potential of InP homojunction solar cells (0.939 V) [70]. Moreover, the device yielded a
high photocurrent over 25 mA cm™2 at a positive potential as high as 0.6 V versus RHE and
a benchmarking power conversion efficiency of 15.8% for single junction photocathodes,
which promises high efficiency unassisted water splitting when paired with a
highperformance photoanode. With the protection of a thin layer of TiO2 (4 nm), the
photocathode exhibited stability for at least 6 h, in contrast with the fast decay of sample
without Ti0O; protection (figure 8(b)).
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Figure 8. (a) Photocurrent density—potential (J—V) curve (black solid line) and
power conversion efficiency (n, blue squares) of Pt/n*/p-InP photocathode in 1 M
HCI1O4 under chopped AM 1.5 G illumination. (b) Stability test of Pt/n+/p-InP
(black line) and Pt/TiO2/n+/p-InP (red line) at 0 V versus RHE in 1 M HCIO4
under continuous AM 1.5 G illumination. [74] John Wiley & Sons.

Recently, III-nitride semiconductors, e.g. GaN and InGaN, have emerged as a new
generation of materials for solar hydrogen production [75—81]. In contrast to the poor PEC
stability of conventional I1I-V compounds, wherein the chemical bonds are mostly
covalent, III-nitrides exhibit extreme stability in aqueous solution due to their ionic bonding
character [82, 83]. In addition, they possess similar, or even better optical, electrical, and
structural properties than conventional III-V compounds. For example, InGaN is the only
known semiconductor material whose bandgap can be tuned while straddling the water
redox potentials over a wide range of solar spectrum (UV, visible, and even near-infrared
light) [84]. Also, spontaneous polarization can be obtained in III-nitrides with N-terminated
surfaces, which could enhance the charge transport and separation for efficient overall solar
water splitting and protect the surface against oxidation and photocorrosion [85]. Moreover,
compared to the high cost of conventional I1I-V compounds, it is worth mentioning that III-
nitride materials, widely used in the semiconductor industry including solid-state lighting

and power electronics, are much more attractive for cost-effective and scalable production.

In 2005, Fuji et al demonstrated the great potential of p-GaN as photocathode for H»
evolution [86]. Afterwards, Aryal et al reported higher photocurrent density on p-InGaN
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compared to p-GaN, and its excellent stability for a prolonged period of 24 h in HBr
solution without any protection layer [87]. Recently, Fan et al developed an integrated
InGaN/Si photocathode for efficient and stable H, evolution [88]. In conjunction with Pt co-
catalyst, the monolithic device exhibited a high photon-to-current efficiency of 8.7% with
unity faradic efficiency for H, generation. Moreover, without any additional protection
layer, it showed stable operation without degradation for at least 3 h, promising high

potential to construct a PEC tandem water splitting system.

3.1.3. Cu-based chalcogenides

Cu-based chalcogenides such as chalcopyrites and kesterites have demonstrated their
potential for fabricating efficient thin-film PV solar cells [70], owing to their excellent
properties such as high optical absorption, suitable bandgap, and defect tolerance [89-94].
Since PV and PEC water splitting share the same fundamental working principle on photon
absorption and charge carrier generation and separation, Cu-based chalcopyrites and
kesterites are naturally considered promising candidates for efficient PEC water splitting.
Owing to their suitable conduction band edge for hydrogen evolution, Cu chalcopyrites and
kesterites have been extensively studied in the last decade as photocathodes for PEC water

reduction.

The Cu chalcopyrites have a general compositional formula of I-III-VI, (I = Cu, II = In, Ga;
VI =S, Se), for example CulnSe (CISe), CulnS, (CIS), CuGaSe, (CGSe), and CuGaS;
(CGS) [95]. The chalcopyrites can be considered derivatives of the II-VI compounds such
as ZnS by replacing the two group II atoms by one group I atom and one group III atom.
The chalcopyrite structure resembles the zinc-blend structure, in which the cations are
tetrahedrally coordinated by four group VI anions. The kesterites can be further considered
derivatives from the chalcopyrites by replacing two group III atoms by one group II and one
group IV atoms, giving a general compositional formula of [,-11-IV-VI4 (Il = Zn; IV = Sn),
1.e., CuaZnSnS, (CZTS) and CuxZnSnSe, (CZTSSe) [96]. The kesterite structure resembles
the chalcopyrite. The atomic structures of CIS chalcopyrite and CZTS kesterite are shown
in figures 9(a) and (b), respectively. Cu,BaSnS4 (CBTS) exhibits a trigonal crystal structure
with space group P3; (see figure 9(c)) [97], in which each Cu and Sn is tetrahedrally
surrounded by sulfur ions. Two Cu-derived and one Sn-derived tetrahedrons share a corner
and thus each sulfur atom is three-fold coordinated with two Cu and one Sn. Ba atoms are
located at the interstitial sites in the tetrahedral framework, forming rows along the [100]
and [010] directions. The orthorhombic Cu,BaSnSes (CBTSe) has very similar structure as
the trigonal CBTS, but it crystallizes in space group Ama2 [97], shown in figure 9(d).
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(a) Cuins, (b) cuznsns,

Figure 9. Crystal structures of (a) chalcopyrite CIS; (b) kesterite CZTS, (c) trigonal
CBTS, and (d) orthorhombic CBTSe.

Cu chalcopyrites and kesterites have direct bandgaps, while trigonal CBTS and
orthorhombic CBTSe have nearly direct bandgaps, 1.e., the difference between the direct
and indirect bandgap values is very small [98, 99]. The bandgaps of the four quaternary Cu
chalcopyrites are 1.00 eV (CISe), 1.54 eV (CIS), 1.68 (CGSe), and 2.43 eV (CGSe). The
alloyed chalcopyrites of Cu(In, Ga)(S, Se), can cover the bandgap range from 1.0-2.4 eV,
by tuning the In/(In + Ga) and S/(S + Se) atomic ratios, as shown in figure 10 [93]. The
bandgaps of the two quarternary Cu kesterites are 1.0 eV (CZTSe) and 1.5 eV (CZTS). The
alloyed kesterites of CZT(S, Se) can cover the bandgap range from 1.0-1.5 eV, by tuning
the S/(S + Se) ratio. The bandgap value is about 1.95 eV for trigonal CBTS and 1.64 for
orthorhombic CBTSe. The alloyed system of CBT(S, Se) shows a bowing effect with a
phase transition at the composition of around Cu;BaSnSesS. The smallest bandgap was
found to be 1.52—-1.55 eV [100].
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Figure 10. (a) Optical band gap energies of the complete Cu(Ini-xGay)(SySei-y)2
chalcopyrite system for 0 <= x <=1 and 0 <=y <= 1. The colors correspond to the
light sensation of the human eye. Reprinted with permission from [93]. Copyright
2004, AIP Publishing LLC. (b) Evolution of band gap values, obtained using diffuse
reflectance data on powder (bulk) samples, with increasing Se content in the
BaCu,;SnSexS4 « (0 < x < 4) solid solution (green and blue lines marked with
triangles for direct and indirect band gap fits, respectively) and calculated
fundamental gaps (HSEO06 functional with spin—orbit coupling) using the
experimental lattice parameters with internal atomic positions optimized using the
HSEO06 functional (red line, circles). Reprinted with permission from [100].
Copyright 2016 American Chemical Society.

For PEC water splitting applications, non-radiative recombination is highly undesirable
since the recombination will reduce the photovoltage of PEC device, resulting in a reduced
conversion efficiency. The non-radiative recombination is mostly caused by defects with
energy levels deep in the bandgap of the absorber. It has been shown that the high
efficiencies of CIGSe thin-film solar cells are primarily attributed to the defect tolerance
properties of CIGSe absorbers [92]. Theoretical studies have shown that the antibonding
coupling between fully occupied Cu 3d and Se 4p orbitals raises the valence band
maximum of CIGSe, which consequently makes Cu vacancies (V) very shallow acceptors
[94]. Furthermore, the antibonding nature energetically favors the formation of Cu
vacancies, making them the dominant defects in CIGSe [91]. However, for chalcopyrites
with larger bandgaps such as CGSe, the defect tolerance is decreased due to the formation
of Cu and Ga antisite defects [92]. CZTSe and CZTS also exhibits antibonding coupling
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between fully occupied Cu 3d and Se 4p/S 3p orbitals and the Cu vacancies are also shallow
acceptors [90]. However, recently, density functional theory calculations have shown that
trigonal CBTS and orthorhombic CBTSe have larger bandgaps suitable for PEC water
splitting and exhibit defect tolerance properties better than wide-bandgap Cu chalcopyrites
such as CGSe and CGS and kesterites CZTS and CZTSe. Due to the very different
electronic properties between the cations, the CBTS and CBTSe do not easily form the
cation—cation defects [98, 99]. Therefore, CBTS and CBTSe and their alloys are promising
candidates for the applications of efficient PEC water splitting.

Recently, Cu chalcopyrite and kesterite photocathodes have been extensively investigated
[101-112]. Some noticeable results reported in literature are summarized in table 1. The
highest photocurrent reported for CGSe photocathode without n-type partners and catalysts
is 10.6 mA cm—2 at 0 V versus RHE [101]. The CZTS photocathodes produced much lower
photocurrents without n-type partners and catalysts. The highest photocurrent was reported
only 1.3 mA cm—2 at 0 V versus RHE [110]. Using CdS as a n-type partner and Pt as
catalyst, CIS, CIGS, and CZTS photocathodes showed much improved photocurrents. For
example, the photocathode of Pt/Mo/Ti/CIGSe has shown a photocurrent of 30 mA cm~2 at
0 V versus RHE and a power conversion efficiency of 8.5% [106]. A Pt/In,O3/CdS/CZTS
photocathode showed a photocurrent of 9.3 mA cm~2 at 0 V versus RHE and a power
conversion efficiency of 1.63% [112]. Very recently, the PEC performance of CBTS and
CBTSSe photocathodes have also been reported [113—117]. So far the
T10,/Zn0O/CdS/CBTS photocathode showed the highest photocurrent, about 7.2 mA cm—2
at 0 V versus RHE under Xe lamp irradiation (100 mW c¢m~?), reported by Ge et al [114].

Table 1. Representative results of Cu-based chalcogenide photocathodes under AM 1.5
G simulated one sun illumination.

[ 1
Photocathode Electrolyte Photocurrent at Power Year
0 V versus conversion [reference]
RHE efficiency
CGSe 0.5 M H2SOq4 10.6 mA cm > — 2008
[101]
Pt/CdS/CGSe 0.1 M NaxSO4 pH 9 7.5 mA cm? 0.83% (0.2 V 2013

versus RHE) [102]
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Photocathode Electrolyte Photocurrent at  Power Year
0 V versus conversion [reference]
RHE efficiency
Pt/IIDS}/CIS 0.1 M NaZSO4 pH 9 15 mA Cl’l’l_2 1.97% (028 2014
V versus [103]
RHE)
Pt/Ti0,/CdS/CIS 0.1 M NaH2PO4 pH 10 13 mA cm? 1.82% (0.25 2014
V versus [104]
RHE)
Pt/ZnO/CdS/CIGS 0.5 M Na;SO4 pH 9 32.5 mA cm 2 _ 2015
[105]
Pt/Mo/Ti/CIGSe 0.5 M H2SO4 + 0.25 M 30mAcm?  8.5%(0.38Vv 2015
Na,HPO4 + 0.25 M versus RHE) [106]
NaH>PO4 pH 6.8
Pt/CdS/CIGS 0.2 M NaH,PO, pH 10 6.0mAcm?  0.66% (0.21 2015
V versus [107]
RHE)
. . 5 o 2016
Pt/TiO,/CdS/CIS(Bi) 0.5 M Na»S04/0.25 M 8.0 mA cm 108
NaH;P04/0.25 M NaH,PO4 [108]
pH 6.1
, 2 12%(0.22v 2010
Pt/TiO,/CdS/CZTS 0.1 M Na,SO4 pH 9.5 9.0 mA cm : : 109
versus RHE) [109]
o 2015[110]
CZTS 0.3 M NaxSO4 pH 9.5 1.3 mA cm >
. 2016 [111]
Pt/CdS/CZTS 0.2 M NaH2PO4 pH 10 1.2 mA cm 2
1.63% (0.31 2015 [112]
Pt/In,S3/CdS/CZTS 0.2 M NaH,PO4/NaH>PO4 9.3 mA cm 2
pH 6.5 V versus
RHE)
3.14.S1

Si, the most widely used semiconductor in PV industry, is suited for the bottom light

absorber in the PEC tandem system, given its narrow bandgap of ~1.1 eV. Its appropriate

conduction band edge for hydrogen evolution, which in principle can produce a relatively

large photovoltage, renders it an attractive candidate for a photocathode [118]. Despite the

high-performance for solar hydrogen evolution, bare Si photocathode undergoes rapid
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etching or oxidization when in direct contact with electrolyte. To overcome the issue of
instability, a conformal-coated protective layer, including metallic layer and metal oxide
layer, have been employed to passivate the surface states of Si to improve their stability.
Despite the parasitic light absorption/reflection issue, metals can be employed as protection
layers without compromising charge carrier transport owing to their excellent conductive
properties. Maier et al demonstrated a 60 d long-term stable operation in 1 M HCI (aq)
using Pt-coated p-Si photocathode [119]. Transparent metal oxides (e.g. TiO,) have recently
been widely investigated as protective layers due to their high intrinsic chemical stability
and optical transmittance in the visible light region. Owing to the alignment of TiO»
conduction band with respect to the Si conduction band and hydrogen evolution potential,
Ti0; facilitate the electron transfer from Si to electrocatalyst surface with negligible
resistance [120]. It was found that the TiO, protected p—n+ Si photocathode could keep
working for over 30 d of operation under red-light (38.6 mW cm~2; A > 635 nm) filtered,
simulated sunlight (as the bottom cell in the PEC tandem device) [121].

Onset potential is an important parameter to evaluate the potential of a photoelectrode to
construct a PEC tandem system. Crystalline p-Si yielded a low onset potential of at most
400 mV, even in conjunction with Pt co-catalyst [122]. By introducing a buried
metallurgical n*— p junction, the onset potential was increased up to 560 mV due to the
larger band bending at the n*/p interface relative to the p-Si/electrolyte interface [123].
Recently, by using ultrathin amorphous Si (a-Si) as the passivation layer, a high positive
onset potential of 640 mV was observed on buried junction crystalline Si (c-Si)
photocathode [124]. In addition, the a-Si/cSi heterojunction produced a STH conversion
efficiency of 13.26%, which is the highest among the reported Si-based photocathodes. In
terms of onset potential, the highest value of 930 mV was reported on a-Si based
photocathode, which largely attributed to the enlarged bandgap of a-Si (~1.7 eV) and an
optimized solid junction for charge carrier separation [125]. In conjunction with a TiO»
protection layer and Pt co-catalyst, the a-Si photocathodes exhibited an impressive
photocurrent of over 10 mA cm™ at a positive potential as high as 0.6 V versus RHE under
simulated one sun illumination (figure 11). In addition, the photocathode showed a high

stability for at least 12 h of operation.
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Figure 11. (a) Scanning electron microscope image shows the cross-section of an a-
Si photocathode with Pt as catalyst. Scale bar is 400 nm. (b) J-V plots of a
representative a-Si photocathode under different simulated solar illumination
intensities in 0.5 M aqueous potassium hydrogen phthalate solution. Reprinted with

permission from [ 125]. Copyright 2013 American Chemical Society.

3.1.5. Other emerging materials

Recently, semiconducting transition metal dichalcogenides (TMDs) such as WS,, WSe;,
MoS; and MoSe; have emerged as very promising materials for solar hydrogen evolution
owing to their distinct properties including suitable bandgap energy (1-2 eV), high light
absorption coefficients (105—106 cm-1) and chemical robustness without additional
protection layer [126—128]. The layered crystal structure of TMDs can be exfoliated into
mono- or few-layer two-dimensional (2D) sheets, with the bandgap to be finely tuned as the
top/bottom light absorber according to the number of atomic layers. In 1983, Baglio et al
reported Pt-coated p-WS, (1.3 eV) photocathode with a hydrogen evolution efficiency of
6%—7% and an open-circuit potential of ~800 mV in 6 M H,SO4 [129]. Recently, McKone
et al reported p-WSe, (1.2 eV) as photocathode with a solar energy conversion efficiency
over 7% and excellent stability with a Pt—Ru co-catalyst [ 130]. With controlled doping,
surface engineering, and increased understanding of the role of edge states and defects, it is

pscience.iop.org/article/10.1088/2399-1984/aa88a1
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envisaged that the performance of these 2D TMDs can be further improved in the

foreseeable future.

In addition to the TMDs, semiconducting organic materials (e.g. conjugated polymers) have
recently received increasing attention for solar hydrogen production due to their chemical
versatility and facile low-cost solution processability [131—-134]. Their electronic and
optical structure can be rationally controlled at the molecular level towards suitable
bandgap and energy levels to match well with the water redox potentials [135-138].
Although PV cells with power conversion efficiencies over 10% have been demonstrated
[70, 139], solar energy conversion efficiencies over 1% for PEC water splitting have only
been realized very recently

[140, 141]. For example, Rojas et al reported a relatively high photocurrent of 8 mA cm~2 at
0 V versus RHE with an onset potential of ~0.7 V versus RHE on a poly(3-
hexylthiophene):phenyl-C 61-butyric acid methyl ester (P3HT:PCBM) bulk
heterojunctionbased photocathode enclosed between a cuprous iodide hole-selective layer
and a Ptdecorated nanostructured TiO; layer [141]. The photodegradation of the device was
partially suppressed by the addition of a polyethyleneimine protective coating layer. It is
noteworthy that the performance of organic photocathode is far from being optimized and
further development can be expected by rational choice of the building block, hole/electron

selective layer, protection layer and co-catalyst.

3.2. Photoanode materials

3.2.1. Metal oxides

Metal oxides are extensively studied as photoanode materials due to their high photostablity
and low-cost preparation. Early studies were mainly focused on wide bandgap materials,
such as TiO, (Eg = 3.0-3.2 eV) and SrTiO3 (E; = 3.2 €V), which features excellent stability
and favorable band edge positions straddling the water redox potentials [142—145].
However, the large bandgaps limit the light absorption mainly in the ultraviolet region,
which accounts for only ~4% of the solar spectrum. Although doping can extend the light
absorption into the visible region, limited success has been achieved due to the accelerated
charge recombination and reduced stability associated with doping. Recently, great
attention has been paid to the intrinsically visible-light-responsive materials, such as Fe;O3
(Eg=2.0-2.2eV)and BiVO4 (E; = 2.4 eV) [146—-149].

a-Fe>O3 (hematite) has been considered as a promising photoanode material owing to its

near-ideal bandgap for visible light harvesting, excellent chemical stability against
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photocorrosion, low cost and abundance [150—153]. However, there are several drawbacks,
including: (1) short hole collection length (2—4 nm); (2) short carrier lifetime (<10 ps); (3)
low absorption coefficient (on the order of 103 cm~1); (4) poor surface water oxidation
kinetics and (5) relatively low conduction band position (~0.4 V versus RHE at pH = 0)
with respect to the water reduction potential. Several strategies including doping,
nanostructuring and co-catalyst modification were applied to address the above-mentioned
limitations. As most of the studies focused on a single specific aspect of these
modifications, the overall performance remains relatively low. Recently, by considering the
synergistic effects of Pt-doping to improve the electrical conducting property, single-
crystalline 'wormlike' nanostructure to shorten hole diffusion distance towards electrolyte,
and Co—Pi modification to enhance the oxygen evolution reaction, a high photocurrent of
4.32 mA cm~2 was reported at 1.23 V versus RHE [154]. Very recently, by using a unique
nanosheet morphology with a Co—Pi co-catalyst, together with plasmonic Ag nanoparticles
to enhance the light absorption and charge transfer, a record photocurrent of 4.68 mA cm—2
was achieved at 1.23 V versus RHE [155]. This photocurrent corresponds to ~37% of the
maximum theoretical limit expected for 2.1 eV bandgap hematite, indicating there are still
much room for further improvement. To construct a PEC tandem device with a
photocathode, the highly positive turn-on potential (typically at 0.8—1 V versus RHE) of
hematite 1s an important disadvantage [156]. Recently, Wang and coworkers developed a
facile re-growth strategy, together with decorations of NiFeOy co-catalyst, a record onset
potential of 0.45 V versus RHE was achieved [157], which approached the flat band
potential of hematite (~0.4 V versus RHE).

Another metal oxide that has gained significant attention recently is BiVO4 [158—163]. The
most appealing property offered by BiVOs is the relatively negative band edge positions,
permitting a photovoltage >1 V. While a similar photovoltage has also been obtained on
TiO,, BiVO4 absorbs significantly more visible light than TiO, (absorption cut-off at A =
510 nm versus 380 nm) [164]. And compared to hematite, hole diffusion length is less of a
limitation for BiVO4 (~100 nm) [165]. However, owing to the existence of electron and
hole polarons, unmodified BiVO4 was reported with a low charge carrier mobility of 0.04
cm2 V-1 s71 [166]. To increase the low charge carrier mobility, doping is an effective
strategy to enhance the carrier concentration in BiVOs. For example, Luo et al reported Mo
doping as shallow energy levels can enhance the conductivity of BiVO4 by 80 times
compared with undoped BiV Oy, resulting in a much improved PEC performance in natural
seawater [158]. Recently, by using a nanoporous structure consisting of small BiVO4

nanoparticles of 76 nm, a high charge separation efficiency of 90% was obtained at 1.23 V
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versus RHE, indicating the bulk recombination was minimized [167]. With the application
of two water oxidation catalysts, FEOOH and NiOOH, the resulting photoanode featured an
onset potential as low as 0.2 V versus RHE and a photocurrent of 2.73 mA cm=—2 at 0.6 V
versus RHE [167]. With additional Mo doping, Qiu et al prepared nanoporous
BiVO4/Fe(N1)OOH on a cone-shaped nanostructured substrate, which showed a
photocurrent of 5.82 mA cm=2 at 1.23 V versus RHE [168]. In addition, recently, Kuang et
al demonstrated a nanoworm BiVO4 with a photocurrent of 3.2 mA cm—2 at 0.6 V versus
RHE and long-term stability up to 10 h [169].
For better charge separation, constructing heterojunction has been proven as an effective
strategy for various photoelectrodes [170, 171]. A core—shell heterojunction of BiVO4/WO3
was reported by Pihosh et al with Co—Pi as a water oxidation co-catalyst. This configuration
allowed for a photocurrent of 6.72 mA cm=2 at 1.23 V versus RHE [172]. A recent study by
Kim et al combined BiVO4 and Fe,>Os3 as hetero-type dual photoanode, which reported a
record photocurrent density of 7 mA cm=2 at 1.23 V versus RHE (figure 12) [173].
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Figure 12. (a) Wavelength-selective solar light absorption by hetero-type dual
photoanode consisted of BiVO4 and Fe O3 .(b)J-V curvesin 1.0 M KCi at pH=9.2
under 1 sun illumination. Reproduced from [ 173]. CC BY 4.0.

Using BiVOys as a model case, some other ternary metal oxides with a smaller bandgap (E,
< 2.4 eV) have been investigated recently as promising photoanode materials to achieve
higher theoretical STH efficiency, such as spinel ferrites (MFe,O04, M = Cu, Mg, Zn, etc)
(Eg=1.4-2.0eV) [47, 174-178], CuWO4 (Eg =~2.3 V) [179-184] and FeVO4 (E; =~2.0
eV) [185—188]. Despite promising high theoretical photocurrent densities, however, the
reported performance of these complex metal oxide photoanodes is still very low (typically
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sub-mA cm—2 at 1.23 V versus RHE under simulated one sun illumination), which is
largely limited by strong bulk recombination, unfavorable surface states that mediate water
oxidation, and poor surface reaction kinetics. It is highly desirable to improve the
performance by developing novel methods to synthesize/grow high quality complex metal
oxides free from impurities/defects, and applying various strategies including

nanostructuring, doping and co-catalyst modification to overcome the limitations.

3.2.2. Metal nitrides

Because of the lower electronegativity of N than O, the valance band consisting of N 2p
orbitals is expected to be more negative than that of O 2p orbitals. Indeed, a number of
nonoxide semiconductors have been shown to be more suitable for complete water splitting
from a band edge position perspective [80, 189]. Among them, Ta3Ns is a prototypical
material that deserves special attention. With a direct band gap of 2.1 eV, Ta3Ns promises
overall water splitting at efficiency higher than 15% [190, 191]. It is noteworthy that
neartheoretical limit photocurrent density has been reported (12.1 mA cm—2at 1.23 V
versus RHE) [191]. As is true for most non-oxide semiconductors, the most important
challenge in using Ta3;Ns for water splitting is its poor stability. Significant efforts have
been attracted to address this challenge. For instance, Co304 [192], Co(OH)x [193, 194],
Co—P1[195] and NiFe-layered double hydroxide [196] have been shown to improve the
stability of Ta3Ns to a certain extent. Notably, by using a GaN coating strategy to form a
crystalline nitride-onnitride structure, a benchmarking 10 h stable operation with a high
photocurrent density of 8 mA cm~2 was achieved, in conjunction with Co—P1i co-catalysts
[197]. Nevertheless, the long-term stability of the Ta3zNs-based photoanode remains to be
improved for practical applications. Another challenge presented by TasNs is the typical
positive onset potential of ~0.6 V versus RHE, even though the band edge positions would
predict a much more negative value. Some successes have been reported in this aspect. For
example, a slight improvement of photovoltage (a 50 mV cathodic shift of onset potential)
was achieved by Seo et al by using the combination of doping and surface treatment [198].
The origin of the two issues, poor stability and low photovoltage, however, has not been
answered until very recently by Wang and coworkers [199]. It was found that the photo-
oxidation of TasNs is a self-limiting process rather than photocorrosion. A quantitative
correlation between the degree of surface oxidation and the extent of surface Fermi level
pinning was established, as shown in figure 13. As a result, the charge separation

capabilities are dramatically undermined upon exposure to PEC water oxidation conditions.
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Figure 13. Schematic of how surface oxidation influences the electronic structures of
Ta3 N5 . (I) Clean Ta3 N5 features negative Fermi levels relative to normal hydrogen
electrode (NHE). (IT) Chemisorption of hydroxides positively shifts the Fermi level
to 0.2 V versus NHE. (III) The Fermi level is further shifted toward the positive
direction when Ta3 N5 1s immersed in H2 O. (IV) Photoelectrochemical reactions
lead to non-reversible surface changes (the formation of TaON X) that shift the Fermi
level more positive. Reprinted from [ 199], Copyright 2016, with permission from

Elsevier.
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In addition to Ta3Ns, complex metal (oxy)-nitrides such as LaTiO:N (Eg = 2.1 eV) [200—
204], BaTaO2N (Eg = 1.9 €V) [205, 206] and StNbO,N (E; = 1.8 eV) [207], are promising
photoanode materials as the top cell in a tandem device. For example, BaTaO:N, modified
with a Co co-catalyst, was reported to produce a photocurrent of 4.2 mA cm—2at 1.2V
versus RHE with a stability for 6 h [206]. More importantly, the onset potential was
observed below 0.2 V versus RHE, which is an advantage to integrate with a photocathode
for realizing unassisted water splitting. To construct such a tandem device, it is important to
use a transparent conductive substrate to transmit long wavelength light to the bottom cell.
However, the high-performance nitride photoanode materials are generally synthesized
under harsh conditions (>900 °C with NH3) that are not compatible with typical transparent-
conducting-oxide substrates, such as FTO (F-doped SnO3), ITO (Sn-doped In,03), and
AZO (Al-doped ZnO). Recently, Hamann and co-workers reported the first example of
Ta3zNs electrode directly synthesized on a transparent conductive substrate, Tadoped TiO»
(TTO) [208]. This work represents a significant step towards constructing efficient tandem

devices based on nitride photoanodes.

Recently, InGaN photoanodes have also been studied [209—-217]. For example, Luo et al
first demonstrated the high photostability of visible-light-responsive InGaN in aqueous HBr
solution [210]. The IPCE was reported about 9% at 400—430 nm. In a subsequent study, by
removing In-rich InGaN region using a simple electrochemical surface treatment, the IPCE
was improved to 42% at 400 nm [212]. It was found that the In-rich InGaN phases played a
major role as surface recombination centers of photogenerated charge carriers. As discussed
previously, the energy bandgap of InGaN can be tuned across nearly the entire solar
spectrum by varying the alloy compositions. However, due to the large lattice mismatch
between InN and GaN (~11%), the synthesis of high-quality In-rich InGaN has remained
difficult. Recently, Fan et al have shown that Ing sGag sN nanowires with nearly
homogeneous indium distribution could be achieved by plasma-assisted molecular beam
epitaxy [215]. Under AM 1.5 G one sun illumination, the InGaN nanowire photoanode
exhibited a photocurrent density of 7.3 mA cm—2 at 1.2 V (versus NHE) in 1 M HBr. The
[PCE is above 10% at 650 nm, which is not possible for most metal oxide photoanodes due
to their wide bandgap. With the formation of InGaN/GaN core—shell structures, the
photoanodes also exhibited a high level of stability, due to the surface passivation and
protection by a thin GaN shell layer [216]. Recently, the atomic origin of the long-term
stability and high efficiency of [0001] oriented III-nitride nanowire arrays for overall water
splitting was investigated both experimentally and theoretically [85]. It was revealed that
the
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GaN nanowires exhibited N-termination, not only for their (0001} top faces but also for their
(1010} side faces. Such N-terminated surfaces passivate the GaN nanowires against corrosion
by air/aqueous electrolytes. More recently, Fan et al demonstrated an InGaN/Si double-band
photoanode, with the nearly ideal bandgap configuration of 1.75 eV/1.13 eV for maximum
STH conversion [217]. Under AM 1.5 G one sun illumination, the saturated photocurrent
density reached 16.3 mA cm~2, which is among the highest values reported for
monolithically integrated tandem cells of such a nearly ideal energy bandgap configuration.
The maximum power conversion efficiency of the InGaN nanowire/Si tandem photoanode
was 8.3% at 0.5 V versus NHE in 1 M HBr solution.

3.2.3. Si and [II-V group materials

Benefiting from the narrow bandgap and excellent charge carrier properties, Si and I[11-V
group materials are also widely studied as photoanode materials. These materials, however,
are less favorable to serve as photoanodes for water oxidation, compared to photocathodes
for proton reduction. This is because the valence band edge positions of Si and most I11-V
semiconductors are too negative for water oxidation, which requires a high bias to proceed
the reaction. For example, Si photoanode was reported with a typical onset potential of 0.9—
1.1 V versus RHE [218-221], which is a challenge to pair with any high-performance
photocathodes. In addition, Si and most III-V semiconductors can undergo photocorrosion
under water oxidation conditions in aqueous electrolyte. Transparent conductive oxides
have been shown to be very effective in passivating Si surface [222-227]. For example, the
application of a highly uniform, 2 nm thick layer ALD TiO; coupled with Ir water oxidation
catalysts, the stability of Si photoanode was extended to over 8 h under conditions with
various pH [228]. The ultrathin TiO; layer allows the facile hole transport via tunneling
mechanism. A novel study was presented by Kenney et al in which 2 nm Ni film on n-Si
with native oxides was shown to serve as both a protection layer and a catalyst (figures
14(a) and (b)) [229]. In 1 M KOH, the resulting photoanode exhibited high PEC activity
with an onset potential of 1.07 V versus RHE. The stability was examined in both 1 M
KOH (up to 24 h) and LiBi—KBi electrolyte at intermediate pH (over 80 h). In a separate
study, Hu et al demonstrated the utility of a novel 'leaky' amorphous TiO; layer (4-143 nm
thick) deposited by ALD [230]. With the addition of Ni catalyst (which should be
transformed to NiOx upon oxidation and then to NIOOH upon PEC reactions), the Si
photoanode enabled high photocurrent density (over 30 mA cm—2 with 100% Faradaic
efficiency for O, production) over 100 h in 1 M KOH (figures 14(c) and (d)). Further study
indicated that holes transported the defective TiO layer though the mid-gap states and an
ohmic contact was formed at the interface between TiO; and Si [231].
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Figure 14. The stability of Si photoanode can be improved by thin Ni film (also as
catalyst) or thick TiO2 film (with N1 catalyst). (a) Cyclic voltammograms of various
thickness Ni-coated n-Si anodes in 1 M KOH under illumination. From [ 229].
Reprinted with permission from AAAS. (b) Stability test fixed at constant current
density of 10 mA ¢cm-2, of 2 nm Ni/n-Si anodes in 1 M KOH and 1 M K-borate
under constant illumination. From [ 229]. Reprinted with permission from AAAS.
(c) Cyclic voltammograms of various thickness TiO2 -coated n-Si anodes in 1 M
KOH under illumination. From [ 230]. Reprinted with permission from AAAS. (b)
Stability test fixed at 0.93 V versus SCE of 44 nm TiO : /n-St anodes in 1 M KOH

under constant illumination. From [ 230]. Reprinted with permission from AAAS.

Similarly, transparent conductive oxides are commonly used as the protective layers for I11—-
V photoanodes [230, 232, 233]. For example, 'leaky' TiO; layer are used to stabilize GaAs

and GaP photoanodes for more than 100 h [230]. It is noteworthy that over 40 h stable

operation with over 10% STH efficiency has been recently demonstrated on a
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TiO;protected buried GaAs/InGaP photoanode, in conjunction with Ni-based
electrocatalysts [234].

3.2.4. Other emerging materials

Conjugated polymers emerged as a new type of photoanode material, although it is not
favorable at the beginning because of the stability concerns. Recently, considerable efforts
have been devoted to graphitic carbon nitride (g-C3N4)-based materials owing to its robust
framework that established in photochemical water splitting since the pioneer work of
Wang et al [235]. Initial studies by directly depositing the g-C3N4 powder on substrate
resulted in a very small photocurrent (on the order of pA cm~2), which was ascribed to the
deleterious grain boundary effect and poor contact between g-C3N4 and substrates [236—
238]. Very recently, using a vapor deposition approach to directly grow g-C3Ny4 film on
substrates, an enhanced photocurrent of ~0.1 mA cm~2 at 1.23 V versus RHE was reported
[239, 240]. In addition to g-C3N4, a ladder polymer,
poly(benzimidazobenzophenanthroline), known as BBL, was also investigated as a
photoanode [241]. A photocurrent up to 0.23 mA cm~2 was produced at 1.23 V versus RHE
in the presence of sacrificial hole acceptor (50:* ). while H>O, or OH production instead of
O, was observed for solar water oxidation. Although still at its early stage, further
developments of polymer-based photoanodes are expected if the quality of film, poor

conductivity and surface reaction kinetics are improved.

Recently, considerable efforts have also been devoted to investigating TMDs material such
as MoS; as photoanode for water oxidation [242—244]. For example, MoS, nanosheet arrays
photoanode was shown a high photocurrent up to 10 mA cm—2 at 1.23 V versus RHE and

power conversion efficiency of 1.27% [244].

3.3. PEC tandem system

In the PEC tandem system, a p-type photocathode and an n-type photoanode with
complementary bandgap absorption are integrated for the reduction and oxidation of water,
respectively. Such a simple configuration offers potential advantages over PV-biased PEC
tandem devices in terms of cost, complexity and stability. The intersection of the
overlapped

J=V curves of photocathode and photoanode is the maximum operating current density (Jop)
for the overall water splitting system (no bias). As such, the overall water splitting activity
largely depends upon the performance of individual photoelectrodes for each half reaction,

particularly in the low bias region. Figure 15 shows a comparison of two hypothetical
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photoanodes and photocathodes to construct a PEC tandem device. Although photoanode B
and photocathode D give higher photocurrent densities at the high bias region, photoanode
A and photocathode C are preferred electrodes to construct a more efficient tandem device
as demonstrated by a higher Jop. This clearly highlights the importance of achieving high
photocurrent density at the low bias region for each photoelectrode in constructing efficient
tandem device. Note that Jop is the theoretical value estimated without considering Ohmic
loss between the two photoelectrodes and parasitic optical loss caused by the top light

absorber.

. = Photoanode A
254 - = Photoanode B

: — Photocathode C
204 : Photocathode Ty

Phaotocurrent density (mA cm™)

00 02 04 06 08 10 12
Potental (V' vs. RHE)

Figure 15. A comparison of J-V curves of four hypothetical photoelectrodes,
including two photoanodes and two photocathodes, to construct a PEC tandem
device. The combination of photoanode A and photocathode C gives the most

efficient tandem device in terms of maximum operating current density ( J o ).

In the tandem device, there are two illumination modes: parallel illumination (Mode P) and
tandem illumination (Mode T), as shown in figure 16. In Mode P, each photoelectrode is
exposed to one beam of light, which allows the use of non-transparent substrate. While in
Mode T, the solar energy is utilized more efficiently as the longer wavelength photons that
are transmitted by the top absorber are absorbed by the bottom absorber. In this review, we
focus on Mode T configuration, because of its potential advantages for high efficiency and
low cost solar H, production in the long term. A detailed comparison and analysis of the

two different illumination modes were studied by a recent article [245].
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Figure 16. Schematic of PEC tandem cell under parallel (Mode P) and tandem
(Mode T) illumination.

Despite promising a high theoretical efficiency up to 30% of the PEC tandem water splitting
device, the reported experimental STH efficiency of PEC tandem cells were generally very
low (<1%), as listed in table 2. The poor performance of tandem system was largely due to
the low photoactivity of the individual photoanode or photocathode. Compared to the water
reduction on photocathode, the water oxidation on photoanode is more kinetically
challenging due to the complicated four-electron transfer process. A number of studies used
Ti10; or SrTi03 as the photoanode, due to their excellent stability and large produced
photovoltage, to couple with p-GaP [246-248], CuTiOx [249] or Si-based [250-252]
photocathode. However, the efficiencies are very low (<1%), which are largely due to the
wide bandgap of photoanode material (>3.0 eV) to match with the solar spectrum.
Consequently, various visible-light-responsive photoanode, including WOs3 [55, 253-255],
BiVO4 [256-261] and Fe;O3 [157, 253], were studied to enhance the light harvesting and
current matching with photocathode. Limited success has been achieved with WO3-based
PEC tandem cell, due to the relatively large bandgap of WO3 (2.8 eV) and the unfavorable
conduction band position with respect to the hydrogen evolution potential [55, 253-255]. In
contrast, BiVO4 has emerged as the high-performance photoanode material to construct the
PEC tandem device, largely due to its relatively negative onset potential (0.2—0.3 V versus
RHE) compared to other visible-light responsive oxide-based photoanodes. Bornoz et al
coupled BiVO4 photoanode with Cu,O photocathode as a tandem cell for unassisted solar
water splitting [256]. Despite promising a maximum theoretical STH efficiency of 8%
based on the current matching approach, a STH efficiency of 0.5% was demonstrated on
this alloxide tandem system, which is largely due to the low performance of the individual
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electrodes and transmission loss from the front BiVO4 layer. BiVO4 was also combined
with high-performance InP [257], Cu-based chalcogenides photocathode, such as
(CuGa)o5ZnS; [258] and (Ag, Cu)GaSe, [259], or Si-based photocathode [260, 261].
However, the system exhibited a low efficiency of <1%, which is largely limited by the low

performance of photoanode, particularly in the low bias region.

Table 2. Performance comparison of different PEC tandem devices of photoanode—
photocathode combinations for solar water splitting.

[ |
Photoanode Photocathode STH Stability Electrolyte ~ Reference

(%)
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TiO; IM H
GaP N/A  Unstable NaOH s
TiO; GaP 0.25 N/A 0.2 M H2SO4 [247]
i P
110, Ga 0.098 Unstable |+ MNaOH e
TiO; CuTiOy 03  45h KOH/e [249]
stable
IrOx/TiO, Pt/Si 0.12 1.5 h. 30% 0.5 M H2SOq4 [250]
loss
TiO, Fe>03/Ti02/Si 0.18 N/A Na2S04/pi [251]
(PH 7)
TiO, np’Si 039  24h,15% IMKOH  [252]
loss
SrTiOs GaP 0.67  10h,stable | MNaOH  [248]
WO GalnP» 0.0025 N/A 3 M HxSOs  [253]
WOs NiOx/Cuz20 0.04  Unstable  Na;SOs (pH [55]
6)
WO: Pt/n"p Si 0.15 10 min, KH>PO4 (pH [254]
stable 7)
WO3/FTO/p'n Si Pt/TiO2/Ti/n"p Si 0.24 >20h 1 MHCIO, [255]
stable
Co—Pi/W:BiVO4 RuO«/T102/Al:ZnO 0.5 5000 s, Na2SO4/pi [256]
/Cu20 0% loss,  (pH 6)
Co_Pi/BIVO: PY/TiO/Zn-InP 0.5  NA ripH7) 27
0.016 7 h stabl 258
CoOVBIVO, Ru/(CuGa)osZnS: O oy
Photoanode Photocathode STH Stability Electrolyte ~ Reference
(%)
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NiOOH/FeOOH ~ Pt/CdS/CuGasSes/(Ag, 067  2hstable P(PH7)  [259]

/Mo:BiVOy4 Cu)GaSe»
CoOy/TiO2/BiVOs  NiO/Ni(OH)/TiO2/Si  0.05  5h,50%  Bi/K2SO4  [260]
loss (pH 9.2)
Co-Pi/Mo:BiVOs  Pt/Si 0.57 3.5h, 74% pi (pH 5.5)  [261]
loss
Fe203 GalnP, 0.00022 N/A KNOs/pi(pH  [23]
5.7)
NiFeOy/Fe;03 Pt/a-Si 0.91 10 hstable pi (pH 11.8)  [17]
1r0y/ZnS/CdS/Ti0, CdSe/NiO 0.17  20min,  05M [267]
30% loss  Na,SOs
0 [268]
CdS/ZnO CuxS/Cu0 0.38 1h,90% 05M
loss Na:SO4

Although B1VOj4 has been set as the case example for photoanode material, it is noteworthy
that it suffers from an intrinsic limitation of relatively large bandgap (indirect ~2.4-2.5 eV
and direct ~2.7 €V) [262, 263], corresponding to a maximum of ~9% STH effciency that
can be theoretically achieved [264]. In addition, BiVOy is only chemically stable at near
neutral condition and dissolves in strong basic and acidic solutions, which make the
operating conditions of BiVO4 incompatible with some high-performance catalyst or
photocathode conduct optimally only under basic or acidic conditions. Moreover, the
buildup of significant pH gradient near the electrode surfaces in neutral solution even with
the assistance of additional supporting electrolytes or buffers would fundamentally limit the
efficiency [265, 266]. Alternatively, Fe;O3 has attracted much interest due to its favorable
properties such as relatively narrow bandgap (2.0-2.2 eV), adequate stability in strong
alkaline solution, and earth abundance composition. Wang et al paired Fe,O3; photoanode
with InGaP photocathode as a tandem cell for unassisted water splitting, however, the
device performance is extremely low (~0.0002%), which is largely due to the high requisite
overpotential of ~0.8 V and low performance of Fe,O3; photoanode [253]. Recently, Jang et
al reported a benchmark Fe,Os onset potential around 0.45 V versus RHE using a facile
regrowth strategy to reduce surface disorders, which enabling unassisted solar water
splitting when pairing with an amorphous Si photocathode (figure 17) [157]. A meaningful
efficiency of 0.91% and long-term stability of 10 h was achieved by the tandem system

based on hematite and Si, which are both earth-abundant.
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Figure 17. (a) Steady-state current density-potential behaviors of various hematite
photoelectrodes. The current densities of Si photocathode placed behind the
hematite photoanode are shown to illustrate the meeting points. rgH II denotes
hematite samples subjected to the regrowth treatments two times. (b) Schematics of
overall unassisted water splitting by hematite photoanode (right) and amorphous Si
photocathode (left) in a tandem configuration. Reproduced from [ 157]. CC BY 4.0.

Compared to metal oxide materials, there are also some examples of PEC tandem device
using chalcogenide [267, 268] and nitride-based [269] photoanodes. For example, Yang et
al developed a tandem cell composed of CdS quantum dot (QD) modified TiO, nanorod
photoanode and a CdSe QD modified NiO nanosheet photocathode, obtaining a STH
efficiency of 0.17% [267]. With the assistance of a ZnS passivation layer and an IrOx OER
co-catalyst, the device efficiency and stability were greatly enhanced. In another study,
AlOtaibi et al designed a PEC tandem cell consisting of GaN/InGaN nanowire photoanodes
and a Si/InGaN nanowire photocathode, which achieved a high STH efficiency of 1.5% in 1
M HBr [269]. The distinct advantage of nanowire photoelectrodes, together with the
parallel illumination strategy by splitting the solar spectrum spatially and spectrally,

enhanced the solar energy conversion efficiency for unassisted water splitting.

4. Conclusions and outlook
Artificial photosynthesis via solar water splitting, which mimics the natural photosynthesis,

1s a promising approach to directly convert sunlight into energy-rich chemical fuel (i.e. Hy)

on a global scale. The light-harvesting semiconductor material, as an artificial leaf, plays an
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essential role in determining the performance of artificial photosynthesis devices. Recently,
three parallel approaches have been pursued to achieve a material system with both high
efficiency and robust stability: (i) making stable materials more efficient, (ii) enabling
efficient materials are more stable, and (iii) discovering new materials that are intrinsically

stable and highly efficient.

Metal oxides are generally reported to be very stable and exhibit a high-level resistance to
photocorrosion. But they usually suffer from relatively large bandgap and low absorption
coefficient, poor electrical conductivity, short charge carrier lifetime and diffusion length,
which significantly limit the performance. For example, the optical absorption depths of
metal oxides (usually hundreds of nanometers) are often larger than the hole diffusion
lengths (e.g. less than 5 and 20 nm for Fe,O3; and TiO,, respectively) [270]. Nanostructuring
techniques such as the fabrication of nanowires, nanotubes or nanopores can alleviate this
issue by shortening the carrier diffusion distance toward the electrolyte solution. Recently,
this strategy has been demonstrated with remarkable success in the case of BiVO4
photoanode, together with other strategies such as doping and co-catalyst modification
[271]. Using BiVO4 as a model case, it is highly desirable to apply similar strategies on
other metal oxides with a lower bandgap (<2.4 e¢V), both as photoanodes and
photocathodes, to achieve the goal of STH efficiency >10%.

Si, I1I-V and chalcopyrite semiconductors, which usually have a narrow bandgap and can
be obtained with high-quality (relatively low defects, low impurity incorporation, and high
controllability of doping), have been reported with high efficiency for water splitting.
However, they are chemically unstable and suffer from photocorrosion when directly in
contact with an aqueous electrolyte solution. Recent developments on surface protection
technology greatly improve the stability of these classic PV materials by decoupling the
light absorption sites with electrochemical reaction sites [272, 273]. Metal oxides such as
Ti0, are extensively used as the protection layers owing to the high stability over a wide
range of pH and excellent optical transmittance (E; > 3.0 eV). ALD technique, which
allows for conformal coating with precisely controlled thickness, has been demonstrated
with great success for achieving high stability solar water splitting system [274], e.g. over
2200 h stable operation has been proved on Si-based photoanode with an ALD-TiO,
protection layer [275]. A similar concept can also be pursued using simple, cost-effective
and scalable protection approaches (e.g. solution-based sol-gel and chemical bath) [276]. It

1s worth noting that the parasitic light absorption from the protection layer needs not to be
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considered in the case of the bottom absorber, which allows the wide choice of protection

materials such as metals.

Recently, nitrides, TMDs and organic materials have emerged as promising photoelectrodes
for water splitting due to their unique optoelectronic properties. For example, InGaN is the
only known semiconductor material whose bandgap can straddle the redox potentials of
water splitting under deep visible and near-infrared light irradiation [84]. Nearly two orders
of magnitude enhancement in the quantum efficiency for photocatalytic overall water
splitting on (In)GaN nanowires has been demonstrated [77, 78]. Unique to such IlI-nitride
nanowire structures synthesized by molecular beam epitaxy is the presence of a
Ntermination, not only for their (001 top faces but also for their (1010} side faces [85]. The
Ntermination of all exposed surfaces (top-polar and side-nonpolar) protects the nanowires
against attack by the electrolyte (oxidation and photocorrosion). Although the studies of
these emerged materials are still in the early stage, they have already shown great promise.
Further developments will enable their great success. In parallel, it is important to discover
other new materials that are intrinsically stable and with favorable optoelectronic properties
for PEC water splitting (e.g. suitable bandgap and high charge carrier mobility). For
example, 8000 and 700 000 compound materials are available for ternary and quaternary
metal oxides respectively, with most of them are yet to be investigated for PEC water
splitting [277]. The large number of untested elemental combinations gives hope that ideal
materials are still ahead of us. Applying advanced combinational methods, as well as the
state-of-the-art theoretical calculations to potential complex materials will be crucial for

speeding up the discovery of high-performance photoelectrodes for water splitting.

To achieve efficient and cost-effective unassisted solar water splitting, a PEC tandem
device consisting of a photoanode and photocathode is a promising configuration. The
theoretical modeling of using a combination of 1.6—1.8 eV top absorber and 0.9-1.2 eV
bottom absorber to achieve high efficiency has been validated using high-quality 11I-V
materials. By tuning the bandgap combination, benchmarking STH efficiencies of 16% and
19% were reported in a monolithic 1.8/1.2 eV GalnP/GalnAs tandem device from Deutsch's
group [29] and Atwater's group [278], respectively. Further improvement of STH efficiency
towards >20% is possible using a 1.7/1.1 eV optimal bandgap combination. Si is nearly
ideal as the bottom light absorber in the tandem device owing to its energy bandgap of 1.1
eV, earth abundance, and prevalence in PV industry. By controlled doping with P and B, Si
can be fabricated with n-type and p-type as photoanode and photocathode, respectively. The
PEC performance of state-of-the-art Si-based photoanode and photocathode with a single
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junction are shown in figure 18. To pair with the Si photocathode, BiVOy is currently the
best photoanode in terms of operating current density. Developing a low-bandgap
photoanode close to 1.7 eV that gives higher photocurrent at the low bias region (e.g. below
0.6 V versus RHE) would be highly desired. To couple with the Si photoanode, there is still
no prominent photocathode that can give a meaningful operating point. High-performance
photocathodes including InP, due to the low produced photovoltage, are not able to intersect
with the Si photoanode. Recently, a positive onset potential of >1 V versus RHE was
obtained on Cu,0O [61] and CuBi,04-based photocathodes [68, 69]. However, the
photocurrent performance of the photocathodes is relatively low. Efforts therefore are
needed to develop a photocathode that can deliver high photocurrent at a positive potential
(e.g. above 0.9 V versus RHE) for constructing efficient tandem device with Si photoanode.
Owing to their bandgap tenability, suitable band edge positions, high material quality and
well-controlled doping to achieve n-type or p-type, [II-V semiconductors can potentially
overcome the efficiency bottleneck that are commonly seen by other materials. The
integration of III-V materials, particularly I1I-nitride nanostructures with Si, largely
leverages the well-established semiconductor manufacturing processes (e.g. solid-state
lighting and power electronics) with low cost and large area Si solar cell platform, which

promises a viable approach for large-scale solar hydrogen production from water splitting.
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Figure 18. J-V curves of state-of-the-art p—n" Si-based photocathode [124], n—p" Si-

based photoanode [221], InP-based photocathode [74] and BiVO4 -based

photoanode [ 162] to construct a PEC tandem device based on Si bottom cell. The J—

V curves of the ideal photocathode and photoanode are also projected. Note that the

http://iopscience.iop.org/article/10.1088/2399-1984/aa88a1 45/75



5/10/2018

Roadmap on solar water splitting: current status and future prospects - IOPscience

parasitic light absorption from the top light absorber and current match condition
between the top and bottom light absorber should be taken into account in the real
tandem device.
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