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Abstract
Recent observation of quantum vortices in superfluid “He droplets measuring a few hundreds of
nanometers in diameter involved decoration of vortex cores by clusters containing large numbers
of Xe atoms, which served as x-ray contrast agents. Here, we report on the study of the kinematics
of the combined vortex-cluster system in a cylinder and in a sphere. Equilibrium states,
characterized by total angular momentum, L, were found by minimizing the total energy, £, which
sums from the kinetic energy of the liquid due to the vortex and due to orbiting Xe clusters, as well
as solvation energy of the cluster in the droplet. Calculations show that, at small mass of the
cluster, the equilibrium displacement of the system from the rotation axis is close to that for the
bare vortex. However, upon decrease of L beyond certain critical value, which is larger for heavier
clusters, the displacement bifurcates towards the surface region, where the motion of the system
is governed by the clusters. In addition, at even smaller L, bare orbiting clusters become
energetically favorable, opening the possibility for the vortex to detach from the cluster and to

annihilate at the droplet's surface.



1. Introduction

Quantum vortices are one of the most spectacular manifestations of superfluidity [1-3]. In
contrast to a normal fluid, which in equilibrium rotates as a rigid body, a superfluid remains at rest
when its container has low angular velocity. However, above a certain critical angular velocity the
thermodynamically stable state of a superfluid includes one or more quantum vortices. In
equilibrium, quantum vortices assume some symmetric configurations, which are stationary in the
frame rotating with constant angular velocity. Experimental study of quantum vorticity hinges on
the observation of the vortex cores. Quantum vortices in rarified trapped Bose-Einstein
condensates (BECs) have been extensively studied over the past two decades. [3-7] Vortices in
BEC can be observed via optical microscopy, due to large diameter of a core containing region of
small density ~1 pm, which are then further magnified upon the condensate expansion. In contrast,
the vortices in superfluid *He have very small core diameter of the order of ~0.2 nm and their
observation usually involves tracing particles trapped in cores by hydrodynamic forces. The
vortices in *He were first visualized using electrons.[8-10] Tracing with micrometer-sized
hydrogen clusters was used to study the dynamics of the vortex filaments on the sub millimeter
length scale, such as vortex reconnection and Kelvin waves [11-14]. He>* excimer molecules are
also promising tracers, which can easily be produced via electron impact or upon irradiation by
focused femtosecond laser pulses and detected by laser induced fluorescence [11, 15-17].
However, no tracing of single vortex filaments with He;* has been demonstrated thus far.

Free superfluid helium droplets have been long considered as an ideal system for quantum
hydrodynamics studies. Early attempts at observing vortices in millimeter-sized He droplets
include experiments with magnetic levitation [18, 19]. Even smaller micron and nanometer sized
droplets could be produced in a free jet expansion [20-23], which breaks into rotating droplets [24-

26]. Quantum vortices were visualized via x-ray coherent diffractive imaging upon doping of the
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droplets with Xe tracers [24, 26-28]. The analysis of the diffraction images [28] shows that doped
vortices in the droplets with radius of Rye ~ 100 nm form symmetric configurations with relatively
large distance from the droplet center ( = 0.7 Rue — 0.8 Rue).

Theoretical interest in configurations of vortices in finite systems dates to Lord Kelvin [29].
The shapes and dynamics of bare vortices in a container with fixed boundary conditions can be
calculated using the Biot-Savart law [30-33]. However, the implementation of this approach,
which requires calculation of the vortex images, is only feasible for simple geometries, such as in
a square channel, in a cylinder or in a sphere [30-33]. The expansion of this approach to systems
with free deformable surface, such as in a droplet or for doped vortices has not yet been
demonstrated. Very recently, the positions of a few vortices in droplets with Ry. ~5 nm were
obtained via density functional calculations [34]. For bare vortices in a cylinder experiments [9]
and calculations [35, 36] as well as calculations in the droplets [34] indicated that at large distance
from the center of » > 0.7 R vortex formations are unstable with respect to vortex annihilation at
the surface. Time dependent density functional TDDFT calculations in small He droplets
containing 15000 atoms confirmed that doped vortices with large displacement are stable at values
of the angular momentum well below the stability limit of an undoped droplet [37]. In addition,
capture of atoms by a quantum vortex has recently been studied theoretically in bulk LHe [38] and
in He droplets [37]. Kinematics of the doped vortices have also been studied by solving generalized
nonlinear Schrodinger equations [39]. Experimental observation of vortices with large
displacement from the center of the droplet [28] indicates that the presence of the tracers in the
vortex cores critically influences the kinematics of the system, which is the focus of this paper.
Here, we present the results of the model for equilibrium positions of single doped vortices in a

free cylinder and in a sphere with fixed angular momentum. The calculations are based on previous



studies of the configurations of bare vortices [40, 41] in the droplets which were modified in order
to include the kinetic energy and angular momentum of the trapped clusters. An additional
potential energy term arises due to solvation energy of the dopants in liquid helium. As a result,

there exist equilibrium positions of single doped vortices close to the surface of the droplets.

2. Vortex in a free droplet

In equilibrium, the doped vortices are stationary in a frame rotating with some angular
velocity, w, with respect to the laboratory frame. Therefore, Xe clusters contribute to the total
kinetic energy and angular momentum of the system. The equilibrium configuration of a doped

vortex in a free droplet with total angular momentum L is determined by minimizing the total

energy E:
L = Lvort + Lclust (1)
E = Evort + Eclust + V;olv (2)

where Lvort (Evorr) and Lewus: (Eciust) are the angular momenta (kinetic energies) due to vortex and
cluster revolving with the vortex. Vi, is the solvation energy of the cluster in the He droplet. In
the case when a vortex and axis of rotation lay in the same plane, the L., and E\.r can be expressed

as [40]:
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where ps is the superfluid density, is vs is the superfluid velocity due to vortex and d is the vector

distance of each vortex element from the center of a cylinder or a sphere. The quantum of

circulation x = /M, where 4 is the Planck’s constant and M is the mass of *He atoms. The area of



integration, dS, is the region circumscribed by the vortex and the drop surface in the plane of the
vortex. Note that in case of a droplet rotating with a fixed angular velocity, such as in a rotating
bucket experiment, the equilibrium is described by minimization of its free energy F in the rotating
frame [1, 3, 40]:

F=E-L-o (5)

In this paper, we neglect any contribution from the backflow due to different local velocity
of the cluster and its liquid environment, which seems to be a good approximation as the density
of solid Xe is a factor of ~26 larger than of liquid helium. In addition, we neglect contributions to
L and E from the normal component of liquid helium. At relevant 7= 0.4 K, the effective moment
of inertia due to phonons is 1.7x10°, whereas that arising from riplons is ~1.4x10* (Rye = 100
nm) in the units of the classical moment of inertia in a spherical droplet [26, 42] The contributions
due to phonons and riplons scale as 7* and 7°°/Rue, respectively. Thus, at typical experimental
conditions, the moment of inertia due to Xe clusters is a factor of ~100 larger than that due to
phonons and riplons. Nevertheless, the presence of the thermal excitations of the normal
component assure that upon equilibration, the doped vortex and the normal component are
stationary in the frame rotating with some angular velocity w. We have also assumed rotation
around the center of the cylinder/sphere, neglecting any center of mass effects in the doped
droplets. Centrifugal deformation of the droplets is also neglected. Finally, throughout the
calculations, we have assumed that the vortex is pinned to the Xe filament in its core along the

entire length. Section 6 will present a discussion of possible dissociation events.



3. Solvation Potential for Xe Clusters in Liquid Helium

Solvation potential, Vion, results from the van der Waals interaction of the atoms in the
embedded cluster with the He atoms of the droplet. In the close proximity (< 1 nm) of the cluster,
the He density is enhanced [43, 44]. However, away from the cluster, the droplet has a constant
density and the interaction between the atoms in the cluster and the He atoms in the liquid is

represented by the long range attractive potential [45]:

Vis)=—"Ce ©)

S
where s is the distance between the interacting atoms and Cg is the dispersion interaction constant,
which is 0.23 K'-nm® [46] for He and Xe. Vsoly is then approximated as a sum of the pair wise
interactions between the Xe atoms in the cluster and He atoms of the droplet. To simplify the
integration, we have discretized the clusters and He liquid with the smallest unit defined as a 1
nm?® cube. Figure 1 shows the calculated solvation potentials per 1 nm length of cylindrical Xe-
filaments of solid density with radii of Rx. = 2.5, 5, and 10 nm in a He cylinder with Rye = 100 nm
versus the distance from the center, r. It is seen that the solvation potential is flat in the inner part
and increases sharply in the surface region at » > 80 nm. Thus, the solvation potential prevents the

filaments and the pinned vortices from a close approach to the surface.
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Figure 1. Solvation potential per 1 nm length in K units for solid Xe filaments, having a radius of
Rxe=2.5,5, and 10 nm (from bottom to top) in a free cylinder of liquid He, having a radius of Rue
= 100 nm. The plots are shifted upwards by 1073, 3-10" and 9-10 K, respectively, to avoid the
cusp at r=0.

4. Doped Rectilinear Vortex in a Cylinder
Vortices in a cylinder filled with a superfluid present the simplest possible model system
that can be treated via analytic equations [35]. Accordingly, in the case of a doped rectilinear

vortex in a cylinder, equations (1,2) (per unit length) can be expressed as:
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where 7 is the distance of the filament from the cylinder axis, pne = 145 kg/m® is the density of
liquid helium, pxe = 3781 kg/m? is the density of solid Xe, Rue is the radius of the cylinder, x =
9.97x10°® m?/s is the quantum circulation, & is the radius of a vortex core. The parameter ¢ assumes
a value of 1071 m in a bare vortex, whereas with Xe filament it is approximated by Rxe.

In case of a bare vortex the solutions are [35]:
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It is seen that r, £, and @ can be expressed in terms of the total angular momentum L. In the
following, we present the results in terms of the reduced values of 7, L, E, and o defined as:

r=" , L =L, E, £ and o, -9 , where L(0), E(0) and w(0) are corresponding
E(0) (0)

values for a rectilinear vortex at the center of the cylinder (» = 0). In calculating the reduced values
in the presence of Xe, ¢ values were taken to be equal to the radius of the Xe filament. For a bare
vortex in a cylinder of Rye = 100 nm: L(0) = 7.2x10° h/nm, E(0) = 57 K/nm and w(0) = 1.6x10°
rad/s. Equations (7,8) give the equilibrium distance » which minimizes energy in eq. (7) for a given

L. Fig. 2 shows the calculated values for rr, E; and w: versus L.
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Fig. 2. Plots of (a) reduced equilibrium position rr, (b) reduced energy E:, and (c) reduced angular
velocity w: as a function of reduced angular momentum L; for a system of quantum vortex in a
cylinder with R = 100 nm without (red curve) and with Xe filament with radii of Rxe = 2.5 nm, 5
nm, and 10 nm, shown by green, blue, and black solid curves, respectively.



Fig. 2 a) shows that, with decrease in total angular momentum, the bare vortex moves away
from the center, until it reaches the surface of the cylinder before getting annihilated at L = 0. In
the doped vortex the energy and the angular momentum are partitioned between the vortex and the
Xe filament according to Egs. (7,8). Upon increase of the mass and radius of the filament the
kinetics changes from that dominated by the vortex to that dominated by the filament. It is seen
that the presence of a Xe filament leads to an increase of 7, that can be ascribed to a centrifugal
force on the vortex. In addition, doped vortices cannot come too close to the surface due to the
solvation potential, leading to a maximum of 7 =0.8-0.9 that persists even as L, approaches zero.
Fig. 2 b) shows that the energy of the bare vortex decreases monotonically, as L, decreases from 1
to 0. The total energy of the system with Xe filament remains very close to that for the bare vortex
with {=Rx. in the range of L; = 1 - 0.3. However, at smaller L , E; stagnates reaching a minimum
at r ~0.2-0.4 and starts increasing at smaller L, . Lastly, Fig. 2 c) shows the L: dependence of the
reduced angular velocity w:. The w: values for the bare and doped vortices are very similar until
the doped vortex reaches the surface region, where its motion is substantially influenced by the
solvation potential. In the surface region, the angular velocity of a bare vortex increases rapidly.
For the bare vortex, the velocity of the vortex core is determined by the local velocity field of the
image vortex, which position becomes closer to the surface at large 7. The image vortex no longer
defines the w; of the doped droplets. In the surface region, w: of the doped vortex decreases and
even becomes negative at small L;. As the Lvort remains approximately constant in the surface
region, the total L can only be reduced by a decrease in w, and eventually reversing the sense of
rotation. Solutions with negative w: are metastable, whereas the stable solution corresponds to a
revolving filament without a vortex as it will be discussed in Section 6 for a vortex in a sphere.

Although the calculations in Fig. 2 were done with the potentials in Fig. 1, very similar results



could be obtained using a box potential, in which the potential is zero inward and rises to infinity
at some distance from the surface.

Finally, we note that the results displayed in Fig. 2 could be obtained from the equilibrium
of forces acting on the doped vortex, which include the centrifugal force, the force due to solvation
potential and the Magnus force, dwelling from the difference of the local velocity of the superfluid

as determined by the image vortex, vs, and velocity of the doped vortex, wr.
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5. Doped Vortex in a Spherical Droplet

A vortex in a spherical droplet is rectilinear at the center and is curved when it is displaced
by a distance of  from the center, resembling an arc [40, 41]. In a spherical droplet,  is the distance
of the vortex from the rotational axis in the equatorial plane. The curvature results from the
boundary conditions of no flux through the droplet's surface. Therefore, a vortex must terminate
perpendicular to the droplet surface. The calculation on the shapes, energy, angular momentum
and angular velocity of a bare vortex in a droplet has been demonstrated in Refs. [31, 40, 41, 47-
50]. The shape of the vortex in a spherical droplet could be obtained with good precision using a
local induction approximation (LIA) [40, 41] and the condition of the stationary shape. LIA
removes the singularity associated with the finite size of the vortex core. In this approximation,
the contribution of the image vortex located far from the actual vortex is neglected. The values of
Evort and Lyore could then be obtained numerically from eqgs. (3-4). The angular velocity, w, is
obtained as dE/dL. The results of the calculations and their fits to continuous functions are
presented in the Appendix. The LIA breaks down as r approaches the droplet surface, since R-r is
comparable to 2-& [41]. This range which is very close to the surface is not accessible in the case
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of doped vortices due to the effect of the solvation potential. Finally, the results obtained within
the LIA are very similar to those obtained previously in smaller droplets of Rue < 25 nm, by the
numerically more accurate evaluation of the vortex shape in a spherical droplet based on the
calculated image vortices [41]. A droplet with a vortex experience a centrifugal deformation.
However, in large droplets with Rye = 100 nm the deviation of the droplet’s aspect ratio from 1 is
less than 1% [41] and the spherical approximation seems to be well justified. In comparison, a
vortex causes much larger deformation with aspect ratio of about 1.06 in smaller droplets with Rye
= 5 nm. [34, 37, 41, 51]. In addition, calculations show that even the small droplets containing
several doped vortices with large separation from the center are characterized by small deviation
from the spherical shape [37].

This section describes calculations done for a spherical droplet with a radius of Rye = 100
nm, with a single quantum vortex. For the sake of modelling, we assumed that the doped vortices
have the same shape as the bare vortex and contain some reasonable number of Xe atoms of about
10° as in the recent experiments [28]. Specifically, the calculations were done with filaments
containing 3.4x10%, 1.4x10°, 5.4x10° Xe atoms as in solid filaments of 100 nm length and 2.5, 5,
and 10 nm radius, respectively. For comparison, He droplet with Rue = 100 nm contains Nye = 8.9
x 107 atoms. Strictly, because the length of the filament depends on the distance 7, according to
this model, the quantity Rxe should be changed with 7 to keep the mass at constant density of the
filament. However, this effect is disregarded and the calculations at different distances » were done
with the fixed mass and radius of the filament. This assumption leads to small (<20%)
overestimation of the Evort at large 7. As a result the calculations with variable Rx. are expected to
be qualitatively similar. However, calculations with variable Rx. are more involved as they will

require calculations of vortex shape for each Rx.. Most important it is not obvious that such
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calculations will give any more realistic picture, as Xe filaments are solid and their shortening
involves some inhomogeneous change in thickness as discussed in more details in Section 6. The
calculations for the droplet use equations (7,8) with numeric dependences of E.oA7) and Lyo(7)
which are presented in the Appendix. For the sake of a model, we estimated the solvation potential
as 100-V(r) where V(r) is given in Fig. 1, i.e., to be the same as that for the 100 nm long filament
in a cylinder. The plots of equilibrium position, 7, energy, E, and angular velocity, w, of the system
as a function of reduced angular momentum for bare and doped vortices are shown in Fig. 3. E, L
and w are expressed in terms of the corresponding values for a rectilinear vortex in the droplet’s

center with the core radius of {=Rx., for which

2
E)=Lue % Rue [ 2 Rue ||y 1010k (11)
2. &
2 » 3. -4
L(O):§-pHE-K-RHe- RHE—Ef =70x107"K s (12)

(0) = 1.08 107 rad s™!. The numbers are for the bare rectilinear vortex in a Rue =100 nm droplet

(¢&=0.1 nm).
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Fig. 3. Plots of (a) reduced equilibrium position r, (b) reduced energy Er, and (c) reduced angular
velocity w; as a function of reduced angular momentum L, for a system of a curved quantum vortex
in a spherical droplet with Rye = 100 nm. The results for a bare vortex ({= 0.1 nm) are shown by
red curves. The results for curved vortices doped by Rxe=2.5 nm, 5 nm and 10 nm filaments are
shown by green, blue and black dots, respectively.
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We proceed with the discussion of the results for the Rx.=2.5 nm filaments. As in the case
of a cylinder, the values of 7+, E; and w; are similar for the doped (green curve) and bare (red curve)
vortex when L, is in the range of 1 to 0.2. However, at L; = 0.1-0.2, »: changes from ~0.75 to ~0.9.
At smaller L;, r; stays near the surface at ~0.9, which is defined by the solvation energy potential.
Simultaneously, there is also an abrupt change in w; , and the change in slope in the E: dependence.
This behavior shows that in distinction to the doped vortex in a cylinder, where the kinematic
parameters follow smooth dependences, doped vortex in a sphere experiences a bifurcation from
the kinematics dominated by the vortex in the interior of the droplets to the one determined by the
solvation energy potential and rotation energy of the Xe filament close to the surface. For larger
Rxe =5 nm (10 nm) filaments (blue and black curves, respectively), the curves show discontinuies
which appear at 7 = 0.7 (0.45) and L, = 0.3 (0.7). Fig. 3 (c) shows that upon the jump, the angular
velocity decreases approximately linearly with L, which is consistent with approximately constant
moment of inertia of Xe close to the surface. Finally, the results in Fig. 3 show that for massive
Xe filaments of Rxe = 10, the kinematics is dominated by Xe and that the filament stays at large r:
~0.82 at L; <0.7.

The difference in the behavior of the doped vortex in the cylinder and in the droplet results
from the different dependence of the energy and angular momentum of the vortex on the distance
from the rotational axis. In a cylinder, the dependencies have a negative curvature, whereas in case
of the droplet, they have a positive curvature at rr > ~0.4. In addition, we notice that in the region
of L close to the bifurcation the dependence of energy vs 7: has a double minimum, whereas only
the values corresponding to the global minimum are reflected in Fig. 3. The occurrence of double

minima may lead to some metastable configurations and delayed bifurcation vs L.
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As already noticed, the shapes of the doped vortices may deviate from that for the bare
ones. In the case of bare multiple vortices in a sphere, the vortices are expected to straighten due
to the repulsive inter-vortex interaction [31, 52] [53]. Stationary configurations of a 6-vortex ring
in a rotating He1s000 droplet have been studied by DFT technique [37]. It was found that in the case
of the doped vortices, the vortex cores are almost straight, whereas in an undoped droplet rotating
with the same angular velocity the vortex lines would be bent. Therefore, it is of interest to compare
the results in Fig. 3 with the case where the filaments are represented by straight segments parallel
to the rotational axis. In reality, the shape of the doped vortices is likely somewhere in-between
the curved and straight shapes, thus the corresponding solutions will delimit possible kinematics
of the system. The analytic expressions for energy and angular momentum of a straight off-center
vortex in a sphere have been presented in Refs. [49, 50]. The results for the straight bare and doped
vortices in Rye = 100 nm droplet are shown in Fig. 4. As in Fig. 3, the doped vortices were
approximated by cylinders of Rxe. = 2.5 nm, 5 nm and 10 nm containing Nx. = 3.4x10%, 1.4x10°

and 5.4x10°, respectively.
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Fig. 4. Same as in Fig. 3, but for a straight bare vortex ({= 2.5 nm) (red) with (and straight Xe-
doped vortex with Rxe = 2.5 nm, 5 nm and 10 nm shown by green, blue and red dots, respectively.
Continuous thin curves in b) are calculations in the absence of vortices, as described in more details
in Section 6. Note that angular velocity in panel ¢) is expressed in absolute units.
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The comparison of Fig. 3 and Fig. 4 indicates that although the results for the curved and straight
vortices in a sphere differ in slight details, they show qualitatively similar behavior. In addition,
the model of straight vortices [49, 50] has an analytic solution for multiple vortices and can be

naturally applied for estimations of the kinematic parameters in the droplets with multiple vortices.

6. Discussion

In order to visualize vortices, the diffraction images must contain comparable x-ray
scattering intensity from both the droplet and the embedded Xe atoms [27], which dictates the
Nhue:Nxe ratio in the range of about 250 - 2000. The results of the model calculations shown in
Figures 3 and 4 indicate that under these conditions, the positions of the doped vortices can be
used for estimation of the rotational energy, angular momentum and angular velocity in the
droplets. Figures 3 and 4 show that when vortices are away from the surface region with distance
r less than ~0.8 x Ry, from the center, the resulting values of £, L and w, are close to those for a
bare vortex with the core radius equal to that for the embedded Xe filament. However, when Xe
clusters are found in the surface region, the system is dominated by the Xe filaments, and the
kinematic parameters could not be deduced from the positions of the clusters.

In the x-ray scattering measurements, the images are taken within single ~100 fs laser
pulses, which are much shorter than the typical droplet’s rotational period of ~1 ps, hence no
dynamics could be recorded. Accordingly, observation of a single cluster would not necessarily
indicate the presence of a vortex. Therefore, it is the observation of symmetric configurations of
several Xe clusters [27, 28] that indicates the presence of the quantum vortices. Xe clusters
captured by the vortices are held apart by the repulsive inter-vortex interaction. The strength of the

vortex-vortex repulsion can be estimated from the analytic solutions for several vortices in a
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cylinder [35]. For Rye = 100 nm and Rxe = 5 nm, the two 100 nm long vortices symmetrically
displaced from the center by 50 nm (30 nm), have total kinetic energy of 5100 K (6100 K) whereas
the non-additive repulsive part is 390 K (1000 K). The repulsion energy is much larger than the
droplet's temperature of ~0.4 K which locks the vortices, as well as the embedded clusters, in a
symmetric configuration. On the other hand, the repulsion energy is significantly smaller than the
total vortex energy, so that the total energy is approximately additive for not-too-close inter-vortex
distances. Note that the angular momenta of vortices are additive.

If the three-dimensional shape of the filament is known, the energy and angular momentum
of the vortex could be obtained by integration from the known velocity field of a vortex or from
egs. (3, 4) if the vortex is in the plane containing the rotational axis. The energy calculation
according to eq. (3) involves the determination of the value of vs using the Biot-Savart law and
shapes of the vortex and its image [40, 41]. The determination of the angular momentum from eq.
(4) only requires the knowledge on the vortex shape. The diffraction at low scattering angles [27]
can only yield the projection of the filaments on the detector plane. Thus, the three-dimensional
image could only be implied from the flat images upon applications of certain constraints, such as
that the vortex is approximately in the plane containing the rotational axis and terminates on the
droplet's surface. In addition, the energy calculations require the knowledge of the width of Xe
filaments, for which only an upper bound of 20 nm could be determined, [27] as limited by the
current resolution. The approximation of the constant width of the filament is certainly not
realistic, as filaments observed in Ref. [27] show pronounced fluctuations in linear density, which
likely indicate that the filaments consist of the collection of smaller Xe clusters. Therefore, there
is a rather large uncertainly in attaining the values of energy from the obtained images. In the case

when the resolution is insufficient or the aspect of the images is unfortunate, such that the clusters
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appear as dots [28] rather than filaments, [27] the values of E, L and @ can be estimated based on
the analytic expressions for the symmetric formations of straight vortices [49, 50].

Shapes of the doped vortices in He droplets may deviate considerably from those of bare
vortices. In experiments, [24, 27, 28] the droplets, which presumably already contain quantum
vortices, capture large numbers of Xe atoms. Calculations indicate that single Xe atoms are bound
to vortex cores by about 3-5 K [36, 54]. The embedded Xe atoms (or small Xe clusters) are
captured by vortices and combine inside the vortex cores. X-ray diffraction results [27, 28] show
that the shapes of the filaments vary greatly, indicating that their structure may be influenced by
the reconstruction during the filament growth. The doping with Xe atoms in a typical experiment
[24, 27, 28] leads to the evaporation of between 10% and 50% of the He atoms each of them
carrying some unknown angular momentum. As a result, during the doping, the vortex likely
moves away from the center and the initial long Xe filament must get shorter. In order to
accommodate for these changes, the van der Waals bound Xe filament may fold at the surface,
which causes the bulges often observed at the ends, such as in Fig. 2 of Ref. [27]. In addition, it
remains unclear how close the ends of the filament approach the droplet’s surface. The filaments
likely stay submerged due to substantial solvation energy, and there may be some short region of
near the surface, where the vortex is loose and adjusts its shape to have a perpendicular landing at
the surface, such as found in recent TDDFT calculations [37].

So far, it has been assumed that a vortex is pinned to the filament over its whole length.
The binding energy of a vortex to the filament can be approximated by the kinetic energy of the
displaced liquid which is ~3400 K for the 100 nm long filament with Rxe = 5 nm. However, the
system may also undergo a transition from the state described by a doped vortex into a system

described by the revolving Xe filament devoid of a vortex, while conserving the total angular
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momentum, L. Fig. 4 (b) presents the calculations of E; vs L, for bare straight filaments of different
radius, which are shown by thin continuous curves. The bare filaments occupy positions close to
the droplet's surface. Fig. 4 (b) shows that at L; ~ 1, the energy of the bare filament solutions
exceeds that for the filament-vortex system. However, upon decrease of L., the bare filament
solution becomes energetically favorable, with the turning point occurring at larger L; for heavier
filaments. At low L, the vortex may detach from the filament and annihilate at the droplet's surface.
The mechanism and kinetics of the detachment remains to be elucidated. It is likely that the vortex
peels off the filament starting from the loose ends close to the surface, as discussed previously in
relation to cylinder-wire experiments [55]. Experimentally, the vanishing of the vortices should be
evidenced by absence of the symmetric Xe formations and possibly development of the cluster-

cluster conglomerates.

7. Conclusions

Recently, we have observed that Xe clusters obtained in 100 nm sized He droplets form a
number of filaments arranged in symmetric configurations, [27, 28] which was assigned to pinning
of Xe clusters to quantum vortices. This paper studies the effect of the mass of the filaments on
the kinematics of the combined vortex-cluster system in a cylinder and in a sphere. Calculations
show that the loaded vortex has larger equilibrium distance from the center as compared with a
bare vortex. At small mass of the filaments, their displacement from the droplet's center can be
used to obtain an estimate of the droplets rotational energy, total angular momentum and angular
velocity, which are close to the corresponding values in the bare vortex. However, at large mass
of the filament and small values of the total angular momentum, the filament-vortex system is
dominated by the motion of the filament. In such conditions, the system occupies the surface

region, where its position is mostly defined by the balance of the solvation energy of the filament
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in liquid helium and its rotation energy. Calculations also reveal that upon decrease of the total
angular momentum beyond a certain value, the energy of the vortex-filament system becomes
larger than that for a bare filament, upon which the vortex may detach and annihilate on the

droplet's surface.
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Appendix

In order to calculate Evori, Lvort, and w= dE/dL, of a bare curved vortex with different core
size in spherical He droplets, equations (3) and (4) are used. Numeric calculations of the angular
momentum via eq. (3) is straightforward. On the other hand, the energy calculation takes a much
longer time. To expedite the calculations, a summation method can be utilized by dividing a certain
two-dimensional area of the integration, close to the vortex into smaller discrete areas. However,
even then the values of energy show some noise, since the smaller discrete areas of integration are
still much larger than the required infinitesimal areas of integration. On the other hand, we found
that, the results of the LIA calculations of the Evort and Lvort versus #/R for a bare vortex could be

well-fitted by a function

T

-
f(%):l—a+a-c0s bR . (A1)
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The parameters @ and b have been obtained from a limited number of high accuracy
calculations of Evort and Lvort at different displacement for 0.1 nm, 2.5, 5 and 10 nm. Table Al
gives the obtained parameters. The resulting fitted dependencies are presented in Fig. A1 and were
used to obtain the continuous outcome curves presented in Fig. 3. In Fig. Al, the Evort and Lvort
are expressed in units of the corresponding values for central rectilinear vortex with the core radius

of & which are given by eqs (11,12). It is seen that the reduced values of energy, angular

momentum and angular velocity for bare vortices with different core sizes are very similar.

Table Al. Parameters a and b in eq.(A1) used to fit Evort and Lyort vs 1/R.

Vortex core | Eyorn fit Lyort fit
radius, &, nm a b a b
0.1 0.563 1.278 0.500 1
2.5 0.545 1.227 0.502 1
5.0 0.533 1.190 0.504 1
10.0 0.521 1.149 0.505 1
1.0 : — 1.0x10° : :
T —E,£=0.1nm ——&=0.1nm
R ——E,e=25nm ;| ——&=25nm
b P ——E, t=5nm 8.0x10 | ——&=5nmm
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%' 06} p 0 s.0x10'f
C N [
®_oaf N L p—
& --- Lt=04nm Y, 3
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Fig. Al. Reduced energy, reduced angular momentum in panel (a) and angular velocity in panel
(b) of a bare vortex with core radius of £= 0.1, 2.5, 5 and 10 nm versus the reduced displacement

from the droplet’s center in the droplet having R = 100 nm.
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