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Abstract 

Recent observation of quantum vortices in superfluid 4He droplets measuring a few hundreds of 

nanometers in diameter involved decoration of vortex cores by clusters containing large numbers 

of Xe atoms, which served as x-ray contrast agents.  Here, we report on the study of the kinematics 

of the combined vortex-cluster system in a cylinder and in a sphere. Equilibrium states, 

characterized by total angular momentum, L, were found by minimizing the total energy, E, which 

sums from the kinetic energy of the liquid due to the vortex and due to orbiting Xe clusters, as well 

as solvation energy of the cluster in the droplet.  Calculations show that, at small mass of the 

cluster, the equilibrium displacement of the system from the rotation axis is close to that for the 

bare vortex. However, upon decrease of L beyond certain critical value, which is larger for heavier 

clusters, the displacement bifurcates towards the surface region, where the motion of the system 

is governed by the clusters. In addition, at even smaller L, bare orbiting clusters become 

energetically favorable, opening the possibility for the vortex to detach from the cluster and to 

annihilate at the droplet's surface. 



2 

 

 1. Introduction 

Quantum vortices are one of the most spectacular manifestations of superfluidity [1-3]. In 

contrast to a normal fluid, which in equilibrium rotates as a rigid body, a superfluid remains at rest 

when its container has low angular velocity. However, above a certain critical angular velocity the 

thermodynamically stable state of a superfluid includes one or more quantum vortices. In 

equilibrium, quantum vortices assume some symmetric configurations, which are stationary in the 

frame rotating with constant angular velocity. Experimental study of quantum vorticity hinges on 

the observation of the vortex cores. Quantum vortices in rarified trapped Bose-Einstein 

condensates (BECs) have been extensively studied over the past two decades. [3-7] Vortices in 

BEC can be observed via optical microscopy, due to large diameter of a core containing region of 

small density ~1 μm, which are then further magnified upon the condensate expansion. In contrast, 

the vortices in superfluid 4He have very small core diameter of the order of ~0.2 nm and their 

observation usually involves tracing particles trapped in cores by hydrodynamic forces. The 

vortices in 4He were first visualized using electrons.[8-10] Tracing with micrometer-sized 

hydrogen clusters was used to study the dynamics of the vortex filaments on the sub millimeter 

length scale, such as vortex reconnection and Kelvin waves [11-14].  He2* excimer molecules are 

also promising tracers, which can easily be produced via electron impact or upon irradiation by 

focused femtosecond laser pulses and detected by laser induced fluorescence [11, 15-17]. 

However, no tracing of single vortex filaments with He2* has been demonstrated thus far.   

Free superfluid helium droplets have been long considered as an ideal system for quantum 

hydrodynamics studies. Early attempts at observing vortices in millimeter-sized He droplets 

include experiments with magnetic levitation [18, 19]. Even smaller micron and nanometer sized 

droplets could be produced in a free jet expansion [20-23], which breaks into rotating droplets [24-

26].  Quantum vortices were visualized via x-ray coherent diffractive imaging upon doping of the 
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droplets with Xe tracers [24, 26-28].  The analysis of the diffraction images [28] shows that doped 

vortices in the droplets with radius of RHe ~ 100 nm form symmetric configurations with relatively 

large distance from the droplet center (r ≈ 0.7 RHe – 0.8 RHe).  

        Theoretical interest in configurations of vortices in finite systems dates to Lord Kelvin [29]. 

The shapes and dynamics of bare vortices in a container with fixed boundary conditions can be 

calculated using the Biot-Savart law [30-33]. However, the implementation of this approach, 

which requires calculation of the vortex images, is only feasible for simple geometries, such as in 

a square channel, in a cylinder or in a sphere [30-33]. The expansion of this approach to systems 

with free deformable surface, such as in a droplet or for doped vortices has not yet been 

demonstrated. Very recently, the positions of a few vortices in droplets with RHe ~5 nm were 

obtained via density functional calculations [34]. For bare vortices in a cylinder experiments [9] 

and calculations [35, 36] as well as calculations in the droplets [34] indicated that at large distance 

from the center of r > 0.7 R vortex formations are unstable with respect to vortex annihilation at 

the surface. Time dependent density functional TDDFT calculations in small He droplets 

containing 15000 atoms confirmed that doped vortices with large displacement are stable at values 

of the angular momentum well below the stability limit of an undoped droplet [37]. In addition, 

capture of atoms by a quantum vortex has recently been studied theoretically in bulk LHe [38] and 

in He droplets [37]. Kinematics of the doped vortices have also been studied by solving generalized 

nonlinear Schrodinger equations [39]. Experimental observation of vortices with large 

displacement from the center of the droplet [28] indicates that the presence of the tracers in the 

vortex cores critically influences the kinematics of the system, which is the focus of this paper. 

Here, we present the results of the model for equilibrium positions of single doped vortices in a 

free cylinder and in a sphere with fixed angular momentum. The calculations are based on previous 
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studies of the configurations of bare vortices [40, 41] in the droplets which were modified in order 

to include the kinetic energy and angular momentum of the trapped clusters. An additional 

potential energy term arises due to solvation energy of the dopants in liquid helium. As a result, 

there exist equilibrium positions of single doped vortices close to the surface of the droplets. 

 

2. Vortex in a free droplet 

In equilibrium, the doped vortices are stationary in a frame rotating with some angular 

velocity, ω, with respect to the laboratory frame. Therefore, Xe clusters contribute to the total 

kinetic energy and angular momentum of the system. The equilibrium configuration of a doped 

vortex in a free droplet with total angular momentum L is determined by minimizing the total 

energy E: 

clustvort LLL          (1) 

solvclustvort VEEE    (2)  

where Lvort (Evort) and Lclust (Eclust) are the angular momenta (kinetic energies) due to vortex and 

cluster revolving with the vortex. Vsolv is the solvation energy of the cluster in the He droplet. In 

the case when a vortex and axis of rotation lay in the same plane, the Lvort  and Evort can be expressed 

as [40]: 

  SdvE SSvort


2

1
  (3) 

  SddL Svort


   (4) 

where ρS is the superfluid density, is vS is the superfluid velocity due to vortex and d is the vector 

distance of each vortex element from the center of a cylinder or a sphere. The quantum of 

circulation κ = h/M, where h is the Planck’s constant and M is the mass of 4He atoms. The area of 
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integration, dS, is the region circumscribed by the vortex and the drop surface in the plane of the 

vortex. Note that in case of a droplet rotating with a fixed angular velocity, such as in a rotating 

bucket experiment, the equilibrium is described by minimization of its free energy F in the rotating 

frame  [1, 3, 40]:  

 LEF  .  (5) 

In this paper, we neglect any contribution from the backflow due to different local velocity 

of the cluster and its liquid environment, which seems to be a good approximation as the density 

of solid Xe is a factor of ~26 larger than of liquid helium.  In addition, we neglect contributions to 

L and E from the normal component of liquid helium. At relevant T = 0.4 K, the effective moment 

of inertia due to phonons is 1.7×10-6, whereas that arising from riplons is ~1.4×10-4 (RHe = 100 

nm) in the units of the classical moment of inertia in a spherical droplet [26, 42] The contributions 

due to phonons and riplons scale as T4 and T5/3/RHe, respectively. Thus, at typical experimental 

conditions, the moment of inertia due to Xe clusters is a factor of ~100 larger than that due to 

phonons and riplons. Nevertheless, the presence of the thermal excitations of the normal 

component assure that upon equilibration, the doped vortex and the normal component are 

stationary in the frame rotating with some angular velocity ω. We have also assumed rotation 

around the center of the cylinder/sphere, neglecting any center of mass effects in the doped 

droplets. Centrifugal deformation of the droplets is also neglected. Finally, throughout the 

calculations, we have assumed that the vortex is pinned to the Xe filament in its core along the 

entire length.  Section 6 will present a discussion of possible dissociation events.  
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3. Solvation Potential for Xe Clusters in Liquid Helium 

Solvation potential, Vsolv, results from the van der Waals interaction of the atoms in the 

embedded cluster with the He atoms of the droplet. In the close proximity (< 1 nm) of the cluster, 

the He density is enhanced [43, 44]. However, away from the cluster, the droplet has a constant 

density and the interaction between the atoms in the cluster and the He atoms in the liquid is 

represented by the long range attractive potential [45]: 

 
6

6)(
s

C
sV   (6) 

where s is the distance between the interacting atoms and C6 is the dispersion interaction constant, 

which is 0.23 K·nm6  [46] for He and Xe. Vsolv is then approximated as a sum of the pair wise 

interactions between the Xe atoms in the cluster and He atoms of the droplet. To simplify the 

integration, we have discretized the clusters and He liquid with the smallest unit defined as a 1 

nm3 cube. Figure 1 shows the calculated solvation potentials per 1 nm length of cylindrical Xe-

filaments of solid density with radii of RXe = 2.5, 5, and 10 nm in a He cylinder with RHe = 100 nm 

versus the distance from the center, r. It is seen that the solvation potential is flat in the inner part 

and increases sharply in the surface region at r > 80 nm. Thus, the solvation potential prevents the 

filaments and the pinned vortices from a close approach to the surface.  
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Figure 1. Solvation potential per 1 nm length in K units for solid Xe filaments, having a radius of 

RXe = 2.5, 5, and 10 nm (from bottom to top) in a free cylinder of liquid He, having a radius of RHe 

= 100 nm. The plots are shifted upwards by 10-3, 3·10-3 and 9·10-3 K, respectively, to avoid the 

cusp at r=0.  

 

4. Doped Rectilinear Vortex in a Cylinder 

Vortices in a cylinder filled with a superfluid present the simplest possible model system 

that can be treated via analytic equations [35]. Accordingly, in the case of a doped rectilinear 

vortex in a cylinder, equations (1,2) (per unit length) can be expressed as:  

    rV
rRR

R

rR
E XeXeXe

He

HeHe 


















2

5.0
ln

4

2222222 



 (7) 

       222222
5.0

2

1
rRRrRL XeXeXeHeHe  (8) 

where r is the distance of the filament from the cylinder axis, ρHe = 145 kg/m3 is the density of 

liquid helium, ρXe = 3781 kg/m3 is the density of solid Xe, RHe is the radius of the cylinder, κ = 

9.97×10-8 m2/s is the quantum circulation, ξ is the radius of a vortex core. The parameter ξ assumes 

a value of 10-10 m in a bare vortex, whereas with Xe filament it is approximated by RXe. 

In case of a bare vortex the solutions are [35]: 
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


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222
    (9) 

It is seen that r, E, and ω can be expressed in terms of the total angular momentum L. In the 

following, we present the results in terms of the reduced values of r, L, E, and ω defined as:    

R

r
rr  ,  0L

L
Lr  ,  0E

E
Er   and  0

 r
, where L(0), E(0) and ω(0) are corresponding 

values for a rectilinear vortex at the center of the cylinder (r = 0). In calculating the reduced values 

in the presence of Xe, ξ values were taken to be equal to the radius of the Xe filament.  For a bare 

vortex in a cylinder of RHe = 100 nm: L(0) = 7.2×105 ħ/nm, E(0) = 57 K/nm and ω(0) = 1.6×106 

rad/s. Equations (7,8) give the equilibrium distance r which minimizes energy in eq. (7) for a given 

L.  Fig. 2 shows the calculated values for rr, Er and ωr versus Lr. 

 

Fig. 2. Plots of (a) reduced equilibrium position rr, (b) reduced energy Er, and (c) reduced angular 

velocity ωr as a function of reduced angular momentum Lr for a system of quantum vortex in a 

cylinder with R = 100 nm without (red curve) and with Xe filament with radii of RXe = 2.5 nm, 5 

nm, and 10 nm, shown by green, blue, and black solid curves, respectively.   
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Fig. 2 a) shows that, with decrease in total angular momentum, the bare vortex moves away 

from the center, until it reaches the surface of the cylinder before getting annihilated at L = 0. In 

the doped vortex the energy and the angular momentum are partitioned between the vortex and the 

Xe filament according to Eqs. (7,8). Upon increase of the mass and radius of the filament the 

kinetics changes from that dominated by the vortex to that dominated by the filament.  It is seen 

that the presence of a Xe filament leads to an increase of rr that can be ascribed to a centrifugal 

force on the vortex. In addition, doped vortices cannot come too close to the surface due to the 

solvation potential, leading to a maximum of rr ≈0.8-0.9 that persists even as Lr approaches zero. 

Fig. 2 b) shows that the energy of the bare vortex decreases monotonically, as Lr decreases from 1 

to 0. The total energy of the system with Xe filament remains very close to that for the bare vortex 

with ξ=RXe in the range of Lr = 1 - 0.3. However, at smaller Lr , Er stagnates reaching a minimum 

at rr ~0.2-0.4 and starts increasing at smaller Lr . Lastly, Fig. 2 c) shows the Lr dependence of the 

reduced angular velocity ωr. The ωr values for the bare and doped vortices are very similar until 

the doped vortex reaches the surface region, where its motion is substantially influenced by the 

solvation potential. In the surface region, the angular velocity of a bare vortex increases rapidly. 

For the bare vortex, the velocity of the vortex core is determined by the local velocity field of the 

image vortex, which position becomes closer to the surface at large rr. The image vortex no longer 

defines the ωr of the doped droplets. In the surface region, ωr of the doped vortex decreases and 

even becomes negative at small Lr. As the Lvort remains approximately constant in the surface 

region, the total L can only be reduced by a decrease in ω, and eventually reversing the sense of 

rotation. Solutions with negative ωr are metastable, whereas the stable solution corresponds to a 

revolving filament without a vortex as it will be discussed in Section 6 for a vortex in a sphere. 

Although the calculations in Fig. 2 were done with the potentials in Fig. 1, very similar results 
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could be obtained using a box potential, in which the potential is zero inward and rises to infinity 

at some distance from the surface. 

Finally, we note that the results displayed in Fig. 2 could be obtained from the equilibrium 

of forces acting on the doped vortex, which include the centrifugal force, the force due to solvation 

potential and the Magnus force, dwelling from the difference of the local velocity of the superfluid 

as determined by the image vortex, vs, and velocity of the doped vortex, ω·r.  

  0
2 22

22 












 r
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r

dr

dV
rrF HeXeXe 


  (10) 

 

5. Doped Vortex in a Spherical Droplet 

A vortex in a spherical droplet is rectilinear at the center and is curved when it is displaced 

by a distance of r from the center, resembling an arc [40, 41]. In a spherical droplet, r is the distance 

of the vortex from the rotational axis in the equatorial plane. The curvature results from the 

boundary conditions of no flux through the droplet's surface. Therefore, a vortex must terminate 

perpendicular to the droplet surface. The calculation on the shapes, energy, angular momentum 

and angular velocity of a bare vortex in a droplet has been demonstrated in Refs. [31, 40, 41, 47-

50]. The shape of the vortex in a spherical droplet could be obtained with good precision using a 

local induction approximation (LIA) [40, 41] and the condition of the stationary shape. LIA 

removes the singularity associated with the finite size of the vortex core. In this approximation, 

the contribution of the image vortex located far from the actual vortex is neglected. The values of 

Evort and Lvort could then be obtained numerically from eqs. (3-4). The angular velocity, ω, is 

obtained as dE/dL.  The results of the calculations and their fits to continuous functions are 

presented in the Appendix.  The LIA breaks down as r approaches the droplet surface, since R-r is 

comparable to 2·ξ [41]. This range which is very close to the surface is not accessible in the case 
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of doped vortices due to the effect of the solvation potential. Finally, the results obtained within 

the LIA are very similar to those obtained previously in smaller droplets of RHe < 25 nm, by the 

numerically more accurate evaluation of the vortex shape in a spherical droplet based on the 

calculated image vortices [41]. A droplet with a vortex experience a centrifugal deformation. 

However, in large droplets with RHe = 100 nm the deviation of the droplet’s aspect ratio from 1 is 

less than 1% [41] and the spherical approximation seems to be well justified. In comparison, a 

vortex causes much larger deformation with aspect ratio of about 1.06 in smaller droplets with RHe 

= 5 nm. [34, 37, 41, 51]. In addition, calculations show that even the small droplets containing 

several doped vortices with large separation from the center are characterized by small deviation 

from the spherical shape [37]. 

This section describes calculations done for a spherical droplet with a radius of RHe = 100 

nm, with a single quantum vortex.  For the sake of modelling, we assumed that the doped vortices 

have the same shape as the bare vortex and contain some reasonable number of Xe atoms of about 

105 as in the recent experiments [28]. Specifically, the calculations were done with filaments 

containing 3.4×104, 1.4×105, 5.4×105 Xe atoms as in solid filaments of 100 nm length and 2.5, 5, 

and 10 nm radius, respectively. For comparison, He droplet with RHe = 100 nm contains NHe = 8.9 

× 107 atoms.  Strictly, because the length of the filament depends on the distance r, according to 

this model, the quantity RXe should be changed with r to keep the mass at constant density of the 

filament. However, this effect is disregarded and the calculations at different distances r were done 

with the fixed mass and radius of the filament. This assumption leads to small (<20%) 

overestimation of the Evort at large r. As a result the calculations with variable RXe are expected to 

be qualitatively similar. However, calculations with variable RXe are more involved as they will 

require calculations of vortex shape for each RXe. Most important it is not obvious that such 
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calculations will give any more realistic picture, as Xe filaments are solid and their shortening 

involves some inhomogeneous change in thickness as discussed in more details in Section 6.  The 

calculations for the droplet use equations (7,8) with numeric dependences of Evort(r) and Lvort(r) 

which are presented in the Appendix. For the sake of a model, we estimated the solvation potential 

as 100·V(r) where V(r) is given in Fig. 1, i.e., to be the same as that for the 100 nm long filament 

in a cylinder. The plots of equilibrium position, r, energy, E, and angular velocity, ω, of the system 

as a function of reduced angular momentum for bare and doped vortices are shown in Fig. 3. E, L 

and ω are expressed in terms of the corresponding values for a rectilinear vortex in the droplet’s 

center with the core radius of ξ=RXe, for which  

K
RR

E HeHeHe 4
2

101.11
2

ln
2

)0( 














 









   (11) 

sKRRL HeHeHe 





  422 100.7

2

3

3

2
)0(     (12)    

ω(0) = 1.08 107 rad s-1.  The numbers are for the bare rectilinear vortex in a RHe =100 nm droplet 

(ξ= 0.1 nm).  

   

Fig. 3. Plots of (a) reduced equilibrium position rr, (b) reduced energy Er, and (c) reduced angular 

velocity ωr as a function of reduced angular momentum Lr for a system of a curved quantum vortex 

in a spherical droplet with RHe = 100 nm. The results for a bare vortex (ξ= 0.1 nm) are shown by 

red curves. The results for curved vortices doped by RXe=2.5 nm, 5 nm and 10 nm filaments are 

shown by green, blue and black dots, respectively. 
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We proceed with the discussion of the results for the RXe=2.5 nm filaments. As in the case 

of a cylinder, the values of rr, Er and ωr are similar for the doped (green curve) and bare (red curve) 

vortex when Lr is in the range of 1 to 0.2.  However, at Lr ≈ 0.1-0.2, rr changes from ~0.75 to ~0.9. 

At smaller Lr, rr stays near the surface at ~0.9, which is defined by the solvation energy potential.  

Simultaneously, there is also an abrupt change in ωr , and the change in slope in the Er dependence. 

This behavior shows that in distinction to the doped vortex in a cylinder, where the kinematic 

parameters follow smooth dependences, doped vortex in a sphere experiences a bifurcation from 

the kinematics dominated by the vortex in the interior of the droplets to the one determined by the 

solvation energy potential and rotation energy of the Xe filament close to the surface.  For larger 

RXe = 5 nm (10 nm) filaments (blue and black curves, respectively), the curves show discontinuies 

which appear at rr = 0.7 (0.45) and Lr = 0.3 (0.7). Fig. 3 (c) shows that upon the jump, the angular 

velocity decreases approximately linearly with Lr, which is consistent with approximately constant 

moment of inertia of Xe close to the surface. Finally, the results in Fig. 3 show that for massive 

Xe filaments of RXe = 10, the kinematics is dominated by Xe and that the filament stays at large rr  

~ 0.82 at Lr <0.7.  

The difference in the behavior of the doped vortex in the cylinder and in the droplet results 

from the different dependence of the energy and angular momentum of the vortex on the distance 

from the rotational axis. In a cylinder, the dependencies have a negative curvature, whereas in case 

of the droplet, they have a positive curvature at rr > ~0.4. In addition, we notice that in the region 

of Lr close to the bifurcation the dependence of energy vs rr has a double minimum, whereas only 

the values corresponding to the global minimum are reflected in Fig. 3. The occurrence of double 

minima may lead to some metastable configurations and delayed bifurcation vs Lr. 
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As already noticed, the shapes of the doped vortices may deviate from that for the bare 

ones. In the case of bare multiple vortices in a sphere, the vortices are expected to straighten due 

to the repulsive inter-vortex interaction [31, 52] [53]. Stationary configurations of a 6-vortex ring 

in a rotating He15000 droplet have been studied by DFT technique [37]. It was found that in the case 

of the doped vortices, the vortex cores are almost straight, whereas in an undoped droplet rotating 

with the same angular velocity the vortex lines would be bent. Therefore, it is of interest to compare 

the results in Fig. 3 with the case where the filaments are represented by straight segments parallel 

to the rotational axis. In reality, the shape of the doped vortices is likely somewhere in-between 

the curved and straight shapes, thus the corresponding solutions will delimit possible kinematics 

of the system.  The analytic expressions for energy and angular momentum of a straight off-center 

vortex in a sphere have been presented in Refs. [49, 50]. The results for the straight bare and doped 

vortices in RHe = 100 nm droplet are shown in Fig. 4. As in Fig. 3, the doped vortices were 

approximated by cylinders of RXe = 2.5 nm, 5 nm and 10 nm containing NXe = 3.4×104, 1.4×105 

and 5.4×105, respectively.   

 

Fig. 4. Same as in Fig. 3, but for a straight bare vortex (ξ= 2.5 nm) (red) with (and straight Xe-

doped vortex with RXe = 2.5 nm, 5 nm and 10 nm shown by green, blue and red dots, respectively. 

Continuous thin curves in b) are calculations in the absence of vortices, as described in more details 

in Section 6. Note that angular velocity in panel c) is expressed in absolute units. 
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The comparison of Fig. 3 and Fig. 4 indicates that although the results for the curved and straight 

vortices in a sphere differ in slight details, they show qualitatively similar behavior. In addition, 

the model of straight vortices [49, 50] has an analytic solution for multiple vortices and can be 

naturally applied for estimations of the kinematic parameters in the droplets with multiple vortices.  

 

6. Discussion 

In order to visualize vortices, the diffraction images must contain comparable x-ray 

scattering intensity from both the droplet and the embedded Xe atoms [27], which dictates the 

NHe:NXe ratio in the range of about 250 - 2000. The results of the model calculations shown in 

Figures 3 and 4 indicate that under these conditions, the positions of the doped vortices can be 

used for estimation of the rotational energy, angular momentum and angular velocity in the 

droplets. Figures 3 and 4 show that when vortices are away from the surface region with distance 

r less than ~0.8 × RHe from the center, the resulting values of E, L and ω, are close to those for a 

bare vortex with the core radius equal to that for the embedded Xe filament.  However, when Xe 

clusters are found in the surface region, the system is dominated by the Xe filaments, and the 

kinematic parameters could not be deduced from the positions of the clusters. 

In the x-ray scattering measurements, the images are taken within single ~100 fs laser 

pulses, which are much shorter than the typical droplet’s rotational period of ~1 μs, hence no 

dynamics could be recorded. Accordingly, observation of a single cluster would not necessarily 

indicate the presence of a vortex.  Therefore, it is the observation of symmetric configurations of 

several Xe clusters [27, 28] that indicates the presence of the quantum vortices. Xe clusters 

captured by the vortices are held apart by the repulsive inter-vortex interaction. The strength of the 

vortex-vortex repulsion can be estimated from the analytic solutions for several vortices in a 
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cylinder [35]. For RHe = 100 nm and RXe = 5 nm, the two 100 nm long vortices symmetrically 

displaced from the center by 50 nm (30 nm), have total kinetic energy of 5100 K (6100 K) whereas 

the non-additive repulsive part is 390 K (1000 K). The repulsion energy is much larger than the 

droplet's temperature of ~0.4 K which locks the vortices, as well as the embedded clusters, in a 

symmetric configuration. On the other hand, the repulsion energy is significantly smaller than the 

total vortex energy, so that the total energy is approximately additive for not-too-close inter-vortex 

distances.  Note that the angular momenta of vortices are additive.  

If the three-dimensional shape of the filament is known, the energy and angular momentum 

of the vortex could be obtained by integration from the known velocity field of a vortex or from 

eqs. (3, 4) if the vortex is in the plane containing the rotational axis. The energy calculation 

according to eq. (3) involves the determination of the value of vS using the Biot-Savart law and 

shapes of the vortex and its image [40, 41]. The determination of the angular momentum from eq. 

(4) only requires the knowledge on the vortex shape. The diffraction at low scattering angles [27] 

can only yield the projection of the filaments on the detector plane. Thus, the three-dimensional 

image could only be implied from the flat images upon applications of certain constraints, such as 

that the vortex is approximately in the plane containing the rotational axis and terminates on the 

droplet's surface. In addition, the energy calculations require the knowledge of the width of Xe 

filaments, for which only an upper bound of 20 nm could be determined, [27] as limited by the 

current resolution. The approximation of the constant width of the filament is certainly not 

realistic, as filaments observed in Ref. [27] show pronounced fluctuations in linear density, which 

likely indicate that the filaments consist of the collection of smaller Xe clusters.  Therefore, there 

is a rather large uncertainly in attaining the values of energy from the obtained images. In the case 

when the resolution is insufficient or the aspect of the images is unfortunate, such that the clusters 
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appear as dots [28] rather than filaments, [27] the values of  E, L and ω can be estimated based on 

the analytic expressions for the symmetric formations of straight vortices [49, 50].  

Shapes of the doped vortices in He droplets may deviate considerably from those of bare 

vortices. In experiments, [24, 27, 28] the droplets, which presumably already contain quantum 

vortices, capture large numbers of Xe atoms. Calculations indicate that single Xe atoms are bound 

to vortex cores by about 3-5 K [36, 54]. The embedded Xe atoms (or small Xe clusters) are 

captured by vortices and combine inside the vortex cores. X-ray diffraction results [27, 28] show 

that the shapes of the filaments vary greatly, indicating that their structure may be influenced by 

the reconstruction during the filament growth. The doping with Xe atoms in a typical experiment 

[24, 27, 28] leads to the evaporation of between 10% and 50% of the He atoms each of them 

carrying some unknown angular momentum. As a result, during the doping, the vortex likely 

moves away from the center and the initial long Xe filament must get shorter. In order to 

accommodate for these changes, the van der Waals bound Xe filament may fold at the surface, 

which causes the bulges often observed at the ends, such as in Fig. 2 of Ref. [27].  In addition, it 

remains unclear how close the ends of the filament approach the droplet’s surface. The filaments 

likely stay submerged due to substantial solvation energy, and there may be some short region of 

near the surface, where the vortex is loose and adjusts its shape to have a perpendicular landing at 

the surface, such as found in recent TDDFT calculations [37].  

So far, it has been assumed that a vortex is pinned to the filament over its whole length. 

The binding energy of a vortex to the filament can be approximated by the kinetic energy of the 

displaced liquid which is ~3400 K for the 100 nm long filament with RXe = 5 nm. However, the 

system may also undergo a transition from the state described by a doped vortex into a system 

described by the revolving Xe filament devoid of a vortex, while conserving the total angular 
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momentum, L. Fig. 4 (b) presents the calculations of Er vs Lr for bare straight filaments of different 

radius, which are shown by thin continuous curves. The bare filaments occupy positions close to 

the droplet's surface. Fig. 4 (b) shows that at Lr ~ 1, the energy of the bare filament solutions 

exceeds that for the filament-vortex system. However, upon decrease of Lr, the bare filament 

solution becomes energetically favorable, with the turning point occurring at larger Lr for heavier 

filaments. At low Lr, the vortex may detach from the filament and annihilate at the droplet's surface. 

The mechanism and kinetics of the detachment remains to be elucidated. It is likely that the vortex 

peels off the filament starting from the loose ends close to the surface, as discussed previously in 

relation to cylinder-wire experiments [55]. Experimentally, the vanishing of the vortices should be 

evidenced by absence of the symmetric Xe formations and possibly development of the cluster-

cluster conglomerates.  

 

7. Conclusions     

Recently, we have observed that Xe clusters obtained in 100 nm sized He droplets form a 

number of filaments arranged in symmetric configurations, [27, 28] which was assigned to pinning 

of Xe clusters to quantum vortices.  This paper studies the effect of the mass of the filaments on 

the kinematics of the combined vortex-cluster system in a cylinder and in a sphere. Calculations 

show that the loaded vortex has larger equilibrium distance from the center as compared with a 

bare vortex. At small mass of the filaments, their displacement from the droplet's center can be 

used to obtain an estimate of the droplets rotational energy, total angular momentum and angular 

velocity, which are close to the corresponding values in the bare vortex. However, at large mass 

of the filament and small values of the total angular momentum, the filament-vortex system is 

dominated by the motion of the filament. In such conditions, the system occupies the surface 

region, where its position is mostly defined by the balance of the solvation energy of the filament 



19 

 

in liquid helium and its rotation energy. Calculations also reveal that upon decrease of the total 

angular momentum beyond a certain value, the energy of the vortex-filament system becomes 

larger than that for a bare filament, upon which the vortex may detach and annihilate on the 

droplet's surface.  
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Appendix 

In order to calculate Evort, Lvort, and ω= dE/dL, of a bare curved vortex with different core 

size in spherical He droplets, equations (3) and (4) are used. Numeric calculations of the angular 

momentum via eq. (3) is straightforward. On the other hand, the energy calculation takes a much 

longer time. To expedite the calculations, a summation method can be utilized by dividing a certain 

two-dimensional area of the integration, close to the vortex into smaller discrete areas. However, 

even then the values of energy show some noise, since the smaller discrete areas of integration are 

still much larger than the required infinitesimal areas of integration.  On the other hand, we found 

that, the results of the LIA calculations of the Evort and Lvort versus r/R for a bare vortex could be 

well-fitted by a function  
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The parameters a and b have been obtained from a limited number of high accuracy 

calculations of Evort and Lvort at different displacement for 0.1 nm, 2.5, 5 and 10 nm. Table A1 

gives the obtained parameters. The resulting fitted dependencies are presented in Fig. A1 and were 

used to obtain the continuous outcome curves presented in Fig. 3.   In Fig. A1, the Evort and Lvort 

are expressed in units of the corresponding values for central rectilinear vortex with the core radius 

of ξ, which are given by eqs (11,12). It is seen that the reduced values of energy, angular 

momentum and angular velocity for bare vortices with different core sizes are very similar. 

 

Table A1. Parameters a and b in eq.(A1) used to fit Evort and Lvort vs r/R. 

Vortex core     

radius, ξ, nm 

Evort fit Lvort fit 

a b a b 

0.1 0.563 1.278 0.500 1 

2.5 0.545 1.227 0.502 1 

5.0 0.533 1.190 0.504 1 

10.0 0.521 1.149 0.505 1 

 

 

Fig. A1. Reduced energy, reduced angular momentum in panel (a) and angular velocity in panel 

(b) of a bare vortex with core radius of ξ = 0.1, 2.5, 5 and 10 nm versus the reduced displacement 

from the droplet’s center in the droplet having R = 100 nm. 
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