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ABSTRACT: Machine learning (ML) of quantum mechanical properties shows promise for
accelerating chemical discovery. For transition metal chemistry where accurate calculations are
computationally costly and available training data sets are small, the molecular representation
becomes a critical ingredient in ML model predictive accuracy. We introduce a series of revised
autocorrelation functions (RACs) that encode relationships between the heuristic atomic
properties (e.g., size, connectivity, and electronegativity) on a molecular graph. We alter the
starting point, scope, and nature of the quantities evaluated in standard ACs to make these RACs
amenable to inorganic chemistry. On an organic molecule set, we first demonstrate superior
standard AC performance to other presently-available topological descriptors for ML model
training, with mean unsigned errors (MUESs) for atomization energies on set-aside test molecules
as low as 6 kcal/mol. For inorganic chemistry, our RACs yield 1 kcal/mol ML MUEs on set-
aside test molecules in spin-state splitting in comparison to 15-20x higher errors from feature
sets that encode whole-molecule structural information. Systematic feature selection methods
including univariate filtering, recursive feature elimination, and direct optimization (e.g., random
forest and LASSO) are compared. Random-forest- or LASSO-selected subsets 4-5x smaller than
the full RAC set produce sub- to 1-kcal/mol spin-splitting MUEs, with good transferability to
metal-ligand bond length prediction (0.004-5 A MUE) and redox potential on a smaller data set
(0.2-0.3 eV MUE). Evaluation of feature selection results across property sets reveals the relative
importance of local, electronic descriptors (e.g., electronegativity, atomic number) in spin-
splitting and distal, steric effects in redox potential and bond lengths.



1. Introduction

Computational high-throughput screening is key in chemical and materials discovery,
but high computational cost has limited chemical space exploration to a small fraction of feasible
compounds™~. Machine-learning (ML) models have emerged as alternative approaches especially
for efficient evaluation of new candidate materials* or potential energy surface fitting and
exploration through sophisticated force field models>». Examples of recent ML applications in
computational chemistry include exchange-correlation functional development>», general
solutions to the Schrodinger equation», orbital free density functional theory*, many body
expansions*, acceleration of dynamics*, band-gap prediction>», and molecular* or
heterogeneous catalyst*” and materials* discovery, to name a few.

Essential challenges for ML models to augment or replace first-principles screening are
model selection and transferable feature set identification. For modest sized data sets, descriptor
set selection is especially critical=« for successful ML modeling. Good feature sets should- be
cheap to compute, as low dimensional as possible, and preserve target similarity (i.e. materials
with similar should properties have similar feature representations). Within organic chemistry,
structural descriptors such as a Coulomb matrix® or local descriptions of the chemical
environment and bonding* « have been useful to enable predictions of energetics as long as a
relatively narrow range of elements (e.g., C, H, N, O, F) is considered. These observations are
consistent with previous successes in evaluating molecular similarity, force field development*,
quantitative structure-activity relationships», and group additivity» theories on organic molecules.

Descriptors that work well for organic molecules have proven unsuitable for inorganic
materials® or molecules». This lack of transferability can be readily rationalized: it is well-
known== that some electronic properties of transition metal complexes (e.g., spin state splitting)
are much more sensitive to direct ligand atom identity that dominates ligand field strength«-.
Unlike organic molecules, few force fields have been established that can capture the full range
of inorganic chemical bonding*. The spin-state- and coordination-environment-dependence of

bonding» produces a higher-dimensional space that must be captured by sophisticated descriptors
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or functions. In spite of these challenges, suitable data-driven models for inorganic chemistry
will be crucial in the efficient discovery of new functional materials*, for solar energy~, and for
catalyst discovery=.

With the unique challenges of inorganic chemistry~ in mind, we recently trained a neural
network to predict transition metal complex quantum mechanical properties>. From several
candidate descriptor sets, we demonstrated good performance, i.e., 3 kcal/mol root mean squared
error for spin-splitting and 0.02-0.03 A for metal-ligand bond lengths, of heuristic, topological-
only near-sighted descriptors. These descriptors required no precise three-dimensional
information and outperformed established organic chemistry ML descriptors that encode more
whole-complex information.

In this work, we introduce systematic, adaptable-resolution heuristic and topological
descriptors that can be tuned to encode molecular characteristics ranging from local to global. As
these descriptors require no structural information, rapid ML model prediction without prior
first-principles calculation is possible, and such ML models can improve structure generation
through bond length prediction™ <. We apply this adaptable descriptor set to both organic and
inorganic test sets, demonstrating excellent transferability. We use rigorous feature selection
tools to quantitatively identify optimal locality and composition in machine learning feature sets
for predicting electronic (i.e., spin-state and redox potential) and geometric (i.e., bond length)
properties. The outline of the rest of this work is as follows. In Sec. 2, we review our new
descriptors, methods for subset selection, and the ML models trained in this work. In Sec. 3, we
provide the Computational Details of first-principles data sets and associated simulation
methodology. In Sec. 4, we present Results and Discussion on the trained ML models for spin-
state splitting, bond-lengths, and ionization/redox potentials. Finally, in Sec. 5, we provide our
Conclusions.

2. Approach to Feature Construction and Selection
2a. Autocorrelation Functions as Descriptors.

Autocorrelation functions* (ACs) are a class of molecular descriptors that have been used
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in quantitative structure-activity relationships for organic chemistry and drug design®". ACs are
defined in terms of the molecular graph, with vertices for atoms and unweighted (i.e., no bond

length or order information) edges for bonds. Standard ACs* are defined as:

Pd:ZZPif_)ﬁ(dv’d) ()

where P, is the AC for property P at depth d, ¢ is the Dirac delta function, and d, is the bond-wise
path distance between atoms 7 and j. Alternatives to the eqn. 1 AC sums are motivated and
discussed in Sec. 2b. The AC depth d thus encodes relationships between properties of atoms
separated by d bonds; it is zero if d is larger than the longest molecular path, and 0-depth ACs
are just sums over squared properties. The five atomic, heuristic properties used in our ACs are:
i) nuclear charge, Z, as is used in Coulomb matrices”; ii) Pauling electronegativity, x, motivated
by our previous work; iii) topology, T, which is the atom’s coordination number; iv) identity, 1,
that is 1 for any atom, as suggested in Ref. »; and v) covalent atomic radius, S. Although i, ii, and
v are expected to be interrelated, the S quantity uniquely imparts knowledge of spatial extent,
and covalent radii follow different trends than Z or y (e.g. the covalent radius of Co is larger than
Fe and Ni).

ACs are compact descriptors, with d+1 dimensions per physical property encoded at
maximum depth d, that depend only on connectivity and do not require Cartesian or internal
coordinate information. Although inclusion of geometric information improves predictive
capabilities of machine learning models in organic chemistry”, reliance on structural information
requires explicit calculation or knowledge of it prior to ML prediction, which is not practical for
transition metal complexes. AC sets also are vectorial descriptors that are invariant with respect
to system size and composition, unlike frequently-used symmetry functions”, bag-of-bonds*, and
Coulomb matrices™.

Despite their promise in therapeutic drug design®" or in revealing inorganic complex
structure-property relationships”, ACs have not yet been tested as features in machine learning

models that predict quantum mechanical properties. We first apply ACs to the QM9 database* of
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134k organic (C, H, O, N, and F elements) molecules consisting of up to nine heavy atoms. This
database contains B3LYP/6-31G-calculated properties, including atomization energies and
HOMO-LUMO gaps, making it a frequent test set for machine learning models and descriptor
sets# 7. The QM9 test set allows us to both identify if there is an optimal maximum depth for
ACs and to determine the baseline predictive capability of ACs in comparison to established
descriptors™~. Throughout this work, we score feature sets by training Kernel ridge regression
(KRR) models” with a Gaussian kernel. KRR is a widely-employed” *» ML model, that has
produced sub-kcal/mol out-of-sample property prediction error on large organic databases and
crystals»+=+. We have selected KRR for the i) ease of retraining, ii) transparency of differences in
KRR models~, as predictions are related to arrangement of data points in feature space, and iii)
wide use of KRR in computational chemistry== ==+ (Supporting Information Text S1).

First, we test the effect of increasing the maximum AC depth to incorporate increasingly
nonlocal ACs on AE prediction test set errors using a 1,000 molecule training set repeated five
times (Figure 1). We evaluate prediction test set mean unsigned error (MUE) on the remaining
133k molecules in the QM9 set. Test set MUEs first decrease with increasing depth from 18
kcal/mol MUE at zero-depth (i.e., only sums of constituent atom properties) and reach a
minimum of 8.8 kcal/mol MUE at maximum three-depth ACs. Without any further feature
reduction, maximum three-depth ACs (3d-ACs) correspond to a 20-dimensional feature set (i.e.,
4 length scales x 5 properties). Increasing the maximum depth beyond three increases test errors
slightly up to 9.2 kcal/mol for maximum six-depth ACs (Figure 1). Minimum train/test MUEs
with 3d-ACs emphasizes the length scale of chemically relevant effects, in line with previous
observations®*, and increasing train/test MUEs due to the addition of more poorly correlating
non-local descriptors emphasizes the importance of careful feature selection (Sec. 2c).
Regardless of maximum depth chosen, AC-derived prediction accuracy is impressive since the
KRR model is trained with < 1% of the QM9 data set, which has a large overall AE mean

absolute deviation of 188 kcal/mol.
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Figure 1. Train (black line) and test (red line) MUEs (in kcal/mol) for QM9~ AEs predicted by
KRR models trained on AC feature sets with increasing maximum depth. Each model is trained
on 1,000 molecules and tested on the 133k remaining molecules. Error bars on test set error
correspond to standard deviations from training the KRR model on five different samples, and
the red circles correspond to the mean test error. The lowest MUE maximum-depth, 3, is
indicated with an asterisk. An example of a term in a 3-depth AC is shown on butane in inset.
We now compare 3d-AC performance and learning rates (i.e., over increasingly large
training sets) to i) the Coulomb matrix eigenspectrum» (CM-ES) representation, which is an easy
to implement 3D-derived descriptor; ii) the recently-developed» 2* descriptor that, like ACs,
does not require explicit 3D information and encodes connectivity and bond order information
for atom pairs; and iii) and more complex” 1234 descriptors. The 1234 descriptors, which
encode a continuous, normal distribution of bond distances for each bond-type in a system-size
invariant manner, require 3D information but have demonstrated performance similar to the best
results reported” » QM9 AEs.» We trained the CM-ES KRR model using the recommended~
Laplacian kernel, but we selected a Gaussian kernel for 3d-ACs after confirming it produced
lower MUEs (Supporting Information Text S2). For our ultimate goal of inorganic complex
property prediction (sec. 3), 3D information, even from semi-empirical geometries, is not readily
achievable from currently available semi-empirical theories. However, we compare our two
trained KRRs to reported performance of 2* and 12+34> descriptors from the literature, which we

select as the best-reported 3D-structure-free descriptor and as a high-accuracy, 3D-structure-

dependent descriptor, respectively.



For the largest 16,000 molecule training set, the 3d-AC test set MUEs are 68% and 43%
lower than CM-ES and 2° descriptors, respectively. The 3d-AC descriptors are only
outperformed by 12v3*4* by 74% or 4.5 kcal/mol, owing to the bond distance information
encoded in this set (Figure 2 and Supporting Information Table S1). This improved performance
of 12v34> and other comparably-performing” descriptors (e.g., superposition of atomic densities*
or the many-body tensor representation*) comes at a severe cost of requiring accurate geometries
before predictions can be made, whereas 3d-AC significantly outperforms the previous best-in-
class topology-only descriptors set 2°. Learning rates (i.e., training-set size test set MUE
dependence) are comparable among 3d-AC, 2°, and 12+3"4* descriptors but slightly steeper for
the poorer performing CM-ES representation (Figure 2). For dipole moment prediction, 3d-AC
performs nearly as well as 12v3-4s: the 3d-AC test MUE at 1,000 training points is only 2%
higher than 123*4* and 19% higher at 16,000 training points (Supporting Information Table S2).
Thus, ACs are promising size-invariant, connectivity-only descriptors for machine learning of
molecular properties. However, we have previously observed limited transferability of organic
representations for inorganic complexes», and we next identify the transferability of our present

descriptors as well as beneficial inorganic chemistry adaptations.
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Figure 2. Training set size dependence of test set MUEs (in kcal/mol) for KRR model
prediction of QM9+ AEs for four feature sets. In all cases, the test set consists of the remainder of
the 134k molecule set not in the training set. For the maximum 3-depth autocorrelation (3d-AC,
gray circles) and Coulomb matrix eigenspectrum= (CM-ES, red circles) trained in this work,
standard deviations (error bars) and mean test errors are reported from training results on five
samples selected for each training set size. The 2° (green open square) and 12v34 (blue open
square) KRR test set MUEs from literature” are provided for comparison.
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2b. Revised Autocorrelations for Transition Metal Complexes.

We previously proposed™® a mixed continuous (e.g., electronegativity differences) and
discrete (e.g., metal and connecting atom identity) set of empirical, topological descriptors
(referred to in this work as MCDL-25) that emphasized metal-proximal properties for predictive
modeling of transition metal complexes with an artificial neural network. The MCDL-25 set is
metal-focused in nature with the longest range effects only up to two bonds through a truncated
Kier shape index®. This imparted good accuracy (i.e., root mean squared error, RMSE, of 3
kcal/mol) for spin-state splitting predictions and superior transferability to test set molecules with
respect to commonly-employed descriptors” used in machine learning for organic chemistry that
encode complete, 3D information.

In addition to standard ACs (eqn. 1 in Sec. 2a), we now introduce revised ACs (RACs)
inspired by descriptors in the metal-focused MCDL-25 set. In these RACs, we both restrict
where the sums in eqn. 1 start (i.e., to account for potentially greater importance of the metal and
inner coordination sphere) and which other atoms are in the scope (Figure 3). In the extended

notation of the broader AC set, the standard ACs starts on the full molecule (f) and has all atoms
in the scope (all), i.e., a;Pd. As in ref. ) we compute restricted-scope ACs that separately

evaluate axial or equatorial ligand properties:

1 Moxreq Maxieq
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/
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- ax/eq ligands‘

where 74, 1s the number of atoms in the corresponding axial or equatorial ligand and properties
are averaged within the ligand subtype. We introduce restricted-scope, metal-centered (mc)

descriptors, in which one of the atoms, i, in the i,j pair is a metal center:



me all
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For the complexes in this work there is only one metal-center, which simplifies the sum, but

there is no inherent restriction to a single metal center (see green arrows in Figure 3).

start: {Ic,mc, f} <{Ic]

. property: {x,Z,T,S, I}
scope: {eq,ax,all} <{eq) (1) depth

Figure 3. Schematic of ACs in the equatorial plane of an iron octahedral complex with two eq.
oxalate ligands shown in ball and stick representation (iron is brown, oxygen is red, and carbon
is gray). Regions of the molecule used to classify descriptors are designated as proximal (metal
and first coordination shell, in red), middle (second coordination shell, in green) and distal (third
shell and beyond, in blue) throughout the text. Light green circles and arrows depict terms in a 2-

depth mc RAC (e.g., ':;Zz), and the light blue circles and arrows depict terms in a 1-depth Ic
RAC (e.g., “Z).

A second restricted-scope, metal-proximal AC definition is the ligand-centered (/c) sum

in which one of the atoms, i, in the i,/ pair is the metal-coordinating atom of the ligand:

lc Maxleq

P, = ‘E EPP5(d, ) (4)

|ax/eq hgands| ‘lc

We average the ACs over all Ic atoms and over all ligands in order to treat ligands of differing

denticity on equal footing (see light blue arrows in Figure 3).

52, 84

Inspired by our previous success™ °" in employing electronegativity differences between
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atoms to predict electronic properties, we also modify the AC definition, P’, to property

differences rather than products for a minimum depth, d, of 1:
le or mescope
e Plo= > N (P-P)5(d,.d) )
i
where scope can be axial, equatorial, or all ligands, the start must be /c or mc because a sum of
differences over all will be zero, and these ACs are not symmetric so the ordering of indices i,j is
enforced for consistency.

We combine all six types of AC or RAC start/scope definitions (f/all; mc/all; Ic/ax; Ic/eq,
flax; and f/eq, eqns. 1-5) with both products and differences of the five atomic properties for
depths from zero, where applicable, to maximum depth d. There are 6d4+6 descriptors for six
product AC/RACs (eqns. 1-4) with each of the five atomic properties (i.e., a total of 304+30
product AC/RACs). For difference RACs (eqn. 5), there are no zero-depth descriptors, and three
non-trivial start/scope definitions (mc/all; Ic/ax; and Ic/eq), producing 3d descriptors for all of the
atomic properties excluding /7, giving /2d difference descriptors for a total of 42d+30 product or
difference RACs. These ACs represent a continuous vector space that is increasingly nonlocal
with increased maximum d and dimension invariant with respect to system size. This descriptor
set also does not depend on any 3D information, which is valuable for structure prediction®™ ®’.

We classify relative locality of ACs into three categories (see Figure 3): 1) proximal:
depends only on atom types and connectivity in first coordination shell; 2) middle: depends on

information from two coordination shells; and 3) distal: all remaining descriptors based on the

molecular graph. This broad AC set naturally recovers well-known quantities: i) ", 1, is the metal

coordination number and ii) ai I, is the total number of atoms. We also recover continuous

descriptor analogues to the variables in MCDL-25": 1) " Z, s the metal identity, ii) ax/ei;ZO 1s
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ax/eq

the coordinating atom identity, and iii) X', is Ay. Some ACs are redundant (e.g., "/ and

all ™1
"I, are the same). Before model training, all ACs are normalized to have zero-mean and unit

variance based on training data, and any constant features in training data are filtered out.

2c. Feature Selection Methods.

Feature reduction from a large descriptor space improves the ratio of training points to
the dimension of the feature space, decreasing training time and complexity* for non-linear
models (e.g., neural networks) or improving predictions in kernel-based methods with isotopic
kernels by eliminating uninformative features. In linear models, feature reduction increases
stability, transferability, and out-of-sample performancer. Reducing feature space, without
impact on model performancev, is also useful* for providing insight into which characteristics are

most important for determining materials properties. Starting from n observations (e.g., spin-

state splitting, bond length, or redox potential) of y, (x[) and molecular descriptors x, €° ™ in

an m-dimensional feature space, Xm , we use established feature selection techniques to obtain a

lower-dimensional representation of the data, X p EXm, that maximizes out-of-sample model

performance while having the smallest possible dimension.

Feature selection techniques may be broadly classified« as (Figure 4): 1) simple filters, 2)
wrapper methods, and 3) direct optimization or shrinkage methods». Type 1 univariate filtering
(UVF) acts on each descriptor individually, discarding those that fail a statistical test (here, the p-
value for a linear model being above a cutoff of 0.05). UVF is amenable to very high-
dimensional problems* but neglects interactions between descriptors that may occurs, and the

significance test in a linear model may not relate well to the final machine learning model.
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Type 1: Univariate filters

O
&

[]

§ KRR or LR

Type 3: Shrinkage or direct optimization

i ; LASSO or randF

Figure 4. Schematic of three main types of feature selection approaches with retained and input
features represented by dark blue circles. Type 1 (top) univariate filters evaluate features one at a
time; type 2 (middle) wrapper methods train a model (e.g., KRR or MLR) and use a cross
validation score to recursively eliminate features; and type 3 (bottom) shrinkage or direct
optimization models such as LASSO and random forests (randF) carry out one-shot feature
selection and regularization or model training, respectively.

Type 2 wrapper methods require multiple steps=+: iterative feature subset choice along
with model training and scoring (Figure 4). Combinatorial testing of every possible subset is
only feasible for small feature sets (e.g., < 40 variables with simple predictive models”). The
model used in training and scoring is flexible, but the repeated model training time may become

prohibitive. Stepwise search, with greedy recursive feature addition or elimination (i.e., RFA or
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RFE) on most improvement or least penalty, respectively, or randomized searches less prone to
local minima», are employed for larger feature sets. Cross-validation (CV) scoring, which is
unaffected by feature space size changes, will usually produce a minimum for an optimal number
of features*. We recently used” RFE with an embedded linear model to select variables to use in
multiple linear regression (MLR) to identify four key RACs from a larger 28-dimensional space
for redox potential prediction. In this work, we primarily employ RFE-MLR to select features to
be used for KRR training, despite potentially eroded model transferability between MLR and
KRR. The fine hyperparameter grid search needed to produce a robust KRR model at each RFE
iteration would take around 30 days in parallel on a 4-core Intel 3.70 GHz Core 17-4820K when
starting from a large (ca. 150) descriptor set, making some initial reduction in feature space
necessary for practical RFE-KRR (Supporting Information Text S3).

Type 3 shrinkage or direct optimization methods use regularization (e.g., elastic net or
L1-regularized linear regression, LASSO*) or a model (e.g. random forests) that determines
variable importance in one shot during training, making Type 3 methods much more
computationally efficient than Type 2. However, it remains uncertain if the typically lower
complexity of the combined feature-selection and fitting model (e.g, L1 regularized regression in
LASSO) produces results that are transferable to the subsequent ML model to be trained (e.g.,
KRR). In this work, we use an elastic net, a generalization of LASSO that we previously used to
select descriptors for machine learning models®, in which a blend of L2 and L1 regularization is

applied*, giving the loss function as:
L0V =} = 0] =[] + - ©

Here, W are the regression coefficients, A is the regularization strength, and o €]0,1]
interpolates between ridge (0=0) and LASSO (a=1) regression. Higher a aggressively reduces
the feature space, and the best a is selected by cross-validation with A, with intermediate o often
favored for balancing prediction with feature reduction”.

Random forests*, which are based on an ensemble of sequential binary decision trees, are
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another Type 3 method (Figure 4). Each tree is trained on a bootstrapped data sample and uses a
random input variable set. Integrated feature selection is achieved by comparing tree
performance when descriptors are randomly permuted” to yield an importance score for each
descriptor and discard those below a threshold value. Here, we use 1,000 trees and discard
descriptors with an increase of < 1% (or higher, where specified) in normalized MSE on out-of-
model samples upon removal (see convergence details in Supporting Information Figures S1-
S4).

We now compare feature selection methods on our transition metal complex data sets, as
judged by performance on 60%-40% and 80%-20% train-test partitions for the larger spin-
splitting and smaller redox data set (see Sec. 3a), respectively. Feature selection is only carried
out on the training data, and KRR models are used for judging performance of a feature set using
identical cross-validation for hyperparameter estimation. All analysis is conducted in R version
3.2.37. We use the kernlab» package for KR regression, CVST” for cross-validation, glmnet* for
elastic net regression, caret* for feature selection wrapper functions and randomForest: for
random forests. All kernel hyperparameter values are provided in Supporting Information Tables
S3-S6.

3. Computational Details
3a. Organization of data sets.

Feature selection and model training is carried out on two data sets of single-site octahedral
transition metal complexes, which were generated from extension of data collected in previous

2
kS , 67

wor (Figure 5). These data sets are derived from around 3,300 DFT geometry optimizations

of molecules up to over 150 atoms in size, which is a smaller number of training points than has

been feasible in machine learning on small (i.e., up to 9 heavy atoms) organic molecules but
slightly larger than has successfully been used in bulk catalysis*. For both sets, the complexes
contain Cr» Mn>», Fe»», Co>>, or Ni~ first row transition metals. High-spin (H) and low-spin (L)

multiplicities were selected for each metal from those of the isolated ion in National Institute of
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Standards and Technology atomic spectra database”: triplet-singlet for Ni», quartet-doublet for
Co~ and Cr~, quintet-singlet for Fe» and Co», quintet-triplet for Cr» and Mn*~ (due to the fact that
there is no data available for Mn» singlets”), and sextet-doublet for Mn> and Fe~. For all data sets,
the molSimplify* code was used to generate starting geometries from the above metals and a
ligand list (ligands provided in Supporting Information Table S7). Incompatible ligand
combinations are disabled (e.g., equatorial porphyrin ligands can occur once and only with

monodentate axial ligands).

Lax1
Leq,“"'"-M '''' |\\\‘Leq
Leq Leg
I-ax2

spin-split (1345) redox (226)
new (185) Fe-N (41)

M Cr,Mn,Fe,Co,Ni |Cr,Mn,Fe,Co Fe
L types 16 5 41
LCA C,N,0,S,Cl C,N,0 N
L denticity 1to4 1 1to2
symmetry ax#eq axi1zax2#eq| ax=eq
properties| AE, ., min(R) AE,. E°

Figure 5. (top) Schematic of octahedral transition metal complex illustrating possible unique
ligands (one equatorial ligand type, L., and up to two axial ligand types, L., and L..) in the spin-
splitting and redox data sets. (bottom) Characteristics of each data set: metal identity, number of
ligand types (L types), connecting atom identity of the ligand to the metal (L. CA), range of
denticities (L denticity), ligand symmetry corresponding to the schematic complex
representation, and associated quantum mechanical properties. Spin-splitting and redox Fe-N sets
were previously published= <, but the “new” subset of the redox data set was generated in this
work.

The spin-state splitting data set’> consists of 1345 unique homoleptic or heteroleptic
complexes with up to one unique axial and equatorial ligand type with ligands selected from 16

common ligands of variable ligand field strength, connecting atom identity, and denticity (Figure
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5). For this data set, the structures were evaluated using hybrid density functional theory (DFT)
at 7 percentages of Hartee-Fock (HF) exchange from 0 to 30% in 5% increments. This set was
previously used to train models that predict 1) the adiabatic, electronic spin-state splitting energy,
AEy.p, 11) the exchange sensitivity of the spin-state splitting, and 1ii) the spin-state dependent
minimum metal-ligand bond lengths (e.g., min(Ry) or min(Ry)) that differ from the average
metal-ligand bond length only for distorted homoleptics or heteroleptic complexes. In this work,

we only train and test models on AEy. 1 and min(Ry).

The redox data set (226 unique structures) is comprised of 41 previously studied” Fe-
nitrogen monodentate and bidentate homoleptic complexes and 185 newly generated structures
(Figure 5 and Supporting Information Table S8). The new complexes were obtained by
generating combinations of metals (Cr, Mn, Fe, Co) and five small, neutral monodentate ligands
(CO, pyridine, water, furan, and methyl isocyanate) with up to two axial ligand types and one
equatorial ligand type. Axial ligand disengagement occurred during optimization in several of
the 300 theoretically possible cases, reducing the final data set (Supporting Information).

In all cases, we calculate the M(II/III) redox couple starting from the adiabatic ionization

energy of the reduced complex’s ground state spin:
AE,  =E,-E, (7

At minimum, this ionization energy requires M(I) low-spin and high-spin geometry
optimizations as well as the selected lowest energy M(III) state that differs by a single electron
detachment (Supporting Information Table S9).

To compute the redox potential, we also include solvent and thermodynamic (i.e.
vibrational enthalpy and zero point vibrational energy) corrections in a widely adopted
thermodynamic cycle approach~. We estimate the M(II/III) redox potential in aqueous solution

at 300 K, AG..:

AG_ = Ggas(M(III)) - Ggas(M(II)) +AG (M(1II)) - AG (M (1)) (8)

solv
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where G, is the gas phase energy with thermodynamic corrections and AG is the solvation free
energy of the gas phase structure. We then compute the redox potential:

AG
EO - _ solv 9
= 9)

where the number of electrons transferred is n=1 and Fis Faraday’s constant.
3b. First-principles Simulation Methodology.

Our simulation methodology was the same for all generated data sets. All DFT
calculations employ the B3LYP hybrid functional with 20% HF exchange (a.. = 0.20), except
for cases where HF exchange is varied» while holding the semi-local DFT exchange ratio
constant. In inorganic complexes, the optimal amount of HF exchange is highly system
dependent =+ = motivating our earlier training of an ANN to predict spin-state ordering and
bond length in an HF exchange dependent manner as well as the sensitivity of properties to HF
exchange fraction= . Exchange-sensitivity is not the focus of the present work, as our prior work
demonstrated= that ANN accuracy was not sensitive to functional choice. We use the LANL2DZ
effective core potential™ for all transition metals, bromine, and iodine and the 6-31G* basis for
the remaining atoms. The use of a modest basis set is motivated by our previous observations”
that extended basis sets did not substantially alter trends in redox or spin-state properties. Gas
phase geometry optimizations were conducted using the L-BFGS algorithm implemented in the
DL-FIND» (for the spin-splitting data set) or in translation rotation internal coordinates™ (for the
redox data set) interfaces to TeraChem™ to the default tolerances of 4.5x10+ hartree/bohr for the
maximum gradient and 1x10¢ hartree for the change in self-consistent field (SCF) energy
between steps. All calculations were spin-unrestricted with virtual and open-shell orbitals level-

shifted" by 1.0 eV and 0.1 eV, respectively, to aid SCF convergence to an unrestricted solution.
Deviations of <S> from the expected value by more than 1 u, led to exclusion of that data point

from our data set. The aqueous solvent environment, where applicable, was modeled using an

implicit polarizable continuum model (PCM) with the conductor-like solvation model
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(COSMOm) and €=78.39. The solute cavity was built using Bondi’s van der Waals radii* for

available elements and 2.05 A for iron, both scaled by a factor of 1.2. Vibrational entropy and
zero-point corrections were calculated from a numerical Hessian obtained with built-in routines
in TeraChem,

4. Results and Discussion

4a. Spin Splitting Energy.

We evaluate our RACs (i.e., both standard ACs and the modified start, scope, and
difference ACs defined in Sec. 2b) for KRR training on the spin-splitting data set and compare to
both previous MCDL-25 descriptors® and widely-employed= » Coulomb-matrix-derived
descriptors. Based on our results for organic molecules (Sec. 2a), we use a maximum depth of 3

in the 42d+30 RACs, producing 156 potential descriptors, which reduce to 151 after discarding 5

descriptors that are constant (e.g., aflo and " T.) due to unchanged octahedral coordination in the

data sets in this work (Supporting Information Tables S10). We add four variables (i.e., oxidation
state, HF exchange and axial/equatorial ligand denticity) from our MCDL-25 set» to produce a
final 155-variable set (RAC-155). The RAC-155 set is transferable to inorganic chemistry, with
already good MCDL-25/KRR (Gaussian kernel) test set RMSE and MUE of 3.88 and 2.52
kcal/mol reduced to 1.80 and 1.00 kcal/mol with RAC-155 (Table 1). This performance is also
superior to Coulomb matrix (CM)-based descriptors computed on high-spin geometries. Using
either 1) an L1 matrix difference kernel on sorted Coulomb matrices> »* (CM-L1) or ii)
eigenvalues” and a Laplacian kernel, as recommended in Ref.» (CM-ES), we obtain 10-30x
higher RMSE and MUEs than for RAC-155 or MCDL-25 (Table 1, learning rates for RAC-155
in Supporting Information Figure S5).

Table 1. Test set KRR model prediction errors (RMSE and MUE) for spin-splitting energy
(kcal/mol) for the Manhattan norm applied to sorted Coulomb matrices (CM-L1)"+, the Coulomb
matrix eigenspectrum representation with a Laplacian kernel (CM-ES)~, our prior hybrid

discrete-continuous descriptors (MCDL-25)> with a Gaussian kernel, and the full RAC-155 set
introduced in this work with a Gaussian kernel.

Feature set RMSE MUE
(kcal/mol) (kcal/mol)

CM-L1 30.80 20.84

CM-ES 19.19 14.96
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MCDL-25 3.88 2.52
RAC-155 1.80 1.00

Visualization with principal component analysis (PCA) of the key descriptor space
dimensions with spin-splitting or molecular size variation overlaid reveals why CM-ES performs
poorly in comparison to RACs (Figure 6). The first two principal components encode the
majority of the feature space variation for both sets: 85% of CM-ES and 55% of RAC-155
(Supporting Information Figures S6-S7). As expected=~, CM-ES shows excessive molecule-size-
dependent clustering that is not predictive of how metal electronic properties vary. As an

example, homoleptic Fe(Ill) complexes with strong-field t-butylphenylisocyanide (pisc) and
methylisocyanide (misc) ligands have comparable AE,. of 41 and 38 kcal/mol but differ in size

substantially at 151 and 37 atoms, respectively (structures in Figure 6 inset). Despite comparable
spin splitting, these molecules are on opposite ends of PC1 in the CM-ES PCA with no
intermediate data (Figure 6). More broadly, no clustering is apparent in spin-splitting energies

with CM-ES in comparison to the strong system size clustering (Figure 6).

CM-ES RAC-155 LASSO-28
%
A

|
A

PC 2

PC 2

PC1
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Figure 6. Projection of spin-splitting data set onto the first two principal components (arbitrary
units) for the Coulomb matrix eigenspectrum (CM-ES, left), full revised AC set (RAC-155,
center), and the LASSO-selected subset (LASSO-28, right). The PCA plots are colored by DFT-
calculated spin splitting energy (top, scale bar in kcal/mol at right) and size (bottom, scale bar in
number of atoms at right). Ball and stick structures of representative complexes Fe(III)(pisc), and
Fe(Il)(misc), (iron brown, nitrogen blue, carbon gray, and hydrogen white) are inset in the
bottom left, and the associated data points are highlighted with a blue circle and square,
respectively, in each plot.

In contrast, RAC-155 distributes data more evenly in the PCA with smaller size-
dependence due to using both metal-centered and ligand-centered ACs in addition to truncating
the depth of descriptors to three prior to feature selection (Figure 6). Improved RAC
performance is also due to better representation of molecular similarity with apparent weak-field
and strong-field groupings, assisting KRR learning” that relies on nearest neighbor influence for
property prediction (Figure 6).

Spin splitting energies are well predicted by KRR with RAC-155, outperforming our
previous MCDL-25 representation but at the initial cost of an order-of-magnitude increase (from
25 to 155) in feature space dimension. We thus apply feature selection techniques (Sec. 2¢) to
identify if AC subsets maintain predictive capability with smaller feature space size. Starting
with Type 3 shrinkage methods we have previously employed=, we carried out feature selection
with an elastic net. Comparable CV scores were obtained for all a, and so we chose oo =1 (i.e.,
LASSO) (Supporting Information Figure S8). LASSO retained 28 features, eliminating over
80% of the features in RAC-155 with a 0.2 kcal/mol decrease in test RMSE and the best overall,
sub-kcal/mol MUE (Table 2 and Supporting Information Table S11). PCA on LASSO-28 reveals
even weaker size dependence than RAC-155 and closer pisc and misc species in PC space
(Figure 6).

Table 2. Train and test set KRR model prediction errors (RMSE for train/test and MUE for
test) for spin-splitting energy (in kcal/mol) for RAC-155 and down-selected subsets based on
spin-splitting data using LASSO, univariate filters (UV), recursive feature elimination (RFE)
based on MLR, and random forest (randF). The last results presented for comparison are the

common feature subset (RAC-12), a proximal-only subset (PROX-23) of RAC-155, and the full
RAC-155.

Feature set train test
RMSE RMSE MUE
(kcal/mol) (kcal/mol) (kcal/mol)
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LASSO-28 0.60 1.65 0.96

UV-86 0.43 1.78 0.99
RFE-43 0.41 2.50 1.20
randF-41 0.40 1.87 1.01
randF-26 1.18 2.12 1.28
RAC-12 1.31 2.90 1.86
PROX-23 5.43 6.03 3.70
RAC-155 0.55 1.80 1.00

Type 1 feature selection with UV filters (p <= 0.05) retains 86 features (UV-86,
Supporting Information Table S12) and comparable performance to RAC-155, suggesting
elimination of descriptors that have weak univariate correlation does not reduce KRR accuracy
(Table 2 and Supporting Information Figure S9). Type 3 RFE with an embedded MLR model
produces a flat CV error, with an absolute CV minimum at 43 retained features (i.e., RFE-43,
Supporting Information Table S13 and Figure S10). The RFE-43 KRR model shows 0.5
kcal/mol and 0.2 kcal/mol worsened test RMSE and MUE, respectively, compared to RAC-155.
Improved performance could possibly be obtained with a higher fidelity embedded model but at
the cost of prohibitive computational time for feature selection (see Sec. 2¢).

In addition to LASSO, we also employed the Type 3 random forest (randF) model, which
has a suggested 1% MSE cutoff for feature selection, and by varying this cutoff we can vary
feature set size. The standard 1% cutoff with random forest selects 41 features (randF-41),
yielding KRR test RMSE/MUE within 0.1 kcal/mol of RAC-155 (Table 2 and Supporting
Information Figure S11 and Table S14). We also truncate at 2% randF MSE to retain only 26
variables (randF-26), favorably reducing the feature space but slightly worsening test MUE
relative to randF-41 or LASSO-28 by 0.2-0.3 kcal/mol, with other cutoffs yielding no KRR test
error improvement (Table 2 and Supporting Information Tables S15-S16). In addition to average
errors, error distributions are symmetric, and maximum errors track with RMSE/MUE: LASSO-
28 yields the smallest (< 9 kcal/mol) maximum error (Supporting Information Figure S12).

The best-performing LASSO-28 set contains some features equivalent to those in

MCDL-25: i) LASSO-28 "' x', and [ x'y are similar to MCDL-25 Ay, ii) LASSO-28 /S,
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mZ, . and L%, encode the size and identity of the ligand connecting atoms also present in

MCDL-25, and iii) metal-identity, which was a discrete variable in MCDL-25, is represented by

"2, and " o in LASSO-28. Our new difference-type RACs are well-represented (10 of 28 in

LASSO-28), and only 5 of 28 are whole-ligand(4, e.g., a‘)fl3) or whole-complex (1, ai X,). Thus,

mc, Ic, and difference-derived RACs, all motivated by our prior observations of inorganic
chemistry, are key to high accuracy predictions.

It is useful to understand the effect of feature selection method choice by identifying the
number of common features among the three best-performing selected feature sets, LASSO-28,
UV-86, and randF-41 (Figure 7). Only 12 features are common to the three subsets, which we
designate RAC-12 (Supporting Information Table S17). In RAC-12, 7 of the retained descriptors
are proximal, and 5 of 12 descriptors incorporate % or Ay. All four of the retained distal
properties in RAC-12 (e.g., , x',, d=1,2,3 and ;’;,CS ') are of the newly introduced difference-
derived AC type. A KRR model trained on RAC-12 produces test set RMSE and MUE 1.1 and
0.9 kcal/mol above the 13x larger RAC-155 but still significantly lower than the twice as large
MCDL-25 (see Tables 1 and 2). Broadly, two thirds of all features are selected by at least one of
the three best feature selection methods (Figure 7). Over 80% of the descriptors in randF-41 are
also found in the larger UV-86, but fewer (31% of randF-41) are present in the smaller LASSO-
28. Unique descriptors in randF-41 are mc-type, whereas unique LASSO-28 descriptors are non-

local 2-depth or 3-depth standard ACs on ligands.
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Figure 7. Venn diagram showing common descriptors among the three best performing subsets
of RAC-155 returned by feature selection algorithms: UV-86, LASSO-28, and randF-41. A total
of 12 common variables are found among all three sets, and other numbers refer to unique or
common variables between sets. Example features are indicated, colored by classification
(proximal in red, middle in green, and distal in blue).

We further classify the degree of locality in each feature set, as designated by the bond-
wise path-length scales of information in the descriptors (i.e., proximal, middle, and distal,

defined in Sec. 2b). We quantify the fraction of descriptors corresponding to each category in a

feature set, e.g. the proximal fraction:

num. of proximal RACs+2
num. RACs+2

frac(proximal) =

(10)

where the denominator only contains the RACs that can be assigned to proximal (the two ligand
denticity variables are also included here), middle, or distal portions of the molecule, not
oxidation state or HF exchange. Relative to RAC-155, all feature selection methods increase the
proximal fraction, and we observe lowest MUEs in subsets with higher proximal fractions, i.e.,
over 0.3 in the best-performing LASSO-28 or in randF-41 and increased to nearly 0.5 when a
higher MSE cutoff is used in random forest (i.e., randF-26, Figure 8). The higher-dimensional
Type 1 UV-86 subset and Type 2 RFE-43 subset possess the most similar distributions to RAC-
155 with still good performance likely due to relatively large feature set size (Figure 8). Modest

feature space dimension (< 30) always gives higher proximal fraction than larger subsets.
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Figure 8. Fraction of selected descriptors that are proximal (red), middle (green) or distal
(blue), as defined in the main text and depicted in Fig. 3 compared against RAC-155 reference
fractions (dark red proximal fraction and green middle fraction as horizontal lines) along with
their performance for spin-splitting prediction with KRR. The normalized relative test set spin-
splitting MUE from a KRR model is shown in dark grey for each set, and the lowest test MUE is
indicated with an asterisk. Sets are sorted left to right in decreasing distal fraction: RFE with
MLR (RFE43); UV filter (UV86); LASSO (LLS28), random forest with 1% (rF41) or 2% cutoff
(rF26), common set (C12), and proximal-only (Prx23). HF exchange and oxidation state are not
shown but are used in all models.

Given the high fraction of retained proximal descriptors in randF-26 and RAC-12, we
also tested the suitability of a full proximal-only set of RACs and denticity variables along with
oxidation state and HF exchange (PROX-23) for KRR model training (Supporting Information
Table S18). This PROX-23 KRR model is the worst performing of all KRR models, including
MCDL-25, with test RMSE and MUE of 6.0 and 3.7 kcal/mol, emphasizing the importance of
beyond-proximal information present in both MCDL-25 and the feature sets selected in this work

(Table 2). The superior performance of the LASSO-28 subset over the similarly-sized randF-26

also highlights the importance of second-shell and global descriptors, as 78% of the 18 features
present in LASSO-28 that are absent from randF-26 are distal (e.g., ", x';, ef x',, and f;T3)

Comparing randF-26 to the larger randF-41 set, which has a 0.3 kcal/mol lower test MUE, we
observe that 12 of the 15 features present in randF-41 but omitted in randF-26 are distal.
4b. Descriptor Transferability to Bond Length Prediction.

A key advantage of our geometry-free RACs is that they enable bond length prediction»
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to facilitate accurate structure generation~. We first evaluate the predictive performance of our
full AC set (RAC-155), the proximal subset (PROX-23), and spin-state splitting-selected feature
sets (LASSO-28, randF-41, and randF-26) as well as the common subset (RAC-12) for training
KRR models on minimum low-spin metal-ligand bond lengths (i.e., min(R)) in the low-spin,
DFT geometry-optimized structures of complexes in the spin-splitting data set. If the complex is
homoleptic and symmetric, there is only a single metal-ligand bond length in the low-spin
complex that corresponds exactly to min(R,), otherwise we take the minimum of the equatorial or
axial metal-ligand bond length in order to predict a single property, as in previous work=. Except
for PROX-23, all feature subsets yield RMSEs and MUEs around 1.4 and 0.5 and pm (i.e.,0.014
A and 0.005 A), respectively, with RAC-12 performing nearly as well (test RMSE: 1.6 pm,
MUE: 0.6 pm) (Table 3). The overall best RMSE performance is observed for LASSO-28, better
than for RAC-155, and all subsets have very slightly degraded (i.e., 0.05 pm worse) MUE
performance compared to RAC-155 (Table 3). The PROX-23 set yields 2-3x larger errors (test
RMSE: 2.7 pm and MUE: 1.8 pm), which is significantly worse than the smaller common set
(RAC-12), indicating the critical importance of middle and distal features (Figure 9).
Nevertheless, nearly all feature sets yield better prediction with a KRR model than our prior,
proximally-weighted MCDL-25 set (neural network test RMSE: 2 pm).»

Table 3. Train and test set KRR model prediction errors (RMSE for train/test and MUE for
test) for minimum low-spin bond length (in pm) for down-selected subsets of RAC-155 using
LASSO and random forest (randF) on bond length data (denoted with suffix “B”’) shown first, as
well as original spin-splitting feature sets (LASSO-28, randF-41, and randF-26), shown next.
The randF-49B contains manually added HF exchange, which is excluded from automatically

selected randF-48B. The last results presented for comparison are the common feature subset
(RAC-12), a proximal-only subset (PROX-23) of RAC-155, and the full RAC-155.

Feature set train test
RMSE RMSE MUE

(pm) (pm) (pm)

LASSO-83B 0.15 1.33 0.42
randF-48B 1.25 2.06 1.21
randF-49B 0.18 1.34 0.45
LASSO-28 0.12 1.28 047
randF-41 0.16 1.38 0.47
randF-26 0.20 1.37 048
RAC-12 0.16 1.62 0.59
PROX-23 2.37 2.67 1.76
RAC-155 0.16 1.33 0.42
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Figure 9. Fraction of selected descriptors that are proximal (red), middle (green) or distal
(blue), as defined in the main text and depicted in Fig. 3 compared against RAC-155 reference
fractions (dark red proximal fraction and green middle fraction as horizontal lines) along with
their performance for low-spin bond length prediction with KRR. The normalized relative test set
bond length MUE from a KRR model is shown in dark grey for each set, and the lowest test
MUE is indicated with an asterisk. Sets are sorted left to right in decreasing distal fraction:
LASSO on bond length (LS83B) or on spin-splitting data (LS28); random forest on spin-splitting
(1%, tF41), on bond length data (1%, rF49B), higher cutoff on spin-splitting (or 2%, rF26); the
spin-splitting-derived common set (C12); and proximal-only (Prx23). HF exchange and
oxidation state are not shown but are used in all models.

We also carried out feature selection on the bond length data with LASSO and random
forest to obtain new feature sets (denoted with a “B” suffix). With bond length data, LASSO and
random forest retain larger feature sets of 83 and 48 RACs, respectively (LASSO-83B and
randF-48B in Table 3, and Supporting Information Tables S19-S20 and Figures S13-S14). In
KRR model training, LASSO-83B performs exactly the same as RAC-155 with half the features,
whereas randF-48B has 2-3x larger errors (test RMSE: 2.1 pm, MUE: 1.2 pm). This degraded
randF-48B performance occurs because HF exchange has been dropped at the 1% MSE random
forest cutoff, producing a discontinuous jump in kernel hyperparameters (Table 3 and Supporting
Information Table S4 and Figure S14). The indirect effect of HF exchange on bond length within
a single complex is apparent”, but across a wide data set of complexes, the role of HF exchange
in bond length data is more easily missed by random forest than in the case of spin splitting.

Manually adding HF exchange to the feature set (randF-49B) makes this set perform comparably

in KRR model training to the other feature subsets (Table 3).
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Comparison of random forest feature sets selected on bond lengths (randF-49B) and on
spin splitting (randF-41) reveals differences in the underlying structure-property relationships.
Both sets have 34 features in common, with an increased proximal fraction relative to RAC-155,
but there is a slight bias toward middle features for the bond-length selected set (15 middle in
randF-49B instead of 9 in randF-41) (Figure 9). The 15 unique features present in randF-49B but

absent from randF-41 are weighted toward topological, size-derived effects with 5 T-type (e.g.,

"), 2 I-type (e.g., afl 1), and 4 S-type (e.g., EZSO) RAC:s. Conversely, four of the seven features

in randF-41 but absent from randF-49B are middle/distal and x-/Z-type (e.g., ,,Z'sand x").

Comparable KRR bond length prediction accuracy with both feature sets is due to similar data
clustering: the ten nearest complexes to Fe(III)(pisc), are largely unchanged between randF-49B
and randF-41, but would differ substantially for RAC-12 and PROX-23 (Supporting Information
Table S21). Thus evaluation of random forest feature set selection reveals structure-property-
error relationships that may not be apparent from evaluating KRR model errors alone.

4c. Descriptor Transferability to Redox Data.

We now test the transferability of RAC descriptor sets to our redox data set for the
prediction of M(II/III) gas phase ionization potentials (IPs) and aqueous redox potentials (see
Figure 5). Here, all calculations are with B3LYP (20% exchange), and the oxidation state is no
longer a fixed variable. Therefore, all feature sets have two fewer variables, but we retain the
sets’ original names. It might be expected that direct gas phase IPs are easier to learn than redox
potentials, which incorporate composite and potentially opposing solvent and thermodynamic
effects. However, we observe qualitatively similar KRR model performance and feature
selection trends, and we thus summarize gas phase IP results briefly (Supporting Information
Text S4, Tables S22-24, and Figures S15-S16). After removal of a single outlier molecule, RAC-
155 yields test set RMSE and MUE values of 0.46 and 0.35 eV, respectively, or a 3% or 2%
error relative to the 14.4 eV data set mean, and spin-splitting-selected subsets randF-41 or

LASSO-28 produce the next lowest but slightly larger errors (Supporting Information Table S24
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and Figures S17-S19).

Redox potentials (i.e., including thermodynamic and aqueous implicit solvent
corrections) in the full redox data set range from 3.3 to 10.4 eV with a mean of 6.7 eV, and the
gas phase IP outlier is not a redox potential outlier (Supporting Information Figure S18). The full
RAC-155 set produces lower absolute errors with respect to gas phase IP (test: RMSE 0.40 eV,
6% error and MUE: 0.32 eV, 5% error) but higher relative errors due to the lower data set mean
(Table 4). Feature selection on redox potentials from the redox data set retains 19 variables with
LASSO (LASSO-19G), comparable to the size selected on gas phase IP but smaller than feature
sets selected by LASSO on spin-splitting or bond length (Supporting Information Figure S20 and
Table S25). LASSO-19G improves very slightly over RAC-155 (test RMSE: 0.38 eV and MUE:
0.31 eV), despite being 12% of the size of the full set (Table 4). Random forest on redox
potential retains 38 features (randF-38G), improving over both LASSO-19G and RAC-155 (test
RMSE: 0.31 eV, 5% error and MUE: 0.26 eV, 4% error) (Table 4 and Supporting Information
Figure S21 and Table S26). Thus, comparable or reduced absolute errors and only slightly
increased relative errors indicates that the combination of ionization potential, solvent, and
thermodynamic corrections is only slightly more challenging to capture than IP alone.

Table 4. Train and test set KRR model prediction errors (RMSE for train/test and MUE for
test) for redox potential (in eV) for down-selected subsets of RAC-155 using LASSO and
random forest (randF) on redox data (denoted with suffix “G”) shown first, as well as original
spin-splitting feature sets (LASSO-28, randF-41, and randF-26), shown next. The last results

presented for comparison are the common feature subset (RAC-12) from all methods, a
proximal-only subset (PROX-23) of RAC-155, and the full RAC-155.

Feature set train test
RMSE RMSE MUE
(eV) (eV) (eV)

LASSO-19G  0.17 0.38  0.31
randF-38G 0.16 0.33 0.26
LASSO-28 0.10 046  0.35

randF-41 0.32 0.31 0.26
randF-26 0.35 029 0.23
RAC-12 0.38 0.37 0.32
PROX-23 0.87 0.91 0.78
RAC-155 0.17 040 0.32

Evaluating the spin-splitting-selected feature subsets (LASSO-28, randF-41, and randF-
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26) and the common set (RAC-12) on the redox data set for redox potential prediction produces
some of the lowest test errors of all sets (Table 4). The spin-splitting-selected randF-26 performs
best (test RMSE: 0.29 eV, 4% error and MUE: 0.23 eV, 3% error), with the larger randF-41
performing nearly as well, whereas LASSO-28 has larger errors (e.g., test MUE of 0.35 eV)
more comparable to RAC-155. The RAC-12 set exhibits its best relative performance for any
property prediction so far (test RMSE: 0.37 eV and MUE: 0.32 eV), equivalent to the 13x larger
full RAC-155 and substantially better than the proximal-only PROX-23 (test MUE: 0.78 eV,
Table 4). The better performance of spin-splitting-selected sets on redox data could be due to 1)
the larger, more diverse data in the spin-splitting training set or ii) that our redox calculation
implicitly requires knowledge of spin, as the redox potential is always evaluated from the ground
state of the reduced species. However, separate prediction of high- or low-spin redox potentials
yields similar accuracy, suggesting combined ground state and redox potential prediction does
not increasing the difficulty of the learning task (Supporting Information Table S27).

Within the redox potential prediction subsets, a relationship between the prediction
accuracy and fraction of descriptor type (i.e., proximal vs. distal) is less clear than for spin
splitting or bond length (Figure 10). Simultaneously comparing locality and test set MUE across
feature sets shows comparable performance for i) randF-38G with a proximal fraction below that
of RAC-155, ii) the relatively high proximal and middle fractions in randF-26, and iii) and even
relatively good performance in the RAC-12 minimal, proximal-heavy subset (Figure 10).

Comparing the poorer performing spin-splitting-selected LASSO-28 to the redox-selected

LASSO-19G reveals missing middle/distal S- or I-type RACs (e.g., , “1 ks ') in the former.

eq”3° axleq
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Figure 10. Fraction of selected descriptors that are proximal (red), middle (green) or distal
(blue), as defined in the main text and depicted in Fig. 3 compared against RAC-155 reference
fractions (dark red proximal fraction and green middle fraction as horizontal lines) along with
their performance for redox potential prediction with KRR. The normalized relative test set
redox potential MUE from a KRR model is shown in dark grey for each set, and the lowest test
MUE is indicated with an asterisk. Sets are sorted left to right in decreasing distal fraction:
random forest on redox potential (rF38G); LASSO on redox potential (LS19G) or spin-splitting
(LS28); random forest on spin-splitting (1%, rF41 or 2%, rF26); spin-splitting common set
(C12); and proximal-only (Prx23). HF exchange and oxidation state are not used in any models.

Examining descriptors in the better-performing, redox-selected randF-38G that are absent

from similarly-sized spin-splitting-selected randF-41 reveals 10 T-type and 3 I-type RACs, seven

Ic 3-depth RACs, and two whole-ligand e{; X, and S X, RAC:s, indicating a preference for whole-

eq
complex-derived, and, in particular, connectivity information, consistent with observations of the

importance of whole-ligand RACs in redox potentials”. Comparing instead the 17 common

features in randF-38G and randF-41 reveals mostly mc RACs (e.g., /,/Z, and ") %' ,) similar to

the metal and connecting atom information in MCDL-25=.
4d. Overall Comparison of Best Descriptor Subsets.

Overall, Type 3 LASSO or random forest methods have provided the best price-
performance trade-off for feature selection in KRR model training of transition metal complex
properties on the data sets studied in this work. Although LASSO-28 produced the lowest KRR
model test MUE of 0.96 kcal/mol, randF-41 (1% cutoff) and randF-26 (2% cutoff) produce
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similarly good 1.01-1.28 kcal/mol test MUEs on the spin-splitting data set and demonstrate
somewhat better transferability to redox potential prediction on the redox data set. All three of
these subsets are accurate for low-spin bond length prediction, with 1.3-1.4 pm test RMSE and
0.5 pm MUE that is only slightly worse relative to larger, bond-length-selected feature sets,
randF-49B or LASSO-83B. The best redox potential prediction performance is achieved not with
redox-selected randF-38G (test MUE: 0.26 eV), LASSO-19G (test MUE: 0.31 eV), or even the
full RAC-155 (test MUE: 0.33 eV), but with the smaller spin-splitting selected randF-26 (test
MUE: 0.23 eV). As an overall recommendation, we thus would select randF-26 for broad spin-
splitting, bond length, and gas phase IP/redox potential prediction or LASSO-28 for only spin-

splitting and bond length prediction.

To explore how feature space topology differs when using spin-splitting-selected features
(randF-26 or randF-41) versus redox-selected features (randF-38G), we consider the example of
Fe(II/IIT) complexes with triazolyl-pyridine ligands from the redox data set. In two cases, these
homoleptic, bidentate complexes have a methyl group on the carbon adjacent to pyridinyl
nitrogen (ligand 9, E°= 6.1 eV and ligand 23, E°= 6.0 ¢V), but in one case the methyl group is in
the meta position with respect to the metal-coordinating pyridinyl nitrogen (ligand 8 with E° =
5.5 eV) (Supporting Information Figure S22). Ligands 8 and 9 contain a 1,2,3-triazole, whereas
ligand 23 contains 1,2,4-triazole. Within randF-26 and randF-41, the high fraction of proximal or
middle mc descriptors emphasizes differences between 1,2,3-triazole and 1,2,4-triazole rather
than capturing the importance of the ligand-connecting atom adjacent methyl group. The
additional distal 7-, I- and S-type descriptors in randF-38G increase the relative importance of
the metal-adjacent methyl groups over the order of ring substituents, correctly identifying the
nearest neighbor of the ligand 9 complex as the ligand 23 complex (Supporting Information Text
S5).

Although we have identified a feature set that is transferable across multiple properties
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when paired with a KRR model, there are still noteworthy differences in optimal feature sets
obtained from random forest (i.e., spin-splitting randF-26/41, bond-length randF-49B, and redox
randF-38G) that can inform our understanding of the degree of locality and nature of features
needed for differing property prediction. To simplify this analysis, we classify x- and Z-derived
RACs as electronic and S-, I-, and T- as topological (Figure 11). We confirm our earlier
observations® of locality, especially in spin-splitting with randF-26/41: randF-49B and randF-

38G both have more non-local (to the metal) and topological descriptors than randF-26/41.

O
spin splitting
randF-26

spin splitting
randF-41

bond length

redox potential
randF-49B

randF-38G

Figure 11. Schematic of relative proximity and electronic (blue) or topological (yellow) of
feature sets on an iron-porphyrin complex. Feature sets are designated by their training data: spin
splitting (randF-41 and randF-26, top), bond length (randF-49B, bottom left), and redox potential
(randF-38G, bottom right). Atom sizes are scaled relative to the number of descriptor dimensions
involving that atom (divided into first shell, second shell and other), scaled, with iron kept the
same size in all sets. The color bar and absolute percentages of electronic and topological
descriptors, as defined in the main text, is shown in inset right.

For direct ligand connection atoms, 80% of the descriptors are electronic for randF-26/41,
but only 52% are electronic for randF-49B and 50% for randF-38G, which reflects the inclusion
of additional first-shell 7- and I-based RACs (Figure 11). Moving to the second shell shows
increased topological fraction across all feature sets while preserving the first shell trends, with

second shell descriptors around 65% electronic for the spin-splitting-selected randF-26/41 but
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only 40% electronic for randF-38G. LASSO-28 has an even stronger electronic, proximal bias
than randF-26, possibly explaining its poorer performance for redox potential prediction
(Supporting Information Figure S23). These observations suggest that overall ligand shape and
size are more useful for prediction of redox potentials and bond lengths compared to spin
splitting within the random forest model. These locality measures also highlight the features to
be varied when collecting additional data in future work to enlarge the size of our redox data set
and reach smaller ML prediction errors (e.g., 0.1 eV MUE) that would be beneficial for
screening and discovery.

Inorganic chemical similarity is less well established than equivalent concepts in organic
chemistry, so proximity of inorganic complexes in descriptor space can provide valuable
chemical insight. Princpal component analysis in the randF-38G feature set of the redox data set
reveals simple, intuitive relationships between homoleptic complexes as well as the heteroleptic
complexes that arise from interchanging ligands to convert between homoleptic data points
(Figure 12). The homoleptic Fe(II/II) strong-field methylisocyanide complex with a carbon
connecting atom is distant in the redox PCA space from either weaker field furan (oxygen
connecting atom) or pyridine (nitrogen connecting atom) ligands. The higher relative distance
between carbon and oxygen connecting-atom ligands is also consistent with our expectations
about ligand field effects (Figure 12). The heteroleptic complexes that are formed by substituting
select axial or equatorial ligands in any of these homoleptic complexes fall in the PCA space on
the straight lines that connect between these complexes. Thus, analysis of complex distances in
the descriptor space represented by the randF-38G feature set reveals intuitive relationships
between inorganic complexes. In addition to machine learning property prediction, such feature
sets then provide a path to mapping inorganic chemical space and identifying regions to study in

order to identify new complexes similar to known complexes with desired properties.
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PC2

Figure S12. Simplified principal component analysis for the redox data set using the randF-
38G feature set. The color map indicates redox potential (in eV, as indicated in inset color bar),
and the contours represent data density (increasing from gray to black). Representative Fe(II/I1I)
redox couples are indicated with triangles, colored according the atomic identity of metal-
coordinating atoms: nitrogen (blue), oxygen (red), and carbon (gray). Three reference
homoleptic Fe complexes, pyridine, methylisocyanide, and furan, are indicated with inset ball
and stick structures; these structures form the vertices of a triangle in the PCA space (solid black
lines). Computed heteroleptic combinations colored according to the mixing of ligand identities
in the PCA space fall along the legs of the triangle, and the location of Fe(furan).(misc). is
indicated with an arrow and inset.
5. Conclusions

We have introduced a new series of revised autocorrelation (RACs) descriptors for
machine learning of quantum chemical properties that extend prior ACs to incorporate modified
starting points, scope over the molecule of interest, and incorporate differences of atomic
properties. We first demonstrated superior performance of standard ACs on a large organic
molecule test set, both showing the best yet performance for atomization energies based only on
topological information, particularly when maximum topological distances were truncated at a
modest maximum 3-bond distance.

We confirmed transferability of RACs from organic to inorganic chemistry with KRR
model test set MUEs for the full RAC-155 set of 1 kcal/mol, in comparison to 15-20x larger

errors from Coulomb-matrix-derived descriptors and 2-3x larger with our prior MCDL-25 set.

We attribute this improvement to overestimation of size-dependence in CM descriptors and
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underestimation of distal effects in MCDL-25. LASSO or random forest feature selection yielded
smaller subsets (LASSO-28 and randF-41, respectively) with improved or comparable sub- to 1-
kcal/mol test MUEs. Restriction to a common set of descriptors identified by the three best
feature selection tools yielded half as large spin-splitting errors (test MUE: 1.9 kcal/mol)
compared to MCDL-25 with a still smaller 12 variable feature set. Both random forest as a
feature selection tool and the spin-splitting-selected randF-26 showed the best combined
transferability to bond length (0.005 A test MUE) and redox potential (0.23 eV test MUE).
Random forest applied directly on bond length selected more topological features than for
spin-splitting with equivalent locality bias. Selection based on redox potential data revealed
redox potential to be both more non-local and more topological in nature than spin-splitting or
bond lengths. However, invariant data-clustering within the trained KRR model means that no
improvement in KRR test errors was observed with redox-selected features for redox potentials
and only modest improvement using bond-length selected features for bond length prediction.
Overall, this work provides both a prescription for machine learning models capable of making
accurate predictions of inorganic complex quantum-mechanical properties and provides insight

into locality in transition metal chemistry structure-property relationships.
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