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Abstract: In this paper, we show the equivalence between two seemingly distinct 2d
TQFTs: one comes from the “Coulomb branch index” of the class S theory T [�,G]
on L(k, 1) × S1, the other is the LG “equivariant Verlinde formula”, or equivalently
partition function of LGC complex Chern–Simons theory on� × S1. We first derive this
equivalence using the M-theory geometry and show that the gauge groups appearing on
the two sides are naturallyG and itsLanglands dual LG.WhenG is not simply-connected,
we provide a recipe of computing the index of T [�,G] as summation over the indices of
T [�, ˜G] with non-trivial background ’t Hooft fluxes, where ˜G is the universal cover of
G. Thenwe check explicitly this relation between the Coulomb index and the equivariant
Verlinde formula for G = SU (2) or SO(3). In the end, as an application of this newly
found relation, we consider the more general case where G is SU (N ) or PSU (N ) and
show that equivariant Verlinde algebra can be derived using field theory via (generalized)
Argyres–Seiberg duality. We also attach a Mathematica notebook that can be used to
compute the SU (3) equivariant Verlinde coefficients.
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1. Introduction

The complex Chern–Simons theory was studied by embedding it into string theory in
[1], and the starting point is the following configuration of M-theory fivebranes that is
often used to study the 3d–3d correspondence [2–6]:

space-time: L(k, 1)b × T ∗M3 × R
2

∪
N fivebranes: L(k, 1)b × M3.

(1.1)

If one reduces along the squashed Lens space L(k, 1)b, one obtains complex Chern–
Simons theory at level k on M3 [7]. Even in the simple case where M3 is the product
of a Riemann surface � with a circle S1, this system is extremely interesting and can
be used to gain a lot of insight into complex Chern–Simons theory. For example, the
partition function of the 6d (2, 0)-theory on this geometry gives the “equivariant Verlinde
formula”, which can be identified with the dimension of the Hilbert space of the complex
Chern–Simons theory at level k on �:

ZM5(L(k, 1) × � × S1, β) = dimβ HCS(�, k). (1.2)

Here β is an “equivariant parameter” associated with a geometric U (1)β action whose
precise definition will be reviewed in Sect. 2. The left-hand side of (1.2) has been
computed in several ways in [1,8], each gives unique insight into the equivariant Verlinde
formula, the complex Chern–Simons theory and the 3d–3d correspondence in general.
In this paper, we will add to the list yet another method of computing the partition of
the system of M5-branes by relating it to superconformal indices of class S theories.

The starting point is the following observation. For M3 = � × S1, the setup (1.1)
looks like:

N fivebranes: L(k, 1)b × � × S1

∩
space-time: L(k, 1)b × T ∗� × S1 × R

3
(1.3)

and it is already very reminiscent of the setting of Lens space superconformal indices
of class S theories [9–13]:



Equivariant Verlinde Algebra from Superconformal Index 1217

N fivebranes: L(k, 1) × S1 × �

∩
space-time: L(k, 1) × S1 × T ∗� × R

3

� � �
symmetries: SO(4)E U (1)N SU (2)R

. (1.4)

In this geometry, one can turn on holonomies of the symmetries along the S1 circle
in a supersymmetric way and introduce three “universal fugacities” (p, q, t). Then the
partition function ofM5-branes in this geometry is the Lens space superconformal index
of the 4d N = 2 theory T [�] of class S:

ZM5(L(k, 1) × S1 × �, p, q, t) = I(T [�], p, q, t), (1.5)

where we have adopted the following convention for the index1

I(p, q, t) = Tr(−1)F p
1
2 δ1+q

1
2 δ1− t R+r e−β ′′

˜δ1−̇ . (1.6)

As the left-hand sides of (1.2) and (1.5) are closely related, it is very tempting to ask
whether the equivariant Verlinde formula for a Riemann surface �, parametrized by
β ∈ R, can actually be embedded as a one-parameter family inside the three-parameter
space of superconformal indices of the theory T [�]. The goal of this paper is to give
strong evidence for the following proposal

Equivariant Verlinde formula

at level k on � for group G
= Coulomb branch index

of T [�,LG] on L(k, 1) × S1
, (1.7)

where the Coulomb branch index is the one-parameter family obtained by taking
p, q, t → 0 while keeping t = pq/t fixed.

To clarify the proposed relation (1.7), we first give a few remarks:

1. When we fixed �, G and k ∈ Z, both sides depend on a real parameter and the
identification between them is given by t = e−β .

2. We will assume g = LieG is of type ADE (modulo possible abelian factors), as
T [�,LG], with LG being the Langlands dual group of G, is not yet defined in the
literature when g is not simply-laced. Then we have g =L g.

3. WhenG is simple but not simply-connected, the left-hand side of (1.7) is only defined
when k annihilates π1(G) (under the natural Z-action on this abelian group), and the
proposal is meant for these values of k.

4. When LG is simple but not simply-connected, the theory T [�,LG] is not yet defined.
Denote the universal cover of LG (which equals the universal cover of G as g is of
type ADE) as ˜G. We will interpret the Coulomb index of T [�,LG] as a summation
of indices of T [�, ˜G] with insertion of all possible ’t Hooft fluxes valued in π1(

LG).
The insertion is along the 2d surface S1 × S1Hopf ⊂ S1 × L(k, 1), where S1Hopf is the

Hopf fiber of the Lens space L(k, 1).2 Wewill give a concrete argument in Sect. 2.2.2
using string theory for the AN−1 series by starting with g = u(N ), and show that this
summation naturally arises when we decouple the abelian u(1) factor.

1 In the literature there are several other conventions in use. The other twomost commonly used conventions
for universal fugacities are (ρ, σ, τ ) which are related to our convention via p = στ, q = ρτ, t = τ2, and

(t, y, v) with t = σ
1
6 ρ

1
6 τ

1
3 , y = σ

1
2 ρ

− 1
2 , v = σ

2
3 ρ

2
3 τ

− 2
3 .

2 Another natural definition of the partition function of T [�,LG] is as the summation over only fluxes
valued in H2(L(k, 1), π1(LG)) = Zk ⊗ π1(

LG), which is a subgroup of π1(
LG). If one takes this as the

definition, then (1.7) is correct when k also annihilates π1(
LG).
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5. Conceptually, the reason why G appears on the left of (1.7) while LG appears on
the right can be understood as follows. The left-hand side of (1.7) can be viewed
as certain B-model partition function of the Hitchin moduli space MH (�,G) [14].
Mirror symmetry will produce the Hitchin moduli space associated with the dual
groupMH (�,LG) [15,16], and as we will argue in later sections, the corresponding
A-model partition function ofMH (�,LG) can be identified with the right-hand side
of (1.7).

To further illustrate (1.7), we will present the simplest example where k = 1 and G
is simply connected. The equivariant Verlinde formula can be obtained using the TQFT
structure studied in [17]

dimβ HCS(�,GC, k = 1) = |Z(G)|g
[

∏rank G
i=1 (1 − tdi )hi

]g−1 , (1.8)

where |Z(G)| is the order of the center of group G, di ’s are degrees of the fundamental
invariants of g = LieG, and hi ’s are the dimension of the space of di -differentials on
�. The reader may have already recognized that (1.8) is exactly the Coulomb branch
index of T [�,G] on L(k = 1, 1) = S3 times |Z(G)|g . As we will explain in great detail
later, the |Z(G)|g factor comes from summation over ’t Hooft fluxes, which are labeled
precisely by elements inZ(G) 
 π1(

LG). The g power morally originates from the fact
that there are g “independent gauge nodes” in the theory T [�,G] (i.e., one copy of G
for each handle of �). So (1.8) agrees with the Coulomb index of T [�,LG].

For k > 1, the relation (1.7) becomes more non-trivial, and each flux sector gives
generally a different contribution. Even if one sets t = 0, the identification of Verlinde
algebra with the algebra of allowed ’t Hooft fluxes in T [�,G] is novel.

This paper is organized as follows. In Sect. 2, we examine more closely the two
fivebranes systems (1.1) and (1.4), and give arguments supporting the relation (1.7)
between the equivariant Verlinde formula and the Coulomb branch index. In Sect. 3,
after reviewing basic facts and ingredients of the index, we verify our proposals by
reproducing the already known SU (2) equivariant Verlinde algebra from the Coulomb
branch indices of class S theories on the Lens space.Wewill see that after an appropriate
normalization, the TQFT algebras on both sides are exactly identical, and so are the
partition functions. In Sect. 4, we will use the proposed relation (1.7) to derive the
SU (3) equivariant Verlinde algebra from the index of T [�, SU (3)] computed via the
Argyres–Seiberg duality. Careful analysis of the results reveals interesting geometry of
the Hitchin moduli space MH (�, SU (3)).

2. Equivariant Verlinde Algebra and Coulomb Branch Index

One obvious difference between the two brane systems (1.1) and (1.4) is that the S1

factor appears on different sides of the correspondence. From the geometry of (1.1), one
would expect that

Equivariant Verlinde formula

at level k on �
= Partition function of

T [� × S1] on L(k, 1)
. (2.1)

In particular, there should be no dependence on the size of the S1, so it is more natural
to use “3d variables”:

t = eLβ−(b+b−1)L/r , p = e−bL/r , q = e−b−1L/r . (2.2)
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Here, L is the size of the S1 circle, b is the squashing parameter of L(k, 1)b, r measures
the size of the Seifert base S2, and β parametrizes the “canonical mass deformation” of
the 3d N = 4 theory (in our case T [� × S1]) into 3d N = 2. The latter is defined as
follows on flat space. The 3d N = 4 theory has R-symmetry SU (2)N × SU (2)R and
we can view it as a 3d N = 2 theory with the R-symmetry group being the diagonal
subgroup U (1)N+R ⊂ U (1)N × U (1)R with U (1)N and U (1)R being the Cartans of
SU (2)N and SU (2)R respectively. The difference U (1)N−R = U (1)N − U (1)R of the
original R-symmetry group is now a flavor symmetryU (1)β and we can weakly gauge it
to introduce real masses proportional to β. It is exactly how the “equivariant parameter”
in [1], denoted by the same letter β, is defined.3

In [1], it was observed that much could be learned about the brane system (1.1)
and the Hilbert space of complex Chern–Simons theory by preserving supersymmetry
along the Lens space L(k, 1) in a different way, namely by doing partial topological
twist instead of deforming the supersymmetry algebra. Geometrically, this corresponds
to combining the last R

3 factor in (1.3) with L(k, 1) to form T ∗L(k, 1) regarded as a
local Calabi-Yau 3-fold with L(k, 1)b being a special Lagrangian submanifold:

N fivebranes: L(k, 1)b × � × S1

∩ ∩
space-time: T ∗L(k, 1)b × T ∗� × S1

� �
symmetries: U (1)R U (1)N .

(2.3)

In this geometry, U (1)N acts by rotating the cotangent fiber of �, while U (1)R rotates
the cotangent fiber of the Seifert base S2 of the Lens space.4 This point of view enables
one to derive the equivariant Verlinde formula as it is now the partition function of the
supersymmetric theory T [L(k, 1), β] on � × S1.

Although the geometric setting (2.3) appears to be different from the original one
(1.1), there is substantial evidence that they are related. For example, the equivariant
Verlinde formula can be defined and computed on both sides and they agree. Namely,
the partition function in the twisted background (2.3) is given by the partition function
of T [L(k, 1)] on �, while the partition function under the background (1.1) is given by
an equivariant integral over the Hitchin moduli space, and they are proven to be equal
in [17]. Moreover, the modern viewpoint on supersymmetry in curved backgrounds is
that the deformed supersymmetry is an extension of topological twisting, see e.g. [18].
Therefore, one should expect that the equivariant Verlinde formula at level k could be
identified with a particular slice of the four-parameter family of 4d indices (k, p, q, t)
(or in 3d variables (k, β, b, r)). And this particular slice should have the property that
the index has no dependence on the geometry of L(k, 1)b. Since T [L(k, 1)] is derived
in the limit where L(k, 1) shrinks, one should naturally take the r → 0 limit for the
superconformal index. In terms of the 4d parameters, that corresponds to

p, q, t → 0. (2.4)

3 More precisely, the dimensionless combination βL is used. And from now on, we will rename βnew =
βoldL and rnew = rold/L to make all 3d variables dimensionless.

4 Note,U (1)N is always an isometry of the system whereas theU (1)R is only an isometry in certain limits
where the metric on L(k, 1) is singular (e.g.when L(k, 1) is viewed a small torus fibered over a long interval).
However, if we are only interested in questions that have no dependence on the metric on L(k, 1), we can
always assume the U (1)R symmetry to exist. For example, the theory T [L(k, 1)], or in general T [M3] for
any Seifert manifolds M3 should enjoy an extra flavor symmetry U (1)β = U (1)N −U (1)R .
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This is known as the Coulomb branch limit. In this particular limit, the only combination
of (k, p, q, t) independent of b and r that one could possibly construct is

t = pq

t
= e−β, (2.5)

and this is precisely the parameter used in the Coulomb branch index. Therefore, one
arrives at the following proposal:

Equivariant Verlinde formula

of U (N )k on �
= Coulomb branch index

of T [�,U (N )] on L(k, 1) × S1
. (2.6)

This relation should be more accurately viewed as the natural isomorphism between two
TQFT functors

ZEV = ZCB. (2.7)

At the level of partition function on a closed Riemann surface �, it is the equality
between the equivariant Verlinde formula and the Coulomb index of T [�]

ZEV(�) = ZCB(�). (2.8)

Going one dimension lower, we also have an isomorphism between the Hilbert spaces
of the two TQFTs on a circle:

HEV = ZEV(S1) = HCB = ZCB(S1). (2.9)

As these underlying vector spaces set the stages for any interesting TQFT algebra, the
equality above is the most fundamental and needs to be established first. We now show
how one can canonically identify the two seemingly different Hilbert spaces HEV and
HCB.

2.1. HEV versusHCB. In the equivariant Verlinde TQFT, operator-state correspondence
tells us that states inHEV are in one-to-one correspondence with local operators. Since
these local operators come from codimension-2 “monodromy defects” [19] (see also [20]
in the context of 3d–3d correspondence) in T [L(k, 1)] supported on the circle fibers of
� × S1, they are labeled by

a = diag{a1, a2, a3, . . . , aN } ∈ u(N ) (2.10)

together with a compatible choice of Levi subgroup L ⊂ U (N ). In the equivariant
Verlinde TQFT, one only needs to consider maximal defects with L = U (1)N as they
are enough to span the finite-dimensional HEV. The set of continuous parameters a is
acted upon by the affineWeyl groupWaff and therefore can be chosen to live in theWeyl
alcove:

1 > a1 ≥ a2 ≥ · · · ≥ aN ≥ 0. (2.11)

In the presence of a Chern–Simons term at level k, gauge invariance imposes the fol-
lowing integrality condition

e2π ik a = 1. (2.12)
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We can then define

h = ka (2.13)

whose elements are now integers in the range [0, k). The condition (2.12) is also the
condition for the adjoint orbit

Oh = {ghg−1|g ∈ U (N )} (2.14)

to be quantizable. Via the Borel–Weil–Bott theorem, quantizing Oh gives a representa-
tion of U (N ) labeled by a Young tableau �h = (h1, h2, . . . , hN ). So, we can also label
the states in HEV(S1) by representations of U (N ) or, more precisely, integrable repre-
sentations of the loop group of U (N ) at level k. In other words, the Hilbert space of
the equivariant Verlinde TQFT is the same as that of the usual Verlinde TQFT (better
known as the G/G gauged WZW model). This is, of course, what one expects as the
Verlinde algebra corresponds to the t = 0 limit of the equivariant Verlinde algebra, and
the effect of t is to modify the algebra structure without changing HEV. In particular,
the dimension of HEV is independent of the value of t.

One could also use the local operators from the dimensional reduction of Wilson
loops as the basis for HEV(S1). In pure Chern–Simons theory, the monodromy defects
are the same as Wilson loops. In T [L(k, 1), β] with β turned on, these two types of
defects are still linearly related by a transformation matrix, which is no longer diagonal.
One of the many reasons that we prefer the maximal monodromy defects is because,
under the correspondence, they are mapped to more familiar objects on the Coulomb
index side. To see this, we first notice that the following brane system

N fivebranes: L(k, 1)b × � × S1

∩
space-time: L(k, 1)b × T ∗� × S1 × R

3

∪
n × N “defect” fivebranes: L(k, 1)b × T ∗|pi � × S1

(2.15)

gives n maximal monodromy defects at (p1, p2, . . . , pn) ∈ �. If one first compactifies
the brane system above on �, one obtains the 4d N = 2 class S theory T [�g,n] on
L(k, 1)b × S1. This theory has flavor symmetry U (N )n and one can consider sectors
of the theory with non-trivial flavor holonomies {exp[ai ], i = 1, 2, . . . , n} of U (N )n

along the Hopf fiber. The L(k, 1)-Coulomb branch index of T [�g,n] depends only on
{ai , i = 1, 2, . . . , n} and therefore states in the Hilbert space HCB of the Coulomb
branch index TQFT associated to a puncture on � are labeled by a U (N ) holonomy
a. (Notice that, for other types of indices, the states are in general also labeled by a
continuous parameter corresponding to the holonomy along the S1 circle and the 2d
TQFT for them is in general infinite-dimensional). As the Hopf fiber is the generator of
π1(L(k, 1)) = Zk , one has

e2π ika = Id. (2.16)

This is exactly the same as the condition (2.12). In fact, we have even used the same
letter a in both equations, anticipating the connection between the two. What we have
found is the canonical way of identifying the two sets of basis vectors in the two Hilbert
spaces
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H⊗n
EV H⊗n

CB

∈ ∈

Monodromy defects on �g,n × S1

in GL(N , C)k complex Chern–Simons theory
= Flavor holonomy sectors

of T [�g,n × S1,U (N )] on L(k, 1)

.

(2.17)

And, of course, this relation is expected as both sides are labeled by flat connections
of the Chan-Paton bundle associated to the coincident N “defect” M5-branes in (2.15).
Using the relation (2.17), henceforth we identifyHEV and HCB.

2.2. The statement for a general group. The proposed relation (1.7) between theU (N )

equivariant Verlinde formula and the Coulomb branch index for T [�,U (N )] can be
generalized to other groups. First, one could consider decoupling the center of mass
degree of freedom for all coincident stacks of M5-branes. However, there are at least
two different ways of achieving this. Namely, one could get rid of the u(1) part of a by
either

1. subtracting the trace part from a:

aSU = a − 1

N
tr a, (2.18)

2. or forcing a to be traceless by imposing

aN = −
N−1
∑

i

ai (2.19)

to get

aPSU = diag

(

a1, a2, . . . , aN−1,−
N−1
∑

i

ai

)

. (2.20)

Naively, one may expect the two different approaches to be equivalent. However, as we
are considering Lens space index, the global structure of the group comes into play.
Indeed, the integrality condition (2.12) becomes different:

e2π ik·aSU ∈ ZN = Z(SU (N )) (2.21)

while

e2π ik·aPSU = 1 = Z(PSU (N )). (2.22)

Here PSU (N ) = SU (N )/ZN has trivial center but a non-trivial fundamental group.
As a consequence of having different integrality conditions, one can get either Verlinde
formula for SU (N ) or PSU (N ). In the first case, the claim is

Equivariant Verlinde formula

of SU (N )k on �
= Coulomb branch index

of T [�, PSU (N )] on L(k, 1) × S1
.

(2.23)

The meaning of T [�, PSU (N )] and the way to compute its Coulomb branch index will
be discussed shortly.On the other hand, if one employs the secondmethod to decouple the
U (1) factor, one finds a similar relation with the role of SU (N ) and PSU (N ) reversed:
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Equivariant Verlinde formula

of PSU (N )k on �
= Coulomb branch index

of T [�, SU (N )] on L(k, 1) × S1
. (2.24)

Before deriving these statements, we first remark that they are all compatible with (1.7)
for general G, which we record again below:

Equivariant Verlinde formula

of Gk on �
= Coulomb branch index

of T [�,LG] on L(k, 1) × S1
, (2.25)

since LU (N ) = U (N ) and L SU (N ) = PSU (N ). This general proposal also gives
a geometric/physical interpretation of the Coulomb index of T [�,G] on L(k, 1) by
relating it to the quantization of the Hitchin moduli spaceMH (�,LG). In fact, one can
make a even more general conjecture for all 4d N = 2 superconformal theories (not
necessarily of class S):

L(k, 1) Coulomb index

of a 4dN = 2 superconformal theory T
?= Graded dimension of Hilbert space

from quantization of (˜MT , kωI )
.

(2.26)

Here, ˜MT is the SYZmirror [21] of the Coulomb branchMT of T onR
3× S1. Indeed,

MT has the structure of a torus fibration:

T2d ↪→ MT
↓
B

. (2.27)

HereB is the d-(complex-)dimensional Coulomb branch of T onR
4, T2d is the 2d-torus

parametrized by the holomonies of the low energy U (1)d gauge group along the spatial
circle S1 and the expectation values of d dual photons. One can perform T-duality on
T2d to obtain the mirror manifold5 ˜MT

˜T2d ↪→ ˜MT
↓
B

. (2.28)

The dual torus˜T2d is a Kähler manifold equipped with a Kähler form ω, which extends
to ωI , one of the three Kähler forms (ωI , ωJ , ωK ) of the hyper-Kähler manifold ˜MT .
Part of the R-symmetry that corresponds to the U (1)N − U (1)R subgroup inside the
SU (2)R ×U (1)N R-symmetry group of T becomes a U (1)β symmetry of ˜MT .

Quantizing ˜MT with respect to the symplectic form kωI yields a Hilbert space
H(T , k). Because ˜MT is non-compact, the resulting Hilbert spaceH(T , k) is infinite-
dimensional. However, because the fixed point set ofU (1)β is compact and is contained
in the nilpotent cone (= the fiber of ˜MT at the origin of B), the following graded

5 In many cases, the mirror manifold ˜MT = MT ′ is also the 3d Coulomb branch of a theory T ′ obtained
by replacing the gauge group of T with its Langlands dual. One can easily see that T ′ obtained this way
always has same 4d Coulomb branch B as T .
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dimension is free of any divergences and can be computedwith the help of the equivariant
index theorem

dimβ H(T , k) =
∞
∑

m=0

tm dimHm(T , k) =
∫

˜MT
ch(L⊗k, β)∧Td(˜MT , β). (2.29)

Here t = e−β is identified with the parameter of the Coulomb branch index, L is a line
bundle whose curvature is ωI , and Hm(T , k) is the weight-m component of H(T , k)
with respect to the U (1)β action. In obtaining (2.29), we have used the identification
H(T , k) = H∗(˜MT ,L⊗k) from geometric quantization.6

Now let us give a heuristic argument for why (2.29) computes the Coulomb branch
index. TheLens space L(k, 1) can be viewed as a torus fibered over an interval. Following
[23–25] and [26], one can identify the Coulomb branch index with the partition function
of a topological A-model living on a strip, with MT as the target space. The boundary
condition at each end of the strip gives a certain brane inMT . One can then apply mirror
symmetry and turn the system into a B-model with ˜MT as the target space. Inside ˜MT ,
there are two branesB1 andB2 specifying the boundary conditions at the two endpoints
of the spatial interval. The partition function for this B-model computes the dimension
of the Hom-space between the two branes:

ZB-model = dimHom(B1,B2). (2.30)

Now B1 and B2 are objects in the derived category of coherent sheaves on M̃T and
the quantity above can be computed using the index theorem. The equivariant version is

ZB-model,β = dimβ Hom(B1,B2)

=
∫

˜MT
ch
(

B∗
1, β
)∧ch (B2, β) ∧Td(˜MT , β). (2.31)

We can choose the duality frame such that B1 = O is the structure sheaf. Then B2 is
obtained by acting T k ∈ SL(2, Z) on B1. A simple calculation shows B2 = L⊗k . So
the Coulomb branch index indeed equals (2.29), confirming the proposed relation (2.26)
(see also [27] for a test of this relation for many Argyres–Douglas theories).

2.2.1. SU (N ) versus PSU (N ) Now let us explain why (2.23) and (2.24) are expected.
Both orbits, OaSU and OaPSU , are quantizable and give rise to representations of su(N ).
However, as the integrality conditions are different, there is a crucial difference between
the two classes of representations that one can obtain from aSU and aPSU. Namely, one
can get all representations of SU (N )k fromOaSU but only representations7 of PSU (N )k
from OaPSU . This can be directly verified as follows.

For either aSU or aPSU, quantizing Oa gives a representation of SU (N ) with the
highest weight8

6 One expects the higher cohomology groups to vanish, since L is ample on each generic fiber ˜T2d . For
Hitchin moduli space, the vanishing of higher cohomology for L⊗k is proven in [17,22].

7 In our conventions, representations of PSU (N )k are those representations of SU (N )k invariant under the
action of the center. There exist different conventions in the literature and one is related to ours by k′ = �k/N�.
Strictly speaking, when N � k, the 3d Chern–Simons theory is not invariant under large gauge transformation
and doesn’t exist. Nonetheless, the 2d equivariant Verlinde algebra is still well defined andmatches the algebra
from the Coulomb index side.

8 Sometimes it is more convenient to use a different convention for the highest weight

�λ = (h1 − h2, h2 − h3, . . . , hN−1 − hN ) ≡ k · (a1 − a2, a2 − a3, . . . , aN−1 − aN ) (mod N ). (2.32)
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�μ = (h1 − hN , h2 − hN , . . . , hN−1 − hN )

≡ k(a1 − aN , a2 − aN , . . . , aN−1 − aN ) (mod N ). (2.33)

The corresponding Young tableau consists of N − 1 rows with hi − hN boxes in the
i-th row. The integrality condition (2.21) simply says that �μ is integral. With no other
constraints imposed, one can get all representations of SU (N ) from aSU. On the other
hand, the condition (2.22) requires the total number of boxes to be a multiple of N ,

N−1
∑

i=1

μi = N ·
N−1
∑

i=1

ai ≡ 0 (mod N ), (2.34)

restricting us to these representations of SU (N )where the centerZN acts trivially. These
are precisely the representations of PSU (N ).

What we have seen is that in the first way of decoupling U (1), one arrives at the
equivariant Verlinde algebra for SU (N )k , while the second option leads to the PSU (N )k
algebra. Then, what happens on the Lens space side?

2.2.2. T [�, SU (N )] versus T [�, PSU (N )] In the second approach of removing the
center, the flavor U (N )-bundles become well-defined SU (N )-bundles on L(k, 1) and
decoupling all the central U (1)’s on the Lens space side simply means computing the
Lens space Coulomb branch index of T [�, SU (N )]. So we arrive at the equivalence
(2.24) between PSU (N )k equivariant Verlinde algebra and the algebra of the Coulomb
index TQFT for SU (N ). On the other hand, in the first way of decoupling theU (1), the
integrality condition

e2π ik·a = 1 (2.35)

is not satisfied for aSU. And as in (2.21), the right-hand side can be an arbitrary element
in the center ZN of SU (N ). In other words, after using the first method of decoupling
the central U (1), the U (N )-bundle over L(k, 1) becomes a PSU (N ) = SU (N )/ZN -
bundle. Another way to see this is by noticing that for exp[2π ia] ∈ Z(SU (N )),

aSU = a − 1

N
tr a = 0. (2.36)

This tells us that the U (1) quotient done in this way has collapsed the ZN center of
U (N ), giving us not a well-defined SU (N )-bundle but a PSU (N )-bundle. Therefore,
it is very natural to give the name “T [�, PSU (N )]” to the resulting theory living on
L(k, 1) × S1, as the class S theory T [�,G] doesn’t currently have proper definition in
the literature if G is not simply-connected.

For a general group G, one natural definition of the path integral of T [�,G] on
L(k, 1)× S1 is as the path integral of T [�, ˜G]with summation over all possible ’t Hooft
fluxes labeled by π1(G) ⊂ Z(˜G) along L(k, 1), where ˜G is the universal cover of G
(see e.g. [28, Section 4.1] for nice explanation from the 6d viewpoint). This amounts
to summing over different topological types of G-bundles over L(k, 1), classified by
H2(L(k, 1), π1(G)) = π1(G) ⊗ Zk .

Although this is a valid definition, it is not the right one for (1.7) to work for general
k. This is clear from the quantization condition (2.21), which tells us that, in order to get
the SU (N ) Verlinde algebra, the Lens index of T [�, PSU (N )] should be interpreted
in the following way: in the process of assembling � from pairs of pants and cylinders,
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we should sum over ’t Hooft fluxes in the full fundamental group π1(PSU (N )) = ZN ,
as opposed to ZN ⊗ Zk , in the T [�, SU (N )] theory for each gauge group associated
with a cylinder. But in general, ZN ⊗ Zk is only a proper subgroup of ZN , unless N
divides k.

However, general flux backgrounds can be realized by inserting surface operators
(which we will refer to as “flux tubes”) with central monodromy whose Levi subgroup
is the entire group [19]. In the spatial directions, the flux tube lives on a S1 ⊂ L(k, 1)
that has linking number 1 with the Hopf fiber. So we can choose this S1 to be a particular
Hopf fiber S1Hopf. The amount of flux is labeled by an element in π1(G) ⊂ Z(˜G).
Geometrically, this construction amounts to removing a single Hopf fiber from L(k, 1),
leading to compactly supported cohomology H2

c (L(k, 1)\S1Hopf, Z) = Z that is freely

generated. Then H2
c

(

L(k, 1)\S1Hopf, π1(G)
)

= π1(G), and the flux can take value on

the whole π1(G).
When G is a group of adjoint type (i.e. Z(G) is trivial), we will call the index of

T [�,G] defined this way the “full Coulomb branch index” of T [�, ˜G], which sums
over all elements of π1(G) = Z(˜G). As it contains the most information about the field
theory, it is also the most interesting in the whole family associated to the Lie algebra
g. This is not at all surprising as on the other side of the duality, the ˜G equivariant
Verlinde algebra involves all representations of g and is the most interesting one among
its cousins.

As for the AN−1 series that we will focus on in the rest of this paper, we will be
studying the correspondence (2.23) between the SU (N ) equivariantVerlinde algebra and
theCoulomb index of T [�, PSU (N )]. But before going any further, wewill first address
a common concern that the reader may have. Namely, charge quantization appears to
be violated in the presence of these non-integral SU (N ) holonomies. Shouldn’t this
suggest that the index is just zero with a non-trivial flux background? Indeed, for a
state transforming under the fundamental representation of SU (N ), translation along
the Hopf fiber of L(k, 1) k times gives a non-abelian Aharonov-Bohm phase

e2π ikaSU . (2.37)

Since the loop is trivial inπ1(L(k, 1)), onewould expect this phase to be trivial. However,
in the presence of a non-trivial ’t Hooft flux, (2.37) is a non-trivial element in the center
of SU (N ). Then the partition function with insertion of such an ’t Hooft operator is
automatically zero. However, this is actually what one must have in order to recover
even the usual Verlinde formula in the t = 0 limit. As we will explain next, what is
observed above in the SU (2) case is basically the “selection rule” saying that in the
decomposition of a tensor product

(half integer spin) ⊗ (integer spin) ⊗ . . . ⊗ (integer spin) (2.38)

there is no representation with integer spins! What we will do next is to use Dirac quan-
tization conditions in T [�, PSU (N )] to derive the selection rule above and analogous
rules for the SU (N ) Verlinde algebra.

2.3. Verlinde algebra and Dirac quantization. The Verlinde formula associates to a pair
of pants a fusion coefficient fabc which tells us how to decompose a tensor product of
representations:

Ra ⊗ Rb =
⊕

c

f c
ab Rc. (2.39)
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Equivalently, this coefficient gives the dimension of the invariant subspace of three-fold
tensor products

dim Inv(Ra ⊗ Rb ⊗ Rc) = fabc. (2.40)

Here, upper and lower indices are related by the “metric”

ηab = dim Inv(Ra ⊗ Rb) = δab, (2.41)

which is what the TQFT associates to a cylinder.
In the case of SU (N ), the fusion coefficients fabc are zero whenever a selection rule

is not satisfied. For three representations labeled by the highest weights �μ(1), �μ(2), �μ(3)

in (2.33) the selection rule is

N−1
∑

i=1

(

μ
(1)
i + μ

(2)
i + μ

(3)
i

)

≡ 0 (mod N ). (2.42)

This is equivalent to the condition that ZN acts trivially on Ra ⊗ Rb ⊗ Rc. Of course,
when this action is non-trivial, it is easy to see that there can’t be any invariant subspace.

Our job now is to reproduce this rule on the Coulomb index side via Dirac quan-
tization. We start with the familiar case of SU (2). The theory T2 = T [�0,3, SU (2)]
consists of eight 4d N = 2 half-hypermultiplets transforming in the tri-fundamental of
the SU (2)a×SU (2)b×SU (2)c flavor symmetry. The holonomy (Ha, Hb, Hc) ∈ U (1)3

of this flavor symmetry along the Hopf fiber is given by a triple(ma,mb,mc) with

HI = e2π im I /k, I = a, b, c. (2.43)

The Dirac quantization requires that the Aharonov-Bohm phase associated with a trivial
loop must be trivial. So, in the presence of the non-trivial holonomy along the Hopf
fiber, a physical state with charge (ea, eb, ec) needs to satisfy

Hkea
a Hkeb

b Hkec
c = e2π i

∑

I=a,b,c eI mI = 1, (2.44)

or, equivalently,
∑

I=a,b,c

eImI ∈ Z. (2.45)

When decomposed into representations of U (1)3, the tri-fundamental hypermultiplet
splits into eight components:

(2, 2, 2) →
⊕

All ±
(±1,±1,±1). (2.46)

Therefore, one needs to satisfy eight equations

±ma ± mb ± mc ∈ Z. (2.47)

For individual mI , the condition is

mI ∈ Z

2
, (2.48)
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which is the same as the relaxed integrality condition (2.21) for SU (2). This already
suggests that the condition (2.21) is the most general one and there is no need to relax
it further. Indeed, mi is the “spin” of the corresponding SU (2) representation and we
know that all allowed values for it are integers and half-integers.

Besides the individual constraint (2.48), there is an additional one:

ma + mb + mc ∈ Z, (2.49)

which is precisely the “selection rule” we mentioned before. Only when this rule is
satisfied, could Rmc appear in the decomposition of Rma ⊗ Rmb .

We then proceed to the case of SU (N ). When N = 3 the theory T3 doesn’t have
a Lagrangian description but is conjectured to have E6 global symmetry [29]. And the
matter fields transform in the 78-dimensional adjoint representation of E6 [30–32]which
decomposes into SU (3)3 representations as follows

78 = (3, 3, 3) ⊕ (3, 3, 3) ⊕ (8, 1, 1) ⊕ (1, 8, 1) ⊕ (1, 1, 8). (2.50)

The 8 is the adjoint representation of su(3) and, being a representation for both SU (3)
and PSU (3), imposes no additional restriction on ’t Hooft fluxes. So we only need
to understand the quantization condition in the presence of a tri-fundamental matter
(3, 3, 3). A natural question, then, is whether it happens more generally, i.e.,

Dirac quantization condition

for the TN theory
= Dirac quantization condition

for a tri-fundamental matter.
(2.51)

This imposes on the TN theory an interesting condition, which is expected to be true as
it turns out to give the correct selection rule for SU (N ) Verlinde algebra.

Now, we proceed to determine the quantization condition for the tri-fundamental of
SU (N )3. We assume the holonomy in SU (N )3 to be

(Ha, Hb, Hc), (2.52)

where

HI = exp

[

2π i

k
diag{mI1,mI2, . . . ,mI N }

]

. (2.53)

The tracelessness condition looks like

N
∑

j=1

mI j = 0 for all I = a, b, c. (2.54)

We now have N 3 constraints given by

maj1 + mbj2 + mcj3 ∈ Z for all choices of j1, j2 and j3. (2.55)

Using (2.54), one can derive the individual constraint for each i = a, b, c:9

mI ≡
(

1

N
,
1

N
,
1

N
, . . . ,

1

N

)

· Z (mod Z). (2.56)

9 In this paper, bold letters like m are used to denote an element in the Cartan subalgebra of g. They are
sometimes viewed as a diagonal matrix and sometimes a multi-component vector. The interpretation should
be clear from the context.
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This is exactly the same as (2.21). There is only one additional “selection rule” that
needs to be satisfied:

∑

I=a,b,c

N−1
∑

j=1

(mI j − mI N ) ≡ 0 (mod N ), (2.57)

which coincides with (2.42). Therefore, we have demonstrated the equivalence between
the Dirac quantization condition of the tri-fundamental and the selection rules in the
SU (N ) Verlinde algebra. Since the argument is independent of the value of t, the same
set of selection rules also applies to the equivariant Verlinde algebra.

Beside pairs of pants, one needs one more ingredient to build a 2d TQFT—the cylin-
der. It can be used to glue punctures together to build general Riemann surfaces. Each
cylinder corresponds to a free 4d N = 2 vector multiplet. Since all of its components
transform under the adjoint representation, it does not alter the individual constraints
(2.56). However, the holonomies associatedwith the two punctures need to be the inverse
of each other as the two flavor symmetries are identified and gauged. So the index of
T [�0,2, SU (N )] gives a diagonal “metric”

ηab ∼ δab. (2.58)

The proportionality constant is t dependent and will be determined in later sections.
We can also derive the Dirac quantization condition for T [�g,n, PSU (N )]. We use

mI j to label the j-th component of theU (1)N holonomy associated to the I -th puncture.
Then the index or any kind of partition function of T [�g,n, SU (N )] is zero unless

1. each �mI satisfies the individual constraint (2.56), and
2. an additional constraint analogous to (2.57),

n
∑

I=1

N−1
∑

j=1

(mI j − mI N ) ≡ 0 (mod N ), (2.59)

is also satisfied.

To end this section, we will explain how the additional numerical factor in (1.8) in
the introduction arises from non-trivial ’t Hooft fluxes. For G = SU (N ), one has

ZEV(�, k = 1, t) = Ng ·
[

1
∏rank G

i=1 (1 − ti+1)2i+1

]g−1

. (2.60)

Here we are only concerned with the first factor Ng which is the k = 1 Verlinde formula
for SU (N )

ZEV(�, k = 1, t = 0) = Ng. (2.61)

We now derive this result on the index side.
Consider the twice-punctured torus, obtained by gluing two pairs of pants. Let

(a1, a2, a3) and (b1, b2, b3) ∈ Z
3
N label the ’t Hooft fluxes corresponding to all six

punctures. We glue a2 with b2, a3 with b3 to get �1,2. Then we have the following set
of constraints:

a2b2 = 1, a3b3 = 1, (2.62)
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and

a1a2a3 = 1, b1b2b3 = 1. (2.63)

From these constraints, we can first confirm that

a1b1 = 1, (2.64)

which is what the selection rule (2.59) predicts. Then there is a free parameter a2 that can
take arbitrary values in ZN . So in the t = 0 limit, the Coulomb index TQFT associates
to �1,2

ZCB(�1,2, SU (N ), t = 0) = Nδa1,b1 . (2.65)

We can now glue g − 1 twice-punctured tori to get

ZCB(�g−1,2, SU (N ), t = 0) = Ng−1δa1,bg−1
. (2.66)

Taking trace of this gives10

ZCB(�g,0, SU (N ), t = 0) = Ng. (2.67)

Combining this with the t dependent part of (1.8), we have proved that, for k = 1, the
equivariant Verlinde formula is the same as the full Coulomb branch index.

We will now move on to cases with more general k to perform stronger checks.

3. A Check of the Proposal

In this section, we perform explicit computation of the Coulomb branch index for
the theory T [�g,n, PSU (2)] in the presence of ’t Hooft fluxes (or half-integral fla-
vor holonomies). We will see that after taking into account a proper normalization, the
full Coulomb branch index nicely reproduces the known SU (2) equivariant Verlinde
algebra. First, we introduce the necessary ingredients of 4d N = 2 superconformal
index on S1 × L(k, 1) for a theory with a Lagrangian description.

3.1. The lens space index and its Coulomb branch limit. The Lens space index of 4d
N = 2 theories is a generalization of the ordinary superconformal index on S1 ×
S3, as S3 = L(1, 1) [34]. For k > 1, L(k, 1) has a nontrivial fundamental group
Zk , and a supersymmetric theory on L(k, 1) tends to have a set of degenerate vacua
labeled by holonomies along the Hopf fiber. This feature renders the Lens space index
a refined tool to study the BPS spectra of the superconformal theory; for instance it
can distinguish between theories with gauge groups that have the same Lie algebra but
different topologies (e.g. SU (2) versus SO(3) [35]). Moreover, as it involves not only
continuous fugacities but also discrete holonomies, Lens space indices of classS theories
lead to a very large family of interesting and exotic 2d TQFTs [12,13,34].

10 What we have verified is basically that the algebra of ZN ’t Hooft fluxes gives the SU (N ) Verlinde
algebra at level k = 1, which is isomorphic to the group algebra of ZN . Another TQFT whose Frobenius
algebra is also related to the group algebra of ZN is the 2d ZN Dijkgraaf-Witten theory [33]. However, the
normalizations of the trace operator are different so the partition functions are also different.
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The basic ingredients of the Lens space index are indices of free supermultiplets, each
of which can be conveniently expressed as a integral over gauge group of the plethystic
exponential of the “single-letter index”, endowed with gauge and flavor fugacities. This
procedure corresponds to constructing all possible gauge invariant multi-trace operators
that are short with respect to the superconformal algebra.

In particular, for a gauge vector multiplet the single-letter index is

f V (p, q, t,m, k) = 1

1 − pq

(

pm

1 − pk
+

qk−m

1 − qk

)

(

pq +
pq

t
− 1 − t

)

+ δm,0,

(3.1)

where m will be related to holonomies of gauge symmetries. For a half-hypermultiplet,
one has

f H/2(p, q, t,m, k) = 1

1 − pq

(

pm

1 − pk
+

qk−m

1 − qk

)(√
t − pq√

t

)

. (3.2)

In addition, there is also a “zero point energy” contribution for each type of field. For a
vector multiplet and a half hypermultiplet, they are given by

I 0V (p, q, t, m, k) =
∏

α∈�+

( pq

t

)−[[α(m)]]k+ 1
k [[α(m)]]2k

,

I 0H/2(p, q, t, m, m̃, k) =
∏

ρ∈R

( pq

t

) 1
4

(

[[ρ(m,m̃)]]k− 1
k [[ρ(m,m̃)]]2k

)

,

(3.3)

where [[x]]k denotes remainder of x divided by k. The boldface letters m and m̃ label
holonomies for, respectively, gauge symmetries andflavor symmetries;11 they are chosen
to live in the Weyl alcove and can be viewed as a collection of integers m1 ≥ m2 ≥
· · · ≥ mr .

Now the full index can be written as

I =
∑

m

I 0V (p, q, t, m)I 0H/2(p, q, t, m, m̃)

∫

∏

i

dzi
2π i zi

�(z)m

× exp

(

+∞
∑

n=1

∑

α,ρ

1

n

[

f V (pn, qn, tn, α(m))α(z)

+ f H/2(pn, qn, tn, ρ(m, m̃))ρ(z, F)
])

. (3.4)

Here, to avoid clutter, we only include one vector multiplet and one half-hypermultiplet.
Of course, in general one should remember to include the entire field contents of the
theory. Here, F stands for the continuous flavor fugacities and the zi ’s are the gauge
fugacities; for SU (N ) theories one should impose the condition z1z2 . . . zN = 1. The
additional summation in the plethystic exponential is over all the weights in the relevant
representations. The integration measure is determined by m:

�m(zi ) =
∏

i, j;mi=m j

(

1 − zi
z j

)

, (3.5)

11 As before, the holonomies are given by e2π im/k .
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since a nonzero holonomy would break the gauge group into its stabilizer.
In this paper we are particularly interested in the Coulomb branch limit, i.e. (2.4) and

(2.5). From the single letter index (3.1) and (3.2)we immediately conclude that f H/2 = 0
identically, so the hypermultiplets contributes to the index only through the zero point
energy. As for f V , the vector multiplet gives a non-zero contribution pq/t = t for each
root α that has α(m) = 0. So the zero roots (Cartan generators) always contribute, and
non-zero roots can only contribute when the gauge symmetry is enhanced from U (1)r ,
i.e. when m is at the boundary of the Weyl alcove. This closely resembles the behavior
of the “metric” of the equivariant Verlinde algebra, as we will see shortly.

More explicitly, for SU (2) theory, the index of a vector multiplet in the Coulomb
branch limit is

IV (t,m, k) = t−[[2m]]k+ 1
k [[2m]]2k

(

1

1 − t

)(

1

1 + t

)δ[[2m]],0
, (3.6)

while for tri-fundamental hypermultiplet the contribution is

IH/2(t,m1,m2,m3, k) =
∏

si=±
(t)

1
4

∑3
i=1

(

[[mi si ]]k− 1
k [[mi si ]]2k

)

, (3.7)

where all holonomies take values from {0, 1/2, 1, 3/2, . . . k/2}.
Unsurprisingly, this limit fits the name of the “Coulomb branch index.” Indeed, in the

case of k = 1, the index receives only contributions from the Coulomb branch operators,
i.e. a collection of “Casimir operators” for the theory [11] (e.g. Trφ2, Trφ3, . . . , TrφN

for SU (N ), where φ is the scalar in the N = 2 vector multiplet). We see here that a
general Lens space index also counts the Coulomb branch operators, but the contribution
from each operator is modified according to the background holonomies.

Another interesting feature of the Coulomb branch index is the complete disappear-
ance of continuous fugacities of flavor symmetries. Punctures are now only parametrized
by discrete holonomies along the Hopf fiber of L(k, 1). This property ensures that we
will obtain a finite-dimensional algebra.

Then, to make sure that the algebra defines a TQFT, one needs to check associa-
tivity, especially because non-integral holonomies considered here are novel and may
cause subtleties. We have checked by explicit computation in t that the structure con-
stant and metric defined by Lens space index do satisfy associativity, confirming that
the “Coulomb branch index TQFT” is indeed well-defined. In fact, even with all p, q, t
turned on, the associativity still holds order by order in the expansion in terms of fugac-
ities.

3.2. Equivariant Verlinde algebra from Hitchin moduli space. As explained in greater
detail in [1], the equivariant Verlinde TQFT computes an equivariant integral overMH ,
the moduli space of Higgs bundles. In the case of SU (2), the relevant moduli spaces
are simple enough and one can deduce the TQFT algebra from geometry of MH . For
example, one can obtain the fusion coefficients from MH (�0,3, α1, α2, α3; SU (2)).
Here the αi ’s are the ramification data specifying the monodromies of the gauge field
[19] and take discrete values in the presence of a level k Chern–Simons term. Since in
this case the moduli space is just a point or empty, one can directly evaluate the integral.
The result is as follows.
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Define λ = 2kα whose value is quantized to be 0, 1, . . . , k. Let

d0 = λ1 + λ2 + λ3 − 2k,

d1 = λ1 − λ2 − λ3,

d2 = λ2 − λ3 − λ1,

d1 = λ3 − λ1 − λ2,

(3.8)

and moreover

�λ = max(d0, d1, d2, d3), (3.9)

then

fλ1λ2λ3 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if λ1 + λ2 + λ3 is even and �λ ≤ 0,

t−�λ/2 if λ1 + λ2 + λ3 is even and �λ > 0,

0 if λ1 + λ2 + λ3 is odd.

(3.10)

On the other hand, the cylinder gives the trace form (or “metric”) of the algebra

ηλ1λ2 = {1 − t2, 1 − t, . . . , 1 − t, 1 − t2}. (3.11)

Via cutting-and-gluing, we can compute the partition function of the TQFT on a general
Riemann surface �g,n .

3.3. Matching two TQFTs. So far we have introduced two TQFTs: the first one is given
by equivariant integration over Hitchin moduli space MH , the second one is given by
the L(k, 1) Coulomb branch index of the theory T [�, PSU (2)]. It is easy to see that
the underlying vector space of the two TQFTs are the same, confirming in the SU (2)
case the more general result we obtained previously:

ZEV(S1) = ZCB(S1). (3.12)

We can freely switch between two different descriptions of the same set of basis vectors,
by either viewing them as integrable highest weight representations of ŝu(2)k or SU (2)
holonomies along the Hopf fiber. In this section, we only use highest weights λ as the
labels for puncture data, and one can easily translate them into holonomies via λ = 2m.

Then, one needs to compare the algebraic structure of the two TQFTs and may notice
that there are apparent differences. Namely, if one compares IV and IH/2 with η and f
in (3.10) and (3.11), there are additional factors coming from the zero point energy in
the expressions on the index side. However, one can simply rescale states in the Hilbert
space on the Coulomb index side to absorb them.

The scaling required is

|λ〉 = t
1
2

(

[[λ]]k− 1
k [[λ]]2k

)

|λ〉′. (3.13)

This makes IV exactly the same as ηλμ. After rescaling, the index of the half-
hypermultiplet becomes

IH/2 ⇒ f ′
λ1λ2λ3

= t
− 1

2

∑3
i=1

(

[[λi ]]k− 1
k [[λi ]]2k

)

IH/2(t, λ1, λ2, λ3, k), (3.14)
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and this is indeed identical to the fusion coefficient fλμν of the equivariant Verlinde
algebra, which we show as follows. If we define

g0 = m1 + m2 + m3 = 1

2
(λ1 + λ2 + λ3) ,

g1 = m1 − m2 − m3 = 1

2
(λ1 − λ2 − λ3) ,

g2 = m2 − m1 − m3 = 1

2
(λ2 − λ1 − λ3) ,

g3 = m3 − m1 − m2 = 1

2
(λ3 − λ1 − λ3) ,

(3.15)

then our pair of pants can be written as

f ′
λ1λ2λ3

= t
1
2k ([[g0]]k [[−g0]]k+[[g1]]k [[−g1]]k+[[g2]]k [[−g2]]k+[[g2]]k [[−g2]]k )

× t−
1
2k (λ1(k−λ1)+λ2(k−λ2)+λ3(k−λ3)).

(3.16)

Now we can simplify the above equation further under various assumptions of each gi .
For instance if 0 < g0 < k and gi < 0 for i = 1, 2, 3, then

f ′
λ1λ2λ3

= 1. (3.17)

If on the other hand, g0 > k and gi < 0 for i = 1, 2, 3, which means max(g0 −
k, g1, g2, g3) = g0 − k, then

f ′
λ1λ2λ3

= t g0−k, (3.18)

this is precisely what we obtained by (3.10).
Therefore, we have shown that the building blocks of the two TQFTs are the same.

And by the TQFT axioms, we have proven the isomorphism of the two TQFTs. For
example, they both give t-deformation of the ŝu(2)k representation ring; at level k = 10
a typical example is

|3〉 ⊗ |3〉 = 1

1 − t2
|0〉 ⊕ 1

1 − t
|2〉 ⊕ 1

1 − t
|4〉 ⊕ 1

1 − t
|6〉 ⊕ t

1 − t
|8〉

⊕ t2

1 − t2
|10〉.

(3.19)

For closed Riemann surfaces, we list partition functions for several low genera and levels
in Table 1. And this concludes our discussion of the SU (2) case.

4. SU(3) Equivariant Verlinde Algebra from the Argyres–Seiberg Duality

In the last section, we have tested the proposal about the equivalence between the equiv-
ariant Verlinde algebra and the algebra from the Coulomb index of class S theories.
Then one would ask whether one can do more with such a correspondence and what
are its applications. For example, can one use the Coulomb index as a tool to access
geometric and topological information about Hitchin moduli spaces? Indeed, the study
of the moduli space of Higgs bundles poses many interesting and challenging problems.



Equivariant Verlinde Algebra from Superconformal Index 1235

Table 1. The partition function ZEV(T [L(k, 1), SU (2)], t) = ZCB(T [�g, PSU (2)], t) for genus g = 2, 3
and level k = 1, 2, 3, 4

k = 1 k = 2 k = 3 k = 4

g = 2 4
(1−t2)3

2
(1−t2)3

(5t2 + 6t + 5) 4
(1−t2)3

(4t3 + 9t2 + 9t + 5)
1

(1−t2)
3

(

16t4 + 49t3

+ 81t2 + 75t + 35
)

g = 3 8
(1−t2)6

4

(1−t2)
6

(

9t4 + 28t3

+ 54t2 + 28t + 9
)

8

(1−t2)
6

(

8t6 + 54t5 + 159t4

+ 238t3 + 183t2 + 72t + 15
)

1

(1−t2)
6

(

64t8 + 384t7 + 1793t6

+ 5250t5 + 8823t4 + 8828t3

+ 5407t2 + 1890t + 329
)

∀g 2
(

2
(1−t2)3

)g−1

(

2(1−t)2

(1−t2)3

)g−1

+ 2
(

2(1+t)2

(1−t2)3

)g−1

2
(

5+9t+9t2+4t3−√
5+4t(1+5t+t2)

(1−t2)3

)g−1

+ 2
(

5+9t+9t2+4t3+
√
5+4t(1+5t+t2)

(1−t2)3

)g−1

(

(3+t)(1−t)2

(1−t2)3

)g−1
+ 2
(

4
1−t2

)g−1

+
(

4(3+t)(1+t)3

(1−t2)3

)g−1

In particular, doing the equivariant integral directly on MH quickly becomes unprac-
tical when one increases the rank of the gauge group. However, our proposal states
that the equivariant integral could be computed in a completely different way by look-
ing at the superconformal index of familiar SCFTs! This is exactly what we will do in
this section—we will put the correspondence to good use and probe the geometry of
MH (�, SU (3)) with superconformal indices.

The natural starting point is still a pair of pants or, more precisely, a sphere with
three “maximal” punctures (for mathematicians, three punctures with full-flag parabolic
structure). The 4d theory T [�0,3, SU (3)] is known as the T3 theory [36], which is first
identified as anN = 2 strongly coupled rank-1 SCFTwith a global E6 symmetry12 [29].
In light of the proposed correspondence, one expects that the Coulomb branch index of
the T3 theory equals the fusion coefficients fλ1λ2λ3 of the SU (3) equivariant Verlinde
algebra.

4.1. Argyres–Seiberg duality and Coulomb branch index of T3 theory.

4.1.1. A short review As the T3 theory is an isolated SCFT, there is no Lagrangian
description, and currently no method of direct computation of its index is known in the
literature. However, there is a powerful duality proposed by Argyres and Seiberg [32],
that relates a superconformal theory with Lagrangian description at infinite coupling to
a weakly coupled gauge theory obtained by gauging an SU (2) subgroup of the E6 flavor
symmetry of the T3 SCFT.

To be more precise, one starts with an SU (3) theory with six hypermultiplets (call
it theory A) in the fundamental representation 3� ⊕ 3� of the gauge group. Unlike its
SU (2) counterpart, the SU (3) theory has the electric-magnetic duality group �0(2), a
subgroup of SL(2, Z). As a consequence, the fundamental domain of the gauge cou-
pling τ has a cusp and the theory has an infinite coupling limit. As argued by Argyres
and Seiberg through direct analysis of the Seiberg-Witten curve at strong couplings, it
was shown that the theory can be naturally identified as another theory B obtained by
weakly gauging the E6 SCFT coupled to an additional hypermultiplet in fundamental
representation of SU (2). There is much evidence supporting this duality picture. For
instance, the E6 SCFT has a Coulomb branch operator with dimension 3, which could
be identified as the second Casimir operator Trφ3 of the dual SU (3) gauge group. The

12 In the following we will use the name “T3 theory” and “E6 SCFT” interchangeably.
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Fig. 1. Illustration of Argyres–Seiberg duality. a The theory A, which is an SU (3) superconformal gauge
theory with six hypermultiplets, with the SU (3)a × U (1)a × SU (3)b × U (1)b subgroup of the global U (6)
flavor symmetry. b The theory B, obtained by gauging an SU (2) subgroup of the E6 symmetry of T3. Note
in the geometric realization the cylinder connecting both sides has a regular puncture R on the left and an
irregular puncture I R on the right

Fig. 2. Illustration of geometric realization ofArgyres–Seiberg duality for T3 theory. The dots represent simple
punctures while circles are maximal punctures. a The theory A, which is an SU (3) superconformal gauge
theory with six hypermultiplets, is pictured as two spheres connected by a long tube. Each of them has two
maximal and one simple punctures. b The theory B, which is obtained by gauging an SU (2) subgroup of the
flavor symmetry of the theory T3. This gauge group connects a regular puncture and an irregular puncture

E6 theory has a Higgs branch of dimCH = 22 parametrized by an operator X in adjoint
representation of E6 with Joseph relation [30]; after gauging SU (2) subgroup, two com-
plex dimensions are removed, leaving the correct dimension of the Higgs branch for the
theoryA. Finally, Higgsing this SU (2) leaves an SU (6)×U (1) subgroup of themaximal
E6 group, which is the same as the U (6) = SU (6) × U (1) flavor symmetry in the A
frame.

In [37], theArgyres–Seiberg duality is given a nice geometric interpretation. To obtain
theory A, one starts with a 2-sphere with two SU (3) maximal punctures and two U (1)
simple punctures, corresponding to global symmetry SU (3)a×SU (3)b×U (1)a×U (1)b,
where twoU (1) are baryonic symmetry. In this setup, theArgyres–Seiberg duality relates
different degeneration limits of this Riemann surface, see Figs. 1 and 2.

The Argyres–Seiberg duality gives access to the superconformal index for the E6
SCFT [31]. The basic idea is to start with the index of theory A and, with the aid of the
inversion formula of elliptic beta integrals, one identifies two sets of flavor fugacities and
extracts the E6 SCFT index by integrating over a carefully chosen kernel. It was later
realized that the above procedure has a physical interpretation, namely the E6 SCFT
can be obtained by flowing to the IR from an N = 1 theory which has Lagrangian
description [38]. The index computation of the N = 1 theory reproduces that of [31],
and the authors also compute the Coulomb branch index in the large k limit.

Here we would like to obtain the index for general k. In principle, we could start with
the N = 1 theory described in [38] and compute the Coulomb branch index on Lens
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space directly. However, a direct inversion is more intuitive here due to simplicity of
the Coulomb branch limit, and can be generalized to arbitrary TN theories. In the next
subsection we outline the general procedure of computing the Coulomb branch index
of T3.

4.1.2. Computation of the index To obtain a complete basis of the TQFT Hilbert space,
we need to turn on all possible flavor holonomies and determine when they correspond
to a weight in the Weyl alcove. For the T3 theory each puncture has SU (3) flavor
symmetry, so we can turn on holonomies as h∗ = (h∗

1, h
∗
2, h

∗
3) for ∗ = a, b, c with

constraints h∗
1 + h∗

2 + h∗
3 = 0. The Dirac quantization condition tells us that

hri + hsj + htk ∈ Z (4.1)

for arbitrary r, s, t ∈ {a, b, c} and i, j, k = 1, 2, 3. This means there are only three
classes of choices modulo Z, namely

(

1

3
,
1

3
,−2

3

)

, or

(

2

3
,−1

3
,−1

3

)

, or (0, 0, 0) (mod Z). (4.2)

Furthermore, the three punctures either belong to the same class (for instance, all are
(1/3, 1/3,−2/3) (mod Z)) or to three distinct classes. Recall that the range of the
holonomy variables are also constrained by the level k, so we pick out the Weyl alcove
as the following:

D(k) = {(h1, h2, h3)|h1 ≥ h2, h1 ≥ −2h2, 2h1 + h2 ≤ k}, (4.3)

with a pictorial illustration in Fig. 3.
Aswewill later identify each holonomyas an integrable highestweight representation

for the affine Lie algebra ŝu(3)k , it is more convenient to use the label (λ1, λ2) defined
as

λ1 = h2 − h3, λ2 = h1 − h2. (4.4)

Fig. 3. The Weyl alcove for the choice of holonomy variables at level k = 3. The red markers represent the
allowed points. The coordinates beside each point denote the corresponding highest weight representation.
The transformation between flavor holonomies and highest weight is given by (4.4)
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They are integers with λ1 +λ2 ≤ k and (λ1, λ2) lives on the weight lattice of su(3). The
dimension of the representation with the highest weight (λ1, λ2) is

dim R(λ1,λ2) = 1

2
(λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2). (4.5)

Next we proceed to compute the index in the Coulomb branch limit. As taking the
Coulomb branch limit simplifies the index computation dramatically, one can easily
write down the index for theory A:13

IA(t, m̃a, m̃b, na, nb)

=
∑

m

IH/2(t, m, m̃a, na)
∫ 2
∏

i=1

dzi
2π i zi

�(z)m IV (t, z, m)IH/2(t,−m, m̃b, nb),

(4.6)

wherema, mb and na, nb denote the flavor holonomies for SU (3)a,b andU (1)a,b respec-
tively. It is illustrative to write down what the gauge integrals look like:

IV (t, m) =
∫ 2
∏

i=1

dzi
2π i zi

�(z)m IV (t, z, m) = I 0V (t, m)

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
(1−t2)(1−t3)

, m1 ≡ m2 ≡ m3 (mod k),
1

(1−t)(1−t2)
, mi ≡ m j �= mk (mod k),

1
(1−t)2

, m1 �= m2 �= m3 (mod k).

(4.7)

Except the zero point energy I 0V (t, m) the rest looks very much alike our “metric” for
the SU (3) equivariant Verlinde TQFT. Moreover,

IH/2(m, m̃a, na) =
∏

ψ∈R�

t
1
4

(

[[ψ(m,m̃a ,na)]]k− 1
k [[ψ(m,m̃a ,na)]]2k

)

, (4.8)

where for a half-hypermultiplet in the fundamental representation of SU (3) × SU (3)a
with positive U (1)a charge we have

ψi j (m, m̃a, na) = mi + m̃a, j + na . (4.9)

Now we write down the index for theory B. Take the SU (3)a × SU (3)b × SU (3)c
maximal subgroup of E6 and gauge SU (2) subgroup of the SU (3)c flavor symmetry.
This leads to the replacement

{hc,1, hc,2, hc,3} → {w + ny, ny − w,−2ny}, (4.10)

where ny denotes the fugacity for the remainingU (1)y symmetry, and ns is the fugacity
for U (1)s flavor symmetry rotating the single hypermultiplet. We then write down the
index of theory B as

IB(t, ha, hb, ny, ns) =
∑

w

CE6(ha, hb, w, ny)IV (t, w)IH/2(−w, ns), (4.11)

13 In [38] the authors try to compensate for the non-integral holonomies of na and nb by shifting the gauge
holonomiesm. In contrast, our approach is free from such subtleties becausewe allow non-integral holonomies
for all flavor symmetries as long as the Dirac quantization condition is obeyed.
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where IV (t, w) is given by (3.6) with substitution m → w, and w = 0, 1/2, . . . , k/2.
Argyres–Seiberg duality tells us that

IA(t, m̃a, m̃b, na, nb) = IB(t, ha, hb, ny, ns), (4.12)

with the following identification of the holonomy variables:

m̃a = ha, m̃b = hb;

na = 1

3
ns − ny, nb = −1

3
ns − ny .

(4.13)

On the right-hand side of the expression (4.11) we can view the summation as a
matrix multiplication with w and ns being the row and column indices respectively.
Then we can take the inverse of the matrix IH/2(−w, ns), I

−1
H/2(ns, w

′), by restricting

the range14 of ns to be the same as w and multiply it to both sides of (4.11). This moves
the summation to the other side of the equation and gives:

CE6(t, ha, hb, w, ny, k) =
∑

ns

1

IV (t, w)
IA(t, ha, hb, na, nb, k)I

−1
H/2(ns, w) .

(4.14)

We now regard CE6(t, ha, hb, hc, k) as the fusion coefficient of the 2d equivariant
Verlinde algebra, and have checked the associativity. Moreover, let us confirm that the
index obtained in this way is symmetric under permutations of the three SU (3) flavor
fugacities, and the flavor symmetry group is indeed enhanced to E6. First of all, we have
permutation symmetry for three SU (3) factors at, for instance, level k = 2:

CE6

(

2

3
,
2

3
, 0, 0,

4

3
,−2

3

)

= CE6

(

2

3
,
2

3
,
4

3
,−2

3
, 0, 0

)

= · · ·

= CE6

(

4

3
,−2

3
,
2

3
,
2

3
, 0, 0

)

= 1 + t4

1 − t3
.

(4.15)

To show that the index CE6 is invariant under the full E6 symmetry, one needs to
show that the two SU (3) factors, combined with the U (1)y symmetry, enhance to an
SU (6) symmetry. The five Cartan elements of this SU (6) group can be expressed as the
combination of the fluxes [38]:

(

ha1 − ny, h
a
2 − ny,− ha1 − ha2 − ny, h

b
1 + ny, h

b
2 + ny

)

. (4.16)

Then the index should be invariant under the permutation of the five Cartans. Note
the computation is almost the same as in [38] except that not all permutations neces-
sarily exist—an allowed permutation should satisfy the charge quantization condition.
Restraining ourselves from the illegal permutations, we have verified that the global
symmetry is enlarged to E6.

14 As long as it satisfies the Dirac quantization condition, we do not have to know what the range of ns
should be. For example, ns = 0, 1/2, . . . , k/2 is a valid choice.
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Finally, at large k our results reproduce these of [38], as can be checked by analyzing
the large k limit of the matrix I−1

H/2(ns, w). Indeed, at large k the matrix IH/2(w, ns) can
be simplified as

IH/2 = t
1
2 (|w+ns |+|−w+ns |) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 t 0 t2 0 . . .

0
√
t 0 t

3
2 0 t

5
2

t 0 t 0 t2 0

0 t
3
2 0 t

3
2 0 t

5
2

t2 0 t2 0 t2 0

0 t
5
2 0 t

5
2 0 t

5
2

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.17)

Upon inversion it gives

I−1
H/2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
1−t 0 − 1

1−t 0 0 0 . . .

0 1√
t(1−t)

0 − 1√
t(1−t)

0 0

− 1
1−t 0 1+t

t(1−t) 0 − 1
t(1−t) 0

0 − 1√
t(1−t)

0 1+t

t
3
2 (1−t)

0 − 1

t
3
2 (1−t)

0 0 − 1
t(1−t) 0 1+t

t2(1−t)
0

0 0 0 − 1

t
3
2 (1−t)

0 1+t

t
5
2 (1−t)

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.18)

Here w goes from 0, 1/2, 1, 3/2, . . .. For a generic value of w only three elements in
a single column can contribute to the index.15 For large k the index of vector multiplet
becomes

IV (w) = t−2w
(

1

1 − t

)

, (4.19)

and we get

CE6(t, ha, hb, w, ny) = tw
[

(1 + t)IA(t, ha, hb, ny, w, k)

− t IA(t, ha, hb, ny, w − 1, k)

− IA(t, ha, hb, ny, w + 1, k)
]

,

(4.20)

which exactly agrees with [38].

15 By “generic” we mean the first and the second column are not reliable due to our choice of domain for
w. It is imaginable that if we take w to be a half integer from (−∞,+∞), then such “boundary ambiguity”
can be removed. But we refrain from doing this to have weights living in the Weyl alcove.
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4.2. SU (3) equivariant Verlinde algebra. Now with all the basic building blocks of the
2d TQFT at our disposal, we assemble the pieces and see what interesting information
could be extracted.

The metric of the TQFT is given by the Coulomb branch index of an SU (3) vector
multiplet, with a possible normalization factor. Note the conjugation of representations
acts on a highest weight state (λ1, λ2) via

(λ1, λ2) = (λ2, λ1), (4.21)

and the metric ηλμ is non-vanishing if and only if μ = λ. Let

N (λ1, λ2, k) = t−
1
k ([[λ1]]k [[−λ1]]k+[[λ2]]k [[−λ2]]k+[[λ1+λ2]]k [[−λ1−λ2]]k ), (4.22)

and we rescale our TQFT states as

(λ1, λ2)
′ = N (λ1, λ2, k)

− 1
2 (λ1, λ2). (4.23)

Then the metric η takes a simple form (here we define λ3 = λ1 + λ2):

η(λ1,λ2)(λ1,λ2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
(1−t2)(1−t3)

, if [[λ1]]k = [[λ2]]k = 0,
1

(1−t)(1−t2)
, if only one [[λi ]]k = 0 for i = 1, 2, 3,

1
(1−t)2

, if all [[λi ]]k �= 0.

(4.24)

Next we find the “pair of pants” f(λ1,λ2)(μ1,μ2)(ν1,ν2), from the normalized Coulomb
branch index of E6 SCFT:

f(λ1,λ2)(μ1,μ2)(ν1,ν2) = (N (λ1, λ2, k)N (μ1, μ2, k)N (ν1, ν2, k))
1
2

CE6(t, λ1, λ2;μ1, μ2; ν1, ν2; k).
(4.25)

Along with the metric we already have, they define a t-deformation of the ŝu(3)k fusion
algebra. For instance we could write down at level k = 3:

(1, 0) ⊗ (1, 0) = 1 + t + t3

(1 − t)(1 − t2)(1 − t3)
(0, 1) ⊕ 1 + 2t2

(1 − t)(1 − t2)(1 − t3)
(2, 0)

⊕ t(2 + t)

(1 − t)(1 − t2)(1 − t3)
(1, 2).

(4.26)

Using dimensions to denote representations, the above reads

3 × 3 = 1 + t + t3

(1 − t)(1 − t2)(1 − t3)
3 +

1 + 2t2

(1 − t)(1 − t2)(1 − t3)
6

+
t(2 + t)

(1 − t)(1 − t2)(1 − t3)
15.

(4.27)
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When t = 0, it reproduces the fusion rules of the affine ŝu(3)k algebra, and fλμν becomes

the fusion coefficients N (k)
λμν . These fusion coefficients are worked out combinatorically

in [39–41]. We review details of the results in Appendix A.
With pairs of pants and cylinders, one can glue them together to get the partition

function on a closed Riemann surface, which gives the SU (3) equivariant Verlinde
formula: a t-deformation of the SU (3) Verlinde formula. For genus g = 2, at large k,
one can obtain

dimβ HCS(�2,0; SL(3, C), k)

= 1

20160
k8 +

1

840
k7 +

7

480
k6 +

9

80
k5 +

529

960
k4 +

133

80
k3 +

14789

5040
k2 +

572

210
k + 1

+

(

1

2520
k8 +

1

84
k7 +

17

120
k6 +

17

20
k5 +

319

120
k4 +

15

4
k3

+
503

2520
k2 − 1937

420
k − 3

)

t

+

(

1

560
k8 +

9

140
k7 +

31

40
k6 +

39

10
k5 +

727

80
k4 +

183

20
k3 +

369

140
k2 − 27

70
k + 1

)

t2

+ · · · ,

(4.28)

and the reader can check that the degree zero piece in t is the usual SU (3) Verlinde
formula for g = 2 [42]:

dimH(�g,0; SU (3), k)

= (k + 3)2g−26g−1

27g−7

∑

λ1,λ2

(

sin
π(λ1 + 1)

k + 3
sin

π(λ2 + 1)

k + 3
sin

π(λ1 + λ2 + 2)

k + 3

)2−2g

,

(4.29)

expressed as a polynomial in k.
For a 2d TQFT, the state associated with the “cap” contains interesting information,

namely the “cap state” tells us how to close a puncture. Moreover, there are many
close cousins of the cap. There is one type which we call the “central cap” that has a
defect with central monodromy with the Levi subgroup being the entire gauge group
(there is no reduction of the gauge group when we approach the singularity). For SU (3)
equivariant Verlinde algebra, besides the “identity-cap” the central cap also includes
“ω-cap” and “ω2-cap,” and the corresponding TQFT states are denoted by |φ〉1, |φ〉ω
and |φ〉ω2 . One can also insert on the cap a minimal puncture (gauge group only reduces
to SU (2) × U (1) as opposed to U (1)3 for maximal punctures) and the corresponding
states can be expressed as linear combinations of the maximal puncture states which we
use as the basis vectors of the TQFT Hilbert space.

The cap state can be deduced from f and η written in (4.25) and (4.24), since closing
a puncture on a three-punctured sphere gives a cylinder. In algebraic language,

fλμφ = ηλμ. (4.30)

One can easily solve this equation, obtaining

|φ〉1 = |0, 0〉 − t(1 + t)|1, 1〉 + t2|0, 3〉 + t2|3, 0〉 − t3|2, 2〉. (4.31)
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For other two remaining caps, by multiplying16 ω and ω2 on the above equation
(4.31), we obtain

|φ〉ω = |k, 0〉 − t(1 + t)|k − 2, 1〉 + t2|k − 3, 0〉 + t2|k − 3, 3〉 − t3|k − 4, 2〉,
|φ〉ω2 = |0, k〉 − t(1 + t)|1, k − 2〉 + t2|0, k − 3〉 + t2|3, k − 3〉 − t3|2, k − 4〉.

(4.32)

When closing a maximal puncture using |φ〉ω, we have a “twisted metric” η′
λμ which

is non-zero if and only if (μ1, μ2) = (λ1, k − λ1 − λ2). When closing a maximal
puncture using |φ〉ω2 , we have another twisted metric η′′

λμ which is non-zero if and only
if (μ1, μ2) = (k − λ1 − λ2, λ2). When there are insertions of central monodromies on
the Riemann surface, it is easier to incorporate them into twisted metrics instead of using
the expansion (4.32).

For minimal punctures, the holonomy is of the form (u, u,−2u), modulo the action
of the affineWeyl group, where u takes value 0, 1/3, 2/3, . . . , k−2/3, k−1/3. We can
use index computation to expand the corresponding state |u〉U (1) in terms of maximal
punctures. After scaling by a normalization constant

t
1
2

(

[[3u]]k− 1
k [[3u]]2k

)

, (4.33)

the decomposition is given by the following:

(1). 〈0, 0〉 − t2〈1, 1〉, if k = u or u = 0;
(2). 〈3u, 0〉 − t〈3u − 1, 2〉, if k > 3u > 0;
(3). 〈3u, 0〉 − t2〈3u − 2, 1〉, if k = 3u;
(4). 〈2k − 3u, 3u − k〉 − t〈2k − 3u − 1, 3u − k − 1〉, if 3u/2 < k < 3u;
(5). 〈0, 3u/2〉 − t2〈1, 3u/2 − 2〉, if k = 3u/2;
(6). 〈0, 3k − 3u〉 − t〈2, 3k − 3u − 1〉, if u < k < 3u/2.

The above formulae have a natural Z2-symmetry of the form C ◦ ψ , where

ψ : (u, k) → (k − u, k), (4.34)

and C is the conjugation operator that acts linearly on Hilbert space:

C : (λ1, λ2) → (λ2, λ1), (λ1, λ2) ∈ H. (4.35)

This Z2 action sends each state in the above list to itself. Moreover, it is interesting to
observe that when t = 0, increasing u from 0 to k corresponds to moving along the
edges of the Weyl alcove (c. f. Fig. 3) a full cycle. This may not be a surprise because
closing a maximal puncture actually implies that one only considers states whose SU (3)
holonomy (h1, h2, h3) preserves at least SU (2) ⊂ SU (3) symmetry, which are precisely
the states lying on the edges of the Weyl alcove.

16 More precisely, we multiply holonomies with these central elements and translate the new holonomies
back to weights.
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4.3. From algebra to geometry. This TQFT structure reveals a lot of interesting geo-
metric properties of moduli spaces of rank 3 Higgs bundles. But as the current paper
is a physics paper, we only look at a one example—but arguably the most interesting
one—the moduli spaceMH (�0,3, SU (3)). In particular this moduli space was studied
in [43–45] from the point of view of differential equations. Here, from index computa-
tion, we can recover some of the results in the mathematical literature and reveal some
new features for this moduli space. In particular, we propose the following formula for
the fusion coefficient fλμν :

f(λ1,λ2)(μ1,μ2)(ν1,ν2) = tkη0
(

kVol(M) + 1

1 − t
+

2t

(1 − t)2

)

+
Q1(t)

(1 − t−1)(1 − t2)

+
Q2(t)

(1 − t−2)(1 − t3)
. (4.36)

This ansatz comes fromAtiyah–Bott localization of the equivariant integral done in sim-
ilar fashion as in [1]. The localization formula enables us to write the fusion coefficient
f in (4.25) as a summation over fixed points of the U (1)H Hitchin action. In (4.36), η0
is the moment map17 for the lowest critical manifold M. When the undeformed fusion
coefficients N (k)

λμν �= 0, one has

kVol(M) + 1 = N (k)
λμν, η0 = 0. (4.37)

Numerical computation shows that Q1,2(t) are individually a sum of three terms of
the form

Q1(t) =
3
∑

i=1

tkηi , Q2(t) =
6
∑

j=4

tkη j , (4.38)

where ηi are interpreted as the moment maps at each of the six higher fixed points of
U (1)H .

The moduli space M of SU (3) flat connections on �0,3 is either empty, a point or
CP1 depending on the choice of (λ, μ, ν) [46], and when it is empty, the lowest critical
manifold of η is a CP1 with η0 > 0 and we will still use M to denote it. The fixed loci
ofMH (�0,3, SU (3)) underU (1) action consist ofM and the six additional points, and
there are Morse flow lines traveling between them. The downwardMorse flow coincides
with the nilpotent cone [47]—the singular fiber of the Hitchin fibration, and its geometry
is depicted in Fig. 4. The Morse flow carves out six spheres that can be divided into two
classes. Intersections of D(1)

i

⋂

D(2)
i are denoted as P(1)

1,2,3, and at the top of these D
(2)
i ’s

there are P(2)
1,2,3. We also use P1, . . . , P6 and D1, . . . , D6 sometimes to avoid clutter.

The nilpotent cone can be decomposed into

N = M ∪ D(1)
i ∪ D(2)

j , (4.39)

which gives an affine E6 singularity (IV∗ in Kodaira’s classification) of the Hitchin
fibration. Knowing the singular fiber structure, we can immediately read off the Poincaré
polynomial forMH (�0,3, SU (3)):

17 Recall the U (1)H Hitchin action is generated by a Hamiltonian, which we call η—not to be confused
with the metric, which will make no appearance from now on. η is also the norm squared of the Higgs field.
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Fig. 4. The illustration of the nilpotent cone inMH (�0,3, SU (3)). HereM is the base CP1, D1,2,3 consist
of downward Morse flows from P1,2,3 to the base, while D4,5,6 include the flows from P4,5,6 to P1,2,3

Pr = 1 + 7r2, (4.40)

which is the same as that given in [44].
To use the Atiyah–Bott localization formula, we also need to understand the normal

bundle to the critical manifolds. For the base, the normal bundle is the cotangent bundle
with U (1)H weight 1. Its contribution to the fusion coefficient is given by

tkη0
∫

M

Td(CP1)∧ekω
1 − e−β+2ω′ = tkη0

(

kVol(M) + 1

1 − t
+

2t

(1 − t)2

)

. (4.41)

For the higher fixed points, the first class P(1) has normal bundle C[−1] ⊕ C[2] with
respect to U (1)H , which gives a factor

1

(1 − t−1)(1 − t2)
(4.42)

multiplying ekη1,2,3 . For the second class P(2), the normal bundle is C[−2] ⊕ C[3] and
we instead have a factor

1

(1 − t−2)(1 − t3)
. (4.43)
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Fig. 5. The affine ̂E6 extended Dynkin diagram. The Dynkin label gives the multiplicity of each node in the
decomposition of the null vector

In this paper, we won’t give the analytic expression for the seven moment maps and
will leave (4.36) as it is. Instead, we will give a relation between them:

2k = 6(N (k)
λμν − 1) + 3k(η1 + η2 + η3) + k(η4 + η5 + η6)

= 6kVol(M) + 3k(η1 + η2 + η3) + k(η4 + η5 + η6).
(4.44)

This is verified numerically and can be explained from geometry. Noticing that the
moment maps are related to the volume of the D’s:

Vol(D1) = η1, Vol(D2) = η2, Vol(D3) = η3,

Vol(D4) = η4 − η1

2
, Vol(D5) = η5 − η2

2
, Vol(D6) = η6 − η3

2
.

(4.45)

The factor 2 in the second line of (4.45) is related to the fact that U (1)H rotates the
D(2)’s twice as fast as it rotates the D(1)’s. Then we get the following relation between
the volume of the components of N :

Vol(F) = 6Vol(M) + 4
3
∑

i=1

Vol(Di ) + 2
6
∑

i=4

Vol(Dj ). (4.46)

Here F is a generic fiber of the Hitchin fibration and has volume

Vol(F) = 2. (4.47)

The intersection form of different components in the nilpotent cone gives the Cartan
matrix of affine E6. Figure 5 is the Dynkin diagram of ̂E6, and coefficients in (4.46) are
Dynkin labels on the corresponding node. These numbers tell us the combination of D’s
and M that give a null vector F of ̂E6.

4.4. Comments on TN theories. The above procedure can be generalized to arbitrary
rank, for all TN theories, if we employ the generalized Argyres–Seiberg dualities. There
are in fact several ways to generalized Argyres–Seiberg duality [36,37,48]. For our
purposes, we want no punctures of the TN to be closed under dualities, so we need the
following setup [37].

We start with a linear quiver gauge theory A’ with N − 2 nodes of SU (N ) gauge
groups, and at each end of the quiver we associate N hypermultiplets in the fundamental
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Fig. 6. Illustration of generalized Argyres–Seiberg duality for the TN theories. a The theory A’, which is
a linear quiver gauge theory with N − 2 SU (N ) vector multiplets. Between each gauge node there is a
bi-fundamental hypermultiplet, and at each end of the quiver there are N fundamental hypermultiplets. In
the quiver diagram we omit the U (1)N−1 baryonic symmetries. b The theory B’ is obtained by gauging an
SU (N − 1) subgroup of the SU (N )3 flavor symmetry of TN , giving rise to a quiver tail. Again the U (1)
symmetries are implicit in the diagram

Fig. 7. Illustration of the geometric realization of generalized Argyres–Seiberg duality for TN theories. a
The theory A’ is obtained by compactifying 6d (2, 0) theory on a Riemann sphere with two maximal SU (N )

punctures and N − 1 simple punctures. b The theory B’, obtained by colliding N − 1 simple punctures, is
then the theory that arises from gauging a SU (N − 1) flavor subgroup of TN by a quiver tail

representation of SU (N ). One sees immediately that each gauge node is automatically
superconformal. Geometrically, we actually start with a punctured Riemann sphere with
two full SU (N ) punctures and N−1 simple punctures. Then, the N−1 simple punctures
are brought together and a hidden SU (N − 1) gauge group becomes very weak. In
our original quiver diagram, such a procedure of colliding N − 1 simple punctures
corresponds to attaching a quiver tail of the form SU (N−1)−SU (N−2)−· · ·−SU (2)
with a single hypermultiplet attached to the last SU (2) node. See Fig. 6 for the quiver
diagrams and Fig. 7 for the geometric realization.

Here we summarize briefly how to obtain the Lens space Coulomb index of TN .
Let IN

A′ be the index of the linear quiver theory, which depends on two SU (N ) flavor
holonomies ha and hb (here we use the same notation as that of SU (3)) and N −1U (1)-
holonomies ni where i = 1, 2, . . . , N −1. In the infinite coupling limit, the dual weakly
coupled theory B’ emerges. One first splits the SU (N )c subgroup of the full SU (N )3

flavor symmetry group into SU (N − 1) × U (1) and then gauges the SU (N − 1) part
with the first gauge node in the quiver tail. As in the T3 case there is a transformation:

(

hc1, h
c
2, . . . , h

c
N

)→ (w1, w2, . . . wN−2, ñ0) . (4.48)

After the SU (N − 1) node, there are N − 2 more U (1) symmetries, we will call those
associated holonomies ñ j with j = 1, 2, . . . , N−2. Again there exists a correspondence
as in the T3 case:
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(n1, n2, . . . , nN−1) → (̃n0, ñ1, . . . , ñN−2) . (4.49)

Then the Coulomb branch index of the theory B’ is

IN
B′(ha, hb, ñ0, ñ1, . . . , ñN−2)

=
∑

{wi }
CTN

(

ha, hb, w1, w2, . . . wN−2, ñ0
)

IT (wi ; ñ1, . . . , ñN−2) ,

(4.50)

where IT is the index of the quiver tail:

IT (wi ; ñ1, . . . , ñN−2) =
∑

{

w
(N−2)
i

}

∑

{

w
(N−3)
i

}

· · ·
∑

{

w
(2)
i

}

I VN−1(wi )I
H
N−1,N−2

(

wi , w
(N−2)
j , ñ1

)

I VN−2

(

w
(N−2)
i

)

× I HN−2,N−3

(

w
(N−2)
i , w

(N−3)
j , ñ2

)

I VN−3

(

w
(N−3)
i

)

× . . .

× I V2

(

w
(2)
i

)

I H2,1

(

w
(2)
i , ñN−2

)

.

(4.51)

Now we can view IT as a large matrix M{wi },{̃n j }, and in fact it is a square matrix.
Although the set {̃n j } appears to be bigger, there is an affine Weyl group ̂AN−2 acting
on it. From the geometric picture, one can directly see the AN−2 = SN−2 permuting the
N −2; and the shift ni → ni + k, which gives the same holonomy inU (1)i , enlarges the
symmetry to that of ̂AN−2. After taking quotient by this symmetry, one requires {̃n j } to
live in the Weyl alcove of su(N − 1), reducing the cardinality of the set {̃n j } to that of
{wi }. Then one can invert the matrixM{wi },{̃n j } and obtain the index CTN , which in turn
gives the fusion coefficients and the algebra structure of the SU (N ) equivariant TQFT.

The metric of the TQFT coming from the cylinder is also straightforward even in the
SU (N ) case. It is always diagonal and only depends on the symmetry reserved by the
holonomy labeled by the highest weight λ. For instance, if the holonomy is such that
SU (N ) → U (1)n × SU (N1) × SU (N2) × SU (Nl), we have

ηλλ = 1

(1 − t)n

l
∏

j=1

1

(1 − t2)(1 − t3) . . . (1 − tN j )
. (4.52)

This can be generalized to arbitrary group G. If the holonomy given by λ has stabilizer
G ′ ⊂ G, the norm square of λ in the Gk equivariant Verlinde algebra is

ηλλ = P(BG ′, t). (4.53)

Here P(BG ′, t) is the Poincaré polynomial18 of the infinite-dimensional classifying
space of G ′. In the “maximal” case of G ′ = U (1)r , we indeed get

P
(

BU (1)r , t
) = P

((

CP∞)r , t
) = 1

(1 − t)r
. (4.54)

18 More precisely, it is the Poincaré polynomial in variable t1/2. But as H∗(BG, C) is zero in odd degrees,
this Poincaré polynomial is also a series in t with integer powers.
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A. Analytic Formula of ŝu(3)k Fusion Coefficients

The notation of this section is from [41]. Specifically, we define the following quantities:

kmin
0 = max(λ1 + λ2, μ1 + μ2, ν1 + ν2, a − min(λ1, μ1, ν1), b − min(λ2, μ2, ν2)),

kmax
0 = min(a, b),

(A.1)

where

a = 1

3
(2(λ1 + μ1 + ν1) + λ2 + μ2 + ν2) ,

b = 1

3
(λ1 + μ1 + ν1 + 2(λ2 + μ2 + ν2)) .

(A.2)

Moreover we introduce

δ =
{

1 if kmax
0 ≥ kmin

0 and a, b > 0, a, b ∈ Z,

0 otherwise.
(A.3)

With these definition we can compactly write our ordinary su(3) representation ring and
its fusion coefficient as

Nλμν =
(

kmax
0 − kmin

0 + 1
)

δ, (A.4)

and we also define a list of Nλμν integers:

ki0 =
{

kmin
0 , kmin

0 + 1, . . . , kmax
0

}

. (A.5)

Then the ŝu(3)k fusion coefficients can be written as

fλμν(t = 0) ≡ N (k)
λμν =

{

max(i) such that k > ki0 and Nλμν �= 0,

0 if Nλμν = 0 or k < k10 .
(A.6)
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