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ABSTRACT
Database Management Systems (DBMSes) secure data against
regular users through defensive mechanisms such as access con-
trol, and against privileged users with detection mechanisms
such as audit logging. Interestingly, these security mechanisms
are built into the DBMS and are thus only useful for monitoring
or stopping operations that are executed through the DBMS API.
Any access that involves directly modifying database files (at file
system level) would, by definition, bypass any and all security
layers built into the DBMS itself.

In this paper, we propose and evaluate an approach that detects
direct modifications to database files that have already bypassed
the DBMS and its internal security mechanisms. Our approach
applies forensic analysis to first validate database indexes and
then compares index state with data in the DBMS tables. We
show that indexes are much more difficult to modify and can
be further fortified with hashing. Our approach supports most
relational DBMSes by leveraging index structures that are already
built into the system to detect database storage tampering that
would currently remain undetectable.

1 INTRODUCTION
DBMSes use a combination of defense and detection mechanisms
to secure access to data. Defense mechanisms, such as access
control, determine the data granularity and system access granted
to different database users; defense mechanisms, such as audit
logging, monitor all database activity. Regardless of the defense
mechanisms, security breaches are still a legitimate concern –
sometimes due to unintentional granting of extra access control
and sometimes due to outright hacking, such as SQL injection.
Security breaches are typically detected through analysis of audit
logs. However, audit log analysis is unreliable to detect a breach
that originated from privileged users.

Privileged users, by definition, already have the ability to
control and modify access permissions. Therefore, audit logs
fundamentally cannot be trusted to detect suspicious activity.
Additionally, privileged users commonly have access to database
files. Consider a system administrator who maliciously, acting
as the root, edits a DBMS data file in a Hex editor or through a
programming language, such as Python. The DBMS, unaware
of external file write activity taking place outside its own pro-
grammatic access, cannot log it, and thus the tampering attack
remains undetected.

Current DBMSes do not provide tools against insider threats
– in general, a built-in security mechanism is vulnerable to in-
sider attacks. While a DBMS will not be able to detect direct
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storage changes, file-level modifications potentially create incon-
sistencies within the auxiliary data structures maintained by a
DBMS. Forensics tools that examine file contents can be used
to detect such inconsistencies, and determine if insider threats
have taken place. Recently we proposed the first database foren-
sic tool, DBCarver, that can be used to detect deleted data from
database pages [31]. However, database forensic tools such as
DBCarver merely extract forensic artifacts but do not search for
inconsistencies within the data structures maintained by a DBMS.

In this paper, we propose a system, DBStorageAuditor, that
detects database file tampering by identifying inconsistencies in
storage through a direct inspection of internal database struc-
tures. DBStorageAuditor utilizes existing database forensic tech-
niques and expands them to extract additional necessary storage
artifacts. These artifacts are then used to detect inconsistencies
within indexes and between indexes and tables. The underlying
premise of our approach is that all relational databases follow
patterns in storage over which the privileged user has little or
no control. We inspect these storage patterns to detect unusual
activity. We motivate DBStorageAuditor through an example:

T1, 
DELETE 
FROM Orders 
WHERE ID = 2;

T2, 
DELETE 
FROM Orders 
WHERE ID = 6;
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Figure 1: Example attack through DBMS files.

Example 1. Malice is the system administrator for a shipping
company, FriendlyShipping. Malice is bribed by a competing com-
pany to interfere with the orders going to Seattle. Malice does not
have access to the DBMS, but she does have access to the server
where the database files reside.

Malice writes a Python script that will open and directly modify
the database file containing the Orders table. The script then opens
the database file, finds all records containing the string ‘Seattle’, and
explicitly overwrites entire records with the NULL ASCII character
(decimal value 0).

Figure 1 illustrates the result of Malice’s script actions. Since
the record was erased without the DBMS (API has never seen that
command) all DBMS security was bypassed, and the operation was
never recorded in the log file. When FriendlyShipping investigates
the missing Seattle orders, the audit log can only explain deleted
orders for (2, Chair, New York) and (6, Chair, Detroit).
The audit logs contain no trace of the Seattle order being deleted
because it was not deleted but rather wiped out externally.

To simplify in the above example, we have omitted some details
of database file tampering, which we expand on later in Section
5. Barring those details in Example 1, the value in the City index



still exists in index storage even though the entire record is erased.
Therefore, an inconsistency can be identified by mapping back
the index value to the empty gap in table storage. The empty gap
in table storage exists because a database only marks a record
when it is deleted, and only overwrites the record with data from
a newly inserted record. However, making the mapping from
the index value to the associated record must be based on the
behavioral rules of database storage, such as page and record
layout. We use database forensic tools to understand database
layout, and using that layout, perform the necessary mapping.

It is not impossible for a scrupulous system administrator to
(i) tamper with the index and create a cascade of inconsistencies
throughout the index structure, or (ii) for an attacker who has
privileges to modify database files to acquire privileges to sus-
pend or kill logging mechanisms at the operating system level if
necessary, or (iii) for a knowledgeable adversary to easily avoid
corrupting storage and keep checksum values consistent. How-
ever, in spite of increased level of threat, we repeatedly show
that accurate knowledge about data layout can be used to gather
evidence and prove if any malicious activity has taken place.

Previously we developed an approach to detect malicious ac-
tivity when DBMS logging is disabled [28]. In this approach we
analyzed unlogged activity (executed through a proper DBMS
API) but strictly assumed that database files were not exposed to
tampering. In this paper, we address the tampering vulnerability
where the database files are physically altered. Developing an
auditing system for DBMSes is part of our larger goal to open
up the database system and its storage to users, for performance
and forensics investigation.

The rest of the paper is organized as follows: Section 2 cov-
ers related work. Section 3 discusses concepts of database stor-
age used throughout the paper. Section 4 defines the adver-
sary we seek to defend against. Section 5 details how to per-
form database file tampering. Section 6 provides an overview
of DBStorageAuditor. Section 7 describes how we utilize data-
base forensics. Section 8 addresses index tampering. Section 9
proposes a method to organize carved index output making our
system scalable. Section 10 discusses how to detect file tampering
using inconsistencies between carved index data and table data.
Section 11 provides a thorough evaluation of our system.

2 RELATED WORK
This paper focuses on the detection of database file tampering.
Therefore, we discuss work related to protecting DBMSes against
privileged users as well as work that detects regular (non-DBMS)
file tampering. We outline why existing file tampering and anti-
forensic methods are inapplicable to database files.

2.1 Database Auditing and Security
Database audit log files are of great interest for database secu-
rity because they can be used to determine whether data was
compromised and what records were accessed. Methods to verify
log integrity have been proposed to detect log file tampering
[18, 25]. Pavlou et al. expanded upon this work to determine
the time of log tampering [17]. Sinha et al. used hash chains to
verify log integrity in an offline environment without requiring
communication with a central server [24]. Crosby et al. proposed
a data structure, history tree, to reduce the log size produced by
hash chains in an offline environment [2]. Rather than detecting
log tampering, Schneider and Kelsey developed an approach to
make log files impossible to parse and alter [23]. An event log
can be generated using triggers, and the idea of a SELECT trigger

was explored for the purpose of logging [3]. ManageEngine’s
EventLog Analyzer provides audit log reports and alerts for Ora-
cle and SQL Server based on actions, such as user activity, record
modification, schema alterations, and read-only queries [13]. We
previously described a method to detect inconsistencies between
storage and log files, allowing tampering detection when logging
was disabled (i.e., when an operation was excluded from the log)
[28]. All of this work assumes that database storage can not be
altered directly – an action which bypasses logging mechanisms.

Network-based monitoring methods have received attention
in audit log research because they provide independence and gen-
erality by residing outside of the DBMS. IBM Security Guardium
Express Activity Monitor for Databases [9] monitors incoming
packets for suspicious activity. Liu et al. [12] monitored DBAs
and other privileged users by identifying and logging network
packets containing SQL statements. The benefit of monitoring ac-
tivity over the network and, therefore, beyond the reach of DBA’s,
is the level of independence achieved by these tools. On the other
hand, relying on network activity ignores local DBMS connec-
tions and requires intimate understanding of SQL commands (i.e.,
an obfuscated command can fool the system).

2.2 Database Forensics
Stahlberg demonstrated the retention of deleted data and pro-
posed techniques to erase data for a MySQL DBMS [26]. While
this work was only ever implemented for MySQL, it validates
our threat model by imposing custom DBMS file modifications.

Database page carving [31] is a method for reconstructing the
contents of a relational database without relying on the file sys-
tem or DBMS. Page carving is inspired by traditional file carving
[6, 21], which reconstructs data (active and deleted) from disk
images or RAM snapshots without the need for a live system. The
work in [29] presented a comparative study of the page structure
for multiple DBMSes. Subsequent work in [30] described how
long forensic evidence resides within a database even after being
deleted or reorganized. While a multitude of built-in and third
party recovery tools (e.g., [15, 19, 20]) aim to extract database stor-
age, none of these tools are helpful for forensic analysis because
they can only recover “active” data. Forensic tools, such as Sleuth
Kit [1] and EnCASE Forensic [4], are commonly used by digital
investigators to reconstruct file system data, but they are not
capable of parsing database files. A database forensic tool (just
like a forensic file system tool) should also reconstruct unallo-
cated pieces of data, including deleted rows, auxiliary structures
(indexes) or buffer cache space.
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Figure 2: DBCarver architecture.

Our storage analysis relies on DBCarver tool described in [31],
which was revised to process additional artifacts for this paper.
Figure 2 provides an overview of DBCarver, which consists of two
main components: the parameter collector(A) and the carver(F).



The parameter detector loads synthetic data into a DBMS(B), cap-
tures storage(C), deconstructs pages from storage, and describes
the page layout with a set of parameters which are stored in a
configuration file(E) – a text file that captures page-level layout
information for that particular DBMS. These configuration files
are used by the carver(F) to reconstruct DBMS content from disk
images, RAM snapshots, or any other input file(G). The carver
returns storage artifacts(H), such as user records, metadata de-
scribing user data, deleted data, and system catalogs.

2.3 File Tampering and Anti-Forensics
One-way hash functions have been used to detect file tampering
at the file system level [7, 11]. However, we expect database files
to be regularly modified by legitimate operations. Distinguishing
a malicious tampering operation and a legitimate SQL operation
would be nearly impossible at the file system level without knowl-
edge of metadata in DBMS storage. Authenticating cached data
on untrusted publishers has been explored by Martel [14] and
Tamassia [27]. Their threat model defends against an untrusted
publisher that provides cached results working with a trusted
DBMS and, while our work addresses an untrusted DBMS.

Anti-forensics is defined as a method that seeks to interfere
with a forensic process [8]; file tampering threat model we ad-
dress in this paper exhibits anti-forensics behavioral properties.
Two traditional anti-forensics techniques are data wiping and
data hiding [5, 10]: 1) data wiping explicitly overwrites data to
delete it rather thanmark it as deleted, 2) data hiding seeks to hide
the message itself. We are not aware of any existing literature
that addresses anti-forensics within DBMSes [22]; we consider
adding or erasing data through file tampering (that bypasses
DBMS itself) to be the equivalent of anti-forensics for DBMSes.
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Figure 3: Example page headers.

3 BACKGROUND
The security threats we consider in this paper affect the lowest
level of database storage (details of which are hidden from the
users by design). In this section, we briefly generalize storage
of the RDBMS row-store pages and define terminology used
throughout this paper. The concepts formulated in this section
apply to (but are not limited to) IBM DB2, SQL Server, Oracle,
PostgreSQL, MySQL, Apache Derby, MariaDB, and Firebird.

3.1 Page Layout
When DBMS data is accessed or modified through an API, the
DBMS implements data changes within pages and maintains a
variety of additional metadata. While each DBMS employs its
own storage engine, there are many conceptual commonalities
between DBMSes in how data is stored and maintained. Every
DBMS uses fixed-size pages with three main structures: header,
row directory, and row data.

A DBMS page header stores metadata describing user records
stored in the page. The metadata of interest (to this paper) are
the checksum, object identifier, page identifier, free space pointer,
and record count. Figure 3 demonstrates an example of how this
metadata could be positioned in an 8K page. The checksum(A)
detects data corruption within a page; whenever a page is modi-
fied, the checksum is updated. The object identifier(B) represents
the database object to which the page belongs (the object name
is stored in a separate system table). In Figure 3, Pages 1-3 have
the object identifier 101, and Page 4 has the object identifier 105.
The page identifier(C) is unique to each page for either an object,
a file, or across all files. In Figure 3, the page identifier is unique
for each object because the value 1 occurs for both objects 101
and 105. The free space pointer(D) references unallocated space
within the page where a new record can be added. If the page is
full, the free space pointer is NULL (decimal value 0). In Figure 3,
Page1 is full since it has a NULL free space pointer, while Pages 2,
3, and 4 point to unallocated space. The record count(E) refers to
the number of active records in a page. If a record is a deleted,
the record count will be decremented by one, and if a record is
added to a page, it will be incremented by one. In Figure 3, Page1
has 80 active records, and Page2 has 81 active records.
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Figure 4: Example row directory and row data layouts.

The row directory stores pointers to each page record (row) –
when a record is added to a page, a pointer is added to the row
directory. Figure 4 shows one example of how the row directory
(A) could be positioned; the row directory in this example has
two pointers referencing records within the row data.

The row data stores the user data along with additional meta-
data. Figure 4 shows an example of how the row data may be
structured (with some minor DBMS-specific variations). Each
record stores the user data values (E), a row delimiter that sepa-
rates the records (B), the number of columns for the record (C),
and the size of each string (D).

Deleted Data. When a record is deleted, a DBMS either over-
writes the row directory pointer for that record or marks the
record itself in the row data – it is important to note that the
record entry is not erased. Figure 4 shows an example of when the
row metadata is marked for a deleted record (F). Deleted records
become unallocated space, and DBMS settings and operations
dictate when records are (eventually) overwritten by new data.

Index Pages. Index value-pointer pairs are stored in pages,
which are similar to table pages including a header, row direc-
tory, and row data. The only significant difference between table
and index pages is the layout of records – index pages store
value-pointer pairs in the row data. Furthermore, in practice,
index values are not marked as unallocated space when a cor-
responding table record is deleted. Stale index values persist in
storage, typically until the B-Tree is explicitly rebuilt by the user
and long after the table record was overwritten.



4 THREAT MODEL
In this section, we define the attack vectors, different possible
adversary types, and the privileges we expect them to wield. We
consider two types of privileged users: database administrator
(DBA) and system administrator (SA). A DBA can issue privileged
SQL commands against the DBMS including disabling logs or
granting privileges to users. However, a DBA would not have
administrative access to the server OS. The SA has administrative
access to the server OS including the ability to suspend processes
and read/write access to all files, but no access to privileged SQL
commands in the DBMS. The SA can still have a regular DB user
account without affecting our assumptions.

Since a DBA can bypass DBMS defense mechanisms, detection
mechanisms are best suited to identify anomalous behavior. An
audit log containing a history of SQL commands is accepted as
one of the best detection mechanisms for a DBMS. In Section 2,
we discussed prior work designed to prevent audit log tampering
and detect malicious behavior in the event that logging was
disabled. In this paper, we focus on a detection mechanism for a
user often ignored in DBMS security, the SA.

The SA can bypass all DBMS security defense and detection
mechanisms by reading and editing a database file with a tool
other than the DBMS. For example, a SA could use Python to
open a file and change the value ‘Hank’ to ‘Walt.’ In Section
5 we discuss additional steps that must be considered to suc-
cessfully perform such an operation, but it can ultimately be
achieved. Since this operation occurs outside of the DBMS, it
bypasses all DBMS access control, and it will not be included
any of the DBMS log files. Furthermore, one can assume that
the SA would have the ability to suspend any logging mecha-
nism in the server OS. Although changes to a file will also be
recorded in the file system journal, the SA has the ability to turn
off journaling to the file system by using tune2fs on Unix or the
FSCTL_DELETE_USN_JOURNAL control code on NTFS (Win-
dows). However, the file system must be shutdown first in order
to prevent possible corruption. Therefore, the SA may have to
effect a shutdown of the DBMS before making changes to the
database files. The shutting down and restarting of the database
instance and the system will generate events that are logged;
however, as mentioned earlier, the SA can turn off system log-
ging easily. Moreover, the SA could revise the DBMS log in order
to hide evidence of the shutdown and restart. Hence, it would
be somewhat involved but not difficult for a SA to cover his/her
tracks when tampering with a DBMS file.

5 FILE TAMPERING
The threats to data we consider in this paper occur at the OS
level outside of DBMS control. In this section, we formulate the
threat and introduce concepts and categories of tampering.

A DBMS allows users and administrators to access and modify
data through an API. Access control guarantees that users will be
limited to data they are privileged to access. In this section, we
discuss how an adversary can perform file tampering. To limit the
scope of this paper, we assume that file tampering involves user
data and not metadata (changing metadata can easily damage the
DBMS but that will not alter any of its records). We define user
data as records created by the user or copies of record values that
may reside in auxiliary structures (e.g., indexes). File tampering
actions that we discuss in this section ultimately produce one
of two results in storage: 1) Extraneous data is a record or a
value that has been added through file tampering or 2) Erased

data is a record that has been explicitly overwritten (rather than
marked deleted by a command as described in Section 3).

Three things must be considered when performing database
file tampering: 1) page checksum, 2) write lock on files, and 3)
dirty pages. In Section 3, we discussed the functionality and
placing of the page checksum. Figure 5 shows three different
page alterations, in all of which the checksum is (also) updated.
Some DBMS processes hold write locks on the database files.
Therefore, tampering would require that the attacker release or
otherwise bypass OS file write locks. DBMSes do not immediately
write pages back to disk after they are modified in the buffer
cache. That is significant because a maliciously altered page on
disk can be overwritten when a dirty page is flushed to disk –
or, alternatively, a dirty page could be altered directly in RAM
instead (bypassing file locks that way).

Write-Locks. The file locking system API, through the fcntl
system call in Unix, is set up so that a process can prevent writes
to (as well as reads from) a file that it has locked successfully. An
attacker can potentially cause the process holding the lock, in
this case the DBMS, to release the lock. Otherwise, a sophisti-
cated attacker with root privileges can release the lock without
involvement of the process by using kernel code. Once the lock
is released, the attacker would lock the file, tamper with its con-
tent, and then release the lock. The DBMS would not receive any
signal or other indication of the tampering and could continue
to use the file as if it were locked after the attacker releases the
lock. While the attacker holds the lock, however, DBMS access to
the file would be suspended. In order to prevent the DBMS from
discovering this condition, the attacker could suspend the DBMS
process temporarily until the tampering has been completed. An
attacker with root privileges could also mark memory used by
the DBMS as shared and tamper directly with memory.

Data Encryption. Different levels of encryption can be em-
ployed to protect database files, but they can ultimately be by-
passed by an adversary with SA privileges. It is reasonable to
assume that the SA would have the ability to decrypt any data
that has been encrypted at the OS level. The SA would most
likely not have the privileges to decrypt any internal database
encryption. However, individual (value or record based encryp-
tion) is still subject to tampering since the metadata describing
the encrypted values is still readable. Furthermore, column-level
encryption values are decrypted when they are read into memory
making it possible to map the decrypted values in memory back
to the encrypted values in persistent storage.

5.1 Value Modification
The first category of file tampering action we consider is value
modification. Value modification is logically similar to a SQL
UPDATE command; this type of tampering results in extraneous
data. Storage space and value encoding (see Section 3) are the
main considerations when modifying a value.

If a modified value requires the same storage space as the origi-
nal entry, no metadata needs to be updated. If the newly modified
value requires less storage than the original, then metadata needs
to be modified, and other values in the record may need to be
shifted. For example, many DBMSes explicitly store string sizes
on page – e.g., changing ‘Hank’ to ‘Gus’ requires metadata value
with the size of the string to be changed from 4 to 3. Furthermore,
if the modified value is not the last column in the record, all other
columns must be shifted by one byte. Only the columns in the
modified record need to be shifted; other records in the page can



remain as-is, leaving a gap (1 byte in our example). Shifting all
other records in the page to close the gap would require all of
the corresponding row directory addresses and relevant index
pointers to be updated. If a value is modified to a value that re-
quires more storage space, the old version of the record must be
erased and the new version of the record must be appended to
the table. These operations are discussed in the remainder of this
section. Shifting the following records to accommodate a large
value modification is not practical – unless the modified value
happens to be in the last record on the page (and there is free
space at the end of the page).
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Figure 5: Database file tampering examples.

Figure 5.2 shows an example of a value changed to a smaller
size. Since ‘Andy’ is one byte smaller than ‘Alice’, the column
size must be changed from 5 to 4. Furthermore, the name is not
the last column so next column (‘Austin’) is shifted by one byte,
which overwrites the ‘e’ at the end of ‘Alice’ and leaves an unused
‘n’ character from ‘Austin’.

5.2 Record Addition
The next file tampering action we consider is new record addition,
which is logically similar to a SQL INSERT command. This type
of file tampering results in extraneous data generated within the
DBMS. When adding a record to a file, metadata in the row data,
row directory, and page header must be considered along with
the correct value encodings.

When a record is appended to an existing page, the structure
of the record must match the proper active record structure for
that DBMS. Section 3 discusses metadata that a DBMS uses to
store records. For the DBMS to recognize a newly added record, a
pointer must be appended to the page row directory. Finally, the
free space pointer must be updated and the active record count
(if used by the DBMS in question) must be incremented.

Figure 5.3 shows an example of the record (‘Carl’, ‘Chicago’)
added to the page. Along with the values themselves, additional
metadata is included in the row data. The size of each column,
4 and 7 bytes, is included, the column count, 2, and the row
delimiter, 44. Next, a pointer, 8050, is added to the row directory,
and the record count is updated to 3. Finally, the free space address
is updated since the record was added to free space of the page.

5.3 Record Wiping
The final tampering action category we discuss is record wiping.
Record wiping is logically similar to a SQL DELETE command, ex-
cept that it fully erases the record. A proper SQL DELETE command
will merely mark a record as deleted; record wiping explicitly
overwrites the record to destroy the data, even from a forensic
recovery tool. Record wiping erases data with no forensic trace
as there is no indication that a record existed in a place where it
was overwritten. Wiping a record from a file is essentially the
reverse operation of adding a record to a file: the metadata in the
row data, row directory, and page header must all be altered.

When a record is overwritten in a page, the entire record
(including the metadata) is overwritten with the NULL ASCII
character (a decimal value of 0). Next, the row directory pointer
must also be overwritten in the same way. Finally, the free space
pointer must be updated and the active record count (if used by
the DBMS) must be decremented.

Figure 5.4 shows an example of the record (‘Alice’, ‘Austin’)
erased from the page. Every byte used for the values and their
metadata (column sizes, column count, and row delimiter) is
overwritten with the decimal value 0. The row directory address
for that row is erased and the row directory is defragmented.
Finally, the record count is updated to 1.

Record Removal. Rather than explicitly overwriting a record,
the record metadata could also be marked to mimic a SQL DELETE.
We define such changes as a record removal (versus record wip-
ing). We do not address record removal in this paper because
such unlogged action can be detected by our previous work in
[28] by comparing and flagging inconsistencies between DBMS
storage forensic artifacts and the audit logs.

6 APPROACH OVERVIEW
Our goal in this paper is to eliminate a major security vulnerabil-
ity stemming from file tampering; our solution is envisioned as
a component of a comprehensive auditing system that employs
database forensics. We have previously built a tool that detects
malicious activity when database logging was disabled [28] by
comparing forensic artifacts and database logs. That approach
relied on forensic artifacts left by SQL commands and assumed
no OS level file tampering. DBStorageAuditor finds inconsisten-
cies that were done by direct file modification. Future work, such
as recovering a time line of events or user attribution, would
involve expanding upon the current components to the system.

The remainder of the paper describes our system to detect data-
base file tampering, DBStorageAuditor, followed by an experi-
mental evaluation in Section 11. Figure 6 provides an overview of
DBStorageAuditor, which consists of four components: foren-
sic extraction(A), index integrity verification(B), carved index
sorting(C), and tampering detection(D).

The forensic processing component is based on the forensic
tool DBCarver [31] described in Section 2. DBCarver retrieves
from storage all table records (including deleted records), record
metadata, index value-pointer pairs, and several additional stor-
age artifacts. We discuss new functionality that was added to
DBCarver for this paper in Section 7 (e.g., a page checksum ex-
traction and comparison, a generalized approach to pointer de-
construction for several RDBMSes).

We first verify the integrity of indexes (discussed in Section
8) because indexes are used later to detect tampering of table
data, so it is critical to verify index structure integrity. To achieve
that, we evaluate the B-Tree in storage, consider corrupt data that
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Figure 6: Architecture of the DBStorageAuditor.

matches B-Tree organization, and check for traces of an index
rebuild (e.g., REORG, VACUUM – depending on a DBMS).

We cannot assume that index artifacts can be fully stored in
RAM while matching index values to table records. Therefore,
the carved index sorting component discussed in Section 9 pre-
processes index artifacts to make DBStorageAuditor approach
scalable. We approximately sort the index values based on their
pointers which correspond to the physical location of records in
a file and improves the runtime the matching process.

Finally the tampering detection component discussed in Sec-
tion 10 detects cases of extraneous and erased data in storage. If
a record and its artifacts can not be reconciled with index value-
point pairs, such entries are flagged and returned to the user as
suspected file tampering.

7 FORENSIC ANALYSIS
Our proposed analysis relies on an expanded version of DBCarver
[31] to extract database storage artifacts that can not be queried
using the DBMS. These artifacts include record metadata, deleted
records, and index value-pointer pairs. In this section, we discuss
the addition of a checksum comparison and generalized pointer
deconstruction to DBCarver.

7.1 Checksum Comparison
In Section 3, we defined the checksum stored in the page header.
Whenever data or metadata in a page is updated, either legiti-
mately or through data tampering, the checksummust be updated
accordingly. If the checksum is incorrect, the DBMS will recog-
nize the page as corrupt. This will result in warnings as well as
data loss ranging from page to the table or the entire database
instance. Therefore, we can assert that if a checksum did not
change between time T1 (previous inspection) and T2 (current
inspection), then the page has not been modified and the records
have not been exposed to tampering.

We implemented a dictionary of checksums taken from the
DBMS pages that are to be evaluated by DBCarver (it is possible
to inspect any subset of the DBMS for tampering signs – focusing
only on data-sensitive tables). Our dictionary stores the checksum
values, where the object identifier and page identifier (Section
3) were the key and the checksum was the value. The checksum
dictionary should be stored off-site so it is not at risk of tampering.

If the checksum has changed for a given page, the entire page
must be inspected and validated by DBCarver. If the checksum
did not change for a page, only page metadata was necessary to
reconstruct. The metadata is needed to avoid false-positives in
Algorithm 2. Some DBMSes (e.g., Oracle, MySQL) allow the page
checksum to be disabled. If the checksum is disabled or believed
to have been disabled at some point, then a checksum comparison
is unreliable and all data must be carved and inspected.

7.2 Index Carving and Pointer
Deconstruction

DBStorageAuditor uses index value-pointer pairs to identify
inconsistencies in DBMS storage. Therefore, the value-pointer
pairs must be inspected. DBMSes do not allow indexes to be
queried directly (i.e., indexes can not appear in the FROM clause)
which is why we use DBCarver to retrieve index contents. How-
ever, the pointer parsing by DBCarver was limited and specific
to each DBMS; we developed a generalized approach to pointer
deconstruction allowing DBStorageAuditor to be compatible
with any investigated RDBMS.

We performed an analysis of pointers for 7 commonly used
RDBMSes. Table 1 lists these RDBMSes and summarizes our con-
clusions. We found that all of these DBMSes, except for MySQL,
stored a PageID and a Slot#. By default, MySQL creates an in-
dexed organized table (IOT) so the pointer deconstruction process
is slightly different. We address index pointers for IOTs later in
this section. The PageID refers to page identifier that is stored
in table page header (Section 3). The Slot# refers to a records
position within a page. SQLServer and Oracle both store a FileID,
which refers to file in which the page is located. The DBMSes
that do not include a FileID in the pointer, use a file-per-object
storage architecture (i.e., each table and index are stored in dif-
ferent files). The FileID for these pointers is the ObjectID or it
can be mapped back to the ObjectID if the object name is the file
name. Thus, an index pointer can be deconstructed into a FileID,
PageID, and Slot# to map a value back to a table record location.
Index pointers are typically the same as the internal DBMS row
identifier pseudo-column.

DBMS Version FileID PageID Slot#
SQLServer Yes Yes Yes
Oracle Yes Yes Yes
ApacheDerby No Yes Yes
PostgreSQL No Yes Yes
Firebird No Yes Yes
DB2 No Yes Yes
MySQL No Yes* No

*The pointer references the second level of an IOT.
Table 1: Pointer Deconstruction.

Figure 7 demonstrates how index values are mapped back to
the table records through our generalized pointer deconstruc-
tion. For each index value(A), the pointer stores a PageID(B) and
Slot#(C). The pointer PageID(B) corresponds to the page identi-
fier(D) in the table page header. The pointer Slot#(C) corresponds
to the row directory address(E) in the table page. For example,
the pointer for ‘Austin’ stores PageID = 8 and Slot# = 12. To find
the record, the table page with identifier = 8 is found and the
12th row directory address is used to locate the record (68, ‘Alice’,
‘Austin’) within the page.
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Index Organized Tables. While MySQL was the only evaluated
DBMS that created IOTs by default, IOTs are commonly used
in other DBMSes under different names (e.g., IOT in Oracle, In-
cluded Columns in SQL Server) so we incorporated their pointer
deconstruction. The pointer for a secondary index built on an IOT
is made of a PageID that references a page one level above the
IOT B-Tree leaf page, and the primary key value. The PageID for
the IOT leaf page can then be retrieved from the pointer stored in
the second level of the B-Tree. After performing this additional
IOT B-Tree access, we can associate every secondary index value
with a PageID and a primary key value, where the PageID refer-
ences an IOT leaf page and the primary key value replaces the
Slot#. Figure 8 illustrates how a secondary index value can be
mapped back to an IOT record. We have the same index on City
and the same records from Figure 7. However, the records are
now stored in an IOT, and we now have a B-Tree page one level
above the IOT leaf pages. The City index values(A) now store
the PageID for IOT B-Tree page(B) and the primary key values(C)
as the pointer. The IOT B-Tree page stores primary key values(F)
and leaf PageIDs(G) as the pointer. For example, the pointer for
‘Austin’ stores PageID 20 and the primary key 68. This directs
us to the IOT B-Tree page with PageID 20 and the value-pointer
pair (57, 8). The IOT B-Tree pointer tells us ‘Austin’ is in the
leaf page with PageID 8 and the primary key value 68.
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8 VERIFYING INDEX INTEGRITY
It is plausible for an adversary to tamper with the relevant index
values in an attempt to conceal evidence of file tampering. In this
section, we address several types of index tampering, and how
to detect such activity.

8.1 B-Tree Integrity Verification
If the attacker changes a value, adds a record, or wipes a record
from a table, he may also perform a complimentary operation in
the index. For example, ‘Dan’ was changed to ‘Jane’ in a table
record could also be similarly modified in the index leaf node.

Interestingly, this type of activity creates inconsistencies in
the index B-Tree that do not arise in the table. We consider the
case where an index value is changed in-place and the case where
index value was erased (and possibly reinserted into the correct
position in the B-Tree). If the index value was changed in-place,
it would appear out-of-order in the leaf of the B-Tree. If the
index value was erased, it creates an uncharacteristic blank space
between values within the leaf page, which never occurs naturally.

8.2 The Neighboring Value Problem
An index value may sometimes be altered without violating the
correct ordering of the B-Tree. For example, in Figure 9 ‘Dan’
is changed to ‘Dog’ preserving a correct value ordering of the
Name index. This example shows how a table and an index can
be altered without producing an inconsistency.

We build a function-based index that stores the hash value of
column(s) to thwart tampering that involves neighboring range
values. The values in hash-index will have a different ordering
than the values in the secondary index so a neighboring value
can occur in one, but not both. Figure 9 shows an example of how
a hash index can be used to detect index tampering the involves
neighboring values. In both the table and the Name index, the
value was changed to ‘Dog.’ Changing the value in the Name
index preserved the correct ordering. However, changing the
value in the hash-index would result in an incorrect ordering
since the values are organized differently. Function-based indexes
are supported by many major DBMSes (e.g., IBM DB2, Oracle,
and PostgreSQL); a computed column can be used for DBMSes
that do not support function-based indexes (e.g., MySQL and
Microsoft SQL Server).
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Figure 9: Preventing the neighboring value problem.

8.3 SQL Index Rebuild
Although we assume that the attacker does not have privileges
to rebuild an index through SQL, the index may nevertheless be
rebuilt as part of routine maintenance. If an index is rebuilt post
tampering, the reconstruction of the index will eliminate any
inconsistencies (extraneous or erased data) between the table and
the index because indexes will be built anew using the current
table state. However, when an object is rebuilt, a new object is
created and artifacts (discarded pages) from the old object are
left behind in storage. Many of the pages from the old index are
likely to be overwritten, but some pages are going to persist in
storage following the rebuild [30].

Pages left behind from an index rebuild can serve as separate
evidence to detect tampering. The old index version (or the parts
recovered) can be treated as a separate index (It−1) from the
newly rebuilt version (It ). While the old index version does not



contain a complete set of values due to having been partially
overwritten, it can still be used to detect tampering. This would
be applicable when auditing is not performed at regular intervals
relative to the frequency of index rebuilds.

8.4 Manual Index Rebuild
In order to deceive DBStorageAuditor, an attacker would have
to completely rewrite the entire index (or at least several differ-
ent pages in it). While such operation is possible, performing
it successfully poses several major challenges. We emphasize
that typical security solutions are designed to greatly increase
the level of difficulty to perform an attack, rather than create an
absolute defense.

Section 5 discussed cached dirty page problemwhen physically
modifying a page. Moreover, dirty index pages can introduce
additional complications. First, a given index page is more likely
to have a dirty version cached compared to a table page. An index
page is not only modified when the indexed column is updated,
but the index pointer must also be updated if an update causes
a record to be written to a new location. Furthermore, index
pages store significantly more values than table pages, increasing
their chance to be modified. Second, as the index changes, the
database may reorganize the B-Tree structure (e.g., page split).
As parts of the index are rebuilt, pages are likely to be written
to new locations in a file. We note that the physical order of a
B-Tree does not reflect the logical order of the B-Tree. Third,
the attacker may have to discover the physical location of other
connected index pages (i.e., just finding the page with needed
value is insufficient, several parts of the B-Tree would need to
reconstructed). Index leaf pages point to the next logical page
in the B-Tree and sometimes to the previous page as well. This
means that if a logically adjacent page is rebuilt and written
to a new location, then a modified index page would need to
reflect that change. Therefore, the attacker would need to be
aware of all internal B-Tree structure changes to guarantee a
successful manual index rebuild. Finally, if a function-based index
storing a hash value exists, we assume that an SA would not have
knowledge of this function. Therefore, inconsistencies would still
arise in any attempts to manually rewrite the index.

9 INDEX SORTING
When tables and indexes are carved, the data is extracted based on
the physical location within the files. Therefore, the relationship
between the ordering of the carved table records compared to the
index values is random, with a possible exception of a clustered
index (it is common for a clustered index to be manually updated,
such as PostgreSQLwith VACUUM command). Assuming that the
index can not be fully loaded into into RAM, expensive random
seeks must be performed to map index values to table records. In
this section we propose a method to reorder the index to make
the process of matching index values and table records scalable.

As demonstrated in Section 7, index pointers correspond to
the physical position of the table records. Therefore, sorting the
index values by the pointers produces the same ordering for index
values and table records. Carved table records and index values
are then read sequentially, similar to a merge join process.

For an index that is too large to fit into memory, sorting the
index pointers can be a costly operation. If we assume thatN table
pages will be read into memory when detecting table tampering
(Section 10), then index values need to be sorted across every
N pages, but values do not need to be sorted within N pages.

We call each set of index values that belong in N table pages a
bucket. We perform approximate sorting by re-ordering index
values across buckets but not within buckets.

For each index bucket, we record the minimum and maximum
table page identifier. If an index value is in the range of page
identifiers for a bucket, the page identifier, slot number, and
index value are stored in that bucket. When table pages are read
for table tampering detection, the relevant bucket(s) are read
into memory using the table page identifier and the index bucket
minimum and maximum values.

Figure 10 shows an example of an index that is approximately
sorted on the pointer. For each value in the index, there is a
pointer that contains a PageID and a Slot#. We first create a
set of buckets where each bucket contains 1000 PageIDs. We
read the carved index data, and assign a value to the appropriate
bucket using the pointer. For example, the first and second index
values ‘Alex’ and ‘Bob’ belong in bucket #2 because their PageIDs,
2000 and 1002 are between the minimum and maximum PageID
range for the bucket. We then store the PageID, Slot#, and Value
in the bucket. ‘Carl’ has a PageID 5 so that value belongs in
bucket #1. Bucket #2 demonstrates that PageIDs do not need to
be sorted within the bucket. Furthermore, we see that PageID
2000 in bucket #2 has two values. This can occur as a result of
legitimate SQL operations that create stale index values.

Carved Index

2000 1
PageID Slot#

1002 2
5 33

4400 12
3050 20
1001 1

1

1
2

1002
1001
2000

PointerValue

Alex
Bob
Carl
Dan

Sam

Kate
Pat

Joe
Jane

Bucket
#
1

2

PageID
Min/Max

1 - 1000

1001 - 2000

PageID
Slot
#

Value

3 2001 - 3000
4 3001 - 4000
5 4001 - 5000

1001

1002

2000

1
2

Joe
Pat

1
2

Kate
Bob

1
Alex
Sam

5 33 Carl

4400 12 Dan
3050 20 Jane

None

Approximately Sorted Index

Figure 10: An approximately sorted index example.

Our current implementation does not use the FileID evenwhen
it is stored in the pointer. We assume that each table is stored in
a single file, and that the user has directed DBStorageAuditor
to the relevant table and index files. DBMS-specific system tables
would allow us to connect FileID to the information on target
table and index files.

Index Organized Tables. Approximately sorting secondary in-
dexes for index organized tables (IOT) is a slightly different pro-
cess. When an IOT is used, the secondary index pointer is made
up of a PageID that references a second level B-Tree page and the
primary key value instead of a PageID that references the table
and a Slot#. To sort the secondary index values, the second level
BTree pages from the primary key is used to retrieve the table
PageIDs for each value. Furthermore, the primary key value is
now used in place of the Slot#.

The cost of approximate sorting is dependent on the amount of
available memory. A bucket must fit into memory. Fewer buckets
results in quicker bucket assignment for values, but buckets will
be larger requiring more memory. In Section 11.2 we provide
costs of approximately sorting an index.

10 DETECTING TABLE TAMPERING
In Section 5 we discussed how database files, specifically tables,
are vulnerable to tampering. We propose using the validated
indexes (Section 8) to verify the integrity of table records in
storage. Earlier in this paper, we classified data tampering that



involves changing a value or adding records as extraneous data,
and we classified data tampering that involves wiping records as
erased data. In this section we present and discuss algorithms to
detect both extraneous and erased data.

10.1 Extraneous Data Detection
Extraneous data is a record or a value that has been added to a
table through file tampering. Since extraneous data is not added
using the DBMS, it is not reflected in the indexes. Therefore, if
a record does not have any corresponding index pointer, then
the entire record is suspected of having been added through file
tampering. Any table with a primary key can be tested because
an index is automatically created for a primary key constraint.
Similarly, if a table value does not match an index value with
the corresponding pointer, then the value is assumed to have
been modified through file tampering. This validation test does
require that an index exist on the column(s). We use the carved
data from Section 7 and an approximately sorted index (Section
9) that was not been subject to tampering (Section 8).

Algorithm 1 describes how to detect extraneous data. First,
we read N table pages at a time for evaluation; we then scan the
approximately sorted index buckets for the relevant table page
identifiers and read the index pages from the relevant bucket(s).
For every record in the N table pages, we find the corresponding
index pointer. If an index pointer does not exist, this record is
added to a list of likely extraneous data. If an index pointer does
exist for a record, the indexed column is compared to the index
value(s) for that pointer (there may be more than one index value
per pointer for legitimate reasons). If the table value is not in
the set of index values, then this value is added to a list of likely
extraneous data. This is evidence of a value that has been changed.
After all table pages have been read and all records evaluated,
the resulting extraneous data list is returned to the user.

Algorithm 1 Extraneous Data Detection
1: Table ← carved table data: PageIDs, Slot #s, and Records.
2: N ← the number of table pages to be read.
3: SortedIndex ← the approximately sorted index (Section 9).
4: Flaд ← an empty list to store extraneous data.
5: for each NPaдes ∈ Table do
6: MinPID ← the minimum page ID from NPaдes .
7: MaxPID ← the maximum page ID from NPaдes .
8: Indexes ← an empty list to store index pages.
9: for each Bucket ∈ SortedIndex do
10: if (MinPID ∈ Bucket ) ∨ (MaxPID ∈ Bucket ) ∨

(MinPID < Bucket ∧MaxPID > Bucket ) then
11: Indexes .append (Bucket )

12: for each Rec ∈ NPaдes do
13: RecPtr ← Rec .PaдeID.Slot#
14: if RecPtr ∈ Indexes .PaдeID.Slot# then
15: if Rec .Val < Indexes .PaдeID.Slot#.Vals then
16: Flaд.append ([′ModVal ′,RecPtr ,Rec,Val])
17: else
18: Flaд.append ([′HiddenRecord ′,RecPtr ,Rec])
19: return Flaд

10.2 Erased Data Detection
Erased data is data explicitly wiped from table storage through
file tampering. Deleted records are likely to be overwritten by
new records over time as the DBMS runs. However, a deleted

record will never be overwritten by something that is not an-
other record of the same structure. Therefore, if an index value
points to an area in storage that does not contain a proper record
(including metadata), then record wiping is suspected. We are
not concerned with matching the specific index value since this
is done in Algorithm 1, but rather that a pointer must reference
an area in storage that resembles a record.

Algorithm 2 describes how to detect erased data. First, we read
each bucket from the approximately sorted index. When a bucket
is read, the table pages with the relevant page identifiers are also
read. We iterate through each index value in the bucket. If the
pointer for an index value does not match any record in the table
pages, then the index value is appended to a list of erased data.
After all index buckets have been evaluated, the list of erased
data is returned to the user.

Algorithm 2 Erased Data Detection
1: Table ← carved table data: PageIDs, Slot #s, and Records.
2: SortedIndex ← the approximately sorted index (Section 9).
3: Flaд ← an empty list to store erased data.
4: for each Bucket ∈ SortedIndex do
5: NPaдes ← pages from Table where PaдeID ∈ Bucket
6: for each IndexValue ∈ Bucket do
7: Ptr ← IndexValue .PaдeID.Slot#
8: if Ptr < NPaдes then
9: Value ← the index value
10: Flaд.append ([′ErasedRecord ′, Ptr ,Value])
11: return Flaд

Adjacent Deleted Records. It is possible that multiple deleted
records can exist adjacent to one another in a page. When this
happens it is also possible the a single record could overwrite all
of one record and part of another. For example, (1, ‘Ed’) and (2,
‘Tom’) are deleted records that are next to each other in storage.
The inserted record (3, ‘Karen’) could overwrite all of (1, ‘Ed’)
and part of (2, ‘Tom’). This presents a problem because any old
index value for (2, ‘Tom’) would now point to the middle of
the inserted record, rather than to a full record. In this scenario,
Algorithm 2would return a false-positive for the index value from
(2, ‘Tom’). These false-positives can be eliminated by comparing
these results to audit log entries. For example, if a delete command
in the log could explain (2, ‘Tom’), then this could be declared as
not malicious. This functionality is not currently supported by
DBStorageAuditor, and it would be explored in future work to
achieve a more complete auditing system.

11 EXPERIMENTS
In this section, we present a set of experiments that evaluate the
performance, accuracy, and limitations of DBStorageAuditor.
Table 2 summarizes the experiments in this section.

MySQL 5.7, PostgreSQL 9.6, and Oracle 11g R2 DBMSes were
used in these experiments. We believe these three RDBMSes are
a good representative selection from the commonly used RDBM-
Ses. Not only are they widely used commercial and open-source
DBMSes, but they also represent the spectrum of different storage
decisions across about ten DBMSes we have studied. For example,
PostgreSQL does not support IOTs, Oracle offers an option to cre-
ate IOTs, and MySQL automatically uses IOTs. The default page
sizes for each DBMS were used: 8K for Oracle and PostgreSQL
and 16K for MySQL. Data from the Star Schema Benchmark
(SSBM) [16] was used to populate our DBMS instances. Table 3



#1
Forensic analysis (Sec 7) cost evaluation. DB files were
carved at a rate of 1.2 MB/s. A checksum comparison
can improve carving costs.

#2 Approximate sorting (Sec 9) cost evaluation. Fewer buck-
ets improves runtime, but requires more memory.

#3 Algms 1 and 2 (Sec 10) cost evaluation. Both algorithms
increase linearly with table size.

#4

DBStorageAuditor detection evaluation. Algm 1 detects
an added record, Algm 1 detects a modified value only
for an indexed column, and Algm 2 reconstructs erased
data that was indexed.

#5
DBStorageAuditor detection limitations after an index
rebuild (Sec 8). DBStorageAuditor can use the old ver-
sion of an index depending on the DBMS.

Table 2: Summary of experiments.

can be used to reference table sizes used throughout this section.
DBMS instances ran on servers with an Intel X3470 2.93 GHz
processor and 8GB of RAM running Windows Server 2008 R2
Enterprise SP1 or CentOS 6.5.

Table Scale DB File Size(MB) Values(M)
Lineorder 1 600 6
Lineorder 4 2400 24
Lineorder 14 8300 84
Supplier 1 <1 2K

Table 3: SSBM table sizes used through the experiments.

The different DBMS storage-altering operations that we are
seeking to detect are discussed in Section 10. When modifying
files, we re-calculated and updated the page checksum value for
the PostgreSQL pages; in MySQL and Oracle we disabled the page
checksum validation. Before modifying files, we first shutdown
the DBMS instance.

11.1 Forensic Processing
The objective of this experiment is to evaluate the computa-
tional cost associated with the forensic processing component of
DBStorageAuditor discussed in Section 7. In Part-A, we provide
DBCarver runtimes against database files of various sizes from
MySQL, Oracle, and PostgreSQLDBMSes. In Part-B, we repeat the
same evaluation, further including a checksum re-computation.

Part-A. We created a series of database files for each DBMS to
pass to DBCarver. We created three LINEORDER tables: Scale 1, 4,
and 14. Each table was stored in a separate file. The PostgreSQL
files were carved at an average rate of 1.0 MB/s, the MySQL files
were carved at a rate of 1.2 MB/s, and the Oracle files were carved
at a rate of 1.5 MB/s.

Part-B. We used the PostgreSQL LINEORDER Scale 4 table from
Part-A to evaluate the checksum comparisonwe added to DBCarver.
We modified pages that induced a checksum change for 1%, 5%,
10%, and 100% of the pages in the database file. The carving
rate for each percent modification was 100%→ 1MB/s, 10%→
9 MB/s, 5%→ 18 MB/s, and 1%→ 58 MB/s. The cost of forensic
pre-processing is thus proportional to the number of modified
pages rather than the total size of the DBMS storage.

11.2 Index Sorting
The objective of this experiment is to evaluate the costs associated
with approximately sorting the index values on the pointers. The
output produced by the forensic analysis is similar for all DBMSes

so this component of DBStorageAuditor is not tested for DBMS-
specific features. In Part-A, we vary the size of bucket; in Part-B,
we vary the size of the indexes.

Part-A. To evaluate approximate sortingwith respect to bucket
size, we used the carved output from PostgreSQL database files
containing a LINEORDER Scale 4 table, a secondary index on
LO_Revenue, and a secondary index on LO_Orderdate. Table
4 summarizes the performance results. As the number buckets
decreases the time to sort the data decreases. However, a bucket
must fit into memory, so increasing of bucket sizes is limited by
available RAM.

Bucket Size
(Pages)

Bucket
Count

Orderdate
(sec)

Revenue
(sec)

5,000 63 1366 1380
10,000 32 1121 1131
50,000 7 932 945
100,000 4 909 926
200,000 2 903 918
Table 4: Index sorting costs with varying bucket sizes.

Part-B. To evaluate approximate sorting with respect to the
size of an index, we used the carved output from PostgreSQL
database files containing LINEORDER Scale 1, 4, and 14 tables and
a secondary index on LO_Revenue for each table. Table 5 sum-
marizes the results. If the bucket size is increased proportionally
for the table size, the approximate sorting cost increases linearly.

Bucket Size Index sorting time (sec)
(Pages) Scale 1 Scale 4 Scale 14
10,000 239 1131 6193
50,000 231 945 3797
100,000 n/a* 926 3486
200,000 n/a* 918 3357
*Bucket size is larger than the table.

Table 5: Approximate sorting costs for varying table sizes.

11.3 Tampering Detection Costs
The objective of this experiment is to evaluate the costs associated
with of Algorithms 1 and 2. For this experiment we used the
LINEORDER Scale 4 table. We used one index on the LO_Revenue
and multiple indexes on the LO_Revenue and LO_Orderdate. We
approximately sorted the index using buckets with 50K pages.

Part-A: Algorithm 1. To evaluate the costs associated with
Algorithm 1, we used the output from two different secondary
indexes (LO_Revenue and LO_Orderdate) on LINEORDER Scale
4 and one secondary index (LO_Revenue) on LINEORDER Scale
14. Table 6 summarizes the runtime results. The runtime for Al-
gorithm 1 was the same for LO_Revenue and LO_Orderdate on
LINEORDER Scale 4, and the cost increased linearly for LO_Revenue
on LINEORDER Scale 14.

Table Index Part-A (sec) Part-B (sec)
Scale 4 LO_Revenue 966 503
Scale 4 LO_Orderdate 961 476
Scale 14 LO_Revenue 3482 1773

Table 6: Algorithm 1 and 2 runtimes.

Part-B: Algorithm 2. We used the same tables in indexes from
Part-A of this experiment to evaluate the costs associated with
Algorithm 2. Table 6 summarizes the runtime results. Similar to
Algorithm 1, the cost for Algorithm 2 was nearly the same for
LO_Revenue and LO_Orderdate on LINEORDER Scale 4, and the
cost increased linearly for LO_Revenue on LINEORDER Scale 14.



11.4 Detection Capabilities
The objective of this experiment is to demonstrate the file tam-
pering activity that DBStorageAuditor is capable of detecting.
For each part in this experiment, we simulate one defined type of
malicious activity and explain how it was detected. We manually
add records to the database file (Part-A), change values in the
database file (Part-B), and erase records from the database file
(Part-C). We present results only for PostgreSQL because we our
results for Oracle and MySQL were very similar.

Setup. We created a LINEORDER Scale 4 table for a PostgreSQL
DBMS. An index existed on the primary key (LO_Orderkey,
LO_Linenumber) and we created a secondary index for
LO_Revenue and LO_Orderdate.

We also created a function-based index on LO_Revenue that
used the 32-bit version of the MurmurHash2 hash function.

Part-A. We manually added 5 records (shown in Figure 11) to
the file containing the LINEORDER table. We added a record to
five different pages (with PageIDs 11, 12, 13, 14, and 15). Existing
primary key values were included in each of the five records. For
each of these records, all of the data was the same as the existing
records with the same primary key except we used LO_Suppkey
-5 and LO_Revenue -100000.

Primary Key LO_Revenue = -100000LO_Suppkey = -5

1

2

3

4

5

101|1|108733|7417     |  -5 |19960319|‘3-MEDIUM’|0|49|
7352695|20527439|10|  -100000 |90033|0|19960529|‘AIR’

4001|1|38143|210370  |  -5 |19931228|‘1-URGENT’|0|26|
3328936|3362225|0     |  -100000 |76821|1|19940113|‘RAIL’

12001|1|2303|391486    |  -5 |19970718|‘4-NOT SPECI’|0|8|
1261976|17693973|1   |  -100000 |94648|1|19971011|‘SHIP’

100001|1|102599|383999| -5 |19941106|‘3-MEDIUM’|0|14|
2916172|2995491|4     |  -100000 |124978|7|19950117|‘SHIP’

200001|1|85157|130108  |  -5 |19960903|‘1-URGENT’|0|21|
2390010|2413431|1     |  -100000 |68286|2|19961005|‘REG AIR’

Figure 11: Records added to the LINEORDER file.

The addition of these five records produced several interesting
outcomes. First, these records bypassed the primary key con-
straint since they contained primary key values that previously
existed in the table. The DBMS only checks constraints when ex-
ecuting API-based load commands, and it does not retroactively
check the table for constraint violations. Adding the record to the
file bypasses all official channels and is thus never checked for
constraint violations. Second, these records also bypassed referen-
tial integrity since the LINEORDER table references the SUPPLIER
table, and LO_Suppkey -5 did not exist in the SUPPLIER. Similar
to the primary key violation, the constraint violation was never
caught by the DBMS. Finally, table access for the same query
could produce different results because the indexes were not
updated after we added these five records. For example, the two
versions of the following query returns different results:
• Query 1→ 34600180980

SELECT SUM(LO_Revenue) FROM Lineorder

WHERE LO_Orderdate = 19960319;

• Query 2→ 34600180980 - 100000
set enable_seqscan=true;

SELECT SUM(LO_Revenue) FROM Lineorder

WHERE LO_Orderdate = 19960319;

Query 1 uses the LO_Orderdate index to access the table while
Query 2 uses a full table scan. Record #1 from Figure 11 was
included in Query 2, but it was not included in Query 1.

Algorithm 1 successfully detected the fact that five new records
do not have corresponding pointers in the primary key index, the
two secondary indexes, and in the function-based index. Problem
was flagged by a False value for the line 14 If condition resulting
in the malicious records being added to the list of invalid data at
line 18. Each existing index serves as an additional validation to
detect table tampering – and the function-based makes sure that
small incremental changes are not possible.

Part-B. Next, we changed LO_Revenue for all 41 records where
the LO_Custkey 4321 and LO_Orderdate between 19930101 and
19931231. To simulate a neighboring value problem (a small
change that does not violate index ordering), we changed the
recordwith LO_Custkey 4321 and LO_Revenue 3271986 to 3271987
in both the table and the LO_Revenue index. For all other records
we subtracted 100000 from LO_Revenue in the table.

Algorithm 1 reported that 40 records had an inconsistent value
based on the LO_Revenue index and 41 records had an inconsis-
tent value based on the function-based index on LO_Revenue.
The difference of the one additional record was due to the neigh-
boring value attack which regular index may fail to detect. These
values were detected by a False value for the line 15 If condi-
tion resulting in the malicious values being added to the list of
invalid data at line 16. We can conclude that the primary key
and LO_Orderdate columns were not tampered with for these
and all records since they were not included in the invalid data.
However, we can not make any conclusion if any other of the
non-indexed columns for these or any records were tampered.

Part-C. Next, we erased all 3085 records with the LO_Suppkey
123 from the file. For data erasure, we explicitly overwrote the
records and their metadata with the NULL ASCII character.

Algorithm 2 returned that primary key index, the two sec-
ondary indexes, and the function-based index each had 3085
values that did not point to a valid record structure. These were
detected by a True value for the line 8 condition in Algorithm
2, resulting in malicious data being added to the list of invalid
data at line 10. By combining the values for each pointer we
reconstructed partial records containing the index columns to
explain the missing data. However, the data for the non-indexed
columns was unable to be reconstructed since it was not indexed.

11.5 Long-Term Detection
The objective of this experiment is to evaluate the artifacts pro-
duced by an index rebuild that can used by DBStorageAuditor.
We evaluate a different DBMS for each part of this experiment:
Oracle in Part-A, MySQL in Part-B, and PostgreSQL in Part-C.

We performed the following steps for each DBMS. After each
step, we copied the database file for analysis. Table 7 summarizes
the results.
• T0: Started with the Supplier Scale1 (2K records) table
and a secondary index on S_Name.
• T1: Erased/wiped all 829 records where S_Region equaled
‘ASIA’ or ‘EUROPE’.
• T2: Rebuilt the index. Each DBMS used a different index
rebuild command:
– Oracle: ALTER INDEX Supp_Name REBUILD ONLINE

– MySQL: DROP and CREATE commands
– PSQL: REINDEX TABLE Supplier

Part-A: Oracle. The index contained 1 root page and 9 leaf
pages after creation at T0. No changes were made to the index
after the table records were erased at T1. After the index rebuild
atT2, the new index contained 1 root page and 5 leaf pages. All of



DBMS T0(pgs) T1 T2
Oracle 1 root,

9 leaf
no
change

All index pages from the old
index remained in DB storage.

MySQL 1 root,
5 leaf

no
change

2 leaf pages from the old index
remained in DB storage.

PSQL 1 root ,
10 leaf

no
change

None of the old index re-
mained in DB storage.

Table 7: Index rebuild summary.

the pages from the original version atT0 remained in the database
file. The DBMS assigned a new ObjectID to the new version of the
index so index pages between versions were easily distinguished.
Since the entire version of index was found, it could be used by
DBStorageAuditor. The old version of the index still contained
pointers to the erased records, whereas the new version only
contained pointers to active records in the table.

Part-B: MySQL. The index contained 1 root page and 5 leaf
pages after creation at T0. No changes were made to the index
after the table records were erased at T1. After the index rebuild
atT2, the new index contained 1 root page and 3 leaf pages. 2 out
of the 5 leaf pages from the original index remained in database
storage. This demonstrates that the DBMS immediately reclaimed
the pages from the dropped index. Since the new index version
used less storage space, 2 pages from the old version remained
in the file. In this scenario, a B-Tree could not be fully validated
with only 2 leaf pages making them less useful as evidence for
DBStorageAuditor. It is likely that copies of the index could be
carved from a disk image due to activity such as writes that do
not occur in place and paging files. DBStorageAuditor does not
currently reconstruct entire B-Tree indexes from disk images.
Future work will seek to reconstruct objects from disk images,
which requires multiple versions of pages to be considered.

Part-C: PostgreSQL. The index contained 1 root page and 10
leaf pages after creation atT0. No changes were made to the index
after the table records were erased at T1. After the index rebuild
at T2, the new index contained 1 root page and 6 leaf pages. The
new version of the index was assigned a new ObjectID and a
separate file. All pages belonging to the old version of the index
were disassociated with its file, and this storage was reclaimed
by the file system. In this scenario, DBStorageAuditor can no
longer detect that the records were erased. As discussed in Part-B,
it is likely that the index could be carved from a disk image. This
will be explored in future work since a logical timeline would
need to be recreated to account for multiple page versions.

12 CONCLUSION
Database file tampering can be used to perform malicious oper-
ations while bypassing database security mechanisms (logging
and access control) and constraints. We presented and evaluated
DBStorageAuditor component that detects database file tam-
pering. Our approach relies on a forensic inspection of database
storage and identifies inconsistencies between tables and indexes.

Future work plans to expand upon this paper and work from
[28] to create a complete database auditing framework. This
future work would include creating a timeline of events and user
attribution of storage artifacts. Our auditing framework relies on
inherent characteristics of database storage that users, including
privileged users, are incapable of controlling.
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