Submitted Manuscript: Confidential

Synchronizing stochastic circadian oscillators in single cells of Neurospora
crassa

Authors: Zhaojie Dengl, Sam Arsenaultz, Cristian Caranica3, James Griffith* 5, Taotao Zhul,
Ahmad Al-Omari®, Heinz-Bernd Schiittler’, Jonathan Arnold*, and Leidong Mao'

Affiliations:
" College of Engineering, University of Georgia, Athens, GA 30602.

* Department of Entomology, University of Georgia, Athens, GA 30602.
? Department of Statistics, University of Georgia, Athens, GA 30602.
* Genetics Department, University of Georgia, Athens, GA 30602

> College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA
30602.

% Department of Biomedical Systems and Informatics Engineering , Yarmouk University, Irbid,
Jordan 21163.

" Department of Physics and Astronomy, University of Georgia, Athens, GA 30602.

Corresponding authors: Jonathan Arnold, arnold@uga.edu; Leidong Mao, mao@uga.edu

Abstract: The synchronization of stochastic coupled oscillators is a central problem in physics
and an emerging problem in biology, particularly in the context of circadian rhythms. Most
measurements on the biological clock are made at the macroscopic level of millions of cells.
Here measurements are made on the oscillators in single cells of the model fungal system,
Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to
a promoter on a clock controlled gene- 2 (ccg-2). The oscillators of individual cells are stochastic
with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov
Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we
estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to
experimental error). To overcome this stochasticity at the macroscopic level, cells must
synchronize their oscillators. Using a classic measure of similarity in cell trajectories within
droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on
>25,000 cells as a function of the number of neighboring cells within a droplet and of time. The
synchronization surface provides evidence that cells communicate, and synchronization varies
with genotype.



Introduction

A central problem in physics is understanding the synchronization of stochastic
oscillators'™, but this problem is largely unstudied in biology®, particularly in the context of
circadian rhythms. Most measurements on the biological clock are made on millions of cells to
understand the mechanism of telling time’. A grand challenge is to determine: (1) the behavior
of such oscillators on a single cell level; (2) how the clock really functions; (3) whether or not
the clock is stochastic in nature; and (4) whether or not clocks of different cells communicate to
overcome their stochastic asynchrony.

While single cell measurements have been made on the clocks of cyanobacterial cells®
and on synthetic oscillators in E. coli by microfluidics’, such measurements have been rare on a
eukaryotic clock, but when performed, have uncovered new phenomena about the clock'*'".
While stochastic models of the clock exist'” at the single cell level, the empirical question of the
importance of stochastic variation in the clock remains unanswered. While some initial
synchronization studies have been conducted in tissue culture of neuronal cells from the
suprachiasmatic nucleus (SCN) constituting the master clock of mammalian cells'® and candidate
signaling molecules for synchronization have been identified'*", the mechanism of
synchronization is missing. The number of single-cell trajectories in such studies is typically 100
or less, precluding a test of a synchronization mechanism. Single cell measurements have yet to
be made on one of the most fully explored biological clocks in the model fungal system,
Neurospora crassa, leaving the grand challenge untackled in this model circadian system’. Here
we introduce a microfluidics platform to address this grand challenge'®.

Microfluidic techniques provide a flexible way to manipulate single-cells and to perform
various single-cell analyses '" because they can handle from nanoLiter to femtoLiter amounts
of liquid precisely. Droplet microfluidics especially provides an emerging tool for single-cell
analysis to isolate single-cells in their individual environment for manipulation’'***. The
microfluidic platform developed here is based on the general principle of existing droplet
microfluidics systems. It features a cell encapsulation device that loads different numbers of cells
into droplets and an observation chamber as capillary tube for cell incubation that helps stabilize
the cells (in droplets) for long-term (up to 10 days) observation of the circadian rhythm of a large
number (>1000) of isolated cells through a fluorescence microscope.

Results

Measurements on single cells in a droplet microfluidics system. The workflow of the
microfluidic system used here is demonstrated in Fig. 1A. In step 1 a flow-focusing microfluidic
device is used to encapsulate cells in droplets. A stream of the N. crassa cell suspension meets
two streams of fluorinated oil at the intersection as shown in the zoom-in figure entitled ‘Cell
encapsulation’. As a result the stream of cell suspension is divided into dispersed droplets with
various numbers of cells. Afterwards, the droplets are collected into a capillary tube in step 2.
The two ends of the capillary tube are then sealed, and the capillary tube is put onto a motorized
microscope stage. A CCD camera is used to record the fluorescence images of the encapsulated
cells in step 3. A single layer of droplets is formed in the capillary tube, and the droplets are very
stable over ten days (Supplementary video S1), which makes it possible to track the fluorescent
intensity of individual cells over time. Fig.1B and C show the photos of the microfluidic device
and the sealed capillary tube, respectively. A detailed protocol to record single cell data can be
found in a supplementary online text.



Stochastic oscillators. Here we show the trajectories of 868 single cells each isolated in
different droplets in Fig. 2B and measured with a fluorescent recorder (mCherry) driven by the
clock-controlled gene 2 (ccg-2) promoter in strain MFNC9?®. This gene is one of the early
identified outputs of the clock in N. crassa’’, and the mCherry fluorescence measures ccg-2
expression. To remove the complication of synchronization of multiple cells within droplets
only isolated cells (singletons) in droplets were initially considered here to measure their
stochastic variation in expression. All cells were transferred to the dark (for ten days) to allow
circadian rhythms to develop interrupted only briefly during imaging of cells (every 30 min). It
is evident that there is substantial variation in the trajectories of ccg-2 expression in different
isolated cells in Fig 2B. In Fig. 2A there are some sample trajectories. While each sample
trajectory in Fig. 2A has a period near 21 h, the phase and amplitude vary. A summary of the
periods of all trajectories is captured in the periodograms of each cell in a heat map (Fig. 2C).
The principal period is 21 h with limited variation about this mean as expected™.

Measurements of expression on single cells over 10 days. One of the advantages of the
microfluidics device is the ability to measure expression on each of 868 single cells over 10 days
in Fig. 2. Their fluorescence varied rhythmically over time. Droplet stability was dependent on
the surfactant used to coat the droplets®, and the stability of cell location was in part due to the
microfluidics device as well as media derived previously™®. A recently developed automated cell
counting technique was used to verify that 80%+/- 2% of the cells were still viable at the end of
the ten day experiment (Supplement S1)*°.

Characterization of the stochastic oscillator in each cell. In each trajectory there are two
components of variation in fluorescence, stochastic variation in ccg-2 gene expression and
variation due to experimental detection noise; the stochastic variation can be further decomposed
into intrinsic variation in ccg-2 expression and extrinsic variation due to other cellular
components”’. Both sources of variation, stochastic and that due to experimental detection noise,
can be quantified (see Supplement S2), with a control experiment in which cells are replaced
with fluorescent beads of diameter, comparable to the mean size of macroconidial cells . The
latter was measured with automated cell counting of 636 cells to be 8 um (Supplement S1). The
stochastic trajectories do display a slight negative trend due to the photobleaching of the
mCherry recorder gene. To control the photobleaching, the time between measurements was
limited to 30 minutes. The result was 480,000 fluorescent measurements of ccg-2 expression on
the circadian oscillators of ~1,000 cells.

It would be desirable to know the sources of variation in the rhythms of individual cells.
First, a number of steps were taken to reduce the variation due to experimental error in
trajectories. For example, the depth of the observation chamber in Fig. 1 was 50 um in size to
prevent cells from drifting in or out of focus. Rhodamine B was introduced as an internal
standard so that the measured fluorescence of cells was made relative to the Rhodamine B
standard to reduce experimental error. The media was selected to inhibit cell division, and direct
observation was used to confirm no cell division occurred during the 10 day experiment. A
workflow including a quality control filter was applied to ensure that particle (cell) tracking from
frame to frame was carried out correctly (supplementary online text S1). Using an automated
cellometer (Supplement S1), we observed that the mean cell size was 8 um, and so a 10 day
control experiment with 9.94 um fluorescent beads replacing cells was conducted in the same
way, allowing us to estimate separately the variation due to experimental error from the
stochastic variation between genetically identical cells.



To know the sources of variation in Fig. 2B and its mechanism we setup a stochastic
chemical rate equation model derived from the ensemble of deterministic working models
described previously®'. The initial guess (from the working deterministic ensemble) for the rate
constants and initial conditions of the stochastic clock network were then used to initialize a
Metropolis Monte Carlo (MC) method (Supplement S2) to search for an ensemble of ~1,000
stochastic models with an average periodogram fitting the observed average periodogram in Fig.
2D. At each step in this ensemble method it was necessary to propose an update to the model
and to simulate quickly 1,024 single cell trajectories (as in the real experiments) using the
Gillespie Algorithm® (1024 simulated trajectories of 10 days in 2 seconds), implemented on a
general-purpose graphics processing unit (GPGPU) (see Supplement S2). Over 165,000 such
proposals were accepted or rejected according to the similarity of the fitted periodogram
(computed from the 1,024 simulated cell trajectories of the proposed model) to the observed one
in Fig. 2D (see Supplement S2), and in this way the fitted periodogram was updated or stayed
the same. The resulting model ensemble fitted quite well (Fig. 2D) to the observed average
periodogram of 868 singleton cells, and five frequencies (including one subharmonic) explained
over 53% of the variation in the observed periodogram in Table 1. The five frequencies around
21 h are highly significant by an F-test relative to the stochastic + experimental error variation.

Westermark et al. » recognized the importance of an error model for single cell
measurements. The stochastic model was then coupled to an experimental detection error model
for single cell measurements with substantial empirical basis (see Supplement S2)**. While the
stochastic model served as a source for the stochastic variation, the error model served as a
source for the experimental error from detection noise in the fluorescent cell signal. The error
model was identified with six bead experiments. Both sources of noise were propagated to the
periodogram (see Materials and Methods), where the stochastic variation and variation due to
experimental error could be partitioned (see Supplement S2). A sizeable >94% of the variation
was stochastic variation (as opposed to experimental detection noise) in expression between
cells.

Having separated the stochastic variation measured in cells over ten days (Fig. 2B) from
the experimental error measured in control bead experiments (using fluorescent 9.94 um beads),
we wished to know if the oscillators were circadian. A separate periodogram was calculated for
each cell in Fig. 2C (see Materials and Methods), and the average periodogram has a peak at 21 h
in Fig. 2D as expected®® from both race tubes and fluorometry at the macroscopic level. The
oscillators of individual cells were circadian, but they are clearly not in phase from Fig. 2B. As
an example of this, the periodicity of the average trajectory (Fig. 2B in red) is very weak, if
visible at all, but the periodograms of individual cells display a strong peak in the periodogram
near 21 h in Fig. 2C. As with the suprachiasmatic nuclei (SCN) of mammalian cells, N. crassa
cells have cell-autonomous oscillators®. The character of this cell autonomous oscillators in N.
crassa is different from those in the SCN’°. Most isolated cells in the SCN display no
oscillations unless they express the paralog, PER2, to FRQ®’ (Fig. 1); however, most isolated
cells in N. crassa are oscillatory (Fig. 2C).

With a model in hand fitting the single cell data quite well (}*=130.231,df = 137, P =
0.65), it was then possible to simulate trajectories of the fitted model to determine the source of
stochastic variation. It was found to arise in part from the transcriptional bursting of the core
clock genes themselves™. The core clock genes, white-collar-1 (we-1) and frequency (firq) with
ccg-2 gene coming on and off randomly generated the variation in phase of cell trajectories
(supplementary online text, Fig. S1). The counts of mRNAs from ccg-2 from the fitted clock



model are also quite low with their concomitant stochastic variation; the average mRNA level of
ccg-2 mRNA is 129 molecules/cell +/- 27 molecules/cell averaged over 240 h and 1,024
detrended Gillespie trajectories (see Supplement S2). The average protein level of CCG-2 is
only 264 molecules/cell +/- 68 molecules/cell averaged over 240 h and 1,024 detrended Gillespie
trajectories. Our hypothesis then for explaining the stochastic variation is that the random
activation of core clock genes in a single cell leads to the stochastic variation in phase seen in
Fig. 2B.

The stochastic model for the clock is validated by an independent test using the phase of
the circadian single cell oscillators. Some have hypothesized that the period of each circadian
single cell oscillator should be independent of its amplitude®. We hypothesize that the
amplitude and period of each single cell oscillator should be positively correlated because they
are simply related features of the periodogram of each single cell oscillator (Fig. 2C). We also
predict that there should be an inverse relation between phase (i.e., the number of cycles
completed in a fixed time period by a single cell oscillator) and the period of the oscillator.
Since phase and period are expected to have a negative relation and period is expected to have a
positive relation to amplitude, we also predict that phase should have a negative relation to
amplitude. Plots of the phase, amplitude, and period of each single cell oscillator support our
hypotheses (Fig. 3). Period and amplitude are significantly positively correlated as expected
(Fig. 3A), and amplitude and phase are significantly negatively correlated as expected (Fig. 3C).
Our ability to detect a correlation between period and amplitude (Fig. 3A) is probably due to
observing 3.4X as many single cell oscillators as the earlier experiment™.

Each cell trajectory has a phase and periodogram in Fig. 2C and 2D. When the
periodogram is calculated for a cell trajectory from Eq. (S51) (Supplement S2), the phase is lost
when the modulus is taken. In that the phase is functionally independent of the periodograms of
single cells used to fit the stochastic model (Fig. 2D) and hence not used in the stochastic model
fitting, this provides an opportunity for an independent test of the stochastic clock model. A
histogram of phase was constructed from the observed trajectories of 868 single cell oscillators
and compared with the phase constructed from 868 Gillespie trajectories under the fitted model
(Fig. 3D). There is good agreement between these two histograms, validating the stochastic
model of the clock for single cells (Fig. 3D). The only difference is that the mean (+/- two
standard errors) of the oscillator phases observed (17 +/- 0.16 cycles/85 hours) is slightly higher
than that predicted by the stochastic model (13 +/- 0.16 cycles/85 hours). A Kolmogorov-
Smirnov 2-sample test'’ comparing the two phase differences after subtracting means barely
reaches significance (P = 0.02).

Synchronization measures of the circadian stochastic oscillators. In the face of
substantial variation in the circadian stochastic oscillators within single cells (Fig. 3), the
question remains: how do they synchronize to produce the regular biological clock observed at
the macroscopic level by race tubes or fluorescent or luciferase recorders? At some point the
ensemble of oscillators overcomes stochastic asynchrony. In order to demonstrate this
synchronization we needed to be able to measure their collective behavior*'. For example,
Garcia-Ojalvo et al.* have suggested one way of measuring synchronization, namely in our
context, the variance in the mean fluorescence of cells within a droplet divided by variance in
fluorescence of a single cell (i.e., the variance of the red curve over time divided by the variance
in individual trajectories in blue in Fig. 2B over time). They analyzed this measure in the context
of a system of coupled repressilators related to our own working clock network®. What was
missing from this measure is accounting for the between droplet variability in our experiment.



For other systems an array of synchronization measures have been utilized, such as the
maximum of the cross-correlation between cells (with respect to frequency), mutual information,
phase synchronization extracted by either Hilbert or Wavelet transform, or an index based on a
circular variance *"**. A careful study of the utility of such measures has led some authors to
conclude there is no universally best measure of synchronization, but the measure needs to be
tailored to the problem at hand*. The focus of most of these measures is on phase
synchronization.

A good synchronization measure should not only capture similarity in the phase of
circadian oscillators, but also the similarity in their amplitude and period. Second, the measure
should measure the synchrony or similarity of cell trajectories within a droplet relative to the
variability between droplets. Third, the measure should be easily interpretable, as is the measure
suggested previously*. Fourth, the measure should have well defined statistical properties to
allow inference about the systems of coupled oscillators.

One such measure with all of these properties is the intraclass correlation™*°. Consider
one time point in the microfluidics experiment. Let Xj; be the fluorescence of the jth cell in the
ith droplet at one time point when there are a cells per droplet. We assume that the
measurements X;; have the following covariance structure®:

COV(Xij, Xu) =0, 1i#k (different droplets)
= po?i=k,j#1 (different cells within a droplet) 1

=0’ 1=k, j=1(same cell within a droplet)

The covariance (COV) is defined over all cells j in droplet i of size a at a particular time point.
In this variance components model® the intraclass correlation is p, the correlation between
different measurements within a droplet. This measure has been used for over 150 years®,

particularly in twin studies as a measure of heritability*’. The variance ¢ in one cell within one
droplet at one time can be estimated by observing cells in replicate droplets. The partitioning of
fluorescence variation is summarized in an analysis of variance (ANOVA) in Table 2*. The
total variation in fluorescence SSt was partitioned into a between droplet sum of squares (SSg)
and a within droplet sum of squares (SSw) in Table 2 such that SSt = SSg + SSw. By setting the
estimated mean squares (EMSg and EMSy) equal to their expectations in Table 2, we obtain two

equations in two unknowns (o and p)in Table 2 to arrive at a sample estimator of the intraclass

correlation (ICC):

ICC = (EMSg — EMSw)/(EMSg + (a-1)EMSy) 2
The measure ICC in Eq. 2 estimating p captures similarity of measurements within droplets
relative to the variation between droplets. This measure of synchronization has two simple
interpretations: (1) the correlation between cell measurements within a droplet from Eq. 1; (2)
the fraction of variation explained within droplets relative to between droplets from Table 2.

A deterministic quorum sensing model for the circadian oscillators. Kreuz et al.** have
provided strong evidence that the utility of a synchronization measure depends strongly on the
context for its use. Thus, we developed a relatively simple quorum sensing model of
communication between cells within droplets. This model has some of the features used
previously* and has been referred to as a mean-field model for coupled oscillators™®. Other
forms of cell to cell communication may be relevant that involve contact between cells or
distance between cells*°. The model is summarized in Fig. 4A. Only a few parts in Eq. 3 (in
red) are new additions to a previously working model ensemble for the clock’':
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where D2 = 0.0001, =100, 1, =144, D9 =26,D10=4,C4=0.8, ks; = 5x10°. A source for

the remaining coefficients is given in the legend of Fig. 4 and in Supplement S2. There is an
implicit index j = 1,...,a on all species in Eq. 3, and the sum in the last equation is over all cells
in a single droplet. Also the parenthetical terms including C2 and C4 are implicitly multiplied by
a Heaviside step function to keep them non-negative.

This quorum sensing model (Fig. 4A) is based upon a mean field assumption of
instantaneous and uniform diffusion of the signaling molecule (sometimes referred to as the
autoinducer) within a droplet. In our model, this signal is formed by a “clock-controlled gene
(ccg)” and is, consequently, an oscillating output driven by the central clock network specified

by Eq. 3. This signal moves into and out of the cell at rates (1 and 7n_, ) dependent upon the

relationship between internal and external signal concentration ([S;] and [S°], respectively) as
well as based upon the difference in volume of the cell compared to its droplet
microenvironment (incorporated into the T parameter). The signal in the media decays at a
rate D10.

There are a number of possible models for how the signal interacts with the oscillator in
each cell’’. When the model in Eq. 3 is linearized, it then becomes similar to the repressilator™.
This fact suggested that the coupling of cells might be taken to be similar to that of coupled
repressilators’’. A remaining question is what clock gene interacts with the incoming signal.
The WCC complex interacts with Flavin Adenine Dinucleotide or FAD to receive the light signal
and has a number of additional domains that may interact with other incoming signals®>. These
facts suggested WCC as the interactor with the hypothesized quorum sensing signal in Eq. 3.
The sign of the interaction was determined by the relative ease of synchronizing oscillators in
different cells by using the signal to inhibit WCC production. The signal within a cell interacts
with [WC-1] and [WC-2] in Eq. 3 in order to slow the formation of [WCC] which slows the
production of [CCG] and [S;], thereby closing a coupling negative feedback loop.

Two classes of negative feedback models have been used for circadian rhythms, protein
sequestration models and Hill Type transcriptional repression models™. In protein sequestration
models it is assumed that that the repressor (FRQ homolog) binds stochiometrically in a 1:1 ratio
with the transcriptional activator(s) (WCC homolog). In Hill Type transcriptional repression
models the repressor (FRQ homolog) binds upstream of the activator as a multimer. These Hill
Type models have been argued to be similar in structure to models with phosphorylation
dependent repression of the activator’. Phosphorylation-dependent repression of the activator
cannot currently be distinguished experimentally from the mechanism of FRQ inactivation of
WCC in Eq. 3. The protein sequestration models are predicted to apply to Drosophila and
mammals; the Hill Type models are predicted to apply to cyanobacteria and N. crassa >

Each class of negative feedback models with cell-to-cell communication makes
fundamentally different predictions about how the period of the single cell oscillators behave as a
function of the number of communicating oscillators™. In protein sequestration models the mean
period across single cell oscillators is predicted not to change with the number of communicating
oscillators, but the variance in period across single cell oscillators should decrease with the
number of communicating oscillators. In contrast with a Hill Type model the mean period across
single cell oscillators is predicted to change with the number of oscillators. In mammals the
prediction of stable mean period and decreasing variance in period with increasing number of
communicating single cell oscillators has been experimentally confirmed'"'*. The prediction for



N. crassa was confirmed here as well in a ten day microfluidics experiment with the reference
strain MFNC9 — the mean period of the single cell oscillators shifted significantly as the number
of oscillators per droplet was increased (Table 3). The variance in period also declined
significantly with the number of cells per droplet (Table 3), as in mammalian systems. This
decline in variance in period across single cell oscillators within droplets could be understood by
the examination of synchronization of these oscillators within droplets.

Synchronization of stochastic circadian oscillators. Under the null hypothesis of mean
field quorum sensing we established an expectation for the synchronization surface (Fig. 4B)
based on a working ensemble of deterministic models for the clock. We then constructed the
synchronization surface for the ten day microfluidic experiment involving 7,903 cells as a
function of time and number of cells per droplet (Fig. 4C).

As can be seen in Fig. 4C, the synchronization surface was quite similar to that of the
mean field quorum sensing model. Both surfaces (Fig. 4B and Fig. 4C) increase along the time
axis for an even number of cells per droplet.

It is natural to ask whether or not this synchronization surface is real and significant.
First, as a confirmation we replicated the experiment leading to the synchronization surface (Fig.
4C) with over 25,000 cells, producing a surface of similar structure from >12 million time points
(Fig. 5A). As another control for each droplet with more than one cell, the fluorescence value
was replaced randomly with replacement by the fluorescence value of a singleton at the same
time point. At each time point the minimum number of singletons in the pool was 193. This
sampling with replacement was done for all droplets with multiple cells at all time points. In
other words, neighbors were replaced with strangers in each droplet. The result was the
synchronization surface in Fig. 4D. There was no structure to this surface, unlike Fig. 4B and
4C. This synchronization surface was replicated 20 times, replacing neighbors with strangers,
with the same result. This is prima facie evidence that the cells within droplets are
communicating.

There were several other interesting features to the synchronization surface Fig. 4C. For
certain droplets with a specified number of cells, there was an upward trend in time in the
intraclass correlation, as might be expected as synchronization evolves. We examined how this
synchronization surface may be originating. Using sampling with replacement of neighbors by
strangers again, we found that the more traditional measures of phase synchronization behaved
as expected between the experiment (Fig. 4C) and control (Fig. 4D). Along the ridges of Fig. 4C
of 2 or 4 cells per droplet, the synchronization measure of Garcia-Ojalvo et al.** or of Kreuz*,
was high, Fig. S2, but hovered around 0.5 or 0, respectively for the control with strangers
replacing neighbors (supplementary online text). The Kuramoto order parameter K (i.e., another
synchronization measure) also displayed the ridges and coherence of the single cell oscillators
(Fig. S3), but was less informative than the ICC surface™. This order parameter K involves time
averages over each droplet with a particular number of cells (a) that eliminate the structure
visible in the time dimension of the ICC surface. There was also a ridge and valley structure to
the synchronization surface (ICC) both for the model and data. It is clear that we can measure
synchronization with the microfluidics device and that the behavior of cells varies not only with
time but neighborhood size as well.

As a final control on the choice of synchronization measure ICC in Eq. 2, we let the
dynamics of each cell’s fluorescence be governed by the classic Kuramoto phase-locking model
with the data structure of the primary ten day experiment'. The resulting synchronization surface
Fig. S4 (see Supplement) looked very similar to the data and quorum sensing model in Fig. 4B



with a little delay to synchronization due to a local phase-locking assumption in the Kuramoto
model.

The synchronization surface varies with genotype. The synchronization surface (ICC) is
a reaction norm, which is not only a function of the “social environment” of a cell through
neighborhood size, but also of genotype. In a genetic screen we have identified a gain-of-
function mutation that increases synchronization. The gain of function mutation is from the
knockout, prd-4 A ,ccg-2p:mCherry. As previously reported®, this mutant reduces the period by
~3 hto 19 h (Fig. 5D). Some single cell trajectories are also given (Fig. 6). This gene probably
acts as a checkpoint kinase in mitosis >> (and hence affects conidiation over time, the main clock
phenotype assayed in race tubes). Our initial hypothesis is that prd-4 acts to monitor for DNA
damage, a quality control operation that likely introduces a delay between cells. The result is
some asynchronization. In prd-4 A ,ccg-2p:mCherry there is no such delay introduced, and much
higher synchronization is achieved at the cost of no proof-reading of the genome (Fig. 5A vs.
Fig. 5B).

In contrast frq A ,ccg-2p:mCherry knockout has a period of 24 h, and the synchronization
surface is responding to a loss of clock function. The frq A ,ccg-2p:mCherry was confirmed not
to band in race tubes. Synchronization surface looks more even than the MFNC9 genotype (Fig.
5C vs 5A or 5B). Consistent with experiments done on Synnecocchus elongatus, knockout of a
clock gene does not completely remove oscillations, only reduces their power by ~3-fold (Fig.
5D)*”. Some examples of firgA,ccg-2p:mCherry trajectories with low amplitudes are given
(Fig. 6). This outcome is consistent with earlier data suggesting a second weaker oscillator in V.
crassa other than the one that is FRQ based. In this case the residual synchronization may be due
to another FRQ-less oscillator’®. Alternatively, the FRQ-based oscillator may be orchestrating
cell-to-cell synchronization in a light response and may be secondary to the FRQ-less oscillator
>7. This alternative hypothesis cannot be ruled out at this stage as well.

The significance of genotypic differences in synchronization (ICC) can be assessed by
plotting one genotype’s synchronization surface against another genotype’s surface (Fig. 7). The
plots in Fig. 7 are based on a total of ~50 million time points. The synchronization values are
organized into stripes of different numbers of cells per droplet (i.e., a). For example, the ICC
surface of prd-4 A ,ccg-2p:mCherry is seen to reach much higher ICC values than the reference
strain MFNCO (Fig. 7B vs. Fig. 7A). Significance can be assessed by regressing the ICC surface
on another ICC surface. Regressing replicate 2 (Fig. SA) on replicate 1 (Fig. 4C) allows us to
capture the stochastic variability in the measurements with Fig. 7A acting as a negative control
for comparisons of other genotypic ICC surface pairs. These regressions (Fig. 7) capture at least
60% of the variation in a particular surface, depending on the surfaces compared (Table 4).
From the regression of surface y=ICC, on x=ICC,, the mean value of synchronization measure
(ICC,) with standard errors can be computed as a function of the number of cells per droplet (a)
(Table 4). The 95% confidence intervals about the mean synchronization (ICC) for a given
number of cells per droplet (a) in Table 4 are non-overlapping in comparing prd-4 A ,ccg-
2p:mCherry (Fig. 7B) and replicate 2 of MFNCO (Fig. 7A) and hence highly significant. From
the comparison of these plots we also see that different genes lead to different levels of variation
in synchronization relative to the reference surface (Fig. 4C). For example, not only does prd-4
A ,ccg-2p:mCherry reach higher levels of synchronization (Fig. 7B) there is also more variation
in synchronization than that in the reference strain MFNC9 (Fig. 7A).

Discussion
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The experimental study of stochastic coupled oscillators in biology is largely missing,
particularly in the experimental study of circadian rhythms®. There are at least three theories on
how cells in a circadian system might synchronize.

One non-intuitive theory is that single cell oscillators may experience stochastic
resonance, leading to their synchronization’>®. Stochastic behavior of cells in tissue culture may
actually lead to increased synchronization®. The stochasticity in expression of single cells of .
crassa has been quantified here and is substantial (>94% of the variation in single cells). Here
we have shown that synchronization does depend on genotype (Fig. 5). Under this stochastic
resonance hypothesis an explanation would be needed for why some genotypes improve
synchronization through varying the noise in the single cell oscillators. Here the genotype of prd-
4 A is likely to act to improve synchronization by decreasing the phase noise in the oscillators by
removal of a cell cycle checkpoint *>. Another non-intuitive possibility is that the removal of the
checkpoint actually increases phase noise to improve synchronization. A key feature of the
stochastic resonance hypothesis is that synchronization varies non-monotonically with stochastic
intracellular noise and that there is a local maximum in synchronization as the stochastic noise is
varied. In Fig.5D the periodogram signal strength near ~24h is weaker for prd-4"than for either
WT or frq A (red=WT, blue=frq A , green= prd-4 A), but the synchronization is higher. Let us
suppose the reference strain (MFNC9) sits to the left of a synchronization maximum as a
function of intracellular noise. If the reference strain (MFNC9) were then shifted to a higher
intracellular noise level by the prd-4 deletion, then we would see more synchronization, as seen
(Fig. 5B). If we consider instead the synchronization as a function of the phase noise as
measured through the phase standard deviation (SD = 4.41 cycles) of the prd-4 deletion versus
that of reference strain MFNC(SD = 2.40 cycles), increased phase noise would move us towards
the synchronization maximum as well.  The results in Fig. 5 are then consistent with the
stochastic resonance hypothesis. There may be other genes that also act to improve
synchronization through increasing the intracellular noise of single cell oscillators, such as frq A .
The microfluidics platform enables the quantification of the variation introduced into each single
cell oscillator by a particular genotype and its effect on synchronization (Fig. 5).

A second theory is that discrete replication events drive the coupling of circadian system
and the cell cycle®. The circadian system could become phase-locked to the cell cycle. The
evidence against this theory of synchronization is that the cells in this study do not experience
any cell division (Supplementary video S1).

The final theory of synchronization favored here is that cells communicate the state of
their clocks through some communication mechanism, such as quorum sensing*(Fig. 4A). We
have provided strong evidence that conidial oscillators communicate the state of their oscillators
within droplets (Fig.s 4C and 5A). A prediction of this model is that as the number of cells per
droplet () increases, one should observe a rise in synchronization®. A trend of this sort is seen
in Table 4. Another prediction of this theory is the structure of the synchronization surface
(ICC) (Fig. 4B), which resembles that measured (Fig. 4C). The alternating structure to
synchronization with an even number of cells per droplet versus an odd number of cells per
droplet is a new phenomenon. We eliminated the cause being the synchronization measure
(Supplement S2 in Fig. S2). We also found this alternating structure in different models
describing the data (Fig. 5 and Fig. S3). We anticipate further detailed analysis of the ICC
surface in these models will provide an explanation for the phenomenon.

None of these mechanisms of synchronization are mutually exclusive. For example,
Ulner et al. ® combined the stochastic resonance hypothesis with quorum sensing in a model to
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explain cell synchronization in the suprachiasmatic nuclei under light of randomly varying
intensity in mammals. Further experiments will uncover the exact mechanism of communication
through manipulation of cells in their droplet environment.

There are a number of extensions needed. N. crassa has an interesting life cycle®. We
have focused on single cells or conidia to take maximum advantage of high-throughput cell
isolation by microfluidics in Fig. 1 to measure fluorescence on 25,000 cells simultaneously over
ten days (Fig. 5SA). We selected a media so that cells did not germinate, divide, or fuse (See
Video S1). It is in this stage that we were able for the first time to demonstrate circadian rhythms
in expression of ccg-2 at the single cell level. These conidia can be multi-nucleate®, and we
have not examined intracellular communication, only intercellular communication. These
conidia ultimately germinate and produce filaments as a subsequent life stage. Microfluidics
devices also provide a tool for examination of these filaments for circadian rhythms®*®. It will
be very interesting to see how the stochasticity in circadian rhythms changes at other life stages
in an examination of period, phase, and amplitude variation change under intracellular
communication (Fig. 3). Even more interesting would be to examine how the synchronization
surface changes as the cells divide during filamentous growth and experience both intracellular
and intercellular communication. To reconstruct the synchronization surface will require on the
order of 50,000,000 time points (Fig. 7) to make such comparisons, which necessitates both
high-throughput and high-resolution microfluidic measurements®*.

Palma-Guerrero et al.* recently described a population genetic approach through a
genome-wide association study (GWAS) for isolating genes involved in cell-to-cell
communication in N. crassa. Their GWAS produced one neuronal calcium sensor homolog
(cse-1) and six other candidate genes. The experiments here provide a much more direct way to
assay communication at the single cell level in which the environment of a droplet can be
manipulated in a variety of ways. This combination of a top-down and bottom-up approach
should provide a means to uncover new communication pathways between cells in fungi.

What is missing from single cell measurements on biological processes, such as circadian
rhythms, is a universal system of measurement. Such a system should be able to identify both
cellular stochastic variation and detection noise (i.e., experimental error). The network model
needs to be stochastic to generate the intracellular stochastic variation®’, and the detection model
needs to be a well-grounded physical model to generate detection noise. Second, the cellular
measurements should ideally be normalized against an internal control to capture uncontrolled
factors. Such a system should also be able to propagate the sources of error (stochastic
intracellular noise and detection noise) to the statistics used to test biological hypotheses of
interest. Finally, the sources of error should have quantifiable effects on these statistics.

Such a universal system of measurement is proposed here (Fig. 8). Single cell
measurements are made here by microfluidics but coupled to doped bead experiments to capture
the fluorescent detection noise (Supplement S2). These two sources of error are each propagated
through the analysis pipeline for: (1) normalization of the fluorescent signal against Rhodamine
B (the internal standard); (2) identification of a physical model for the fluorescent detection; (3)
detrending fluorescent measurements due to photobleaching and other sources of variation; (4)
propagation of the sources of error to the summary statistics, in this case to the period, phase, and
amplitude of the oscillatory system. The periodogram is a standard way to capture period and
amplitude (Fig. 2D)° of an oscillator — its ordinate gives the contribution of different sinusoids
with frequency fi (= 1/ T) or period T; contributing to the oscillator. Alternatives to the
periodogram exist®’. The phase in particular has been an elusive™ or neglected” quantity. The
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approach to phase adopted here is one motivated by considering a number of different stochastic
clocks (Fig. 8) each with a slightly different measure of time. If these clocks were “in phase”,
they would complete the same number of cycles in a fixed period of time, like the wheels on a
car. Consider a fixed interval of time with reference to an ideal clock. The phase of a particular
stochastic clock is then defined as the number of cycles completed in the fixed interval of ideal
time. This is the notion of phase used here (Fig. 3) and introduced over three hundred years ago
in the study of synchronization of coupled pendulums®. The computation of phase from the
Hilbert transform has been in use since the early part of the twentieth century®. This notion of
phase has been extensively used in synchronization problems in both a physical** and biological
context’’. In this proposed universal system of measurement applied to other problems, the
details will vary. There may be additional sources of error, such as intracellular variation®.
There may be alternate relevant summary statistics, such as fold variation’' under two conditions
for other processes, such as carbon metabolism®, but the structure of the measurement system
will be same.

Summary. Most measurements on the biological clock are made macroscopically on
>10" cells. We illustrate a universal system of measurement on single cells. Oscillators in one
cell can be measured by microfluidics. Single cells of N. crassa are shown to have cell-
autonomous circadian oscillators in a fungal system with a biological clock well understood
macroscopically. A stochastic mechanism for how the clock functions at the single cell level has
been identified and tested that involves transcriptional bursting of frg and ccg-2 by WCC. At
least 94% of the periodogram variation in oscillators from cell to cell is stochastic, a new result
for the fungal circadian field, but oscillators of different cells communicate and synchronize to
overcome this stochastic asynchrony. This cell-to-cell synchronization has a genetic basis
because the synchronization surface varies with genotype.

Materials and Methods

Strains and Media

Strain MFNC9?° (Fungal Genetics Stock Center #10626) was used in 3% sorbose, 1 M Sorbitol,
0.0125% glucose, 0.0125% fructose, 0.3 mg/ml sodium formate, 1X Vogels Media with
recommended Biotin and trace element supplements’?, as modified from Lindgren®®. The strains
prd-4 A ,ccg-2p:mCherry and frq A, ccg-2p.mCherry were generated by a cross between a

deletion construct’”” and MFNC9 on cornmeal crossing medium’?.

Microfluidics device design

Microfluidic device for cell encapsulation uses a flow-focusing geometry to generate droplets’.
A mask of the device pattern was designed using AutoCAD 2008 (Autodesk Inc., San Rafael,
CA) and printed by a commercial photo-plotting company (CAD/Art Services Inc., Bandon,
OR). The prototype polydimethylsiloxane (PDMS) microfluidic device was fabricated through a
standard soft-lithography approach and attached to a PDMS substrate’.

Single cell measurements with microfluidics device

A mixture of fluorinated oil FC-40 (Sigma-Aldrich, St. Louis, MO) containing 5.0% w/w of 008
surfactant (RAN Biotechnologies, Inc., Billerica, MA Beverly, MA) was used as the continuous
phase to separate the cell suspension into droplets in the microfluidics device. The number of
cells per droplet was controlled by the flow rates or the concentration of cell suspensions. The
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droplets were then collected in a capillary tube with 50 um in depth (W5010, VitroCom,
Mountain Lakes, NJ) for single cell measurement. 13 pL/min was used as continuous phase flow
rate and 0.5 pL/min was used as cell suspension flow rate. Cell concentration of 3*10"7 cells/ml
was used.

Imaging

A CCD camera (AxioCam HRm, Carl Zeiss Microscopy, LLC, Thornwood, NY) was used to
record the fluorescence intensity of the cells through a microscope (Imager. Al, Carl Zeiss
Microscopy, LLC, Thornwood, NY) with a motorized x-y stage (Mechanical stage 75x50 R, Carl
Zeiss Microscopy, LLC, Thornwood, NY) in a dark room. Images were taken every 30 minutes
with an exposure time of 300 ms controlled by a shutter (VS25S2ZMI1R1-21, Vincent
Associates, Rochester, NY). The excitation light from a mercury lamp (X-Cite 120Q, Dynamics
Group Inc., Ramsey, MN) was guided through a filter set (Filter Set 43 HE, Carl Zeiss
Microscopy, LLC, Thornwood, NY). A MATLAB routine was developed to sort droplets by the
number of cells in them and to track the fluorescence intensity of each cell automatically. A
quality control filter code was used to filter out those cells that are improperly tracked. Dark
current corrections, bias corrections and flat field corrections were done to all images before
tracking the fluorescence intensity of cells.

Analysis workflow/pipeline of single cell trajectories

In order to calculate the periodograms displayed in Fig. 2C, a few data cleaning steps were
performed, as described in Supplement S2. First, the fluorescence time series were divided by a
Rhodamine B intensity time series which was gathered concurrently with the cell fluorescence
tracking, in order to correct for fluctuations in the microscope’s excitation intensity. Next, we
implemented a 24-hour moving average’® to remove nonstationarities on large time scales. The
resulting individual-cell periodograms were then normalized for further analysis in ensemble
fitting. (See Supplement S2 below). A surface of these individual-cell periodograms (Fig. 2C)
was created and then averaged together (Fig. 2D).

Automated cell counting and sizing

Cell counting and sizing was carried out with the Cellometer Auto 2000 (Nexcelom, Inc.,
Lawrence, MA) *. Bright field was set off. There are two fluorescent channels in imaging with
exposure times of 500 milliseconds (acridine orange) and 3 seconds (propidium iodide). Both
channels used the same parameters for imaging: (1) cell diameter of 4-20 pum; (2) roundness of
0.1; (3) contrast of 0.4; (4) Decluster on with edge factor of 0.5 and Th factor of 1.0; (5)
sensitivity of 1.00; (6) uniformity of 150; and (7) fluorescence threshold of 15.

Ensemble method for fitting a stochastic network model of the clock
The figure of merit in Fig. 2D involved a comparison of the observed, normalized periodograms,

Q™™( f,), averaged over N, = 868 single cells, with the average of expected normalized

periodogram, Q°¥( /,;;0) , generated under the stochastic model with model parameter variable

vector O, through a chi-squared criterion:

L2 1 _ _
2 @ — obs __Nexp ,@ 2 4
2 (0) ;—(61)2[0 (f)-Q°"(f;0)]
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Here, the sum is over the observable frequencies, f, , indexed by ! and [L/2]=L/2, or
[L/2]=(L-1)/2 for even or odd L, respectively. The precise definitions of Q°*( f,) and

Q™*( f,;0©)frequency f, over the sample of N. = 868 singleton cells in Fig 2. It contains variance

contributions generated by both random experimental observation error, i.e., by the fluorescent
signal detection process, as well as variance contribution due to the stochasticity of the observed
intra-cellular protein concentration. Supplement S2 gives separate estimates for both of these two
variance contributions and it also shows how to correct for the bias in the periodogram, caused
by the experimental observation variance.

This criterion in Eq. 4 is used to sample and average over the model parameter (©-) space by
Markov Chain Monte Carlo (MCMC), as described in Supplement S2'° Each proposed update of
the model parameter vector, ©, in the MCMC random walk involves generating 1024 trajectories
to calculate the expected periodogram under the model, and this step is implemented on GPUs"".

The result is an ensemble™ of stochastic models, O, fitting the average periodogram observed on
the N. =868 cells.

Propagation of errors to the Periodogram for single cell measurements.

The fluorescence detector noise contribution to the “bare” (un-normalized) periodogram
variance at frequency f, was calculated with

(a)— [(Q(f)} YQU)+R9(<’~?(I?)>€,C[30U)*ﬂ

KLZ[me| B, |

>

where <Q( f1)> and <}~?( f1)> are, respectively, the average bare periodogram and average
squared Fourier transform of the observed Rhodamine B-normalized, de-trended protein
fluorescence time-series over K = 1591 singleton cells. The oO. is the variance of this
fluorescence signal due to detector noise, averaged across all observation times ¢; and across all

cells. The quantities y(.£) and By(£) are functions of the weights used in the moving-average de-

trending of cell trajectories. The expectations <>e . on the RHS are population means over both

experimental detection noise and over intra-cellular stochastic randomness. They were replaced
by their sample means as a first approximation. The total variance in the Rhodamine B-
normalized, de-trended series, (G,)%, was estimated by bootstrapping 5000 times, the K=1591 cell

trajectories, from the replicate experiment in Fig. 5A. The stochastic intra-cell variance (G ,°)*
was obtained by subtraction, using (6,%)* = (6,)* — (6,)>. The proportion of variation in a cell
oscillator fluorescent signal attributable to detector noise (i.e., experimental error) was then:
(6,9)%/ (5,)* < 6% for all frequencies f, . Details of this calculation are found in Supplement S2.
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Fig. 1. Oscillators of single cells can be measured with a workflow involving droplet
microfluidics devices and fluorescent recorders of a clock output gene for over 200 h. (A) There
are 3 steps for capturing cells in droplets so that fluorescence data can be measured on each cell.
In Step 1 cells are encapsulated in droplets by a microfluidics device with flow-focusing
geometry. In Step 2: droplets are collected from step 1 into capillary tubing. In Step 3:
encapsulated cells are viewed by time-lapse fluorescence imaging, and single cell fluorescence
data are extracted. (B) Photo of the microfluidics device for cell encapsulation. The channel is
dyed green. (C) Photo of capillary tubing. The capillary tubing is dyed red.
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Fig. 2. The oscillators in single cells of N. crassa are circadian with a period of ~21 h in the dark
(D/D), but there is substantial variation in phase and amplitude captured in a stochastic genetic
network fitting the single cell clock data. The scales in Fig 2A (bottom panel of temporal traces)
do vary so that it is easier to examine the variation in periods of the three trajectories.
Trajectories were normalized and detrended as described in Supplement S2. (A) Circadian
oscillation of fluorescence data on ccg-2 gene expression recorder is shown from individual N.
crassa conidia with substantial variation in amplitude and phase. Scale bar, 20 um. (B)
Stochastic variation in 868 cells in one microscope view is shown with only a slight
photobleaching effect for the mCherry recorder used. The curve in red is an average of all 868
trajectories (in blue). (C) A heat map of 868 cells is shown representing the periodogram of each
of 868 cells on the Y-axis and the period, on the X-axis. Yellow is indicative of higher power at
a particular period. The period varies about 20-21 h in the heat map. The sum of the
periodogram values is used to normalize the power output of each period so that the power can
be interpreted as the fraction of oscillators of a particular frequency. (D) The average
periodogram of a stochastic clock network (in blue) derived from a working ensemble of
deterministic models fits the average periodogram of 868 cells (in red) derived from the
individual periodograms in panel C.
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Fig. 3. The stochastic clock model for single cells is validated by an independent test of the
model involving predicting the observed phase of 868 single cell oscillators from the model. (A)
Plot of amplitude vs. period for 868 single cell oscillators in Fig. 2B. The amplitude is the
square root of the maximum power in the periodogram. The period is 1/2 7 fi, i.e., the inverse of
the frequency fi at which the periodogram is maximum in power, The correlation (r) of
amplitude and period is r = 0.1095 (Fishers z = 0.1099, P < 0.001)”. The Spearman rank
correlation (ry) is r; = 0.1101 (P < 0.01)*. The straight line regression of amplitude on period (in
red) is also shown. (B) Plot of phase vs. period for 868 single cell oscillators in Fig. 2B. The

discrete Hilbert phase f"(t) at time t is calculated from the Hilbert transform of each cell’s
trajectory after subtracting its mean over time*. The phase of an oscillator plotted here is
defined as M“ =[f°(t,)— f“(t,)]1/2p in units of cycles, where f°(t) is the continuous Hilbert

phase at time t. The phase can be thought of as the number of cycles, which a single cell
oscillator completes in the time interval t; — to = 230 — 60 in units of half hours. The continuous

Hilbert Phase f°(t) is defined recursively by fC(t+1)= f°(t)+m°(t)2p, where m°(t) is the
fre+1)-f° (t)+2pm‘ . The correlation (r) of phase and

period is r = -0.1986 (Fishers z = -0.2013, P < 0.001)”’. The Spearman rank correlation (rs) is rs =
-0.1376 (P < 0.001). The straight line regression of phase on period (in red) is also shown. (C)
Plot of Amplitude vs. phase for 868 single cell oscillators in Fig. 2B. The correlation (r) of
amplitude and phase is r = -0.1226 (Fisher’s z = -0.1232, P < 0.001). The Spearman rank
correlation (rs) is rs = -0.0880 (P < 0.02). The straight line regression of amplitude on phase is
shown (in red). (D) Histogram of the phase of 868 single cell oscillators in Fig. 2B and 868
Gillespie trajectories of the stochastic model. The Gillespie trajectories from the model were
computed as described in Supplement S2. The phase is functionally independent of the
periodogram. Trajectories in both model and data are detrended (See Supplement S2).
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Fig. 4. Conidial cells communicate the state of their oscillators to each other within a droplet.
(A) A simple deterministic quorum sensing model is developed to interpret the similarity of
trajectories within a droplet relative to the variation between droplets. Within each cell the
oscillator network is hypothesized to be that of the working ensemble fitting the data at the
macroscopic level of 107 cells. Boxes denote reactants and products in the network; circles
denote reactions. Arrows pointing into reactions denote reactants, while arrows pointing out
indicate products. Lines with arrows on both ends connect catalysts to a reaction. Reaction and
molecular species labels in the network denote parameters in the model, rate coefficients and
initial conditions, respectively. A new feature of the model is a clock-controlled gene (ccg) that
makes a signaling molecule S; within the cell, which then diffuses in or out at a rate 1 or Nex:.
The signaling molecule S; interacts with WC-1 and WC-2 to slow the production of WCC to
synchronize the clocks of different cells. Modified from earlier network diagram®. (B) The
synchronization surface is shown for this simple quorum sensing model with new parameters
given in Eq. (3) and remaining parameters published previously’’ and released in sourceforge.net
under the keyword, vtens EI clockl and in Table S1. Synchronization or more generally
similarity of cell trajectories within droplets is measured by the intraclass correlation (ICC)
relative to the variation of cell trajectories between droplets. The ICC is shown as a function of
time and number of cells per droplet for the model. (C) The ICC synchronization surface of the
data on 7,903 cells is quite similar in structure to that of the quorum sensing model. (D) As a
control neighboring cells within droplets are replaced at random with strangers that have
experienced no neighbors. The resulting surface has no structure, providing prima facie
evidence of cell-cell communication within droplets.
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Fig. 5. The synchronization surface (ICC) is a function of genotype. A) A replicate of the ICC
surface with >25,000 cells was constructed*® and resembles Fig. 4B. B) The deletion of prd-4 in
prd-4 A ,ccg-2p:mCherry results in increased synchronization. C) The deletion of the oscillator
frq A ,ccg-2p:mCherry leads to a more even synchronization surface. D) The power at 21 h in
the average periodogram over singletons for the fig” is reduced ~3-fold relative to MFNC9, but
is not eliminated, suggesting a FRQ-less oscillator. Period (Hours) is plotted on a log scale.
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Fig. 7. The synchronization surface for the prd-4 knockout is significantly different from that of
the reference strain, ccg-2p:mCherry (MFNC9). (A) Plot of replicate 2 of ccg-2p:mCherry
(MFNC9)’s synchronization surface (ICC) in Figure SA against replicate 1 of ccg-2p:mCherry
(MFNC9)’s synchronization surface (ICC) in Figure 4C. This plot is the negative control. (B)
Plot of prd-4 A ,ccg-2p.mCherry’s synchronization surface (ICC) in Figure 5B against replicate 1
of ccg-2p:mCherry (MFNC9)’s synchronization surface (ICC) in Figure 4C. (C) Plot of frg A,
ccg-2p:mCherry ’s synchronization surface (ICC) in Figure 5C against replicate 1 of ccg-
2p:mCherry (MFNC9)’s ICC synchronization surface in Figure 4C.
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Fig. 8. Universal system of measurement on single cells illustrated on single cell oscillators.
(A) Cells are encapsulated within droplets, and as an internal control fluorescently doped beads
are also encapsulated in droplets. (B) Cells and beads are immobilized in a capillary tube and
viewed over 10 days under a light microscope. The fluorescent signals from cells and beads are
normalized by background measurements on Rhodamine B. The variation over time in cell
fluorescence captures intracellular stochastic variation; the variation over time in bead
fluorescence captures experimental detection noise. (C) Normalized fluorescent measurements
(F) on cells over time (t) are detrended with a moving average. The fluorescence of beads are
used to specify a quadratic dependence of signal variance (6°) in fluorescence on intensity of
light (I) applied to excite the beads to specify a physical model of fluorescent signal detection.
(D) The normalized and detrended temporal traces on each cell together with the specified
physical model for signal detection noise are used to fit a stochastic network. The result is the
determination of the amplitude and period in the periodogram for each cell as well as the phase
of each single cell oscillator. Phase is defined as the number of cycles completed by an oscillator
in a fixed period of time. Four such oscillators are each represented by a clock. One oscillator
has completed 4 cycles, and the remaining oscillators have completed only three cycles.
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Table 1. Analysis of Variance (ANOVA) of Periodogram for 868 singleton cell trajectories for
170 time points. The model contribution to the Sums of Squares (SS) are from the fitted
stochastic network model of the clock. For simplicity of interpretation each SS is scaled so that
their sum is 1. Each frequency (or period) in the periodogram contributes 2 degrees of freedom
to the model sums of squares. SS model/SS total x 100=53%. The estimated mean square
(EMYS) is a sum of squares (SS) divided by its degrees of freedom. The F-value is the ratio of an
EMS of the model to the EMS calculated from the SS of the error = stochastic error +
measurement error. The contribution of each frequency to the minimized sums of squares is
significant at P < 0.001 (**%*).

Source Degrees of Sums of Squares | Estimated Mean | F-value
Freedom (df) (SS) Square (EMS)

Model Frequency | 2 0.045225 0.0226125 7.67***

0.0353 h™

(period=28 h)

Model Frequency | 2 0.150372 0.075186 25.51***

0.0471 h™

(period =21 h)

Model Frequency | 2 0.160925 0.0804625 27.30***

0.0575 (period =

17 h)

Model Frequency | 2 0.104017 0.0520085 17.64***

0.0706 h™

(period = 14 h)

Model Frequency | 2 0.067837 0.0339185 11.51**

0.0824 h™

(period =12 h)

Error 160 0.471624 0.00294765

Total 170 1
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Table 2. Analysis of Variance (ANOVA) of fluorescence of the ccg-2 promoter between and
within droplets is used to estimate the intraclass correlation p. The one-factor model is a
balanced variance components model with cells grouped by droplets*. The number of cells in a
droplet is a; the number of droplets is n. The variance in a single fluorescent measurement is
o’,and the intraclass correlation is p. The intraclass correlation is a measure of fraction of total
variation (SSt) within droplets as well as the correlation between fluorescence measurements on
different cells within the same droplet. The statistics XBAR; and XBAR are the mean
fluorescence in droplet i and over all droplets. The estimated mean square (EMS) is a sum of
squares (SS) divided by its degrees of freedom. The EMS estimates its expectation in the last
column. Setting the EMS equal to their expectations allows the solution for p.

Source degrees of Sums of Squares Estimated Expectation of
freedom (df) (SS) Mean Square EMS
(EMS)
Between droplets | n-1 SSs = aX,(XBAR; ~ SSe/(n-1) o’+(a-1)po’
XBAR)
Within droplets n(a-1) SSw = ZX(X; -~ XBAR)* | SSw/n(a-1) (1-p)c®
Corrected total na-1 SSt = £3(X; — XBARY
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Table 3. The mean period of single cell oscillators within a droplet increases significantly with
the number of cells per droplet at two major frequencies in the periodogram, and the variance in
period among single cell oscillators within a droplet decreases significantly with the number of
cells per droplet at two major frequencies in the periodogram. Each single cell oscillator was
examined at two frequencies in the periodogram, the frequency with the highest peak (primary
harmonic) and the frequency with the second highest peak (secondary harmonic). Each cell’s
periods were computed by determining the maximum in the periodogram and second largest
maximum in the periodogram on each cell trajectory after normalization and detrending. With
respect to the highest peak in the periodogram (labeled primary harmonic below) the Spearman
rank correlation (r5) of average period of cells with the number of cells per droplet (a) is rs =
0.3669 (P < 0.10), and the Spearman rank correlation (rs) of variance of period within a droplet
with the number of cells per droplet is ry = -0.6316 (P < 0.01)**. With respect to the second
highest peak in the periodogram (labeled secondary harmonic) the Spearman rank correlation (r)
of average period of cells with the number of cells per droplet (a) is rs = 0.7083 (P < 0.005), and
the Spearman rank correlation (rs) of variance of period within a droplet with the number of cells
per droplet is 1, = -0.7083 (P < 0.005)™.

Primary harmonic Secondary harmonic
Number of Mean of Variance of
Cells/Droplet (a) Mean of Period Variance of Period | Period Period
1 16.357 57.06 9.077 56.095
2 16.608 52.225 9.3168 53.431
3 16.18 53.93 9.3788 52.724
4 16.426 53.351 10.025 52.699
5 17.068 50.007 10.468 52.338
6 16.504 49.729 10.267 49.443
7 16.324 47.549 10.115 47.244
8 16.23 51.906 9.708 47.59
9 16.537 51.911 10.065 49.642
10 16.701 50.377 10.539 47.125
11 16.206 55.129 10.424 48.35
12 17.034 41.147 10.86 44.434
13 16.388 46.923 10.171 47.247
14 16.768 45.904 10.725 46.066
15 17.214 42.897 11.502 42.188
16 17.146 46.499 10.893 53.131
17 17.445 37.217 11.106 42.044
18 16.879 53.687 9.6857 52.153
19 16.853 49.419 10.92 40.386
20 16.129 39.879 10.628 24.815
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Table 4. The intraclass correlation surface (ICC) for prd-4 A ,ccg-2p:mCherry is significantly
different from that of MFNC9. To assess this one ICC surface (y) was regressed on another ICC
surface (x), and the following relation y = mx + b, was fit by least squares to the plots in Fig. 7.
In each fit a constant slope (m) and intercept (b,), which varies with the number of cells per
droplet (a), was assumed. The regression R* summarizes the fraction of variation in the data
captured by the linear regression of y on x. The mean ICC values are reported for droplets of
even sizes (a) from 2 to 16 cells per droplet.

A A A A A A A A 2

y X Vo 13 [ Fe | T [ D | Fn | P | D (R

MFNCS- | MFNC9- | 29 | 36 |.49 |.49 |.51 |.56 |.44 |.31 |.70

rep2 repl

2X .006 | .006 | .004 | .004 | .004 | .004 | .004 | .006

Standard

error

(SE)

prd-4* MFTC‘;' 40 | .48 |82 |.70 (.72 |.49 |.53 |.57 |.61
rep

2XSE .016 | .016 | .010 | .010 | .010 | .014 | .010 | .018

frq* MFTC‘;' 37 |.36 |.60 |.50 |.40 |.56 |.50 |.29 |.84
rep

2xSE .012 | .010 | .006 | .006 | .006 | .008 | .006 | .012

Supplementary Materials:

Supplementary Text with Table S1, Figures S1, S2, S3, S4, S5, S6, S7, and S8, Caption for
Video S1.

Video S1.
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