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For a set P of n points in the unit ball b ⊆ R
d, consider the problem of finding a small subset

T ⊆ P such that its convex-hull ε-approximates the convex-hull of the original set. Specifically, the
Hausdorff distance between the convex hull of T and the convex hull of P should be at most ε. We
present an efficient algorithm to compute such an ε′-approximation of size kalg, where ε

′ is a function
of ε, and kalg is a function of the minimum size kopt of such an ε-approximation. Surprisingly, there
is no dependence on the dimension d in either of the bounds. Furthermore, every point of P can
be ε-approximated by a convex-combination of points of T that is O(1/ε2)-sparse.

Our result can be viewed as a method for sparse, convex autoencoding: approximately repre-
senting the data in a compact way using sparse combinations of a small subset T of the original
data. The new algorithm can be kernelized, and it preserves sparsity in the original input.

1. Introduction

Sparse approximation and coresets. Let P be a set of n points (observations) in the unit ball
b ⊆ R

d, and let CP denote the convex-hull of P . Consider the problem of finding a small ε-coreset
T ⊆ P for projection width; that is, given any line ` in R

d, consider the projections of CT and CP onto
the line ` – these are two intervals IT ⊆ IP , and we require that IP ⊆ (1 + ε)IT . Such coresets have size
O
(

1/ε(d−1)/2
)

, and lead to numerous efficient approximation algorithms in low-dimensions, see [AHV05].
In particular, such an ε-coreset guarantees that the Hausdorff distance between CT and CP is at most ε.

While such coresets can have size Ω(1/ε(d−1)/2) in the worst case, data may have structure allowing
much smaller coresets to exist even in high dimensional spaces. For example, consider a dataset P
in which all points are ε-close to one of k different lines. Then taking the extreme dataset points
associated with each line results in 2k points, such that every p ∈ P is 2ε-close to the convex hull of
those points. More generally, the union of any two datasets which have good approximations of sizes k
and k′, respectively, has one of size at most k+k′. Thus, it is natural to ask whether one can approximate
the smallest such coreset, in terms of both its size and approximation quality.
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Technique ε′ ≡ dH(CP , CT ) kalg ≡ |T | Result

ε-nets ≤ ε O(dkopt log kopt) Lemma 3.2

Greedy set cover ≤ (1 + δ)ε O
(

(kopt/(εδ)
2) log n

)

Lemma 3.3

Greedy clustering ≤ 8ε1/3 + ε O
(

kopt/ε
2/3

)

Theorem 4.6
No dependency on d
or n

Figure 1.1: Summary of our results: Given a set P contained in the unit ball of Rd, such that there is
a subset Popt ⊆ P of size kopt, and dH

(

CP , CPopt

)

≤ ε, the above results compute an approximate set
T ⊆ P . Note, that any point in P has an O(1/ε2)-sparse (ε+ ε′)-approximation using T , because of the
underlying sparsity – see Lemma 2.6.

The problem in matrix form. Given a collection P of n points (observations) in the unit ball
b ⊆ R

d, viewed as column vectors, find a d × k matrix M such that each p ∈ P can be approximately
reconstructed as a sparse, convex combination of the columns of M . That is, for each p ∈ P there exists
a sparse non-negative vector x whose entries sum to one such that p ≈ Mx. This problem is trivial if
we allow k = n: simply make each data point p ∈ P into a column of M , allowing the ith data point to
be perfectly reconstructed using x = ei, where ei is the ith vector in the standard basis. The goal is to
do so using k � n, so that M and the x’s can be viewed as an (approximate) compressed representation
of the p’s.

Input assumption. We are given a set P of n points in R
d all with norm at most one. Suppose that

there exists a d× kopt matrix M , such that

(A) each column of M is a convex combination of the observations p, and
(B) each p ∈ P can be ε-approximately reconstructed as a convex combination of the columns of M :

that is, for each p ∈ P there exists a non-negative vector x whose entries sum to one such that
‖p−Mx‖ ≤ ε.

Stated geometrically, the assumption is that the input P is contained in the unit ball b (centered at the
origin), and there exists a set Popt ⊆ CP , of size kopt, such that for any point p ∈ P , we have that p
is ε-close to CPopt

, where CPopt
denotes the convex-hull of Popt. Formally, being ε-close means that the

distance of p to the set CPopt
is at most ε.

Our results. We present efficient algorithms for computing a d × kalg matrix M ′, consisting of kalg
points of P , such that each p ∈ P can be ε′-approximately reconstructed as a sparse convex combination
of the columns of M ′, where kalg and ε′ are not too large, see Figure 1.1 for details. Here, sparse means
that only relatively few of the columns of M ′ would be used to represent (approximately) each point of
data.

Stated in geometric terms, the algorithm computes a set T of kalg points (these will be points from
P ) such that every point in P is ε′-close to the convex hull of T and moreover can be approximately
reconstructed using a sparse convex combination of T .

The reader may notice that sparsity is not mentioned in the assumption about Popt (≡ M) and yet
appears in the conclusion about T (≡ M ′). This is because convex combinations have the property that
sparsity can be achieved almost for free, at the expense of a small amount of reconstruction error (see
Lemma 2.6). This is to some extent the same reason that a large margin separator can be represented
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using a small number of support vectors.

Related work. In comparison with the recent provable algorithms for autoencoding of Arora et al.
[AGM14], our result does not require any distributional assumptions on the x’s or p’s, e.g., that the
p ∈ P were produced by choosing x from a particular distribution and then computing Mx and adding
random noise. It also does not require that the columns of M be incoherent (nearly orthogonal).
However, we do require that the columns of M be convex combinations of the points p ∈ P and that
they can approximately reconstruct the p ∈ P via convex combinations, so our results are incomparable
to those of Arora et al. [AGM14]. Work on related encoding or dictionary learning problems in the full
rank case has been done by Spielman et al. [SWW12], and efficient algorithms for finding minimal and
sparse Boolean representations under anchor-set assumptions were given by Balcan et al. [BBV15].

1.1. The results in detail

Our results are summarized in Figure 1.1.

(A) Sparse nearest-neighbor in high dimensions. For a set of points P in the unit ball b ⊆ R
d

and any point of p ∈ CP , one can find a point p′ ∈ CP that is the convex combination of O(1/ε2)
points of P , such that ‖p− p′‖ ≤ ε. This is of course well known by now [Cla10], and we describe
(for the sake of completeness) the surprisingly simple iterative algorithm (which is similar to the
Perceptron algorithm) to compute such a representation in Section 2.2. This sparse representation
is sometimes referred to as an approximate Carathéodory theorem [Bar15], and it also follows from
the analysis of the Perceptron algorithm [Nov62] – see Remark 2.7.

(B) Geometric hitting set. Our problem can be interpreted as (a somewhat convoluted) geometric
hitting set problem. In particular, one can apply the Clarkson [Cla93] polytope approximation algo-
rithm to this problem, thus yielding an O(d log kopt) approximation. For the sake of completeness,
we describe this in detail in Section 3.1. (Since d might be large, this approximation is somewhat
less attractive.)

(C) The greedy approach. A natural approach is to try and solve the problem using the greedy
algorithm. Here, this requires some work, and the resulting algorithm is a combination of the
algorithm from (A) with greedy set cover for the ranges defined in (B). We initialize an instance
of the algorithm from (A) for each point p ∈ P whose job is to either find a hyperplane through p
separating it from P \ {p} by a large margin or else to approximate p as a combination of a few
support-vectors in P \ {p}. At each step, we find the point p′ ∈ P that causes as many of these
algorithms to perform an update as possible, and add it into our set T . The key issue is to prove
that the procedure halts after a limited number of steps. This algorithm is described in Section 3.2.

(D) Using greedy clustering. The second algorithm, and our main contribution, is more similar in
spirit to the Gonzalez algorithm for k-center clustering: Repeatedly find the point p ∈ P that is
farthest from the convex hull of the points of T and then add it into T if this distance is greater
than some threshold (a similar idea was used for subspace approximation [HV04, Lemma 5.2]).
The key issue here is to prove that some measure of significant progress is made each time a new
point is added. Somewhat surprisingly, after O(kopt/ε

2/3) iterations, the resulting set is an O
(

ε1/3
)

-
approximation to the original set of points. Note, that unlike the other results mentioned above,
there is no dependence on the dimension or the input size.

An additional property of all the above algorithms is that the points T found will be actual dataset
points and the algorithms only require dot-product access to the data. This means that the algorithms
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can be kernelized. Additionally, much as with CUR decompositions of matrices, since the points T are
data points, they will preserve sparsity if the dataset P was sparse.

2. Preliminaries

For a set X ⊆ R
d, CX denotes the convex hull of X. For two sets P, P ′ ⊆ R

d, we denote by d(P, P ′) =
minp∈P minp′∈P ′ ‖p− p′‖ the distance between P and P ′. For a point q ∈ R

d, its distance to the set
P is d(q, P ) = d({q} , P ), and its projection or nearest neighbor in P is the point nn(q, P ) =
argminp∈P ‖q − p‖ .

2.1. Sparse convex-approximation: Problem statement and background

For a set Y in R
d, its one sided Hausdorff distance from X is d(Y → X) = maxy∈Y d(y,X).

Definition 2.1. Consider two sets Pin, Pout ⊆ R
d. A set U ⊆ CPout

is a δ-approximation to Pin from
Pout if d

(

CPin
→ CU

)

≤ δ. In words, every point of CPin
is within distance δ from a point of CU . In the

discrete δ-approximation version, we require that U ⊆ Pout. We use opt(Pin, Pout, δ) to denote any
minimum cardinality discrete δ-approximation to Pin from Pout, and kopt(Pin, Pout, δ) = |opt(Pin, Pout, δ)|
to denote its size. We drop the phrase “from Pout” when it is clear from the context.

Problem 2.2. Given sets Pin, Pout ⊆ R
d, compute (or approximate) opt(Pin, Pout, δ).

For the majority of the paper we focus on the natural special case when P = Pin = Pout. The
Hausdorff distance between sets X and Y is defined as dH(X, Y ) = max

(

d(Y → X), d(X → Y )
)

.

Lemma 2.3. (i) Let C be a convex-set in R
d, then the function f(p) = d(p, C) is convex, where p ∈ R

d.
(ii) A convex-function f , over a convex bounded domain D ⊆ R

d, attains its maximum in a boundary
point of D.

(iii) For bounded point sets U, P ⊆ R
d, such that U ⊆ CP , we have dH(CU , CP ) = d(P → CU).

Proof: This is all well known, and we include the proof for the sake of completeness.
(i) Consider any two points p, y in R

d, and let p′ = nn(p, C) and y′ = nn(y, C). For any t ∈ [0, 1],
we have by convexity that z = tp+ (1− t)y ∈ py and z′ = tp′ + (1− t)y′ ∈ C. Therefore, by the triangle
inequality, we have

f(z) = f
(

tp+ (1− t)y
)

≤ ‖z − z′‖ =
∥

∥

(

tp+ (1− t)y
)

−
(

tp′ + (1− t)y′
)∥

∥

=
∥

∥t(p− p′) + (1− t)(y − y′)
∥

∥ ≤
∥

∥t(p− p′)
∥

∥+
∥

∥(1− t)(y − y′)
∥

∥

= t
∥

∥p− p′
∥

∥+ (1− t)
∥

∥y − y′
∥

∥ = tf(p) + (1− t)f(y).

(ii) If p is the interior of D then there are extremal points p1, . . . , pd of D, and constants α1, . . . , αd ∈
[0, 1], such that

∑

i αi = 1 and p =
∑

i αipi. As such, by convexity, we have f(p) = f(
∑

i αipi) ≤
∑

i αif(pi) ≤ maxi f(pi).
(iii) By (i), the function d(p, CU) is convex. By (ii), its maximum over CP is attained at a point of

P . We thus have that

dH
(

CU , CP
)

= max
(

d(CU → CP ), d(CP → CU)
)

= d
(

CP → CU
)

= max
p∈CP

d(p, CU) = max
p∈P

d(p, CU)

= d(P → CU).

4









iteration, consider the current convex set Ci−1 = CUi−1
. For a point q ∈ Pin \ Ci−1, let nn(q, Ci−1) be its

nearest point in Ci−1, and let vi(q) be the direction of the vector q− nn(p, Ci−1). In particular, consider
the ε-shadow halfspace h+ = h+(Pin, ε, vi(q)), see Definition 3.1, which should be hit by the desired
hitting set1.

Let Zi ⊆ Pin be the set of points of Pin that are unhappy ; that is, they are in distance ≥ (1 + δ)ε
from CUi−1

. We restrict our attention to the set system of active halfspaces; that is,

Si =
(

Pout,
{

Pout ∩ h+
(

Pin, ε, vi(q)
) ∣

∣ q ∈ Zi

}

)

.

(As before, if Pout ∩ h+ is empty, then no approximation is possible, and the algorithm is done.) Now,
as in the classical algorithm for hitting set (or set cover), pick the point pi in Pout that hits the largest
number of ranges in Si, and add it to Ui−1 to form Ui.

A point q ∈ Zi, is hit in the ith iteration if pi ∈ h+
(

P, ε, vi(q)
)

. The argument of Lemma 2.6 (or
Remark 2.7) implies that after a point q ∈ Pin is hit c/(ε2δ2) times, its distance to the convex-hull of
the current points is smaller than (1 + δ)ε, and it is no longer unhappy, where c is some sufficiently
large constant. Indeed, using the notation of the proof Lemma 2.6, if a point q ∈ Zi is hit in the ith
iteration by a point pi, and d

(

q, CUi−1

)

≤ (1 + δ)ε then we are done. Otherwise, let ti−1 = nn
(

q, CUi−1

)

,
and let yi be the projection of pi to the segment qti−1, see Figure 2.1. We have that ‖yi − ti−1‖ ≥
‖q − ti−1‖ − ‖q − yi‖ ≥ (1 + δ)ε − ε ≥ εδ, since ‖q − yi‖ ≤ ε (as pi and yi are both in the ε-shadow
of q). Now, the analysis of Lemma 2.6 applies (with εδ instead of ε), implying that after O(1/(εδ)2)
iterations, the distance of q from the current convex-hull would be smaller than (1 + δ)ε.

So, let ni be the number of unhappy points in the beginning of the ith iteration, and observe that
at least ni/kopt points are being hit in the ith iteration. In particular, let κ = 2 dckopt/(ε2δ2)e, and
observe that in the iterations between i − κ and i, we have that the number of points being hit is at
least

∑i
j=i−κ nj/kopt ≥ 2nic/(ε

2δ2). This implies that ni−κ ≥ 2ni. Otherwise, ni−κ < 2ni, implying that

in this range of iterations > N = ni−κc/(ε
2δ2) hits happened, which is impossible, as ni−κ points can be

hit at most N times before they are all happy.
As such, after κ iterations of the greedy algorithm, the number of unhappy points drops by a factor

of two, and we conclude that after O(kopt (εδ)
−2 log n) total iterations, the algorithm is done.

4. Approximating the convex hull in high dimensions

Here we provide an efficient bi-criteria approximation algorithm for Problem 2.5. That is, the al-
gorithm computes a subset U ⊆ CP , such that (i) dH(CU , CP ) ≤ O

(

ε1/3
)

diam(P ), and (ii) |U | ≤
O
(

kopt(P, ε)/ε
2/3

)

. Significantly, the computed set U is actually a subset of P , implying that the
algorithm simultaneously solves both the continuous and discrete variants of the problem.

To simplify the presentation, in the remainder of this section we assume ∆ = diam(P ) = O(1), and
hence drop most appearances of ∆.

4.1. The algorithm

Let δ = 8ε1/3. The algorithm is greedy, similar in spirit to the Gonzalez algorithm for k-center clustering
[Gon85] and subspace approximation algorithms [HV04, Lemma 5.2]. The algorithm starts with an
arbitrary point t0 ∈ P . For i > 0, in the ith iteration, the algorithm computes the point ti in P which is

1The hitting set computed by the algorithm is somewhat weaker, only hitting all the (1 + δ)ε-shadows.
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So, let τ ′ = ‖u− u′‖. By the above sanity condition the segment to′ and uu′ meet at a right angle,
and hence by similar triangles (see Figure 4.3), we have

τ ′ =
`′ + ρ

`′
τ = τ + ρ

τ

`′
= τ + ρ sin β = τ + ρ

r√
`2 + r2

= τ + ρ
r√

1 + r2
≤ τ + ρr.

This implies, by Eq. (4.1), that

d(o, CUi
)

d
(

o, CUi−1

) ≤ ‖u− u′‖
‖z − o′‖ =

τ ′

r − ε
≤ τ

r − ε
+

ρr

r − ε
≤ τ

r − ε
+ 2ρ ≤ 1− r2

4
+ 2

√
rε ≤ 1− ε2/3,

if r ≥ 8ε1/3.

Lemma 4.4. Let P be a set of n points in R
d with diameter ∆ = diam(P ), and let ε > 0 be a parameter,

then one can compute a set U ⊆ P , such that
(i) dH

(

CU , CP
)

≤
(

8ε1/3 + ε
)

∆,

(ii) m = |U | ≤ O
(

kopt/ε
2/3

)

, where kopt = kopt(P, ε), and
(iii) the running time is O(nm2d/ε2).

Proof: Recall that in any round before the algorithm terminates ri > δ∆ = 8ε1/3∆. Let Popt = opt(P, ε)
be any optimal approximating set of size kopt. In the ith iteration of the algorithm, for some point
oi ∈ Popt, its distance to the convex hull of CUi

shrinks by a factor of 1−ε2/3, by Lemma 4.3. Conceptually,
we charge round i to oi. Now, note that by Claim 4.2, d

(

oi, CUi−1

)

≥ ri − ε∆ > (δ − ε)∆ ≥ ∆δ/2.

Therefore, once the distance of an optimal point o to CUi
falls below ∆δ/2 = 8ε1/3∆/2, it cannot be

charged again in any future iteration. The initial distance of o to CU0
is at most ∆. As such, by

Lemma 4.3, an optimal point o can get charged at most k times, where k is the smallest positive integer

such that
(

1− ε2/3
)k
∆ ≤ 4ε1/3∆, which holds if exp

(

−kε2/3
)

≤ 4ε1/3. Namely, k = O
(

ε−2/3 log 1/ε
)

.
Using the same idea of decreasing values of ε, as done in Lemma 2.6, one can improve this bound to

O
(

1/ε2/3
)

. We omit the easy but tedious details. We conclude that the number of iterations performed

by the algorithm is at most m = O
(

kopt/ε
2/3

)

.
So the distance of all the points of Popt from CUm

is at most δ∆. Now, consider any point p ∈ CP .
Let t = nn

(

p, CPopt

)

, and observe that ‖p− t‖ ≤ ε∆. Since t ∈ CPopt
, we have that t can be written

as a convex combination t =
∑ν

i=1 αioi, where α1, . . . , αν ≥ 0,
∑

i αi = 1, and o1, . . . , oν ∈ Popt. For
i = 1, . . . , ν, let o′i = nn(oi, CUm

), and note that t′ =
∑

i αio
′
i ∈ CUm

. Now observe that for all i,
‖oi − o′i‖ ≤ δ∆. In particular, (oi − o′i) ∈ ball(0, δ∆), and hence

∑

i αi(oi − o′i) ∈ ball(0, δ∆). Therefore
d
(

p, CUm

)

≤ ‖p− t′‖ ≤ ‖p− t‖ + ‖t− t′‖ ≤ ε∆ + ‖∑i αi(oi − o′i)‖ ≤ (ε + δ)∆. We conclude that

dH

(

CUm
, CP

)

≤ (ε+ δ)∆.

As for the running time, at each iteration, the algorithm computes the point in P furthest away
from CUi

. The analysis above assumes these queries are done exactly, which is expensive. However, by
Lemma 2.6 one can use faster ε∆-approximate queries. Specifically, in each iteration, for each point
p ∈ P use Lemma 2.6 to compute an additive ε∆-approximation to its distance to CUi

, and then select
the point in P with the largest returned approximate distance. It is easy to verify this does not change
the correctness of the algorithm. Specifically, the point ti chosen in the ith round, may now be ε∆ closer
to the current convex hull than the furthest point, and so in the analysis of Lemma 4.3, oi may lie as
much as ε∆ above ti. In particular, the length of τ does not change, however now ρ is only bounded by
2
√
rε instead of

√
2riε, and this constant factor difference only slightly degrades the constant in front

of ε2/3 in the lemma statement. The other effect is that when the algorithm stops the distance to the
convex hull is bounded by

(

8ε1/3 + ε
)

∆, and this is accounted for in the above theorem statement.
Now using Lemma 2.6 directly, it takes O(nmd/ε2) time per round to find the ε∆ approximate

furthest point, and therefore the total running time is O(nm2d/ε2).
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4.2.1. Improving the running time further

The running time of the algorithm of Lemma 4.4 can be improved further, but it requires some care. Let
Li−1 = span(Ui−1) denote the linear subspace spanned by the point set Ui−1, with the orthonormal basis
v1, . . . vi−1. For any point p ∈ P , let p′i−1 denote its orthogonal projection onto the subspace; that is,

p′i−1 = nn(p, Li−1) =
∑i

j=1 〈p, vj〉 vj, and let `i−1(p) = ‖p− pi−1‖ = d(p, Li). Observe, that for any point

t ∈ Li−1 and any point p ∈ R
d, we have that ‖p− t‖ =

√

∥

∥p− p′i−1

∥

∥

2
+
∥

∥p′i−1 − t
∥

∥

2
by the Pythagorean

theorem, where p′i−1 is the projection of p to Li−1.
As such, for any point p ∈ P , in the beginning of the ith iteration, the algorithm has the projection

and distance of p to Li−1; that is, p
′
i−1 =

(

〈p, v1〉 , . . . , 〈p, vi−1〉
)

. and `i−1(p). The algorithm also initially

computes for each point p ∈ P its norm ‖p‖2. Therefore, given any point t ∈ Li−1, its distance to a
point p ∈ P can be computed in O(i) time (instead of O(d)). The algorithm also maintains, for every
point p ∈ P , an approximate nearest neighbor nni−1(p) ∈ CUi−1

; that is,

d
(

p, CUi−1

)

≤ ‖p− nni−1(p)‖ ≤ d
(

p, CUi−1

)

+ ε∆,

where ∆ = diam(P ). Naturally, the algorithm also maintains the distance di−1(p) = ‖p− nni−1(p)‖.
Now, the algorithm does the following in the ith iteration:

(A) Computes, in O(n) time, the point p ∈ P that maximizes di−1(p).
(B) Let p′i−1 be the projection of p to Li−1. Computes, in O(d) time, the new vector for the basis of

Li; that is vi =
(

p− p′i−1

)

/
∥

∥p− p′i−1

∥

∥ . Now v1, . . . , vi is an orthonormal basis of the linear space
Li.

(C) For every point p ∈ P , update its projection p′i−1 into Li−1 into the projection of p into Li, by

computing 〈p, vi〉. Also, update `i(p) =
√

`i−1(p)
2 − 〈p, vi〉2.

(D) Let P ′ denote the projected points of P into Li. For every p ∈ P , we need to update nni−1(p)
to nni(p) (and the associated distance). To this end, the algorithm of Lemma 2.6 is called on
p′i and Ui (all lying in the subspace Li which is of dimension i). Importantly, the algorithm of
Lemma 2.6 is being warm-started with the point nni−1(p). Let #i(p) be the number of iterations
performed inside the algorithm of Lemma 2.6 to update the nearest-neighbor to p. Observe, that
the running time for p is O(#i(p)i

2), since i = |Ui|, the points lie in an i dimensional space, and
as such, every iteration of the algorithm of Lemma 2.6 takes O(i2) time.

Lemma 4.5. For m = O
(

kopt/ε
2/3

)

, the running time of the above algorithm is O
(

nm
(

d+m/ε2+m2
))

.

Proof: The algorithm performs m = O
(

kopt/ε
2/3

)

iterations, and this bound the dimension of the
output subspace. Every iteration of the algorithm takes O(nd) time, except for the last portion of
updating the approximate nearest point for all the points of P (i.e., (D)). The key observation is that
∑

i(#i(p)− 1) = O(1/ε2), since if the algorithm of Lemma 2.6 runs α = #i(p) > 1 iterations, then
the distance of p to the convex-hull shrinks by a factor of (1 − ε2/2)α. Arguing as in the proof of
Lemma 2.6, this can happen O(1/ε2) times before p is in distance at most ε∆ from the convex-hull,
and can no longer be updated. As such, for a single point p ∈ P , the operations in (D) takes overall
∑m

i=1 O(i2(#i(p)− 1)) = O(m2(m+ 1/ε2)) time. This implies the overall running time of the algorithm
is O(n(dm+m2/ε2 +m3)).

4.2.2. The result

Theorem 4.6. Let P be a set of n points in R
d with diameter ∆ = diam(P ), and let ε > 0 be a

parameter, then one can compute a set U ⊆ P , such that

12



(i) dH
(

CU , CP
)

≤
(

8ε1/3 + ε
)

∆, and

(ii) |U | ≤ O
(

kopt/ε
2/3

)

, where kopt = kopt(P, ε).

The running time of the algorithm is O(nm(d+m/ε2 +m2)). for m = O
(

kopt/ε
2/3

)

. (Here, the con-
stants hidden in the O are independent of the dimension.)

Remark. (A) The constants hidden in the O notation used of Theorem 4.6 are independent of the
dimension. In comparison to the other algorithms in this paper, the approximation quality is slightly
worse. However, the advantage is a drastic improvement in the size of the approximation.

(B) The running time of the algorithm of Theorem 4.6 can be further improved, by keeping track
for each point p ∈ P , and each point t ∈ Ui, the distance of t from the hyperplane (in Li) that
determines whether or not the approximate nearest neighbor to p needs to be recomputed. By careful
implementation, this can be done in the ith iteration in O(in) time (updating O(in) such numbers in
this iteration). This improves the running time to O(nm(d+m/ε2)). Motivated by our laziness we omit
the messy details.

Remark. Note that the algorithm is a simple iterative process, which is oblivious to the value of the
diameter ∆ = diam(P ) and does not use it directly anywhere. Nevertheless, after O

(

kopt/ε
2/3

)

iterations

the solution is an
(

8ε1/3 + ε
)

∆-approximation to the convex hull. In practice, one may not know the
value of kopt, and so this value cannot be used in a stopping condition. However, it is easy to get
a 2-approximation ∆′, such that ∆ ≤ ∆′ ≤ 2∆, by a linear scan of the points. Then, one can use
the check d

(

ti, CUi

)

= dH
(

CP , CUi

)

≤
(

8ε1/3 + ε
)

∆′/2 as a stopping condition, where Ui is the current
approximation.
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