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Sparse Approximation via Generating Point Sets*
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For a set P of n points in the unit ball b C R%, consider the problem of finding a small subset
T C P such that its convex-hull e-approximates the convex-hull of the original set. Specifically, the
Hausdorff distance between the convex hull of T" and the convex hull of P should be at most €. We
present an efficient algorithm to compute such an e’-approximation of size kg, where €’ is a function
of €, and ks is a function of the minimum size kqp of such an e-approximation. Surprisingly, there
is no dependence on the dimension d in either of the bounds. Furthermore, every point of P can
be e-approximated by a convex-combination of points of T that is O(1/2)-sparse.

Our result can be viewed as a method for sparse, convex autoencoding: approximately repre-
senting the data in a compact way using sparse combinations of a small subset T" of the original
data. The new algorithm can be kernelized, and it preserves sparsity in the original input.

1. Introduction

Sparse approximation and coresets. Let P be a set of n points (observations) in the unit ball
b C R? and let Cp denote the convex-hull of P. Consider the problem of finding a small e-coreset
T C P for projection width; that is, given any line ¢ in R%, consider the projections of Cr and Cp onto
the line ¢ — these are two intervals Iy C Ip, and we require that Ip C (1+¢)Ip. Such coresets have size
O(l Jeld=1/ 2), and lead to numerous efficient approximation algorithms in low-dimensions, see [AHV05].
In particular, such an e-coreset guarantees that the Hausdorff distance between Cr and Cp is at most ¢.

While such coresets can have size 2(1/(471/2) in the worst case, data may have structure allowing
much smaller coresets to exist even in high dimensional spaces. For example, consider a dataset P
in which all points are e-close to one of k different lines. Then taking the extreme dataset points
associated with each line results in 2k points, such that every p € P is 2e-close to the convex hull of
those points. More generally, the union of any two datasets which have good approximations of sizes k
and k', respectively, has one of size at most k+k’. Thus, it is natural to ask whether one can approximate
the smallest such coreset, in terms of both its size and approximation quality.

*A preliminary version of this paper appeared in SODA 16 [BHR16]. The full version of the paper is also available on
the arxiv [BHR15].
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Technique ¢ =dy(Cp,Cr) kag = |T| Result

e-nets <e O(dkopt 1og Eopt) Lemma 3.2

Greedy set cover < (1+46)e O ((kopt/(£6)?)logn) | Lemma 3.3
Theorem 4.6

Greedy clustering <83 e O(kopt /e 3) No dependency on d
or n

Figure 1.1: Summary of our results: Given a set P contained in the unit ball of R¢, such that there is
a subset Py € P of size kop, and dy (C’ p,CPopt) < g, the above results compute an approximate set
T C P. Note, that any point in P has an O(1/&?)-sparse (e + ¢)-approximation using T, because of the
underlying sparsity — see Lemma 2.6.

The problem in matrix form. Given a collection P of n points (observations) in the unit ball
b C R?, viewed as column vectors, find a d x k matrix M such that each p € P can be approximately
reconstructed as a sparse, convexr combination of the columns of M. That is, for each p € P there exists
a sparse non-negative vector x whose entries sum to one such that p &~ Mx. This problem is trivial if
we allow k = n: simply make each data point p € P into a column of M, allowing the ith data point to
be perfectly reconstructed using x = e;, where e; is the ith vector in the standard basis. The goal is to
do so using k < n, so that M and the x’s can be viewed as an (approximate) compressed representation
of the p’s.

Input assumption. We are given a set P of n points in R? all with norm at most one. Suppose that
there exists a d X kopy matrix M, such that

(A) each column of M is a convex combination of the observations p, and

(B) each p € P can be e-approximately reconstructed as a convex combination of the columns of M:
that is, for each p € P there exists a non-negative vector x whose entries sum to one such that
lp— Mzl <e.

Stated geometrically, the assumption is that the input P is contained in the unit ball b (centered at the
origin), and there exists a set Popy C Cp, of size kop, such that for any point p € P, we have that p
is e-close to Cp,,,, where Cp,, denotes the convex-hull of F,,;. Formally, being e-close means that the
distance of p to the set Cp,, is at most ¢.

Our results. We present efficient algorithms for computing a d x k,, matrix M’, consisting of ki,
points of P, such that each p € P can be ¢’-approximately reconstructed as a sparse convex combination
of the columns of M’, where k,j, and € are not too large, see Figure 1.1 for details. Here, sparse means
that only relatively few of the columns of M’ would be used to represent (approximately) each point of
data.

Stated in geometric terms, the algorithm computes a set T" of k,), points (these will be points from
P) such that every point in P is &’-close to the convex hull of 7" and moreover can be approximately
reconstructed using a sparse convex combination of 7.

The reader may notice that sparsity is not mentioned in the assumption about P, (= M) and yet
appears in the conclusion about 7' (= M’). This is because convex combinations have the property that
sparsity can be achieved almost for free, at the expense of a small amount of reconstruction error (see
Lemma 2.6). This is to some extent the same reason that a large margin separator can be represented



using a small number of support vectors.

Related work. In comparison with the recent provable algorithms for autoencoding of Arora et al.
[AGM14], our result does not require any distributional assumptions on the z’s or p’s, e.g., that the
p € P were produced by choosing = from a particular distribution and then computing Mx and adding
random noise. It also does not require that the columns of M be incoherent (nearly orthogonal).
However, we do require that the columns of M be convex combinations of the points p € P and that
they can approximately reconstruct the p € P via convex combinations, so our results are incomparable
to those of Arora et al. [AGM14]. Work on related encoding or dictionary learning problems in the full
rank case has been done by Spielman et al. [SWW12|, and efficient algorithms for finding minimal and
sparse Boolean representations under anchor-set assumptions were given by Balcan et al. [BBV15].

1.1. The results in detail

Our results are summarized in Figure 1.1.

(A) Sparse nearest-neighbor in high dimensions. For a set of points P in the unit ball b C R¢
and any point of p € Cp, one can find a point p’ € Cp that is the convex combination of O(1/&?)
points of P, such that ||p — p/|| < e. This is of course well known by now [Clal0], and we describe
(for the sake of completeness) the surprisingly simple iterative algorithm (which is similar to the
Perceptron algorithm) to compute such a representation in Section 2.2. This sparse representation
is sometimes referred to as an approximate Carathéodory theorem [Barl5], and it also follows from
the analysis of the Perceptron algorithm [Nov62] — see Remark 2.7.

(B) Geometric hitting set. Our problem can be interpreted as (a somewhat convoluted) geometric
hitting set problem. In particular, one can apply the Clarkson [Cla93] polytope approximation algo-
rithm to this problem, thus yielding an O(dlog kop) approximation. For the sake of completeness,
we describe this in detail in Section 3.1. (Since d might be large, this approximation is somewhat
less attractive.)

(C) The greedy approach. A natural approach is to try and solve the problem using the greedy
algorithm. Here, this requires some work, and the resulting algorithm is a combination of the
algorithm from (A) with greedy set cover for the ranges defined in (B). We initialize an instance
of the algorithm from (A) for each point p € P whose job is to either find a hyperplane through p
separating it from P\ {p} by a large margin or else to approximate p as a combination of a few
support-vectors in P\ {p}. At each step, we find the point p’ € P that causes as many of these
algorithms to perform an update as possible, and add it into our set 1. The key issue is to prove
that the procedure halts after a limited number of steps. This algorithm is described in Section 3.2.

(D) Using greedy clustering. The second algorithm, and our main contribution, is more similar in
spirit to the Gonzalez algorithm for k-center clustering: Repeatedly find the point p € P that is
farthest from the convex hull of the points of T" and then add it into 7' if this distance is greater
than some threshold (a similar idea was used for subspace approximation [HV04, Lemma 5.2]).
The key issue here is to prove that some measure of significant progress is made each time a new
point is added. Somewhat surprisingly, after O(kqpt/ £2/3) iterations, the resulting set is an 0(51/ 3)—
approximation to the original set of points. Note, that unlike the other results mentioned above,
there is no dependence on the dimension or the input size.

An additional property of all the above algorithms is that the points T found will be actual dataset
points and the algorithms only require dot-product access to the data. This means that the algorithms



can be kernelized. Additionally, much as with CUR decompositions of matrices, since the points 1" are
data points, they will preserve sparsity if the dataset P was sparse.

2. Preliminaries

For a set X C R, Cx denotes the convez hull of X. For two sets P, P’ C R¢, we denote by d(P, P') =
min,ep mingepr ||p — p'|| the distance between P and P’. For a point ¢ € RY, its distance to the set
P is d(q,P) = d({q},P), and its projection or nearest neighbor in P is the point nn(q, P) =

argmingyep || — p|l -

2.1. Sparse convex-approximation: Problem statement and background
For a set Y in R its one sided Hausdorff distance from X is d(Y — X) = max,ey d(y, X).

Definition 2.1. Consider two sets P, Poy € R%. A set U C Cp,, is a d-approzimation to Py, from
P if d(Cpin — CU) < 6. In words, every point of Cp_ is within distance  from a point of Cy. In the
discrete -approximation version, we require that U C P,,,. We use opt(Py, Pout, ) to denote any
minimum cardinality discrete J-approximation to Py, from Py, and Kopt(Pin, Pout, 0) = |0pt(LPin, Pout, 0)|
to denote its size. We drop the phrase “from P,,” when it is clear from the context.

Problem 2.2. Given sets Py, Poy € R%, compute (or approzvimate) opt( P, Pous, ).

For the majority of the paper we focus on the natural special case when P = P, = P,. The
Hausdorff distance between sets X and Y is defined as dy(X,Y) = max(d(Y = X),d(X = Y)).

Lemma 2.3. (i) Let C be a convex-set in R?, then the function f(p) = d(p,C) is convex, where p € R%.
(ii) A convex-function f, over a convez bounded domain D C RY, attains its mazimum in a boundary
point of D.
(iii) For bounded point sets U, P C R?, such that U C Cp, we have dg(Cy,Cp) = d(P — Cy).

Proof: This is all well known, and we include the proof for the sake of completeness.

(i) Consider any two points p,y in R? and let p’ = nn(p,C) and y' = nn(y,C). For any ¢ € [0, 1],
we have by convexity that z = tp+ (1 —t)y € py and 2’ = tp' + (1 —t)y’ € C. Therefore, by the triangle
inequality, we have

fR)=fltp+ 1 —ty) <z =2 =|(tp+ 1 —t)y) — (o' + (1 - 1)y)|
=t =)+ A=)y =) <t -+ |1 =)y =)
=tllp =+ 0=y -y =tfp) + (1 =) f(y).
(ii) If p is the interior of D then there are extremal points py, ..., pg of D, and constants a, ..., aq €

0,1], such that >, = 1 and p = >, ayp;. As such, by convexity, we have f(p) = f(>_, aipi) <
> aif (pi) < max; f(pi).

) B
P.

(iii) By (i), the function d(p,Cy) is convex. By (ii), its maximum over Cp is attained at a point of
We thus have that

dH (CU,CP) = max(d(CU — Cp), CZ(CP — CU)) = d(Cp — CU) = Hé%X d(p,CU) = mggi d(p,CU)
pelp p
= d(P — CU) [



Definition 2.4. Consider any set P C R%. A set U C Cp is a §-approximation to P if dy (CU,CP) < 6.
By the above lemma, this is equivalent to every point of P being in distance at most J from a point of
Cu. In the discrete d-approximation version, we require that U C P. Let opt(P,d) be any minimum
cardinality d-approximation to P, and let kopi (P, 0) = |opt(P,d)| denote its size.

Problem 2.5. Given a set P C R? and value §, compute (or approzimate) opt(P,J).

Example. Consider a unit radius sphere S in R? centered at the origin, and let P be a §'-packing
on SY=Y (ie., every point in SV is at distance at most &' from a point of P, and any two points
of P are at distance at least &' from each other). It is easy to verify that such a §-packing has size
@(1/((5’)d’1). Furthermore, for any § > 0, and an appropriate absolute constant ¢ (independent of the

dimension or 0 ), setting &' = ¢V, we have the property that for any point p € P, d(p, Cp\{p}) > 0. That
18, any d-approrimation to P requires Q(1/5(d_1)/2) points.
On the other hand, let P,y = {:I:dei ‘ 1=1,... ,d}, where e; denotes the ith orthonormal vector,
having zero in all coordinates except for the ith coordinate where it is 1. Clearly, SV C Cp._., and as
such kopt (P, Pout, 0) < |Pout| = 2d, with equality for § = 0.
Throughout this paper we require that Py be contained in the unit ball, disallowing this latter type
of “trivial” solution, and furthermore having the property that a successful approximation also yields a

sparse solution essentially for free, as shown next in Lemma 2.6.

2.2. Computing the approximate distance to the convex hull

The following is well known, and is included for the sake of completeness, see [HKMR15]. It also follows
readily from the Preceptron algorithm (see Remark 2.7 below).

Lemma 2.6. Let P C RY be a point set, € > 0 be a parameter, and let ¢ € R? be a given query point.
Then, one can compute, in O(|P|d/e*) time, a point t € Cp, such that ||q —t|| < d(q,Cp) + €A, where
A = diam(P). Furthermore, t is a convex combination of O(1/€?) points of P.

Proof: The algorithm is iterative, computing a sequence of points tg,...,¢; inside Cp that approach gq.
Initially, py = to is the closest point of P to ¢. In the ith iteration, the algorithm computes the vector
v; = q—1;_1, and the point p; € P that is extremal in the direction of v;. Now, the algorithm sets t; to be
the closest point to ¢ on the segment s; = ¢;_1p;, and continues to the next iteration, for M = O(1/&?)
iterations. The algorithm returns the point ¢,, as the desired answer.

By induction, the point t; € C {pomi } Furthermore, observe that the distance q
03P
of the points ¢y, t1,... from ¢ is monotonically decreasing. In particular, for all
1 > 0, t; must fall in the middle of the segment s;, as otherwise, p; would be v; /
>
Q

closer to ¢ than p,, a contradiction to the definition of p,. ’

Project the point p; to the segment ¢;_1q, and let y; be the projected point. v; ¢ Di
Observe that ||¢ — ;|| is a lower bound on d(q,Cp). Therefore, if ||y; — ti—1]] < A i
then we are done, a5 [[g — i 1]] < [frx — il 4 i — all < A + d(g,Cp). (In Aﬁi
particular, one can use this as alternative stopping condition for the algorithm,
instead of counting iterations.)
So, let a be the angle Zp;t;_1q. Observe that as t;,_1p; C Cp, it follows that ||t;_; — p;|| < diam(P) =
; — i eA
M N since |ly; — t;—1]] > €A. Hence, sina = v/1 — cos? o <
i—1 — Pi
V1—¢e2<1—¢%/2. Let ;1 = ||qg — t;_1]|]. We have that

U= lg—t]| =I|lg — tic1||sina < (1 — 52/2)&,1.

t;_1Figure 2.1

A. Furthermore, cosa =



Analyzing the number of iterations required by the algorithm is somewhat tedious. If £y = ||g — to|| >
(4/€*)A then the algorithm would be done in one iteration as otherwise ¢; < £y — 2A, which is impos-
sible. In particular, after 4/¢? iterations the distance ¢; shrinks by a factor of two, and as such, after
O((1/€%)log(1/¢)) iterations the algorithm is done.

One can do somewhat better. By the above, we can assume that d(q, P) = O(A/e?). Now, set
g; = 1/2%7. By the above, after no = O((1/£3) log(1/e0)) = O(1) iterations, £,, < d(q,Cp)+diam(P)/4.
For j > 1, let n; = 4/(¢;)?, and observe that, after v; = n; + S_7_f ny, iterations, we have that

E,,j < (d(q,Cp) + 6]‘_1A)/2 < d(q,CP) + 5jA.

In particular, stopping as soon as €; < ¢, we have the desired guarantee, and the number of iterations
needed is M = O(1) + ,'%/°1 4/e2 = O(1/¢?). n

In our use of Lemma 2.6, P and ¢ will always be contained in the unit ball, so we can remove the A
term in the bound if we wish since A < 2.

Remark 2.7. Lemma 2.6 is known, and a variant of it follows readily from a result (from 1962) on the
convergence of the Perceptron algorithm [Nov62]. Indeed, consider a set P C R¢ and a query point
q € R% Assume that ¢ € Cp, and furthermore that ¢ is the origin (translating space if needed to
ensure this). Run the Perceptron algorithm learning a linear classifier that passes through the origin
and classifies P as positive examples. Stop the algorithm after M = 1/&? classification mistakes (since
q € Cp, there will always be a mistake in P). Let py,...,p,,; be the sequence of points on which mistakes
were made and let w = p; + ...+ py be the resulting hypothesis vector. By the analysis of [Nov62], we
have ||w|| < diam(P)v/M. This implies that the point p’ = w /M, which is a convex combination of the
points p, ..., pu, has length—and therefore distance from ¢—at most ediam(P).

Thus, we conclude that for any point p € Cp, and any € € (0, 1), there is a point p’ € Cy, which is a
convex combination of O(1/e?) points of P, such that ||p — p'|| < ediam(P). This is sometimes referred
to as approximate Carathéodory theorem [Barl5|.

We described the alternative algorithm (in the proof of Lemma 2.6) because it is more direct and
slightly simpler in this case.

3. Approximations via hitting set algorithms

Here we look at two hitting set type algorithms for Problem 2.2. An (a,f)-approrimation of
opt(Pun, Pout, €) 18 a set U C P,y such that al(Cpin — CU) < a and |U| < Bkopt(Prn, Pout, €),see Defi-
nition 2.1.

As a warm-up exercise, we first present an (¢, O(dlog kopt))-approximation using approximation
algorithms for hitting sets for set systems with bounded VC dimension. Then, we build on that to get
a greedy algorithm providing a ((1 + &), O((e6) % log n))-approximation.

3.1. Approximation via VC dimension

Definition 3.1. For a set P C R? and a direction vector v, let p be the point of P extreme ¢rp
in the direction of v, and let A’ be the hyperplane with normal v and tangent to Cp at \\

p. For a parameter ¢, let h be the hyperplane formed by translating A’ distance ¢ in D O’Q
the direction —v. The e-shadow of I’ (or v), is the halfspace h* (P, e,v) bounded by n
h that contains p in its interior. In words, the e-shadow of v is the outer supporting . v
halfspace for P with a normal in the direction of v, translated in by distance ¢. h*(Pe,v)

6



Lemma 3.2. Given sets Py, and Py, in R with a total of n points, and a parameter €, one can compute
a (5, O(dlog kopt))-appmxz'mation to the optimal discrete set opt(Puy, Pout, €) in polynomial time.

Proof: For a direction v, consider the hyperplane A’ tangent to Cp, at an extremal point p, € P,, in the
direction of v, and its e-shadow h*t = h* (P, &, v), see Figure 3.1.

Clearly, any discrete e-approximation U C P, to P, must contain
at least one point of P, N h™, as otherwise the approximation fails for
the point p, (in particular, if such a halfspace has no point in Py then
there is no approximation). Now, consider the set system

S= (Pout, {Pout N AT (P, e, v) | v any unit Vcctor}>.

This set system has VC dimension at most d + 1, and in particular, for Figure 3.1: Circles and
such a set system one can compute a O(dlog k.p) approximation to its squares denote points of
minimum size hitting set, which is the desired approximation in this case,
see [Harll, Section 6.3]. We describe the algorithm below, but first we
verify that this indeed yields the desired approximation.

P, and P, respectively.

Consider a hitting set U C P, of S. Let p be any point in Cp,_,
and let p’ be the closest point to p in Cy. If ||[p—p'|| < e, then we
are done. Otherwise, consider the vector v = p — p’. Let z denote the
hyperplane whose normal is v and which passes through the point p/,
and let 2™ denote the open halfspace bounded by z and in the direction
of v (i.e. containing p). As p’ is the closest point to p in Cy, z* has
empty intersection with Cy;. Moreover, h* (P, e,v) € 2%, as the bounding
hyperplanes of both halfspaces have v as a normal, and the extreme point
of Cp, in the direction of v must be > ¢ away from z (as p is at least this
far in the direction of v). See Figure 3.2. These two facts combined imply h* (P, e,0) NCy = 0, a
contradiction as h™ (P, e,v) N P,y is a set in S that should have been hit.

As for the algorithm, Clarkson [Cla93] described how to compute this set via reweighting, but
the following technique due to Long [Lon01] is easier to describe (we sketch it here for the sake of
completeness). Consider the LP relaxation of the hitting set for this set system. Clearly, one can assign
weights to points (between 0 and 1), such that the total weight of the points is at most k¢, and for
every range in S the total weight of the points it covers is at least 1. Dividing this fractional solution by
kopt, We get a weighted set system, where every set has weight at least n = 1/kqp, and total weight of
the points is 1. That is, we can interpret these weights over the points as a measure, where all the sets
of interests are n-heavy. A random sample of size O((d/n)log(1/n)) = O(koptdlog kept) of P (according
to the weights) is an 7-net with constant probability [HWS87], and stabs all the sets of S, as desired.
Should the random sample fail, one can sample again till success. [ ]

Figure 3.2

3.2. Approximation via a greedy algorithm

Lemma 3.3. Let P, and P,y be sets of points in R? contained in the unit ball, with a total of n
points. For parameters €,6 € (0,1), one can compute, in polynomial time, a ((1 +6)e,0(e726 2 log n))—
approximation to the optimal discrete set opt( Py, Pout, €)-

Proof: The algorithm is greedy — the basic idea is to restrict the set system of Lemma 3.2 to the relevant
active sets. Formally, let Uy = {po}, where py is some arbitrary point of P,,. For ¢ > 0, in the ith

7



iteration, consider the current convex set C;_1 = Cy,_,. For a point ¢ € P, \ C;_1, let nn(q, C;_1) be its
nearest point in C;_, and let v;(¢q) be the direction of the vector ¢ — nn(p, C;_1). In particular, consider
the e-shadow halfspace h* = h™(Py, e, v;(q)), see Definition 3.1, which should be hit by the desired
hitting set!.

Let Z; C P, be the set of points of P, that are unhappy; that is, they are in distance > (1 + §)e
from Cy, ,. We restrict our attention to the set system of active halfspaces; that is,

8: = (P {Pout 00 (P, 0i(0) | a € Z3}).

(As before, if P, N AT is empty, then no approximation is possible, and the algorithm is done.) Now,
as in the classical algorithm for hitting set (or set cover), pick the point p; in P, that hits the largest
number of ranges in §;, and add it to U;_; to form U;.

A point g € Z;, is hit in the ith iteration if p; € h™ (P,e,vi(q)). The argument of Lemma 2.6 (or
Remark 2.7) implies that after a point ¢ € P, is hit ¢/(£26?) times, its distance to the convex-hull of
the current points is smaller than (1 + §)e, and it is no longer unhappy, where ¢ is some sufficiently
large constant. Indeed, using the notation of the proof Lemma 2.6, if a point ¢ € Z; is hit in the ith
iteration by a point p;, and d(q, CUH) < (14 §)e then we are done. Otherwise, let t;_; = nn(q,CUz.fl),
and let y; be the projection of p; to the segment ¢t;_;, see Figure 2.1. We have that |y; —t;_1|| >
lg—ti1l] — lg — will = (14 d)e —e > &0, since ||qg — y;|| < € (as p; and y; are both in the e-shadow
of q). Now, the analysis of Lemma 2.6 applies (with &d instead of €), implying that after O(1/(g§)?)
iterations, the distance of ¢ from the current convex-hull would be smaller than (1 + J)e.

So, let n; be the number of unhappy points in the beginning of the ¢th iteration, and observe that
at least n;/kop points are being hit in the ith iteration. In particular, let k = 2 [ckop/(€20%)], and
observe that in the iterations between ¢ — x and ¢, we have that the number of points being hit is at
least >, 1j/kops > 2n;c/(£26?). This implies that n;_, > 2n;. Otherwise, n;_, < 2n;, implying that
in this range of iterations > N = n;_.c/(¢%?) hits happened, which is impossible, as n;_, points can be
hit at most N times before they are all happy.

As such, after k iterations of the greedy algorithm, the number of unhappy points drops by a factor
of two, and we conclude that after O(kop (€6) 2 logn) total iterations, the algorithm is done. n

4. Approximating the convex hull in high dimensions

Here we provide an efficient bi-criteria approximation algorithm for Problem 2.5. That is, the al-
gorithm computes a subset U C Cp, such that (i) dy(Cy,Cp) < O(/?)diam(P), and (i) |U| <
O(kopt(P, £) /82/3). Significantly, the computed set U is actually a subset of P, implying that the
algorithm simultaneously solves both the continuous and discrete variants of the problem.

To simplify the presentation, in the remainder of this section we assume A = diam(P) = O(1), and
hence drop most appearances of A.

4.1. The algorithm

Let 6 = 82/3. The algorithm is greedy, similar in spirit to the Gonzalez algorithm for k-center clustering
[Gon85] and subspace approximation algorithms [HV04, Lemma 5.2]. The algorithm starts with an
arbitrary point ¢y € P. For ¢ > 0, in the ith iteration, the algorithm computes the point ¢; in P which is

IThe hitting set computed by the algorithm is somewhat weaker, only hitting all the (1 + &)e-shadows.



furthest away from Cy,_,, where U;_y = {to,...,t;—1} . For now assume these distance queries are done
exactly — later on we describe how to use approximate queries (i.e., Lemma 2.6). Let r; = d (ti,CUH).
The algorithm stops as soon as r; < 9, and outputs U;_;.

Observation 4.1. In the above algorithm, for all i > 0, the point t; is a vertex of Cp (so long as exact
distance queries are used). In particular, if the output has to be a subset of the convex hull vertices, one
can choose ty to be the extreme vertex in any direction.

4.2. Analysis

By the termination condition of the algorithm, when the algorithm stops every point in P is in distance
at most § = 8¢'/3 away from Cy, |, as desired. As for the number of rounds until termination, we argue
that in each round there exists some point o € P, which is far from Cy, , (as specified in Claim 4.2)

and such that d(o, U;) < (1 — Q(e%/3))d(0, U;_1).

So consider some round ¢, the current set U,_;, and 9 Bt
the point t; € P furthest away from Cy,_,. Let t; be the
closest point to ¢; in Cy,_,, and let r; = ||t; — #;]|. Let h;
be the hyperplane orthogonal to the segment ¢;t; and
lying e distance below ¢; in the direction of ;. Let h} [T
denote the closed halfspace having h; as its boundary,
and that contains t;, see Figure 4.1. If no points of
P, are in b then d(ti, C popt> > ¢, which is impossible.
Therefore, there must be a point 0; € Fope N h;L Let o]
be the closest point to o; in Cy,_, . Figure 4.1

—O ~
o)
>

Claim 4.2. r; — e < ||o; — d}|| < r;.

Proof: Let h; be the translation of h; so it passes through ¢}, see Figure 4.1. We have that r; — ¢ =
d(hl, h;) < |lo; — ol|| , as o; lies in h; (i.e., above h;) and all of Cy;,_, lies below A,

For the second part, for any p € R, let fi_1(p) be the distance of p from Cy, ,. By Lemma 2.3 (iii),
and since o; € Popy C Cp, it follows that ||o; — of|| < maxyec, fi—1(p) = ||ti — ti|| = 7. [

Lemma 4.3. If r; > 8¢'/% then d(0;,Cy,) < (1 —¢*3)d(0;,Cu,_,)-

Proof: In the following, all entities are defined in the context of the ith iteration, and we omit the
subscript ¢ denoting this to simplify the exposition. Assume, for the time being, that the angle Ztt'o’ is
a right angle and the segment ¢'0’ has length ¢ = 1, see Figure 4.2. This is the worst case configuration
in terms of the new convex-hull Cy, getting closer to o, as can be easily seen.

Let 2z be the intersection of h with the ray ema- ﬂ
nating from o’ in the direction ¢ — /. Let 2’ be the D

0
closest point to z on o't, let 7 = ||z — 2/||, and let p p
be the radius of the ball formed by ball(o’, ) N h. See
Figure 4.2. "

Rather than bounding the distance of o to Cy, di- 2 ] ¢ t
rectly, instead we use bounds on p and 7. Observe .

, Figure 4.2

that o € h™ N ball(d/,r) C ball(z,p), and as such,

o — 2| < p. Now, we have p = /12 — ||z — 0| = /172 = (r — £)2 = /2re — £2 < \/2re.

b

E_p

T
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Let a = Zzo't and f = 7/2 — a = Ztd't', and observe that sina = cosf = £/V(? + 12, where
= |0 —1t| =1. Now, we have

T ! ! e (4.1)
= S1n = = - - .
= VEi? Viie 2=
since f =1andr <1.
h

Figure 4.3: Note, that o is not necessarily in the two dimensional plane depicted by the figure. All other
points are in this plane.

Sanity condition: Consider the line which is the intersection of the hyperplane h and the two di-
mensional plane spanned by ¢,¢" and o (this line is denoted by h in the figures). Let u be the point in
distance p on this line from z, on the side further away from ¢. Let t” be the intersection of h with to'.
Next, let u’ be the nearest point to u on the segment to’, see Figure 4.3.

We want to argue the distance between o and Cy,, can be bounded in terms of the distance between
u and u/, however to do so we need to guarantee that u' is in the interior of this segment to’. Setting
(" = ||z — t"]], this happens if

[t = |
= (p+ O <" =" = () + (r—e)*.

lu" =" < It" =0l = ' =" = (p+ ') cos = (p+ 1) <|[t" =

Thus, we have to prove that pl’ < (r — 5)2. As 0" < =1, we have that this is implied if p < v/2re <
(r —e)?, and this inequality holds if r > 8¢1/3.

Back to the proof: We next bound the distance of o from Cpy,. Ob-
serve that by rotating o around the line o't we can assume that o lies
on the plane spanned by ¢,t', 0" and its distance to the segment to’ has

not changed. Now, the set of points in distance r’ from the segment

o't is a hippodrome, and this hippodrome covers a connected portion of
ball(o’, 7). For ' = |ju — /||, by the above sanity condition, this hippo-
drome covers all the points of ball(¢’, ) that are above h. This implies
that o maximizes its distance to Cy, if 0o = u.

10



So, let 7/ = |ju — u/||. By the above sanity condition the segment to’ and uu’ meet at a right angle,
and hence by similar triangles (see Figure 4.3), we have

’ gl"‘p n T n . ﬁ I T 4 r <+
= T=T4p-=7+psinf=7+p——=s=7+p—=—= <7+ pr.
v P P e+ P iase =177
This implies, by Eq. (4.1), that
! / 2
d(o,Cy,) _Hu uH: T oo T pr < T +2p§1—r—+2\/E§1—52/3,
d(o,Cu, ) ~ llz=0l r—e"r—e r—e”r—¢ 4
if r > 8el/3. n

Lemma 4.4. Let P be a set of n points in R? with diameter A = diam(P), and let € > 0 be a parameter,
then one can compute a set U C P, such that

(Z) dH (CU, Cp) S (851/3 + €)A,

(it) m = U] < O(kopt/€%?), where ko, = kopy (P, €), and
(iii) the running time is O(nm?*d/e?).

Proof: Recall that in any round before the algorithm terminates r; > 6A = 8c¥/2A. Let P, = opt(P,¢)
be any optimal approximating set of size kqp. In the ith iteration of the algorithm, for some point
0; € Py, its distance to the convex hull of Cy, shrinks by a factor of 1—¢2?/3, by Lemma 4.3. Conceptually,
we charge round i to o;. Now, note that by Claim 4.2, d(0;,Cy,_,) > r; —eA > (6 — e)A > Aj/2.
Therefore, once the distance of an optimal point o to Cy, falls below Ad/2 = 8c'/3A /2, it cannot be
charged again in any future iteration. The initial distance of o to Cy, is at most A. As such, by
Lemma 4.3, an optimal point o can get charged at most k times, where k is the smallest positive integer
such that (1 — 52/3)kA < 4¢'3A, which holds if exp(—ke*?) < 4e'/3. Namely, k = O(s*?log1/e).

Using the same idea of decreasing values of €, as done in Lemma 2.6, one can improve this bound to
O(l /2! 3). We omit the easy but tedious details. We conclude that the number of iterations performed
by the algorithm is at most m = O(k:opt /e?/ 3).

So the distance of all the points of P, from Cy,, is at most dA. Now, consider any point p € Cp.
Let t = nn(p,Cp,,,), and observe that ||p —t|| < eA. Since t € Cp,,, we have that ¢ can be written
as a convex combination ¢ = Y 7 | a;0;, where oy, ..., q, >0, > ; = 1, and oy,...,0, € P, For
i =1,...,v, let of = nn(o;,Cy,,), and note that ¢’ = > . o0, € Cy,,. Now observe that for all 1,
|lo; — 0}]] < dA. In particular, (o; — 0}) € ball(0,0A), and hence ), ;(0; — 0}) € ball(0,0A). Therefore
d(p.Cu,,) < o=t < lp—t] +[[t=t|] < A+ [>; (0 — )] < (e 4 d)A. We conclude that
dy (cUm, cp) < (e +0)A.

As for the running time, at each iteration, the algorithm computes the point in P furthest away
from Cy,. The analysis above assumes these queries are done exactly, which is expensive. However, by
Lemma 2.6 one can use faster eA-approximate queries. Specifically, in each iteration, for each point
p € P use Lemma 2.6 to compute an additive e A-approximation to its distance to Cy,, and then select
the point in P with the largest returned approximate distance. It is easy to verify this does not change
the correctness of the algorithm. Specifically, the point ¢; chosen in the ith round, may now be €A closer
to the current convex hull than the furthest point, and so in the analysis of Lemma 4.3, o; may lie as
much as €A above t;. In particular, the length of 7 does not change, however now p is only bounded by
2y/re instead of \/2r;¢, and this constant factor difference only slightly degrades the constant in front
of €2/3 in the lemma statement. The other effect is that when the algorithm stops the distance to the
convex hull is bounded by (851/ 354+ 5)A, and this is accounted for in the above theorem statement.

Now using Lemma 2.6 directly, it takes O(nmd/e?) time per round to find the eA approximate
furthest point, and therefore the total running time is O(nm?d/e?). m
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4.2.1. Improving the running time further

The running time of the algorithm of Lemma 4.4 can be improved further, but it requires some care. Let
L;_1 = span(U;_1) denote the linear subspace spanned by the point set U;_1, with the orthonormal basis
v1,...v;_1. For any point p € P, let p,_; denote its orthogonal projection onto the subspace; that is,

Pioy =mn(p, Li1) = > ., (p,v)) vj, and let £;1(p) = [[p — pi—1|| = d(p, Li). Observe, that for any point

t € L;_; and any point p € R, we have that ||p — ¢ = \/Hp - p;_lﬂz + Hp;_l — 75”2 by the Pythagorean
theorem, where p)_, is the projection of p to L;_;.

As such, for any point p € P, in the beginning of the ith iteration, the algorithm has the projection
and distance of p to L;_q; that is, p, | = ((p, V1), (D, vi_1>). and ¢;_1(p). The algorithm also initially
computes for each point p € P its norm ||p||>. Therefore, given any point t € L;_q, its distance to a
point p € P can be computed in O(i) time (instead of O(d)). The algorithm also maintains, for every
point p € P, an approximate nearest neighbor nn;_;(p) € Cy,_,; that is,

d(p.Cu, ,) < lp — i) < d(p,Cu,_,) + A,

where A = diam(P). Naturally, the algorithm also maintains the distance d;_1(p) = ||[p — nn;_1(p)||-
Now, the algorithm does the following in the ¢th iteration:
(A) Computes, in O(n) time, the point p € P that maximizes d;_1(p).
(B) Let p;_, be the projection of p to L;_y. Computes, in O(d) time, the new vector for the basis of
L;; that is v; = (p — p;_l)/ Hp - || . Now vy, ...,v; is an orthonormal basis of the linear space
L;.
(C) For every point p € P, update its projection p; ; into L;_; into the projection of p into L;, by

computing (p, v;). Also, update ¢;(p) = \/ﬁi_l(p)Q — (p,v;)*.

(D) Let P’ denote the projected points of P into L;. For every p € P, we need to update nn;_1(p)
to nn;(p) (and the associated distance). To this end, the algorithm of Lemma 2.6 is called on
p; and U; (all lying in the subspace L; which is of dimension 7). Importantly, the algorithm of
Lemma 2.6 is being warm-started with the point nn;_;(p). Let #;(p) be the number of iterations
performed inside the algorithm of Lemma 2.6 to update the nearest-neighbor to p. Observe, that
the running time for p is O(#;(p)i?), since i = |U;], the points lie in an 7 dimensional space, and
as such, every iteration of the algorithm of Lemma 2.6 takes O(i?) time.

Lemma 4.5. Form = O (kop/c*?), the running time of the above algorithm is O (nm(d+m/e*+m?)).

Proof: The algorithm performs m = O(kop/e*/?) iterations, and this bound the dimension of the
output subspace. Every iteration of the algorithm takes O(nd) time, except for the last portion of
updating the approximate nearest point for all the points of P (i.e., (D)). The key observation is that
Soi(#i(p) — 1) = O(1/e?), since if the algorithm of Lemma 2.6 runs o = #;(p) > 1 iterations, then
the distance of p to the convex-hull shrinks by a factor of (1 — ?/2)*. Arguing as in the proof of
Lemma 2.6, this can happen O(1/¢?) times before p is in distance at most €A from the convex-hull,
and can no longer be updated. As such, for a single point p € P, the operations in (D) takes overall
S O (#i(p) — 1)) = O(m*(m + 1/€?)) time. This implies the overall running time of the algorithm
is O(n(dm + m?/e* + m?)). m

4.2.2. The result

Theorem 4.6. Let P be a set of n points in RY with diameter A = diam(P), and let ¢ > 0 be a
parameter, then one can compute a set U C P, such that
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(Z) dH(CU,Cp) S (881/3+€>A, and
(it) |U| < O(kopt/€*?), where kopy = kopy(P,€).

The running time of the algorithm is O(nm(d +m/e* + m?)). for m = O(kopt/e*/?). (Here, the con-
stants hidden in the O are independent of the dimension.)

Remark. (A) The constants hidden in the O notation used of Theorem 4.6 are independent of the
dimension. In comparison to the other algorithms in this paper, the approximation quality is slightly
worse. However, the advantage is a drastic improvement in the size of the approximation.

(B) The running time of the algorithm of Theorem 4.6 can be further improved, by keeping track
for each point p € P, and each point ¢t € U;, the distance of ¢ from the hyperplane (in L;) that
determines whether or not the approximate nearest neighbor to p needs to be recomputed. By careful
implementation, this can be done in the ith iteration in O(in) time (updating O(in) such numbers in
this iteration). This improves the running time to O(nm(d + m/e?)). Motivated by our laziness we omit
the messy details.

Remark. Note that the algorithm is a simple iterative process, which is oblivious to the value of the
diameter A = diam(P) and does not use it directly anywhere. Nevertheless, after O(k:opt /2! 3) iterations
the solution is an (851/ 54 5) A-approximation to the convex hull. In practice, one may not know the
value of kop, and so this value cannot be used in a stopping condition. However, it is easy to get
a 2-approximation A’, such that A < A’ < 2A, by a linear scan of the points. Then, one can use
the check d(ti,CUi) = dy (CP,CUi> < (861/3 + 5) A’/2 as a stopping condition, where U; is the current
approximation.
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