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ARTICLE INFO ABSTRACT

Keywords: Ferroelectret Nanogenerators (FENG) devices were introduced recently as promising flexible devices for energy
FENG harvesting and microphone/loud-speaker applications. Vanadium dioxide (VO,) thin films, on the other hand,

Nanogenerator have been demonstrated to enable large frequency tunability of miniaturized electro-mechanical structures,
K/I?I\E/ilgmm dioxide which are commonly integrated in transceiver and communication systems. In this work, we integrate these two

technologies, to show a system where an electric pulse, supplied by the FENG can be used to tune the resonant
frequency of VO,-based micro-electro-mechanical structures. Furthermore, due to the VO,'s hysteretic behavior,
the applied pulse also programs the tuned frequency, allowing for different frequency states in the device for a
single applied DC bias. It is found that the tuning of the frequency states is determined by the supplied energy,
and the programming is more efficient for larger, shorter pulses —even if the duration of the pulse is shorter than
the system's thermal time constant. We explore two different mechanical structures, bridge and cantilever. A
wider tuning range is found for the bridge structure (22%), which is due to the larger frequency sensitivity with
stress for this configuration. The tuning/programming action uses harvested mechanical energy, which could
come from the user. The potential use of the developed system as an accelerometer or impact sensor for mon-

itoring brain injuries in contact-sports is discussed.

Programming resonant frequency states in a mechanical structure
allows for the operation of a single device in multiple frequency
channels. This not only broadens the spectrum of applications for the
device, but also reduces interference, noise, and enables anti-jamming
in communication systems. The tuning actuation required for pro-
gramming particular states in miniaturized electro-mechanical devices
has typically been achieved by using the thermal expansion coefficient
of the structural materials and the structure's geometry to generate
stress patterns that influence the dynamic behavior of the device [1-4].
More recent advances have exploited the changes in the properties of
phase-change materials to generate significant stress, which produce
shifts in the resonant frequency of mechanical structures [?] [5-8]. One
of the most promising smart materials used for applications requiring
tunable performance is vanadium dioxide (VO,), which has a solid-solid
phase transition near 68 °C that comes with drastic changes in a plur-
ality of the material's properties; making it the smart material with the
lowest transition temperature [9], and therefore the ideal candidate for
low-power actuation. VOy's multifunctionality has allowed for the
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tuning of electrical [10-12], optical [13-16], mechanical [17,18]
properties; and for the programming of resonant frequency states
[19,20]. However, in all these cases, the tuning action and program-
ming capability has been done through external sources that require the
constant presence of an electrical power source. NanoGenerators pro-
vide an alternative to this. They have been heavily studied recently, and
have been the focus of multiple efforts for the development of self-
powered devices [21,22].

In this paper, we present a new method for providing the required
actuation for tuning/programming frequency states in VO, electro-
mechanical structures. The method does not require external equipment
for providing the electric pulse, and thus, it does not require an external
power source during the programming action. This is accomplished by
combining the use of the tuning capability of VO, thin film coatings
with the recently demonstrated FerroElectret NanoGenerator (FENG)
device [23-26]. The results shows that tuning/programming can be
accomplished by very short pulses —shorter than the device's thermal
time constant. In order to understand the energy requirements for
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actuation, we performed experiments where a capacitor was charged by
the FENG, and the tuning/programming actuation was provided by the
capacitor discharge through the monolithically integrated resistive
heaters in the resonator structure. Furthermore, it is also demonstrated
that a single impact provides enough energy to tune the resonant fre-
quency of a bridge structure. The frequency difference between the
programmed states is much larger in the bridge structure, due to the
larger built-in thermal stress in this clamped-clamped structure.

The fabrication process for the resonator is shown in Fig. 1a. The
resonant frequency of the resonators was measured by the laser beam
deflection method [27,28], using the setup shown that is schematically
described in Fig. 1b. Details on the resonator and FENG device, as well
as the testing set-up are provided in the Supplementary Information.
The assembled system allows for tuning of the VO,-based resonators
(heating and cooling of the device) by two methods; (i) Using only
conductive heating through a proportional-integral-derivative (PID)
temperature controller connected to the Peltier heater and Pt tem-
perature sensor attached to the sample, and (ii) Using resistive heating
(i.e. joule heating) through the Pt/Ti integrated metal traces. The first
method was used for calibration and film characterization, while the
second method was used for the programming experiments. The tem-
perature of the VO,-based resonators was increased by sending a DC
current through the Pt/Ti heater. As this temperature moves across the
phase transition of VO, the resonant frequency of the micro-electro-
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Fig. 1. (a) Fabrication flow of VO,-based electro-mechanical re-
sonator (bridge structure): i) LTO (Low Temperature Oxidation)
of SiO, layer on Si substrate; ii), Thermal evaporation of heater
trace; iii), LTO deposition of second layer SiO,; iv), Dry etching of
SiO;; v), Structure released by XeF,; vi), PLD deposition of VO,.
(b) Schematic of optical testing setup for measuring resonant
frequency.
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mechanical structure shifts abruptly, following the hysteretic behavior
of VO, similar to the resistance curve shown in Fig. S3b (see
Supplementary Information). A series of experiments were performed in
order to characterize the FENG/VO, integration and find the conditions
necessary for tuning/programming from a single strike on the FENG
device. These preliminary experiments are discussed next, and were
designed to start by finding the time constant of the system and energy
requirements.

The testing configuration consisted on connecting the device's metal
heater to a DC current source which provided a pre-heating current to
the VO,-based resonator (see Fig. 2a). The pre-heating level was se-
lected at the point where the resonant frequencies between the heating
and cooling major hysteretic curves have the largest difference (see
Figs. 3a and 4a). A capacitor was then charged by the FENG device
through a rectifier. A single-pole-single-throw switch was used to avoid
capacitor leakage after charging. Once the capacitor was charged, the
discharge current pulse was added to the pre-heating current. The
temperature increase due to the current pulse was large enough to heat
the structure across the phase transition. When the pulse ended, the
temperature of the sample returned to the pre-heating value, but this
time following the cooling curve of the hysteresis curve. Thus, the re-
sonant frequency before and after the pulse correspond to the values in
the heating and cooling curves, respectively. Videos 1 and 2 in Sup-
plementary Information show the experiments for cantilever and bridge
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a b Fig. 2. (a) Circuit of resonant frequency program-
mability by combing VO,-based resonator and FENG
SPST Push Button 3.5 4 = . device. C is the capacitor of 1 pF, R, is the resistance
<>/ = Discharge Current of the heater (252 and 228 Q for the cantilever and
o 9 9 3.0 1 | bridge, respectively), I, is the pre-heating current (1
FENG 2.5 4 é and 1.22 mA for the cantilever and bridge structures,
= respectively). (b) Voltage profile of the discharge
Rectifier C=— R H I <> o 2.0 A current across the heater. (c¢) Circuit used for mea-
g 15 4 suring the time constant. A wave-function generator
§ : W (WG) is connected to the heater R;. The VO, film
1.0 4 \ (Ry)is connected to a resistor (R;), a pre-heating
05 é\A voltage source Vp), and an oscilloscope (DSO). (d)
— ’ Gatmmputns Thermal time constant of the VO,-based cantilever.
i 0.0 T T . r T (e) Schematic of the rectangular pulse supplied by
-2 =1 0 1 2 3 4 the WG for time-constant and energy calculation
Time (ms) experiments. (f) Frequency shift as the function of
c d the pulse width.
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structures. a current pulse and monitoring the change in resistance of the VO,

In order to find the conditions of the tunning current pulse for in-
creasing the sample's temperature across the phase transition, it is ne-
cessary to know the system's response time. The dynamics of the system
is governed by two main processes (thermal and mechanical), and each
one has a corresponding time constant. The thermal process is the
mechanism by which the current pulse increases the temperature of the
sample, while the mechanical process is the mechanism by which the
system responds to the phase change of in the VO, film. The relation
between the thermal time constant and the mechanical time constant
can be described as follows:
=1+ 1y, (€D)]
where 7y is the mechanical time constant, 7 is the thermal time con-
stant and 7/, is the response time of the device to the new thermal
equilibrium. The thermal time constant is mainly determined by how
fast the external heat can be distributed in the device [29,30]. The
thermal process is the slowest of the two [31-33] and thus, it will de-
termine the time response of the entire system.

Since the changes in the structural and electrical properties of VO,
across the phase transition have similar time constants [5,34-36], the
thermal time constant of the system can be obtained by simply applying
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film. The measurement setup is shown schematically in Fig. 2¢, and
explained in more detail in the Supplementary Information. In this
experiment, the thermal time constant was defined as the time required
for the device to respond when the current was increased from the
preheated level of 1-1.7 mA. The measured thermal time constant of
this 550 um long VO,-based cantilever was 20.3 ms, (see Fig. 2d). To
validate the measured time constant for the electro-mechanical system,
rectangular pulses of same amplitude but varying width were applied,
while the resonant frequency shift was measured. As the pulse width
was increased, the frequency shift also increased until the frequency
shift reached a maximum value. Thus, the minimum width of the pulse
that was able to obtain the maximum frequency shift should be ap-
proximately the value of the time constant. The frequency shift as a
function of the pulse width is plotted in Fig. 2f. The thermal time
constant in this case was estimated to be 21 ms, which is very close to
the value determined in Fig. 2d.

The resonant frequency of the bridge as a function of the current is
plotted in Fig. 4a. The programmability of the resonant frequency was
achieved by first apply a DC current to a pre-heated level where the
heating curve and the cooling curve have the maximum separation
[37-39]. A transient current pulse was then induced in order to
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8050 {————— 35 cantilever structures. (a) Hysteretic major resonant
& Heat!ng 2 L frequency loops for cantilever structure as a function
8000 4. ° Cooling T 30 A Faodih 2R R S R of the current. (b) Frequency shift as a function of the
- o a N 25 | . voltage in the capacitor before discharge pulse. (c)
B 7950 - °a T Frequency shift as a function of pulse amplitude for
\o; 0 a % 20 - - three different pulse widths (PW). (d) Frequency
= 7900 + °a cg 15 4 shift as a function of energy delivered by the pulse.
= o
g 7850 - o2 8 10 ¢
2 S 10
[N o & g
*
7800 ~ o & Pre-heating current & 51 ' )
e .
7750 { e e 6082 o{ °* |_* Frequency Shift]
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 o 1 2 3 4 5 6
Current (mA) Voltage (V)
c d
30 4 o.z*‘:AAAA‘A 30 ~ AA_As»i‘3!‘}A’
. A e
N * * ® y A A ) ‘k.
T A T
= = a
e & & T 20+ b
£ 'y A = A’
%] * (]
> A > Ae
(3] o ¢
S o € 10 o ‘
2 10 o° S— S & + PW=1.3ms
o e ¢ PW=13ms 3 2 * PW=0.9ms
- b p * PW=0.9ms =l ¢ 4 PW=05ms
a 4 PW=0.5ms Capacitor Discharge
0 T T T T T T i T i "
300 600 900 1200 1500 1800 0 3 6 9 12
Pulse Amplitude (mV) Energy (uJ)
complete the phase transition in the VO, film and switch the resonant enough temperature increase to cross the phase transition completely.
frequency from the heating curve to the cooling curve. Even though the Therefore, the single layer FENG device was stacked to 7 layers, which
single layer FENG device is able to generate large open circuit voltage, amplified the output to 7 times larger than the single layer device [24].
the short circuit current is still in the scale of u A. Thus, directly con- Second, a capacitor was previously charged by the FENG device
necting a single layer FENG device to the resonator does not produce through a rectifier to a level high enough to go through the phase
a b Fig. 4. (a) Hysteretic major resonant frequency loops
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transition completely. Then, the stored energy was released in the form
of discharge current for tuning action by using a push-button switch.
The current pulse used for the tuning can be determined by the fol-
lowing equation:

Vo .t
I= Ee RC + I, @
where V; is the voltage charged to the capacitor, R is the resistance of
the heater in the cantilever, C is the capacitance of the capacitor and I,
is the pre-heating current. In this experiment, the pre-heated current
level was chosen to be 1 mA where the resonant frequency separation
between the heating curve and the cooling curve is 30 Hz. The capacitor
was previously charged to different voltage levels, and then the dis-
charge current was induced for the tuning. This results in pulses of
different amplitude, but same duration, since the time constant re-
mained unchanged. As shown in Fig. 3b, the resonant frequency shift
increases with the voltage stored in the capacitor. This suggests that the
tuning/programming of the resonant frequency in the devices is de-
termined by the supplied energy. The maximum frequency shift was
obtained when the capacitor was charged to 2.9 V.

As discussed earlier, the thermal time constant of the cantilever is
approximately 20.3 ms. This means that in order to get the maximum
frequency shift, the applied current pulse should be at least 20 ms.
However, the discharge current pulse used for the tuning in this ex-
periment has the decay time constant of around 0.27 ms and the tran-
sient current only lasts about 1.3 ms. Although the pulse width (PW)
was much shorter than the time constant of the device, the transient
current still provided enough energy for the resonant frequency to
completely across the phase transition region. This finding is crucial for
the use of a single strike on a FENG device for programming action. The
energy released from the capacitor to the heater can be determined by:

3

where V] is the voltage of the capacitor after discharging. To confirm
that the tuning mechanism is determined by the supplied energy —in-
dependently on how fast was the energy delivered- the following ex-
periment was performed. Instead of applying the RC discharge current,
three rectangular pulses of different widths were applied from a wa-
veform generator. The frequency shift as a function of the pulse am-
plitude was measured (see Fig. 3c). The maximum frequency shift was
achieved by the different rectangular pulses respectively at different
amplitudes. The energy delivered by the rectangular pulses can be
calculated by using the parameters shown in Fig. 2e:

AE = %C(VOZ - Vlz)’

Vi = Vit
—

Al = @
where R is the resistance of the heater, V}, is the high voltage, V] is the
low voltage, and t is the width of the pulse. Fig. 3d shows the resonant
frequency shift as a function of the energy delivered by three different
pulses, and by the discharge current from the capacitor. All four curves
show very similar behavior. This confirms that the tuning mechanism is
dominated by the supplied energy. The energy required for tuning this
550 um VO,-based cantilever is about 5.1 pJ. Moreover, if the cantilever
was applied a rectangular pulse of V}, =578 mV and V; = 280 mV
(considering the TCR of the heater is around 33.5 Q/mA?2), the duration
of the pulse should be at least 20 ms. In this case, the energy consumed
by the cantilever is about 18.2 pJ. This larger energy consumption is
probably due to the larger heat dissipation during a longer tuning
process. Thus, it is more energy-efficient to apply a shorter pulse with
higher amplitude.

The resonant frequency programmability was also demonstrated for
a 300 um long VO,-based micro-electro-mechanical bridge structure.
The resonant frequency as a function of current was plotted in Fig. 4a.
The current step here was chosen to be 0.01 mA since the bridge
structure is more sensitive to the stress [?], which also translates into a
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much larger tuning frequency than the cantilever structure (32% for the
bridge, and 4% for the cantilever). For the bridge structure, the pre-
heating current was 1.22 mA. The resonant frequency tuning based on
the RC discharge current is illustrated in Fig. 4b. The frequency shift
increases with the voltage in the capacitor, and saturates at around
1.6 V. The maximum resonant frequency shift was measured to be
around 42 kHz, which is consistent with the value estimated from
Fig. 4a. This indicates that a voltage of 1.6 V in the capacitor provided
enough energy to completely cross the phase transition region (for a
pre-heating current of 1.22 mA). The thermal time constant was also
measured for the bridge using the same method used for the cantilever.
The value was determined to be around 9 ms, which is much shorter
than the cantilever. This is due to two reasons: (i) the bridge has one
more anchor than the cantilever, which represents a more uniform
temperature distribution and one more heat sink that helps dissipate
temperature; and (ii) the bridge is shorter than the cantilever, which
means the bridge has less thermal mass and therefore the response time
is shorter.

Energy was also found to be the tuning parameter for the bridge
structures. Figs. 4c—d show the frequency shift as a function of rec-
tangular pulse amplitude and energy, respectively. The same pattern
shown in Figs. 3c-d was observed, and the minimum energy required
for inducing a frequency shift of around 30 Hz was 5.11 pJ. In Fig. 4d,
there is a small discrepancy between the discharge current and the
rectangular pulse. This can be attributed to the high sensitivity to stress.
The rectangular pulses were provided by the waveform generator as a
voltage signal. The energy consumption for programming (i.e. dynamic
power consumption) required by the bridge was estimated to be
2.07 wJ. A more detailed discussion on the difference between the
tunability for both structures can be found in the Supplementary In-
formation, together with complementary Finite Element Method si-
mulations.

As discussed above, the tuning/programming of multiple frequency
states can be achieved by very short pulses, as long as the delivered
energy is enough. Thus, practical applications could include impact
sensors, such as those needed for monitoring injuries in high-contact
sports, where a single, quick (but intense) impact generates enough
energy to program a different frequency state. The flexibility of the
FENG device and the size of the resonator structure enables the re-
quired flexibility for the integration of this system in wearables or even
textiles. The Supplementary Information includes the discussion of an
application note for monitoring head injuries, and shows how a single
impact can transition the VO,-based actuator completely, and program
a frequency state about 40 kHz different than the pre-heated state.

To summarize, the programmability of frequency states in electro-
mechanical resonators was demonstrated by combing VO,-based re-
sonators (550 um cantilever and 330 um bridge), with a stacked FENG
device. The tuning/programming action was achieved by first applying
a DC current to a pre-heated level where the frequency separation be-
tween the heating curve and the cooling curve is the maximum. Then, a
short energy pulse was applied to program a different resonant fre-
quency state in the structure. It was found that shorter pulses with
larger amplitudes are more energy-efficient than longer pulses of
smaller amplitudes. This finding enables the use of a single strike on a
FENG device to program a resonant frequency state. The pulse could
also come from a capacitor charged by multiple small impacts - as long
as the supplied energy is above the minimum threshold for actuation.
This threshold will depend mainly on the type of structure and pre-
heating level. The maximum tuning range for the cantilever was around
30 Hz (0.38%) while it was about 40 kHz (22%) for the bridge since the
resonant frequency of bridge is more stress sensitive.
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