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Abstract

Word embeddings are increasingly being used
as a tool to study word associations in specific
corpora. However, it is unclear whether such
embeddings reflect enduring properties of lan-
guage or if they are sensitive to inconsequential
variations in the source documents. We find
that nearest-neighbor distances are highly sen-
sitive to small changes in the training corpus
for a variety of algorithms. For all methods,
including specific documents in the training
set can result in substantial variations. We
show that these effects are more prominent for
smaller training corpora. We recommend that
users never rely on single embedding models
for distance calculations, but rather average
over multiple bootstrap samples, especially for
small corpora.

1 Introduction

Word embeddings are a popular technique in natural
language processing (NLP) in which the words in a
vocabulary are mapped to low-dimensional vectors.
Embedding models are easily trained—several imple-
mentations are publicly available—and relationships
between the embedding vectors, often measured via
cosine similarity, can be used to reveal latent seman-
tic relationships between pairs of words. Word em-
beddings are increasingly being used by researchers
in unexpected ways and have become popular in
fields such as digital humanities and computational
social science (Hamilton et al., 2016; Heuser, 2016;
Phillips et al., 2017).

Embedding-based analyses of semantic similarity
can be a robust and valuable tool, but we find that
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standard methods dramatically under-represent the
variability of these measurements. Embedding algo-
rithms are much more sensitive than they appear to
factors such as the presence of specific documents,
the size of the documents, the size of the corpus, and
even seeds for random number generators. If users
do not account for this variability, their conclusions
are likely to be invalid. Fortunately, we also find that
simply averaging over multiple bootstrap samples
is sufficient to produce stable, reliable results in all
cases tested.

NLP research in word embeddings has so far fo-
cused on a downstream-centered use case, where
the end goal is not the embeddings themselves but
performance on a more complicated task. For exam-
ple, word embeddings are often used as the bottom
layer in neural network architectures for NLP (Ben-
gio et al., 2003; Goldberg, 2017). The embeddings’
training corpus, which is selected to be as large as
possible, is only of interest insofar as it generalizes
to the downstream training corpus.

In contrast, other researchers take a corpus-
centered approach and use relationships between em-
beddings as direct evidence about the language and
culture of the authors of a training corpus (Bolukbasi
et al., 2016; Hamilton et al., 2016; Heuser, 2016).
Embeddings are used as if they were simulations
of a survey asking subjects to free-associate words
from query terms. Unlike the downstream-centered
approach, the corpus-centered approach is based on
direct human analysis of nearest neighbors to embed-
ding vectors, and the training corpus is not simply an
off-the-shelf convenience but rather the central object
of study.
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Downstream-centered | Corpus-centered ]

Small corpus, difficult or impossi-
ble to expand

Source is the object of study
Specific, fine-grained comparisons
are important

Embeddings are used to learn about
the mental model of word associa-
tion for the authors of the corpus

Big corpus

Source is not important
Only vectors are important

Embeddings are used in
downstream tasks

Table 1: Comparison of downstream-centered and corpus-
centered approaches to word embeddings.

While word embeddings may appear to measure
properties of language, they in fact only measure
properties of a curated corpus, which could suf-
fer from several problems. The training corpus is
merely a sample of the authors’ language model
(Shazeer et al., 2016). Sources could be missing or
over-represented, typos and other lexical variations
could be present, and, as noted by Goodfellow et al.
(2016), “Many datasets are most naturally arranged
in a way where successive examples are highly cor-
related.” Furthermore, embeddings can vary consid-
erably across random initializations, making lists of
“most similar words” unstable.

We hypothesize that training on small and poten-
tially idiosyncratic corpora can exacerbate these prob-
lems and lead to highly variable estimates of word
similarity. Such small corpora are common in digital
humanities and computational social science, and it
is often impossible to mitigate these problems simply
by expanding the corpus. For example, we cannot
create more 18th Century English books or change
their topical focus.

We explore causes of this variability, which range
from the fundamental stochastic nature of certain al-
gorithms to more troubling sensitivities to properties
of the corpus, such as the presence or absence of
specific documents. We focus on the training cor-
pus as a source of variation, viewing it as a fragile
artifact curated by often arbitrary decisions. We ex-
amine four different algorithms and six datasets, and
we manipulate the corpus by shuffling the order of
the documents and taking bootstrap samples of the
documents. Finally, we examine the effects of these
manipulations on the cosine similarities between em-
beddings.

We find that there is considerable variability in
embeddings that may not be obvious to users of these
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methods. Rankings of most similar words are not
reliable, and both ordering and membership in such
lists are liable to change significantly. Some uncer-
tainty is expected, and there is no clear criterion for
“acceptable” levels of variance, but we argue that the
amount of variation we observe is sufficient to call
the whole method into question. For example, we
find cases in which there is zero set overlap in “top
10” lists for the same query word across bootstrap
samples. Smaller corpora and larger document sizes
increase this variation. Our goal is to provide meth-
ods to quantify this variability, and to account for this
variability, we recommend that as the size of a corpus
gets smaller, cosine similarities should be averaged
over many bootstrap samples.

2 Related Work

Word embeddings are mappings of words to points
in a K-dimensional continuous space, where K is
much smaller than the size of the vocabulary. Re-
ducing the number of dimensions has two benefits:
first, large, sparse vectors are transformed into small,
dense vectors; and second, the conflation of features
uncovers latent semantic relationships between the
words. These semantic relationships are usually mea-
sured via cosine similarity, though other metrics such
as Euclidean distance and the Dice coefficient are
possible (Turney and Pantel, 2010). We focus on
four of the most popular training algorithms: La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990), Skip-Gram with Negative Sampling (SGNS)
(Mikolov et al., 2013), Global Vectors for Word Rep-
resentation (GloVe) (Pennington et al., 2014), and
Positive Pointwise Mutual Information (PPMI) (Levy
and Goldberg, 2014) (see Section 5 for more detailed
descriptions of these algorithms).

In NLP, word embeddings are often used as fea-
tures for downstream tasks. Dependency parsing
(Chen and Manning, 2014), named entity recogni-
tion (Turian et al., 2010; Cherry and Guo, 2015), and
bilingual lexicon induction (Vulic and Moens, 2015)
are just a few examples where the use of embeddings
as features has increased performance in recent years.

Increasingly, word embeddings have been used
as evidence in studies of language and culture. For
example, Hamilton et al. (2016) train separate em-
beddings on temporal segments of a corpus and then



analyze changes in the similarity of words to measure
semantic shifts, and Heuser (2016) uses embeddings
to characterize discourse about virtues in 18th Cen-
tury English text. Other studies use cosine similar-
ities between embeddings to measure the variation
of language across geographical areas (Kulkarni et
al., 2016; Phillips et al., 2017) and time (Kim et al.,
2014). Each of these studies seeks to reconstruct the
mental model of authors based on documents.

An example that highlights the contrast between
the downstream-centered and corpus-centered per-
spectives is the exploration of implicit bias in
word embeddings. Researchers have observed that
embedding-based word similarities reflect cultural
stereotypes, such as associations between occupa-
tions and genders (Bolukbasi et al., 2016). From a
downstream-centered perspective, these stereotypical
associations represent bias that should be filtered out
before using the embeddings as features. In contrast,
from a corpus-centered perspective, implicit bias in
embeddings is not a problem that must be fixed but
rather a means of measurement, providing quantita-
tive evidence of bias in the training corpus.

Embeddings are usually evaluated on direct use
cases, such as word similarity and analogy tasks via
cosine similarities (Mikolov et al., 2013; Pennington
et al., 2014; Levy et al., 2015; Shazeer et al., 2016).
Intrinsic evaluations like word similarities measure
the interpretability of the embeddings rather than
their downstream task performance (Gladkova and
Drozd, 2016), but while some research does evaluate
embedding vectors on their downstream task perfor-
mance (Pennington et al., 2014; Faruqui et al., 2015),
the standard benchmarks remain intrinsic.

There has been some recent work in evaluating
the stability of word embeddings. Levy et al. (2015)
focus on the hyperparameter settings for each algo-
rithm and show that hyperparameters such as the size
of the context window, the number of negative sam-
ples, and the level of context distribution smoothing
can affect the performance of embeddings on simi-
larity and analogy tasks. Hellrich and Hahn (2016)
examine the effects of word frequency, word am-
biguity, and the number of training epochs on the
reliability of embeddings produced by the SGNS and
skip-gram hierarchical softmax (SGHS) (a variant of
SGNS), striving for reproducibility and recommend-
ing against sampling the corpus in order to preserve
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stability. Likewise, Tian et al. (2016) explore the ro-
bustness of SGNS and GloVe embeddings trained on
large, generic corpora (Wikipedia and news data) and
propose methods to align these embeddings across
different iterations.

In contrast, our goal is not to produce artificially
stable embeddings but to identify the factors that
create instability and measure our statistical confi-
dence in the cosine similarities between embeddings
trained on small, specific corpora. We focus on the
corpus as a fragile artifact and source of variation,
considering the corpus itself as merely a sample of
possible documents produced by the authors. We
examine whether the embeddings accurately model
those authors, using bootstrap sampling to measure
the effects of adding or removing documents from
the training corpus.

3 Corpora

We collected two sub-corpora from each of three
datasets (see Table 2) to explore how word embed-
dings are affected by size, vocabulary, and other
parameters of the training corpus. In order to bet-
ter model realistic examples of corpus-centered re-
search, these corpora are deliberately chosen to be
publicly available, suggestive of social research ques-
tions, varied in corpus parameters (e.g. topic, size,
vocabulary), and much smaller than the standard cor-
pora typically used in training word embeddings (e.g.
Wikipedia, Gigaword). Each dataset was created or-
ganically, over specific time periods, in specific social
settings, by specific authors. Thus, it is impossible
to expand these datasets without compromising this
specificity.

We process each corpus by lowercasing all text, re-
moving words that appear fewer than 20 times in the
corpus, and removing all numbers and punctuation.
Because our methods rely on bootstrap sampling (see
Section 6), which operates by removing or multi-
plying the presence of documents, we also remove
duplicate documents from each corpus.

U.S. Federal Courts of Appeals The U.S. Federal
courts of appeals are regional courts that decide ap-
peals from the district courts within their federal ju-
dicial circuit. We examine the embeddings of the
most recent five years of the 4th and 9th circuits.!

'nttps://www.courtlistener.com/



[ Corpus [[ Number of documents [ Unique words | Vocabulary density | Words per document
NYT Sports (2000) 8,786 12,475 0.0020 708
NYT Music (2000) 3,666 9,762 0.0037 715
AskScience 331,635 16,901 0.0012 44
AskHistorians 63,578 9,384 0.0022 66
4th Circuit 5,368 16,639 0.0014 2,281
9th Circuit 9,729 22,146 0.0011 2,108

Table 2: Comparison of the number of documents, number of unique words (after removing words that appear fewer
than 20 times), vocabulary density (the ratio of unique words to the total number of words), and the average number of

words per document for each corpus.

[ Setting [ Method [ Tests... [ Run 1 [ Run 2 [ Run 3 ]
Fixed Documents in consistent order variability due to algorithm (baseline) ABC ABC ABC
Shuffled Documents in random order variability due to document order ACB BAC CBA
Bootstrap Documents sampled with replacement variability due to document presence BAA CAB BBB

Table 3: The three settings that manipulate the document order and presence in each corpus.

The 4th circuit contains Washington D.C. and sur-
rounding states, while the 9th circuit contains the
entirety of the west coast. Social science research
questions might involve measuring a widely held
belief that certain courts have distinct ideological ten-
dencies (Broscheid, 2011). Such bias may result in
measurable differences in word association due to
framing effects (Card et al., 2015), which could be
observable by comparing the words associated with
a given query term. We treat each opinion as a single
document.

New York Times The New York Times (NYT) An-
notated Corpus (Sandhaus, 2008) contains newspaper
articles tagged with additional metadata reflecting
their content and publication context. To constrain
the size of the corpora and to enhance their specificity,
we extract data only for the year 2000 and focus on
only two sections of the NYT dataset: sports and
music. In the resulting corpora, the sports section is
substantially larger than the music section (see Table
2). We treat an article as a single document.

Reddit Reddit? is a social website containing thou-
sands of forums (subreddits) organized by topic. We
use a dataset containing all posts for the years 2007-
2014 from two subreddits: /r/AskScience and
/r/AskHistorians. These two subreddits allow
users to post any question in the topics of history
and science, respectively. AskScience is more than
five times larger than AskHistorians, though the doc-

nttps://www.reddit.com/
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ument length is generally longer for AskHistorians
(see Table 2). Reddit is a popular data source for
computational social science research; for example,
subreddits can be used to explore the distinctiveness
and dynamicity of communities (Zhang et al., 2017).
We treat an original post as a single document.

4 Corpus Parameters

Order and presence of documents We use three
different methods to sample the corpus: FIXED,
SHUFFLED, and BOOTSTRAP. The FIXED setting
includes each document exactly once, and the doc-
uments appear in a constant, chronological order
across all models. The purpose of this setting is
to measure the baseline variability of an algorithm,
independent of any change in input data. Algorith-
mic variability may arise from random initializations
of learned parameters, random negative sampling,
or randomized subsampling of tokens within docu-
ments. The SHUFFLED setting includes each docu-
ment exactly once, but the order of the documents
is randomized for each model. The purpose of this
setting is to evaluate the impact of variation on how
we present examples to each algorithm. The order
of documents could be an important factor for algo-
rithms that use online training such as SGNS. The
BOOTSTRAP setting samples /N documents randomly
with replacement, where N is equal to the number
of documents in the FIXED setting. The purpose of
this setting is to measure how much variability is due
to the presence or absence of specific sequences of



tokens in the corpus. See Table 3 for a comparison
of these three settings.

Size of corpus We expect the stability of
embedding-based word similarities to be influenced
by the size of the training corpus. As we add more
documents, the impact of any specific document
should be less significant. At the same time, larger
corpora may also tend to be more broad in scope and
variable in style and topic, leading to less idiosyn-
cratic patterns in word co-occurrence. Therefore,
for each corpus, we curate a smaller sub-corpus that
contains 20% of the total corpus documents. These
samples are selected using contiguous sequences of
documents at the beginning of each training (this
ensures that the FIXED setting remains constant).

Length of documents We use two document seg-
mentation strategies. In the first setting, each training
instance is a single document (i.e. an article for the
NYT corpus, an opinion from the Courts corpus, and
a post from the Reddit corpus). In the second setting,
each training instance is a single sentence. We ex-
pect this choice of segmentation to have the largest
impact on the BOOTSTRAP setting. Documents are
often characterized by “bursty” words that are locally
frequent but globally rare (Madsen et al., 2005), such
as the name of a defendant in a court case. Sampling
whole documents with replacement should magnify
the effect of bursty words: a rare but locally frequent
word will either occur in a Bootstrap corpus or not
occur. Sampling sentences with replacement should
have less effect on bursty words, since the chance
that an entire document will be removed from the
corpus is much smaller.

5 Algorithms

Evaluating all current embedding algorithms and im-
plementations is beyond the scope of this work, so
we select four categories of algorithms that represent
distinct optimization strategies. Recall that our goal
is to examine how algorithms respond to variation
in the corpus, not to maximize performance in the
accuracy or effectiveness of the embeddings.

The first category is online stochastic updates, in
which the algorithm updates model parameters us-
ing stochastic gradients as it proceeds through the
training corpus. All methods implemented in the
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word2vec and fastText packages follow this
format, including skip-gram, CBOW, negative sam-
pling, and hierarchical softmax (Mikolov et al., 2013).
We focus on SGNS as a popular and representative
example. The second category is batch stochastic
updates, in which the algorithm first collects a matrix
of summary statistics derived from a pass through
the training data that takes place before any parame-
ters are set, and then updates model parameters using
stochastic optimization. We select the GloVe algo-
rithm (Pennington et al., 2014) as a representative
example. The third category is matrix factorization,
in which the algorithm makes deterministic updates
to model parameters based on a matrix of summary
statistics. As a representative example we include
PPMI (Levy and Goldberg, 2014). Finally, to test
whether word order is a significant factor we include
a document-based embedding method that uses ma-
trix factorization, LSA (Deerwester et al., 1990; Lan-
dauer and Dumais, 1997).

These algorithms each include several hyperparam-
eters, which are known to have measurable effects
on the resulting embeddings (Levy et al., 2015). We
have attempted to choose settings of these parame-
ters that are commonly used and comparable across
algorithms, but we emphasize that a full evaluation
of the effect of each algorithmic parameter would
be beyond the scope of this work. For each of the
following algorithms, we set the context window size
to 5 and the embeddings size to 100. Since we re-
move words that occur fewer than 20 times during
preprocessing of the corpus, we set the frequency
threshold for the following algorithms to 0.

For all other hyperparameters, we follow the de-
fault or most popular settings for each algorithm, as
described in the following sections.

5.1 LSA

Latent semantic analysis (LSA) factorizes a sparse
term-document matrix X (Deerwester et al., 1990;
Landauer and Dumais, 1997). X is factored using
singular value decomposition (SVD), retaining K
singular values such that

X ~ Xg = UgSgViE.

The elements of the term-document matrix are
weighted, often with TF-IDF, which measures the



importance of a word to a document in a corpus. The
dense, low-rank approximation of the term-document
matrix, X, can be used to measure the relatedness
of terms by calculating the cosine similarity of the
relevant rows of the reduced matrix.

We use the sci-kit learn? package to train
our LSA embeddings. We create a term-document
matrix with TF-IDF weighting, using the default set-
tings except that we add L2 normalization and sub-
linear TF scaling, which scales the importance of
terms with high frequency within a document. We
perform dimensionality reduction via a randomized
solver (Halko et al., September 2009).

The construction of the term-count matrix and the
TF-IDF weighting should introduce no variation to
the final word embeddings. However, we expect
variation due to the randomized SVD solver, even
when all other parameters (training document order,
presence, size, etc.) are constant.

5.2 SGNS

The skip-gram with negative sampling (SGNS) algo-
rithm (Mikolov et al., 2013) is an online algorithm
that uses randomized updates to predict words based
on their context. In each iteration, the algorithm pro-
ceeds through the original documents and, at each
word token, updates model parameters based on gra-
dients calculated from the current model parameters.
This process maximizes the likelihood of observed
word-context pairs and minimizes the likelihood of
negative samples.

We use an implementation of the SGNS algorithm
included in the Python library gensim* (Rehtiek
and Sojka, 2010). We use the default settings pro-
vided with gensim except as described above.

We predict that multiple runs of SGNS on the same
corpus will not produce the same results. SGNS ran-
domly initializes all the embeddings before training
begins, and it relies on negative samples created by
randomly selecting word and context pairs (Mikolov
et al., 2013; Levy et al., 2015). We also expect SGNS
to be sensitive to the order of documents, as it relies
on stochastic gradient descent which can be biased
to be more influenced by initial documents (Bottou,
2012).

*http://scikit-learn.org/
*https://radimrehurek.com/gensim/models/
word2vec.html
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5.3 GloVe

Global Vectors for Word Representation (GloVe) uses
stochastic gradient updates but operates on a “global”
representation of word co-occurrence that is calcu-
lated once at the beginning of the algorithm (Penning-
ton et al., 2014). Words and contexts are associated
with bias parameters, b,, and b., where w is a word
and c is a context, learned by minimizing the cost
function:

L= Z f(@ype)W - €+ by + be — log(Tae)-

We use the GloVe implementation provided by
Pennington et al. (2014)°. We use the default settings
provided with GloVe except as described above.

Unlike SGNS, the algorithm does not perform
model updates while examining the original docu-
ments. As a result, we expect GloVe to be sensitive
to random initializations but not sensitive to the order
of documents.

54 PPMI

The positive pointwise mutual information (PPMI)
matrix, whose cells represent the PPMI of each
pair of words and contexts, is factored using sin-
gular value decomposition (SVD) and results in low-
dimensional embeddings that perform similarly to
GloVe and SGNS (Levy and Goldberg, 2014).

P(w,c)

PMI(w,c) = ZOQW;

PPMI(w,c) = max(PMI(w,c),0).

To train our PPMI word embeddings, we use
hyperwords,® an implementation provided as part
of Levy et al. (2015).7 We follow the authors’ recom-
mendations and set the context distributional smooth-
ing (cds) parameter to 0.75, the eigenvalue matrix
(eig) to 0.5, the subsampling threshold (sub) to
107, and the context window (win) to 5.

Shttp://nlp.stanford.edu/projects/glove/

*https://bitbucket.org/omerlevy/
hyperwords/src

"We altered the PPMI code to remove a fixed random seed
in order to introduce variability given a fixed corpus; no other
change was made.



Like GloVe and unlike SGNS, PPMI operates on a
pre-computed representation of word co-occurrence,
so we do not expect results to vary based on the or-
der of documents. Unlike both GloVe and SGNS,
PPMI uses a stable, non-stochastic SVD algorithm
that should produce the same result given the same
input, regardless of initialization. However, we ex-
pect variation due to PPMI’s random subsampling of
frequent tokens.

6 Methods

To establish statistical significance bounds for our
observations, we train 50 LSA models, 50 SGNS
models, 50 GloVe models, and 50 PPMI models for
each of the three settings (FIXED, SHUFFLED, and
BOOTSTRAP), for each document segmentation size,
for each corpus.

For each corpus, we select a set of 20 relevant
query words from high probability words from an
LDA topic model (Blei et al., 2003) trained on that
corpus with 200 topics. We calculate the cosine sim-
ilarity of each query word to the other words in the
vocabulary, creating a similarity ranking of all the
words in the vocabulary. We calculate the mean and
standard deviation of the cosine similarities for each
pair of query word and vocabulary word across each
set of 50 models.

From the lists of queries and cosine similarities,
we select the 20 words most closely related to the set
of query words and compare the mean and standard
deviation of those pairs across settings. We calculate
the Jaccard similarity between top-N lists to com-
pare membership change in the lists of most closely
related words, and we find average changes in rank
within those lists. We examine these metrics across
different algorithms and corpus parameters.

7 Results

We begin with a case study of the framing around the
query term marijuana. One might hypothesize
that the authors of various corpora (e.g. judges of
the 4th Circuit, journalists at the NYT, and users on
Reddit) have different perceptions of this drug and
that their language might reflect those differences.
Indeed, after qualitatively examining the lists of most
similar terms (see Table 4), we might come to the
conclusion that the allegedly conservative 4th Circuit
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Figure 1: The mean standard deviations across settings
and algorithms for the 10 closest words to the query words
in the 9th Circuit and NYT Music corpora using the whole
documents. Larger variations indicate less stable embed-
dings.

judges view marijuana as similar to illegal drugs such
as heroin and cocaine, while Reddit users view mari-
juana as closer to legal substances such as nicotine
and alcohol.

However, we observe patterns that cause us to
lower our confidence in such conclusions. Table 4
shows that the cosine similarities can vary signifi-
cantly. We see that the top ranked words (chosen
according to their mean cosine similarity across runs
of the FIXED setting) can have widely different mean
similarities and standard deviations depending on
the algorithm and the three training settings, FIXED,
SHUFFLED, and BOOTSTRAP.

As expected, each algorithm has a small variation
in the FIXED setting. For example, we can see the
effect of the random SVD solver for LSA and the
effect of random subsampling for PPMI. We do not
observe a consistent effect for document order in the
SHUFFLED setting.

Most importantly, these figures reveal that the
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Table 4: The most similar words with their means and standard deviations for the cosine similarities between the query
word mari juana and its 10 nearest neighbors (highest mean cosine similarity in the FIXED setting. Embeddings are
learned from documents segmented by sentence.

BOOTSTRAP setting causes large increases in varia-
tion across all algorithms (with a weaker effect for
PPMI) and corpora, with large standard deviations
across word rankings. This indicates that the pres-
ence of specific documents in the corpus can signifi-
cantly affect the cosine similarities between embed-

ding vectors.

GloVe produced very similar embeddings in both
the FIXED and SHUFFLED settings, with similar
means and small standard deviations, which indi-
cates that GloVe is not sensitive to document order.
However, the BOOTSTRAP setting caused a reduc-
tion in the mean and widened the standard deviation,

indicating that GloVe is sensitive to the presence of

specific documents.
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[ Runl [ Run2 [ Run3 Run 4 Run 5 Run 6 [ Run7
viability fetus trimester surgery trimester pregnancies abdomen
pregnancies pregnancies surgery visit surgery occupation tenure
abortion gestation visit therapy incarceration viability stepfather
abortions kindergarten tenure pain visit abortion wife
fetus viability workday hospitalization arrival tenure groin
gestation headaches abortions neck pain visit throat
surgery pregnant hernia headaches headaches abortions grandmother
expiration abortion summer trimester birthday pregnant daughter
sudden pain suicide experiencing neck birthday panic
fetal bladder abortion medications tenure fetus jaw

Table 5: The 10 closest words to the query term pregnancy are highly variable. None of the words shown appear in
every run. Results are shown across runs of the BOOTSTRAP setting for the full corpus of the 9tk Circuit, the whole

document size, and the SGNS model.

[ Run 1 [ Run 2 [ Run 3 Run 4 Run 5 Run 6 [ Run 7
selection selection selection selection selection selection selection
genetics process human darwinian convergent evolutionary darwinian
convergent darwinian humans theory darwinian humans nature
process humans natural genetics evolutionary species evolutionary
darwinian convergent genetics human genetics convergent convergent
abiogenesis evolutionary species evolutionary theory process process
evolutionary species did humans natural natural natural
natural human convergent natural humans did species
nature natural process convergent process human humans
species theory evolutionary creationism human darwinian favor

Table 6: The order of the 10 closest words to the query term evolution are highly variable. Results are shown
across runs of the BOOTSTRAP setting for the full corpus of AskScience, the whole document length, and the GloVe

model.

These patterns of larger or smaller variations are
generalized in Figure 1, which shows the mean stan-
dard deviation for different algorithms and settings.
We calculated the standard deviation across the 50
runs for each query word in each corpus, and then
we averaged over these standard deviations. The re-
sults show the average levels of variation for each
algorithm and corpus. We observe that the FIXED
and SHUFFLED settings for GloVe and LSA produce
the least variable cosine similarities, while PPMI pro-
duces the most variable cosine similarities for all
settings. The presence of specific documents has a
significant effect on all four algorithms (lesser for
PPMI), consistently increasing the standard devia-
tions.

We turn to the question of how this variation in
standard deviation affects the lists of most similar
words. Are the top-/N words simply re-ordered, or
do the words present in the list substantially change?
Table 5 shows an example of the top-N word lists
for the query word pregnancy in the 9th Circuit
corpus. Observing Run 1, we might believe that
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judges of the 9th Circuit associate pregnancy most
with questions of viability and abortion, while observ-
ing Run 5, we might believe that pregnancy is most
associated with questions of prisons and family visits.
Although the lists in this table are all produced from
the same corpus and document size, the membership
of the lists changes substantially between runs of the
BOOTSTRAP setting.

As another example, Table 6 shows results for
the query evolution for the GloVe model and
the AskScience corpus. Although this query shows
less variation between runs, we still find cause for
concern. For example, Run 3 ranks the words human
and humans highly, while Run 1 includes neither of
those words in the top 10.

These changes in top-/V rank are shown in Figure
2. For each query word for the AskHistorians corpus,
we find the NV most similar words using SGNS. We
generate new top-N lists for each of the 50 models
trained in the BOOTSTRAP setting, and we use Jac-
card similarity to compare the 50 lists. We observe
similar patterns to the changes in standard deviation
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Figure 2: The mean Jaccard similarities across settings
and algorithms for the top 2 and 10 closest words to the
query words in the AskHistorians corpus. Larger Jaccard
similarity indicates more consistency in top /N member-
ship. Results are shown for the sentence document length.

in Figure 2; PPMI displays the lowest Jaccard simi-
larity across settings, while the other algorithms have
higher similarities in the FIXED and SHUFFLED set-
tings but much lower similarities in the BOOTSTRAP
setting. We display results for both N = 2 and
N = 10, emphasizing that even very highly ranked
words often drop out of the top-/V list.

Even when words do not drop out of the top-V list,
they often change in rank, as we observe in Figure
3. We show both a specific example for the query
term men and an aggregate of all the terms whose
average rank is within the top-10 across runs of the
BOOTSTRAP setting. In order to highlight the av-
erage changes in rank, we do not show outliers in
this figure, but we note that outliers (large falls and
jumps in rank) are common. The variability across
samples from the BOOTSTRAP setting indicates that
the presence of specific documents can significantly
affect the top-/N rankings.

We also find that document segmentation size af-
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Figure 3: The change in rank across runs of the BOOT-
STRAP setting for the top 10 words. We show results
for both a single query, men, and an aggregate of all the
queries, showing the change in rank of the words whose
average ranking falls within the 10 nearest neighbors of
those queries. Results are shown for SGNS on the AskHis-
torians corpus and the sentence document length.

fects the cosine similarities. Figure 4 shows that
documents segmented at a more fine-grained level
produce embeddings with less variability across runs
of the BOOTSTRAP setting. Documents segmented at
the sentence level have standard deviations clustering
closer to the median, while larger documents have
standard deviations that are spread more widely. This
effect is most significant for the 4th Circuit and 9th
Circuit corpora, as these have much larger “docu-
ments” than the other corpora. We observe a similar
effect for corpus size in Figure 5. The smaller corpus
shows a larger spread in standard deviation than the
larger corpus, indicating greater variability.

Finally, we find that the variance usually stabilizes
at about 25 runs of the BOOTSTRAP setting. Figure
6 shows that variability initially increases with the
number of models trained. We observe this pattern
across corpora, algorithms, and settings.
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Figure 4: Standard deviation of the cosine similarities
between all rank N words and their 10 nearest neighbors.
Results are shown for different document sizes (sentence
vs whole document) in the BOOTSTRAP setting for SGNS
in the 4th Circuit corpus.
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Figure 5: Standard deviation of the cosine similarities
between all rank N words and their 10 nearest neighbors.
Results are shown at different corpus sizes (20% vs 100%
of documents) in the BOOTSTRAP setting for SGNS in the
4th Circuit corpus, segmented by sentence.

8 Discussion

The most obvious result of our experiments is to
emphasize that embeddings are not even a single
objective view of a corpus, much less an objective
view of language. The corpus is itself only a sample,
and we have shown that the curation of this sample
(its size, document length, and inclusion of specific
documents) can cause significant variability in the
embeddings. Happily, this variability can be quan-
tified by averaging results over multiple bootstrap
samples.

We can make several specific observations about al-
gorithm sensitivities. In general, LSA, GloVe, SGNS,
and PPMI are not sensitive to document order in the
collections we evaluated. This is surprising, as we
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Figure 6: The mean of the standard deviation of the cosine
similarities between each query term and its 20 nearest
neighbors. Results are shown for different numbers of
runs of the BOOTSTRAP setting on the 4th Circuit corpus.

had expected SGNS to be sensitive to document order
and anecdotally, we had observed cases where the
embeddings were affected by groups of documents
(e.g. in a different language) at the beginning of train-
ing. However, all four algorithms are sensitive to the
presence of specific documents, though this effect is
weaker for PPMI.

Although PPMI appears deterministic (due to its
pre-computed word-context matrix), we find that this
algorithm produced results under the FIXED ordering
whose variability was closest to the BOOTSTRAP set-
ting. We attribute this intrinsic variability to the use
of token-level subsampling. This sampling method
introduces variation into the source corpus that ap-
pears to be comparable to a bootstrap resampling
method. Sampling in PPMI is inspired by a similar
method in the word2vec implementation of SGNS
(Levy et al., 2015). It is therefore surprising that
SGNS shows noticeable differentiation between the
BOOTSTRAP setting on the one hand and the FIXED
and SHUFFLED settings on the other.

The use of embeddings as sources of evidence
needs to be tempered with the understanding that fine-
grained distinctions between cosine similarities are
not reliable and that smaller corpora and longer docu-
ments are more susceptible to variation in the cosine
similarities between embeddings. When studying the
top-/V most similar words to a query, it is important
to account for variation in these lists, as both rank
and membership can significantly change across runs.
Therefore, we emphasize that with smaller corpora
comes greater variability, and we recommend that
practitioners use bootstrap sampling to generate an



ensemble of word embeddings for each sub-corpus
and present both the mean and variability of any sum-
mary statistics such as ordered word similarities.

We leave for future work a full hyperparameter
sweep for the three algorithms. While these hyperpa-
rameters can substantially impact performance, our
goal with this work was not to achieve high perfor-
mance but to examine how the algorithms respond to
changes in the corpus. We make no claim that one
algorithm is better than another.

9 Conclusion

We find that there are several sources of variability
in cosine similarities between word embeddings vec-
tors. The size of the corpus, the length of individual
documents, and the presence or absence of specific
documents can all affect the resulting embeddings.
While differences in word association are measur-
able and are often significant, small differences in
cosine similarity are not reliable, especially for small
corpora. If the intention of a study is to learn about
a specific corpus, we recommend that practitioners
test the statistical confidence of similarities based on
word embeddings by training on multiple bootstrap
samples.
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