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Abstract

Despite their ubiquity, word embeddings
trained with skip-gram negative sampling
(SGNS) remain poorly understood. We find
that vector positions are not simply deter-
mined by semantic similarity, but rather oc-
cupy a narrow cone, diametrically opposed
to the context vectors. We show that this ge-
ometric concentration depends on the ratio
of positive to negative examples, and that
it is neither theoretically nor empirically
inherent in related embedding algorithms.

1 Introduction

It is generally assumed that the geometry of word
embeddings is determined by semantic relatedness.
Vectors are assumed to be distributed throughout
a K-dimensional space, with specific regions de-
voted to specific concepts. We find that vectors
trained with the skip-gram with negative sampling
(SGNS) algorithm (Mikolov et al., 2013) are not
only influenced by semantics but are also strongly
influenced by the negative sampling objective. In
fact, far from spanning the possible space, they
exist only in a narrow cone in RX. Nevertheless,
SGNS vectors have become a foundational tool in
NLP and perform as well or better than numerous
methods with similar objectives (Turian et al., 2010;
Dhillon et al., 2012; Pennington et al., 2014; Luo
et al., 2015) with respect to evaluations of intrinsic
and extrinsic quality (Schnabel et al., 2015).
SGNS works by training two sets of embeddings:
the “official” word embeddings and a second set of
context embeddings, with one K -dimensional vec-
tor in each set for each word in the vocabulary. The
objective tries to make the word vector and con-
text vector closer for a pair of words that actually
occur together than for randomly sampled “nega-
tive” words. Following training, the word vectors
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are typically saved; the context vectors are deleted.
Any difference between these two sets of vectors is
puzzling, since the sliding window used in training
is symmetrical: a word and its context word reverse
roles almost immediately. Indeed, the superficially
similar GloVe algorithm (Pennington et al., 2014)
also defines word and context vectors and by de-
fault returns the mean of these two vectors.

Previous work has analyzed what the algorithm
might be doing in theory, as an approximation to
a matrix factorization (Levy and Goldberg, 2014).
Other work has considered the empirical effects
of some of the more arbitrary-seeming algorithmic
choices (Levy et al., 2015). But we still have rel-
atively little understanding of how the algorithm
actually determines parameter values.

Figure 1: SGNS word vectors and their context vectors
projected using PCA (left) and t-SNE (right). t-SNE provides
a more readable layout, but masks the divergence between
word and context vectors.

In this work we measure geometric properties
of SGNS-trained word vectors and their context
vectors. Although the word vectors appear to span
K -dimensional space, we find that the SGNS ob-
jective results in vectors that are narrowly clustered
in a single orthant, and can be made non-negative
without significant loss. Figure 1 shows two vi-
sualizations of SGNS vectors and context vectors.
The context vectors mirror the “official” word vec-
tors, with the angle between vectors effectively
controlled by the number of negative samples. We



show that this effect is due to negative sampling
and not the general embedding objective. We note
that this relationship between vectors is effectively
hidden by the commonly-used t-SNE projection
(van der Maaten and Hinton, 2008).

2  Word embeddings with SGNS

The SGNS algorithm defines two sets of param-
eters, K -dimensional word vectors w; and con-
text vectors ¢; for each word 7. We define a

weight between a word ¢ and a context word j
exp(w? c;)
1+exp(w] ¢;)
we sample S “negative” context words from a mod-
ified unigram distribution p(w)%7>. The stochastic

gradient update for one parameter w;i, is then

as o;j = . For each observed pair ¢, j
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suppressing for clarity a learning rate parameter \.
A symmetrical update is performed for the context
word parameters c¢; and ¢, substituting w; for c.
This update has been shown to be equivalent to the
gradient of a factorization of a pointwise mutual
information matrix (Levy and Goldberg, 2014).

The impact of the update is to push the vector w;
closer to the context vector of the observed context
word c¢; and away from the context vectors of the
negatively sampled words. The amount of change
at any given update is dependent on the degree
to which the current model predicts the “correct”
source of the context word, whether from the real
data distribution or the negative sampling distribu-
tion. If the model is infinitely certain that the real
word is real (0;; = 1.0) and the fake words are
fake (0;5 = 0.0 Vs), it will make no change to the
current parameters.

3 Results

We first present a series of empirical observa-
tions based on vectors trained from a corpus of
Wikipedia articles that is commonly distributed
with word embedding implementations.! We then
evaluate the sensitivity of these properties to differ-
ent algorithmic parameters. We make no assertion
that these are optimal (or even particularly good)
vectors, only that they are representative of the
properties of the algorithm.

"http://mattmahoney.net/dc/text8.zip
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Figure 2: SGNS-trained vectors mostly point in the same
direction, towards a mean vector w.

To determine whether observed properties are
due to SGNS specifically or to embeddings in gen-
eral, we compare SGNS-trained vectors to vectors
trained by the GloVe algorithm (Pennington et al.,
2014). The choice of GloVe as a comparison is
due to its popularity and superficial similarity to
SGNS.? We begin by examining one set of em-
beddings from each algorithm, both with K = 50
dimensions, a vocabulary of ~ 70k words, and
context window 5. We then evaluate sensitivity to
negative samples, window size, and dimension.

Embeddings are sensitive to word frequency
(Hellrich and Hahn, 2016). Following Zipf’s law,
words in natural language tend to sort into ranges
of frequent words (the majority of tokens) and rare
words (the majority of types), with a large class
of intermediate-frequency terms in the middle. As
a result, the large majority of interactions are be-
tween frequent terms or between frequent and in-
frequent terms. Interactions between infrequent
terms are rare, no matter how large the corpus.
We define four categories of words by ranked fre-
quency: the top 100 words (ultra-high frequency),
the 100-500th ranked words (high frequency), the
500-5000th ranked words (moderate frequency)
and the remaining (low frequency) words.

SGNS vectors are arranged along a primary
axis. Our first observation is that SGNS-trained
vectors all point in roughly the same direction. We
can define a mean vector w by averaging the vec-
tors of the complete vocabulary w. We sample a
balanced set of 400 total words with 100 each from
the four frequency categories. Figure 2 shows the

2We make no attempt in this work to compare the quality
of SGNS and GloVe vectors, nor should the omission of other
algorithms be attributed to anything but space constraints.
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Figure 3: Almost all combinations of words have negative
inner products for SGNS, unlike GloVe.

distribution of inner products between these 400
sampled words and their mean vector w. All vec-
tors have a large, positive inner product with the
mean, indicating that they are not evenly dispersed
through the space. Furthermore, the frequency cat-
egory of words has relatively little effect on the
inner product, with the exception of the rare words,
which have slightly less positive inner products. As
a comparison, the vectors trained by GloVe show a
clear relationship with word frequency, with low-
frequency words opposing the frequency-balanced
mean vector.

This result does not depend on a specific mean
vector. Using the global mean vector rather than the
frequency-balanced mean vector reverses the order
of frequency categories within each plot, but does
not change their overall shape. SGNS vector inner
products are all positive, with low-frequency words
the most positive. GloVe inner products become
positive for low-frequency words and negative for
high-frequency words.

The inner product between vectors is used by the
algorithm during training, but in practice vectors
are often normalized to have unit length before use.
It is possible that the apparent pattern shown in Fig-
ure 2 may be an artifact of differing average lengths
between words of different frequencies. After nor-
malizing SGNS vectors to length 1.0, the lowest
and highest frequency words are most similar to the

mean vector, with the moderate-frequency words
showing the greatest deviation. Normalization does
not change the relative order for GloVe vectors.

SGNS vectors point away from context vectors.
It is possible that vectors could have a positive
inner product with the mean vector but be mutu-
ally orthogonal. Figure 3 shows the distribution
of inner products w? ¢; for pairs of words divided
by frequency for SGNS and GloVe. Almost all
interactions have similar, negative inner products
for SGNS, while GloVe interactions are sensitive
to frequency and vary more widely. We note that
the high-frequency words in GloVe appear to form
a cohesive cluster between themselves (positive
inner products) that points away from the lower
frequency words (negative inner products), while
infrequent words are more dispersed and have no
clear pattern relative to each other.

SGNS vectors are mostly non-negative. Not
only do SGNS vectors occupy a narrow region of
embedding space, it appears that the vectors can
be rotated to fall mostly within the positive orthant.
For each column of the matrix of vectors w we
can compute the dimension-wise mean wy. Mul-
tiplying w by a diagonal matrix of the signs of
the means diag(sign(wy)) flips each dimension
so that its mean is positive. Figure 4 shows the
resulting positive-mean histogram for 12 of the 50
dimensions trained by SGNS (the remaining dimen-
sions are similar). Some dimensions have medians
close to 0.0, but most skew positive.

Indeed, it is possible to simply drop all remain-
ing negative values without radically changing
the properties of the vectors. Embeddings are of-
ten evaluated based on word similarity prediction
(Schnabel et al., 2015). Using only positive en-
tries, Spearman rank correlation drops from 0.283
to .276 on the SIMLEX word similarity task and
from 0.556 to 0.542 on the MEN task. Subtracting
the global mean vector has similarly little impact,
reducing SIMLEX correlation to 0.271 and increas-
ing MEN correlation to 0.575. This property may
help explain why sparse (Faruqui et al., 2015) and
non-negative (Luo et al., 2015) embeddings do not
lose significant performance.

SGNS context vectors point away from the
word vectors. What then is the geometry of the
context vectors c¢? The two sets of vectors appear to
present a noisy mirror image of each other. Figure
5 shows the distribution of inner products between
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Figure 4: Most latent dimensions show significant skew. Each panel shows a histogram of values for one of the first 12 latent
dimensions, after multiplication by the sign of the mean for that dimension.
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Figure 5: SGNS context vectors point away from the mean
vector w, GloVe context vectors do not.

the context vectors and the same mean vector w
used in Figure 2. These inner products are negative,
indicating that the context vectors point in the op-
posite direction from the word vectors. In contrast,
the GloVe context vectors have essentially the same
relationship to the mean of the word vectors as the
word vectors themselves. This property explains
why it is common to output the mean of w; and
¢; for each word for GloVe but not for SGNS: in
Glove these two vectors are essentially noisy copies
of one another, while in SGNS the two vectors are
pointing almost in the opposite direction.

Positive and negative weights come to equilib-
rium. Eq. I balances two terms, a positive inter-
action term 1.0 — o0;; between a word and a con-
text word and negative interaction terms 0.0 — o4
between a word and one of S randomly sampled
words. These terms can be viewed as a “label”
minus an expectation, as in the gradient for lo-
gistic regression. Since there is no 1/.S term to
balance the number of random samples, one might

expect that the “power” of the sampled context
terms might overwhelm the true interaction term.
In practice, these samples appear to find an equi-
librium that effectively balances out the number of
random samples after a short burn-in phase. We
recorded a moving average of positive and negative
weights for an ultra-frequent word (the) and a mod-
erately frequent word (fuesday). In both cases, the
mean of the values for positive samples starts at 0.5
and for the negative samples at -0.5. The positive
values converge toward S = 5 times the mean of
the values for negative samples: 0.581 vs. -0.182
for the and 0.693 vs. -0.138 for tuesday.

Mean Inner Product

Negative Samples

Figure 6: The number of negative samples affects the inner
product between vectors and the mean vector. Results are
indistinguishable across 10 initializations for each value.

The negative objective is optimized when each
model vector points away from the context vectors.
The positive objective, in contrast, is maximized
when word and context vectors for related words
are pointing in the same direction. The negative
force acts to repel the vectors, the positive force
acts to pull them together.

During the crucial early phases of the algorithm,
negative samples have more weight than positive
samples: when inner products are near zero, both
types of samples will have values of 0;; and o
close to 0.5, so negative samples will “count” S
times more than positive. The early phases of the



algorithm will focus on pushing the two sets of
vectors apart into separate regions of the latent
space. Once vectors and context vectors separate,
inner products will become negative, so o;; and o
will move closer to 0.0.

The balance between positive and negative sam-
ples consistently affects the geometry of the vec-
tors, and is not sensitive to random initialization.
We varied the number of negative samples from
S =1to S = 15, and ran 10 trials for each value
with different random initializations. As shown in
Figure 6, as we increase S, the average inner prod-
uct between vectors and the mean vector within
each model increases.

SGNS vectors are concentrated and point away
from their context vectors, and changing the num-
ber of negative samples appears to affect this prop-
erty. We now consider whether other factors could
also cause this behavior.

Effect of window size Both SGNS and GloVe
operate over word co-occurrences within a sliding
window centered around each token in the corpus.
This window size parameter has an effect on the
semantics of vectors, so it is important to consider
whether it has an effect on the geometry of vectors.
Simply setting an equal window size for SGNS and
GloVe does not, however, guarantee that the two
algorithms are seeing equivalent data, because each
pair is weighted linearly by token distance in SGNS
and by 1/distance in GloVe. Figure 7 shows av-
erage inner products for each frequency with the
global mean vector for 10 trials each at window
size 5, 10, 15, 20 with K = 50. Increasing window
size leads to greater divergence between high- and
low-frequency words for word and context vectors,
but does not change their pattern. GloVe results are
similarly unchanged.

Effect of vector size As with window size, the di-
mensionality K of the word vectors can affect their
ability to represent semantic relationships. Figure 8
shows an increase in inner product with the global
mean as we increase K (10 trials each, window
size 15), but the effect is small relative to that of
the number of negative samples S. GloVe inner
products change by less than 0.05.

4 Conclusion

SGNS vectors encode semantic relatedness, but
their arrangement is much more strongly influenced
by the negative sampling objective than is usually
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Figure 7: SGNS word and context vectors face in opposite
directions regardless of window size.
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Figure 8: As vector size increases SGNS vectors shift toward
the mean vector w. (GloVe vectors change by < 0.05.)

assumed. We find that vectors lie on a narrow
primary axis that is effectively non-negative. Users
should not interpret relationships between vectors
without recognizing this geometric context.

In this work we have deliberately restricted our-
selves to describing the geometric properties of
vectors. We see several areas for further work.
First, there are likely to be theoretical reasons why
the observed concentration of SGNS vectors in a
narrow cone does not appear to affect performance
relative to algorithms that do not have this property.
Second, measuring the interplay between positive
and negative objectives may provide insight into al-
gorithmic choices that are now poorly understood,
such as the effect of reducing the occurrence of
frequent words in the corpus and the sampling dis-
tribution of negative examples. Finally, we suggest
that in addition to theoretical analysis, more work
should be done to understand the actual working of
algorithms on real data.
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