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Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the
presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distin-
guishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are
yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich
phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interact-
ing SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation.
Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects
arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured
by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to
quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the

observed large density shifts caused by SOC-induced exchange interactions.

uantum simulation of spin-orbit coupling (SOC) and topo-

logical states'~* with alkali atoms has been highly success-

ful for the case of non-interacting systems’. However, the
detrimental effects of spontaneous emission and heating'®'' have
limited the study of SOC with interactions in alkali atoms to initial
studies in a bulk gas'>", in a lattice-modulated Bose-Einstein con-
densate'*"®, and with two particles in a lattice'®. Two recent experi-
ments with alkaline-earth atoms have reported the observation of
single-particle SOC in optical lattice clocks (OLCs)'"'®. In these
works, encoding the effective spin degree of freedom in the long-
lived electronic clock states significantly reduced the detrimen-
tal effects of dissipation. Here we take advantage of this feature to
study the interplay between SOC and strong collective interactions
in an OLC.

In our one-dimensional OLC, many-body effects arise from the
cooperation and competition between p-wave and s-wave interac-
tions, along with single-particle SOC dynamics. The spin-motion
coupling we engineer in the OLC primarily affects how spins inter-
act with each other, without any thermalization effects in the lattice.
This unique condition sets up an effective spin system that provides
a simpler view of the complex interplay between SOC and many-
body interactions. Meanwhile, it grants us immediate access to
quantum magnetism at pK motional temperatures.

The many-body dynamics are described by a collective XXZ
spin model"*”’, which contains both exchange (s- and p-wave) and
Ising (p-wave) terms. The dynamics of collective XXZ models have
largely been studied theoretically in condensed matter physics—for
example, in the context of superconductivity through the Anderson
pseudospin mapping®, which identifies Cooper pairs and holes
as the two components of an effective pseudospin. Only limited
experimental studies have been conducted so far, and they have
been restricted mainly to weak quenches®. The ultra-narrow clock

transition in our OLC enables the preparation, control, and spec-
troscopic resolution of the dynamics in a broad parameter space,
including quenches over a large dynamic range.

SOC with strong interactions between a pair of atoms has been
realized in a lattice'®. Here, we instead use a large atom number, N,
to tune the strength of the interactions to enter a strong, collective
interacting regime well beyond single-particle SOC dynamics. We
observe that both s-wave and p-wave interactions induce precession
of the collective magnetization. Furthermore, the exchange interac-
tions compete with the SOC-induced dephasing and promote spin
alignment and locking. Similar interaction-induced spin locking
effects have been observed in other trapped gas experiments**, and
were recently shown to play a crucial role in the stabilization of time
crystal phases in trapped ions” and impurity centres in diamond™.
In those cases, however, dephasing arose from spatial inhomogene-
ities, in contrast to our system, where dephasing is a direct conse-
quence of an intrinsic modification of the band structure by SOC.

In our experiment, up to ~1.5X 10* fermionic ¥’Sr atoms are laser
cooled into a horizontal one-dimensional (1D) lattice operated at a
‘magic’ wavelength, 4, =813 nm, where the band structures of the
two clock states are identical. By changing only the retro-reflected
power, while fixing the incident power, we keep the radial con-
finement approximately constant (v,~500Hz) while significantly
modifying the tunnelling rate'”. We create an array of ~10° pancake-
shaped lattice sites, each with 1-20 atoms when we vary N.

Axially the atoms occupy the ground band of the lattice. Radially
the atoms are only weakly confined with a thermal distribution
among the radial modes, n,. In the tight binding limit we can write
the energies of the ground bands as E (q,n,) = —2#J, cos(q), where
7 is the reduced Planck constant, J, is the tunnelling rate between
nearest-neighbour lattice sites, which has some dependence on the
radial mode n, (see Methods), and q is the quasimomentum in units
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of h/a, where a=21,/2 is the lattice spacing. Due to the tem-
perature of the atoms, the band is thermally filled and all g are
initially occupied.

The clock laser (1.=698nm), aligned axially along the one-
dimensional (1D) lattice, drives transitions between the ground
15, (g, q) ) and the excited °P, (|e, q+¢) ) clock states. The qua-
simomentum shift of the exc1ted state, ¢ A /A, =~ 77/6 which is
needed for conservation of momentum, generates the SOC. The
consequence of this shift becomes important only when atoms
are allowed to tunnel. For N atoms evolving independently under
SOC, the Hamiltonian can be expressed in terms of a synthetic
magnetic field'"",

A A
Hyoe /h=— 2 Bsoc(q,n,,Q,6) - S, (1)

i=1

where 6 and @ are the clock laser detuning from the
bare atomic transition and Rabi frequency, respectively,
and Bsoc(q ,nr,.Q 6)=1[0,£, A(q ,n, ) 8] is an  effec-
tive g- dependent’ magnetic field arlsmg from the SOC term
A(q ,n, ) (E(q, ) (q +¢,n ))/ 7. The operators S are spin-
1/2 angular momentum operators acting on the two clock states of
atom i.

Figure la displays the spin-orbit coupled bands. In the tight-
binding approximation the largest detunings from the bare
transition frequency are given by 6,=A(q ,n,)==+4]sin(4/2),
where g =7—¢/2+7/2~0,7. Here, ] is the thermally averaged
value of the tunnelling rate (see Methods). When A(g, n,) > £, the
SOC broadening of the lineshape is spectroscopically resolved and
exhibits two peaks at clock laser detunings of &, (Fig. 1b). These
peaks arise from divergences of the joint density of states called
Van Hove singularities'”.

To observe the dynamics of our spin-orbit coupled system we
perform Ramsey spectroscopy. An initial pulse with a strong Rabi
frequency, and hence short pulse time, of area 6, and 6=0 excites
all atoms into a coherent superposition of clock states that are then
allowed to freely evolve during z. Although the clock laser is off dur-
ing this period, the atoms accumulate a phase in the rotating frame
of the laser and thereby retain the imprinted optical phase. As a
result, the atoms continue to experience the SOC-induced effective
magnetic field Bg,c(q,,n,, Q= 0,5=0) throughout the dark time 7.
One observable we measure usmg this procedure is the Ramsey

fringe contrast, C=2+/(S x>2 +(87) / N, which is the length of the

projection of the collectlve magnetlzatlon in the €, —e plane of the

Bloch sphere HereS (8%,8”,8

871 are collective spin operators with
P {x )z} Z {x.y, Z}
T &i=1 1

The concentration of atoms at the two Van Hove singularities
allows us to qualitatively understand the ensuing dynamics as aris-
ing mainly from these two groups of atoms, with quasimomenta
q~0 and g~m=, and corresponding detunings of &,, respectively.
Figure 1c depicts the Bloch sphere visualization of Ramsey spec-
troscopy for the case when the two groups are non-interacting and
for 6, =m/2. For a variable evolution time 7, the atoms with oppo-
site detunings &, evolve around the equator of the Bloch sphere in
opposite directions (dashed blue arrows). Consequently, the length
of the collective spin vector (solid blue arrow) changes, but the vec-
tor direction remains parallel or anti-parallel to €, .

Representative single-particle contrast curves are shown in
Fig. 1d for tunnelling rates J;/(2m)=3.2Hz (green triangles) and
J,/(21) =17.6 Hz (blue circles) as a function of 7. This data was taken
in the non-interacting regime by using a small number of atoms
(N<500). The collapses and revivals in the contrast can be read-
ily understood from the simple model of the two atom groups.
When the two groups of atoms accumulate a phase difference of ,
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Fig. 1| Ramsey spectroscopy with spin-orbit coupling. a, Spin-orbit
coupled bands (solid lines) due to the coupling of the ground bands of the
bare clock state |g, g)  (red, dashed) and the momentum-shifted clock
state |e, g + ¢) (blue "dashed) with a band splitting given by the Rabi
frequency, £, and a bandwidth 4J, where J is the tunnelling rate and ¢ =
7/ A.. Van Hove singularities (VHS) occur at quasimomenta g~ 0 and

g~ (yellow and blue arrows). b, SOC results in a split atomic lineshape
with the VHS at clock laser detunings 8, = +4J sin(¢/2) (yellow and blue
arrows). Data is black squares and theory fit is solid line taken for J/(2rn) =
230Hz. ¢, Bloch spheres for single particle Ramsey dynamics. The two
subsets of atoms at the two VHS, with &,, approximate our system. (i) Both
atom groups initially start in |g, q) . A strong pulse of area ,=n/2 (6=0)
rotates them around & e, toa superposmon of |g, ay, and |e,q + (,b)

(i) During 7 the VHS precess around the Bloch sphere in opposite dlrectlons
changing the length of the collective spin vector (solid arrow). (iii) A readout
pulse of area #,=n/2 extracts the Ramsey fringe contrast by measuring the
excited state fraction. d, The contrast decay for different tunnelling rates
J,/(2n) =3.2Hz (green triangles), J,/(2n) =17.6 Hz (blue circles), and
J,/(21) =0Hz (red squares) as a function of 7 without interactions. e, The
same data as in d, with the x-axis scaled to Jz/(2n). The solid lines are theory
curves and the dashed line is an exponential fit with a decay constant of
~0.6s, and the error bars are 16 confidence intervals.

the length of the collective Bloch vector will be zero (C=0). The
detuning, 8, ~ +4] determines the precession rate around the Bloch
sphere, and we thus expect the contrast to collapse and revive with
a periodicity proportional to 1/]. In Fig. le the x-axis is scaled as a
function of Jz/(2n), illustrating that the contrast curves for different
J values then collapse onto a single curve.

An obvious feature of the observed contrast evolution is the
long-term decay, which is not captured by the simple two-group
approximation. While the joint density of states is the largest at the
Van Hove singularities, all g values are in fact populated, with atoms
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contributing at detunings in-between §,. Summing over the contri-
butions from all g, the resulting time-dependence of the contrast is
given by C=sin(6,)| 7, [4Jr sin(¢ / 2)]|, where 7, is a zeroth-order
Bessel function of the first kind, as shown in Fig. 1d,e.

To validate that the collapses, revivals, and overall decay in con-
trast are due to Bg,.(q), we can remove its effect by adding a spin
echo pulse to the Ramsey sequence. Any dephasing from the static
SOC-induced effective magnetic field during the first 7/2 period
of free evolution will re-phase during the second 7/2 free evolu-
tion period, due to the n echo pulse, which flips the sign of phase
accumulation. Figure 2a shows the effect of spin echo (orange dia-
monds) for J/(2r) =4.2Hz. The spin echo eliminates the collapses
and revivals from the Ramsey fringe contrast (purple circles), and
prolongs the overall contrast decay. However, the observed decay
in contrast at long times is still fast compared to the contrast decay
time for J=0 (~1s, see Methods). Contrast decays under spin echo
for different values of J are shown in Fig. 2b,c. The spin echo decays
do not collapse to a single curve when the free evolution time is
scaled to Jz/(2m), indicating that the additional dephasing does not
scale linearly with J, and that quasimomentum is not conserved at
large 7. It is this additional dephasing that results in the suppression
of the revivals in contrast at lower tunnelling rates, as shown in
Fig. 1d,e (green triangles). Throughout the rest of this work we incor-
porate the empirically observed J dependence of this dephasing,
which we call diffusive dephasing, into our model (see Methods).

Having characterized the single-particle dynamics under
SOC, we introduce interactions by increasing the atomic density.
As shown in Fig. 3, signatures of strong spin interactions start to
emerge as N increases. The blue circles are the case of no interac-
tions (N<500) and red squares are the case where we introduce
interactions by increasing the atom number by more than an order
of magnitude (N~ 1x10*). We observe in Fig. 3a that for an initial
Ramsey pulse 6, =n/4, an increase in atomic density qualitatively
alters the dynamics, suppressing the collapses in contrast observed
for the low-density case. For 6, =n/2 we observe that interactions
shift the zeros of the contrast compared to the non-interacting case
(Fig. 3c), and by further increasing the density and reducing the
tunnelling rate, we see that the first collapse of the contrast can be
suppressed altogether (Fig. 3d). We note that for J=0 the contrast
decay has been previously seen to be highly sensitive to the initial
Ramsey pulse area, and no contrast revival with interactions has
been observed'*.

In order to quantitatively understand the complex interplay
between interactions and SOC, we consider the spin model that has

previously been successfully used to understand many-body inter-
actions in optical lattice clocks'*”’. During these measurements all
atoms are initially prepared in the |g) spin state, and each atom
occupies a single motional mode in the lattice. The initial mode
distribution is preserved during clock interrogation as the collision
energy is insufficient to alter the motional eigenstates. Since the
motional degrees of freedom are frozen, we can treat the single-par-
ticle modes as corresponding lattice sites spanning an energy space.
Thus, s-wave and p-wave contact interactions are mapped into non-
local, infinite-range collective interactions between the electronic
pseudospins in the energy-space lattice’. The Hamiltonian for our
system, including interactions, then becomes H = Hy + H,,,» with
H,,, given by

_Z269% 4 S s £6.8
/h_L(S) +L(N)S +LS S 2)

Him

The spin couplings y=(V,+V,-2V,)/2, C=(V,—V,)/2, and
E= (Veg—Ue‘g) / 2depend on V,;and Upp which are the p-wave and
s-wave mean interaction parameters, respectively. L is the number
of lattice sites, and thus N/L represents the mean number of atoms
per site. Due to the temperature of the atoms in the lattice being
>1pK, the s-wave and p-wave interactions are similar in magnitude
(see Methods).

The term proportional to & encapsulates the exchange inter-
action process mediated by both s-wave and p-wave collisions.
For the nuclear spin-polarized identical fermions initially pre-
pared in the lattice, and in the absence of SOC, this term becomes
a constant of motion and is thus irrelevant to the dynamics.
However, when J#0, the effective g-dependent SOC magnetic
field Bgoc(q,n,,0,8) causes the initially spin-polarized atoms to
dephase with respect to each other, thereby introducing exchange
interactions between them, which directly compete with the sin-
gle-particle SOC dynamics.

The p-wave interaction terms proportional to y and C generate a
collective Ising Hamiltonian which commutes with S and have pre-
viously, in the absence of SOC, been shown to induce many-body
spin dynamics" for any superposition of e and g. These terms are
unchanged in the presence of SOC, and have a negligible effect on
the spin contrast for the experimental conditions and timescales we
study here.

Throughout this work, we find that the explored experimental
timescales are in a regime where the mean-field approximation is
valid. In this approximation the interaction terms can be treated as

a 40 b o € 10
J(2x) ~ 4.2 Hz A J(2r) ~15 Hz
08 4 08 1 08 O J/(2x) ~ 4.5 Hz
O J/(2n) ~ 1.8 Hz
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o o o
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Fig. 2 | Non-interacting echo decay. a, A spin echo pulse (orange, diamonds) removes the static dephasing caused by SOC for
a Ramsey sequence for the same J (purple circles, theory is solid purple line). b, Spin echo decay of contrast for four different J

values as a function of 7. ¢, Same data as in b (for non-zero J) as a function of Jz. All J> O curves decay as «e

3 .
-7 where 7, is a

nonlinear function of J, implying an extra diffusive dephasing, and do not collapse to a single curve when the free precession time
is rescaled to Jr (see Methods). For J=0 the echo data decays «e™ /"%’ All error bars are 16 confidence intervals from individual contrast
fits, and all solid lines for the J> 0 (J=0) echo data are fits o<e'(md)3 (xe” (T/TdO)).
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an additional time-dependent magnetic field generated by the col-
lective spin vector, B,,,. This allows us to factor out a collective spin
operator from H,_, as given in equation (2), in order to arrive at the
mean-field Hamiltonian including both interactions and SOC:

N

N
A Ay
= ) Byoc(qn, 208+ Y B8 )
i i=1

L
components can be written together as a collective, evolving, trans-

where B, , [25<§x>,§<§y>’(25%)<§'z>+N%]. The €, and ’e\y

verse magnetic field, ZL—§ Sl(t) around which individual atom

Bloch vectors rotate. This term competes with the single-particle
dephasing term, By,(q,n,,Q,), and forces the pseudo-spins to
remain ahgned causing ‘interaction- dependent changes to the con-
trast. The €, component of the interaction magnetic field is a con-
stant of motion and gives rise to a collective precession of the Bloch
vectors at a rate N I—L“Ecos 0,), where (8y=-N/2 cosb,.
When the tunnelhng rate ] is zero, none of the terms proportlonal
to £ in A" affect the contrast or frequency shift.

The competition between the interaction-induced transverse
magnetic field and the static SOC dephasing is shown schematically
in Fig. 3b,e under the simple two-group approximation for 6, =m/4
and 0, =n/2, respectively. For 6, =n/4, the collective rotation differ-
entially changes the projected length of the 1nd1v1dual Bloch vectors
on the transverse plane, generating a net |($”(¢))| > 0. As a result,
when the vectors are m out of phase, they no longer completely can-
cel, leaving a finite contrast at all times, as opposed to the complete
collapse observed for the non-interacting case where | (8’ (¢))| =
This is apparent in the data shown in Fig. 3a, where the contrast
remains finite for the interacting case (red squares, Né/L=—2.0Hz,
Ny/L=1.2Hz).

For 8, =m/2, due to symmetry, the rotation of the Bloch vectors
(red, dashed arrows in Fig. 3e) around the collective spin vector
(red, solid arrow) does not change the relative transverse length of
the vectors, which imposes | ($”(t))| = 0. The effects of interactions
are shown in Fig. 3c,d for varying strengths of interactions (N&/L)
compared to J. When the interactions are still small compared to the
tunnelling (/> |N¢ / L|, with N§/L=-3.5Hz and Ny/L=1.3Hz)
(Fig. 3c), they cause no qualitative change to C compared to the
non-interacting case, except for a weak rephasing of the spins that
slightly delays the contrast collapse and decreases the revival ampli-
tude. This is manifested as an interaction-induced shift of the time
of the first contrast zero, xN?E%/LJ%.

If ] is decreased such that J~ |N¢ / L|, then the exchange interac-
tions produce a qualitatively different behaviour, as shown in Fig. 3d.
For J/(2m) = 1.3 Hz, the non-interacting case (blue circles) shows the
characteristic collapse and revival. In contrast, the interacting case
(with N¢/L=-5.6Hz, Ny/L=3.4Hz) shows no collapse whatsoever,
instead exhibiting only a monotonic decay with Jz. The suppression of
the collapse and revivals is a result of the exchange-induced rephasing
of the spins (Fig. 3e). Ideally, this type of spin locking would preserve
the coherence indefinitely, as can been seen directly from the interact-
ing Hamiltonian (2), where for large ¢ the initial state is an eigenstate.
Indeed, long-term synchronization has been previously observed in
other cold atom experiments® with dominant s-wave interactions. In
our OLC we also need to account for competing mechanisms.

One important decoherence mechanism is atom loss due to
inelastic two-body e-e p-wave collisions*”*, which becomes partic-
ularly relevant for a large N. The effect of the losses on the contrast,
however, is largely compensated when the contrast is normalized
by the total atom number, as we do throughout this work (see
Methods). The most relevant contribution to decoherence for
the current experiment is the single-particle diffusive dephasing
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Fig. 3 | Spin-orbit coupling with varying interactions. a, Contrast data
for high density (red squares) and low density (blue circles) for 6,=n/4.
The high-density contrast does not go to zero due to the rotation caused
by exchange interactions. b, As the VHS (dashed arrows) rotate around
the Bloch sphere they become distinguishable and exchange interactions
induce rotations, shown as purple and green trajectories. For 0,=n/4
this rotation leads to the Bloch vectors for the two VHS being of unequal
length in the €,—€, plane so that the collective spin vector (solid arrow)
remains finite. ¢,d, Contrast curves for 8,=n/2. ¢, J> [Né/L| =3.5 Hz and
the interactions cause the zero in the contrast to be pushed to larger Jz.

~ [IN&/L| =5.6 Hz and interactions prevent static dephasing and the
contrast approaches zero only at long times. Solid lines are theory including
atom loss and diffusive dephasing (see Fig. 2). e, For ,=r/2 (bottom) the
exchange-induced rotation is symmetric and the two Bloch vectors are the
same length in the é;éy plane. All error bars are 16 confidence intervals
from individual contrast fits.

observed in Fig. 2. Its effect on the contrast can already be seen in the
non-interacting case (blue circles) and is exacerbated when operat-
ing at the low tunnelling rates required to enter the J~ |N& / L|
regime. We anticipate that quasimomentum conservation, and
signatures of spin-locking at longer times, will be achievable in a
3D optical lattice, where coupling to the thermally populated radial
modes would be eliminated (see Methods).

To complete our full characterization of the spin system and
to disentangle the interaction dynamics from decoherence, we
also study the effects of interactions on the phase accumulated
by the collectlve spin_vector during the free precession time 7,
tan(Av2nr) = (8”) / (8%). In optical lattice clocks this is tradition-
ally described by a density-dependent frequency shift'>** (Av).
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For J=0 (no SOC), ¢ is a constant of motion, and the density
shift arises entirely from the Ising p-wave interactions. In Fig. 4a a
density shift measurement without SOC shows a clear linear depen-
dence on the fraction of the atoms in the excited clock state (shown
on the Bloch sphere in Fig. 4b), fully consistent with previous stud-
ies'”?. These works were all performed in the regime J=0, where
Av has been well characterized and found to be independent of
the dark time between the Ramsey pulses. In this work the mea-
sured shift in the absence of SOC agrees with the prediction from
the mean-field Hamiltonian (equation (3)) Av;_,=N (%—%cos 0,),
where the shift depends linearly on the fraction of atoms in the
excited clock state (P,=(1—cos 6,)/2).

In contrast, interactions in the presence of SOC give rise to a fre-
quency shift that is dependent on the dark time between the Ramsey
pulses (Fig. 4c,d). From this data the frequency shift extrapolated to
zero excitation fraction is seen to diverge when the single-particle
contrast decays to zero (see Fig. 4d).

For J> 0 (with SOC), the situation becomes more complicated.
To develop an intuitive understanding, we return again to the
two-atom-group model, where a simple analytic expression can be
derived to first order in interactions (for a more generic lattice treat-
ment, see Methods),

(4)

Av= Av]=0—NT§cos(91) [pM]

4]z

The same exchange term that produces the time-dependent
collective transverse field responsible for modifying the contrast
dynamics also results in a frequency shift. This term diverges
when cos(4Jr) =0, which physically corresponds to the case when
the two non-interacting atom group vectors are m radians out
of phase on the Bloch sphere, as illustrated in Fig. 4e. When the
spins rephase and the contrast becomes finite again, the exchange-
induced shift diminishes. It completely turns off in the two atom-
group approximation when the spins re-align. However, for the
experimentally relevant case of a thermally populated band with
all g values participating, the density shift will change in magni-
tude with time, but will not disappear completely, since the spins
do not completely rephase.

The experimentally measured dependence of the SOC density
shift on 7 at a finite tunnelling rate of J/(2r) =2.2Hz is shown
in Fig. 4c,d for N§/L=-2.7Hz and Ny/L=1.6Hz. The observed
shift is not entirely linear in excitation fraction, indicating that
the interactions can no longer be described by first-order per-
turbation theory, and higher-order corrections are required (see
Methods). Figure 4d compares the contrast to the extrapolated
density shift for zero excitation fraction Au|,_, for the same data
as in Fig. 4c. The extracted quantity Ay| pg=oe shows a divergence
around the zero of the contrast, consistent with equation (4). The
highly non-trivial functional form of the density shift indicates
that SOC-induced exchange interactions will be a major factor
in optical lattice clocks if the effects of tunnelling are not sup-
pressed. However, the experimentally observed density shift and
contrast, which encapsulate the magnetisation dynamics, can be
well described by theory. This agreement highlights the fact that
for the experimentally relevant timescales, the complex interplay
between SOC and many-body dynamics can be understood and
explored precisely.

In conclusion, we have explored the emergence of complex
dynamics with interacting fermions under engineered spin-orbit
coupling in a Sr optical lattice clock. The many-body dynamics are
fully characterized by a collective XXZ Hamiltonian aside from
extra dephasing arising from non-conserved quasimomenta. In the
future we plan to suppress this dephasing by using more sophisti-
cated pulse sequences™ or by employing a three-dimensional (3D)
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Fig. 4 | Interactions with and without spin-orbit coupling. a, With J=0
(no SOC) atoms interact via p-wave collisions only, leading to a frequency
shift linearly dependent on excitation fraction, P.. b, On the Bloch sphere
for 6, < /2 the collective vector for atoms with interactions (red) rotates
to give a negative phase shift with respect to the non-interacting (blue)
vector. For 0, > n/2 the interactions lead to a positive shift. ¢, Density shifts
for J/(2n) =2.2 Hz (with SOC) for different Jz measured by varying 7, as
indicated in panel d. The magnitude and sign of the density shift can be
seen to vary with time. d, The non-interacting contrast curve, including
additional grey contrast data, and the Avlpe:O density shift for 4,000 atoms
corresponding to the data in ¢, including theory curves for J> 0 (solid,
black) and J=0 (dashed, black). e, The divergence can be understood by
considering the Bloch vectors for the different VHS (dashed arrows) with
7. As the contrast goes through zero for no interactions (blue), the SOC-
induced exchange interactions (red) prevent the collective spin vector
(red, solid arrow) from going to zero. As the non-interacting collective
spin vector (blue, solid) goes through zero it changes sign, causing

a change in sign of the slope of the density shift. All error bars are 1o
confidence intervals.

optical lattice, where the p-wave interactions would also be sup-
pressed. The lower temperatures associated with loading a Fermi-
degenerate gas in a 3D lattice geometry’' will also enable the study
of SOC in higher dimensions, precise control of the SOC phase'**
¢, and exploration of a new strongly interacting regime where the
collective XXZ model is no longer applicable, and where richer
exotic behaviours, including topological superfluids' and Kondo-
correlated metallic phases can emerge*.

Methods

Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0029-0.
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Methods

Experimental methods. In our experiment the lattice is formed by a ~3 W
incoming laser beam that is focused to a waist of @, =40 pm at the position of the
atoms. After exiting the vacuum chamber, the laser beam is collimated and then
retro-reflected back on itself after passing through two acousto-optical modulators
(AOMs). These AOMs are used to dynamically ramp the lattice depth without
changing the frequency of the retro-reflected beam. During each experimental
cycle the atoms are loaded into a lattice of depth U_/E, =130, where Ej is the
recoil energy. This lattice depth corresponds to an axial trapping frequency of
v,~2Ep.JU, / Ey /(2nh)=80kHz. The atoms are then sideband cooled to the
ground band, and then the lattice is ramped down adiabatically to give the desired
tunnelling rate. To measure interaction effects, the atom number is varied without
changing the initial distribution of atoms within the lattice.

To measure the contrast following a Ramsey or spin echo sequence, the laser
detuning is kept constant and the phase of the second n/2 Ramsey pulse is varied
with respect to the phase of the first n/2 Ramsey pulse during many cycles of
the experiment to produce a Ramsey fringe. The contrast is extracted by fitting
the Ramsey fringe with a sinusoid, with phase and amplitude as the only free
parameters. To measure the contrast change with density, Ramsey fringe contrast
measurements are taken for high and low atom densities at each dark time. Each
Ramsey fringe measurement consists of ~80 individual experimental cycles, where
the cycle time is ~1.5s.

For the frequency shift measurement at J/(2x) ~ 0 Hz, for different initial pulse
areas and a set 7=_80ms free precession time, the phase of the final 7/2 Ramsey
pulse is again varied while interleaving measurements with the atom number
switching between ~300-4000 atoms. The Ramsey fringes are then again fitted
with sinusoids and the phase difference between the high-density and low-density
case is extracted and converted to a frequency shift. Between each data set the
excitation fraction is also measured by applying only the first Ramsey pulse, then
measuring the clock state populations. For J#0 the same process is repeated for
different dark times. To extract Ay p—o We fit each experimental density shift
measurement with a linear fit.

For J>1Hz, the SOC-induced dephasing dominates over all other dephasing
mechanisms in our clock. While our Hamiltonian accounts for the static
dephasing, a systematic investigation of the relevant range of J reveals that the

spin echo data has an additional decay with the functional form of e’ g5
shown in Fig. 2b in the main text. This form of spin echo decay is well known
from NMR and solid-state spin-defect experiments*>*!, where the dephasing is

the result of a slow, random diffusion of magnetic field with time. In our case this
corresponds to a diffusion of the SOC effective magnetic field By,.(¢), indicating
that the quasimomentum is not conserved at large 7. The extracted decay rate
(1/z,) for different ] is shown in Supplementary Fig. 1. The scaling is consistent
with 1/7,J"2. We observe the same scaling of decay rate with J for the Ramsey
sequences, and include this decay in our theory model. The most likely mechanism
for this empirically observed diffusion of By is the coupling of axial motion to the
thermally populated radial modes. The spatial inhomogeneity in J across the lattice
due to the finite Rayleigh range of the lattice beams may also contribute.

Theoretical methods. Hamiltonian. The Hamiltonian governing a nuclear spin-
polarized ensemble of fermionic atoms with two accessible clock levels, 'Sy(g) -°P,(e),
which are controlled by a linearly polarized clock laser beam?” is given in the
rotating frame of the clock laser by:

A=Hy+H, +H,, (5)
3py T n’ 2 ~
Z fd R (R)| -2 V2 + V, (R) |7, (R),
2m

Y _ _@ It 277 [Ae~
A= =% de[l,/c (R)e™/4sg (R) +H.c]
2 [Ri ®7,® -7 ®7, ®)],
©)

h

A= T f FRN, (RN, (R)
3rh ,; N N s
Z T" / dRI}(R) (VF(R) — (V7 (R) 7, (R)]

ap
-7 (R (V,(R)) ~ (VG (R) 7, (R)]

Here the clock laser (detuned from the bare atomic transition by 6 =w.— @, and
with Rabi frequency £2) propagates along the axial direction, Z, with wavevector
k.=2mn/A.. Atoms are trapped in an external potential V,,(R), generated by

the magic lattice beams also propagating along Z. The lattice induces a weak
harmonic radial (transverse) confinement with an angular frequency 2nv, and
creates an array of coupled two-dimensional pancakes. The operator i u_, R)is
a fermionic field operator at position R for atoms with mass m in electrohic state
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a and N(R) =7/

/ (R)f7 (R). We have included only s-wave and p-wave channels,
an assumption valid at pK temperatures. Since nuclear spin-polarized fermions
are in a symmetric nuclear- spin state, their s-wave interactions are characterized
by only one scattering length a,, descrlbmg collisions between two atoms in the
antisymmetric electronic state, T (lgey— |eg)) The p-wave interactions enter
with three different scattering volumes hgg b2 and b2, associated with the three
possible electronic symmetric states (|gg), |ee) and = 75 (Ige) + leg)), respectively.
In addition to elastic interactions, ’Sr atoms exhibit inelastic collisions. Among those,
however, only the e-e ones have been observed to give rise to measurable losses.
We denote the relevant inelastic p-wave scattering length as f,.. The magnitude of
the measured s- and p-wave scattering lengths™ are a,, ~ 684, by, ~74.6a9, b~
—169a, b,,~—119a, and f3,, ~ 121a,, with a, the Bohr radius.

We expand the field operator in terms of single-particle eigenstates of H,,
which to a good approximation are harmonic oscillator states along the transverse
directions and Bloch functions, y,(Z), along the axial lattice direction. The
harmonic oscillator states are characterized by the quantum numbers n, = (1, ny)
and the Bloch functions by the quasimomentum g and band quantum number #,,
which is prepared in only the lowest band 1, =0 for the current loading conditions.

As described in the main text, under our typical operating conditions, the
interaction energy per particle is weaker than the spacing between single-particle
energy levels. Thus, at the leading order, collisions conserve the total single-
particle energy and the atom population is frozen in the initially populated modes,
which act as effective lattice sites in single-particle mode space”. For an initial
state with at most one atom per mode (|g) -polarized state), it is thus possible
to reduce A to a spin-1/2 model written in terms of pseudo-spin 1/2 operators
/S\. =1/2 Zaﬁ é"zqr“r?';q"qr“n' Here 6 = {6*,6”,67} are Pauli matrices in the e,g
basis and ¢, g,
atom in the electronic clock state a, radial mode n_and quasimomentum g;.

While the effective spin-spin coupling constants depend on the radial mode
quantum number'"'>?, to a good approximation, we can replace them by their
thermally averaged valueSA Under these approximations we obtain the interaction
Hamiltonian A, , given by equation (2) in the main text which has been written

in terms of the collective spin operators § e The s- and p-wave interactions are
. - 20.09a5, 0360
given by U~ 228 (W), v, It /’ (W), where (W) =a [dZ |w,(2)|*
ma, r
—1qZ

: _1
with wy(Z) = I qusz
the 1D lattice along Z and the summation is over the quasimomenta in the first

Brillouin zone. Here a, _"_ the radial harmonic oscillator length, a,~450 nm,

; gony, ) 1€ the fermionic annihilation (creation) operators of an

W(Z) the Wanmer function for the ground band of

and T the radial temperaturze in'the effective harmonic oscillator units i, /k,. For
typical experimental conditions, T~ 100. Supplementary Fig. 2a shows the ratio of
£/y as a function of the radial temperature and Supplementary Fig. 2b shows the
different interaction parameters as a function of v, for different temperatures. We
note that for current experimental conditions, the s-wave and p-wave interactions
are of the same order of magnitude and further cooling of the radial modes would
be required to enter the regime where s-wave interactions truly dominate.

Mean-field. For the currently accessible time scales, beyond mean-field corrections
are not resolvable in the dynamics. We have verified this by comparing the mean-
field dynamics to the many-body dynamics obtained by the discrete truncated
Wigner approximation (DTWA)*, which accounts for the lowest-order quantum
correlations. Therefore, it is sufficient to use the mean-field equations of motion
to study the dynamics of our system. At the mean-field level, expectation values of

products of spin operators are factorized as (SiaS‘jﬂ) ~S ;’Sf , ignoring the build-up of

quantum correlations. Here, we have defined (Sia) = 8. The above approximation
is consistent with the picture that the net effect of interactions on an atom i is to
induce an effective magnetic field generated by the other atoms. Under the mean-
field approximation, the Hamiltonian becomes equation (3) given in the main text.

This Hamiltonian formulation is only valid if one ignores inelastic collisions.
To incorporate them one should formally use a master equation. However, at the
mean-field level the so-called recycling terms in the master equation vanish and
the inelastic dynamics can be accounted for by replacing” V,,— V,,—il*/2 in

lZnhz 0. 36/32
il

equation (3), where "~ ¢ (W). The mean-field equations including the

inelastic losses and the smgle partlcle SOC terms are given by:

S = ¢ $+% o, NC T .
—i8) = Algyn,)§7-2 575} + [2TSZ+T]SJ*+1§N st @)

& é x x re ege
§=25(S)8"=81) = N'5S (8)

. 1—~ee B .
N= _TNJ'N 9

where we have used SJr Sx + 1Sy and N NB /\/;? the number of particles in
lattice site j. Finally /\f E]. N and S E]. Siwitha=x,y,z
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We note that within the simulations we include the thermal effects in the
single-particle dynamics by sampling radial modes for each particle from a
thermal distribution. Each particle is assigned a given A(g,, n,) depending on the
radial mode n, it occupies. At lowest order in the radial-axial coupling, the radial
mode dependence of the tunnelling is given by'""” J, =J,+ AJ (ny +ny), with

1.057 1.7
10z1.36(g—;> exp(-2.12 UZ/ER)andA]zo.s(‘E’—;) exp(-271 T/ By )-

Two particles. We can gain insight into the behaviour of the many-body system
by considering the case of two particles in two sites with quasimomenta g, =0,
and g,=m, corresponding to A(g, n)=x4, and later extending it to two groups
of particles at the aforementioned quasimomenta. Given that for the parameter
regime of interest the Ising terms provide a simple collective rotation whose
behaviour is well understood, as shown in Fig. 4a in the main text, we are going
to ignore them for the following discussion. Namely we will set y=C=0 and keep
only the terms proportional to &. In this case, we can provide simple analytical
expressions for the dynamics:

eff

(87(z)) =sin(8)) [;—ésin[%r] sin(z€) + cos []37“1] cos(ré)] (10)

(S'y(-[)) =sin(6,)cos(6,) [%sin[%r] cos(z&)—cos {]"7&1] sin(‘ré)] (11)

eff

where ]z =2+/(4] Y+ .52. From the above expressions, we obtain

Av(r) =& cosb, (%—1) to first order in interactions. From the above
expressions the following points are clear: first, if £=0 then (S (r)) =0 at any
tipping angle and all times and thus no density shift is present. Second, for £=0, at
times 4/, = (2n+ 1)n/2 the contrast C(z,) vanishes, since at those times <§X(Tn)> =0.
Third, finite £ generates non-zero | (Sy(r))| > 0, introducing a density shift for

|cos(8,)| > 0. The density shifts diverges at linear order of interaction at z,,. Lastly,

finite interactions slow down the contrast decay. When interactions are weak,

|€] <J, the contrast decays but the first zero crossing is delayed to later times

7,— (1 +€)/(8]), where € = (£/8])% Moreover, in this regime, the second revival
peak is reduced by 2n%. For large interactions, || >> ], the contrast no longer
decays to zero but saturates at a finite value which approaches its original value
(8(7)) — sin(f)) in the strongly interacting limit. While the conclusions were
inferred from the two-particle dynamics they remain approximately valid for the
many-body system. This protection can be seen in Supplementary Fig. 3, where the
dashed line displays this saturation for N/L ~ 25. We note that the results presented
in the main text include the effects of single-particle diffusion, which hinders our
ability to see this phenomena. In particular, for the two groups of N/2 particles, in
many situations one can obtain the approximate N-particle dynamics by replacing
£ — NE/L. See, for example, equation (4) in the main text.

So far we have mainly discussed the Hamiltonian dynamics. The immediate
effect of the losses is the decay of the e state population, which modifies S* and
reduces the overall coherence of the state. For 6, =n/2, losses tilt the collective spin
out of the equatorial plane and generate a non-zero §” component. This in turn
helps prevent the contrast from decaying when normalized by the total
particle number.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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