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Quantum simulation of spin–orbit coupling (SOC) and topo-
logical states1–4 with alkali atoms has been highly success-
ful for the case of non-interacting systems5–9. However, the 

detrimental effects of spontaneous emission and heating10,11 have 
limited the study of SOC with interactions in alkali atoms to initial 
studies in a bulk gas12,13, in a lattice-modulated Bose–Einstein con-
densate14,15, and with two particles in a lattice16. Two recent experi-
ments with alkaline-earth atoms have reported the observation of 
single-particle SOC in optical lattice clocks (OLCs)17,18. In these 
works, encoding the effective spin degree of freedom in the long-
lived electronic clock states significantly reduced the detrimen-
tal effects of dissipation. Here we take advantage of this feature to  
study the interplay between SOC and strong collective interactions 
in an OLC.

In our one-dimensional OLC, many-body effects arise from the 
cooperation and competition between p-wave and s-wave interac-
tions, along with single-particle SOC dynamics. The spin-motion 
coupling we engineer in the OLC primarily affects how spins inter-
act with each other, without any thermalization effects in the lattice. 
This unique condition sets up an effective spin system that provides 
a simpler view of the complex interplay between SOC and many-
body interactions. Meanwhile, it grants us immediate access to 
quantum magnetism at μ​K motional temperatures.

The many-body dynamics are described by a collective XXZ 
spin model19,20, which contains both exchange (s- and p-wave) and 
Ising (p-wave) terms. The dynamics of collective XXZ models have 
largely been studied theoretically in condensed matter physics—for 
example, in the context of superconductivity through the Anderson 
pseudospin mapping21, which identifies Cooper pairs and holes 
as the two components of an effective pseudospin. Only limited 
experimental studies have been conducted so far, and they have 
been restricted mainly to weak quenches22. The ultra-narrow clock 

transition in our OLC enables the preparation, control, and spec-
troscopic resolution of the dynamics in a broad parameter space, 
including quenches over a large dynamic range.

SOC with strong interactions between a pair of atoms has been 
realized in a lattice16. Here, we instead use a large atom number, N, 
to tune the strength of the interactions to enter a strong, collective 
interacting regime well beyond single-particle SOC dynamics. We 
observe that both s-wave and p-wave interactions induce precession 
of the collective magnetization. Furthermore, the exchange interac-
tions compete with the SOC-induced dephasing and promote spin 
alignment and locking. Similar interaction-induced spin locking 
effects have been observed in other trapped gas experiments23,24, and 
were recently shown to play a crucial role in the stabilization of time 
crystal phases in trapped ions25 and impurity centres in diamond26. 
In those cases, however, dephasing arose from spatial inhomogene-
ities, in contrast to our system, where dephasing is a direct conse-
quence of an intrinsic modification of the band structure by SOC.

In our experiment, up to ~1.5 ×​ 104 fermionic 87Sr atoms are laser 
cooled into a horizontal one-dimensional (1D) lattice operated at a 
‘magic’ wavelength, λL =​ 813 nm, where the band structures of the 
two clock states are identical. By changing only the retro-reflected 
power, while fixing the incident power, we keep the radial con-
finement approximately constant (νr ≈​ 500 Hz) while significantly 
modifying the tunnelling rate17. We create an array of ~103 pancake-
shaped lattice sites, each with 1–20 atoms when we vary N.

Axially the atoms occupy the ground band of the lattice. Radially 
the atoms are only weakly confined with a thermal distribution 
among the radial modes, nr. In the tight binding limit we can write 
the energies of the ground bands as =− ℏE q J qn( , ) 2 cos( )r nr

, where 
ћ is the reduced Planck constant, Jnr

 is the tunnelling rate between 
nearest-neighbour lattice sites, which has some dependence on the 
radial mode nr (see Methods), and q is the quasimomentum in units  
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of ћ/a, where a =​ λL/2 is the lattice spacing. Due to the tem-
perature of the atoms, the band is thermally filled and all q are  
initially occupied.

The clock laser (λc =​ 698 nm), aligned axially along the one-
dimensional (1D) lattice, drives transitions between the ground 
1S0 ∣g q( , )nr

 and the excited 3P0 ϕ∣ +e q( , )nr
 clock states. The qua-

simomentum shift of the excited state, ϕ =​ π​λL/λc ≈​ 7π​/6 which is 
needed for conservation of momentum, generates the SOC. The 
consequence of this shift becomes important only when atoms  
are allowed to tunnel. For N atoms evolving independently under 
SOC, the Hamiltonian can be expressed in terms of a synthetic  
magnetic field11,17,

∑Ĥ δ∕ℏ=− Ω ⋅ ^

=

qB n S( , , , ) (1)
i

N

i irSOC
1

SOC i

where δ and Ω are the clock laser detuning from the 
bare atomic transition and Rabi frequency, respectively, 
and Ω δ Ω Δ δ= −q qB n n( , , , ) [0, , ( , ) ]i ir rSOC i i

 is an effec-
tive q-dependent magnetic field arising from the SOC term 
Δ ϕ= − + ∕ ℏq E q E qn n n( , ) ( ( , ) ( , ))i i ir r ri i i

. The operators Ŝi are spin-
1/2 angular momentum operators acting on the two clock states of 
atom i.

Figure 1a displays the spin-orbit coupled bands. In the tight-
binding approximation the largest detunings from the bare  
transition frequency are given by δ Δ ϕ= =± ∕± ±q Jn( , ) 4 sin( 2)r ,  
where π ϕ π π= − ∕ ± ∕ ≈ .±q 2 2 0,  Here, J is the thermally averaged 
value of the tunnelling rate (see Methods). When Δ​(q, nr) >​ Ω, the 
SOC broadening of the lineshape is spectroscopically resolved and 
exhibits two peaks at clock laser detunings of δ± (Fig. 1b). These 
peaks arise from divergences of the joint density of states called  
Van Hove singularities17.

To observe the dynamics of our spin-orbit coupled system we 
perform Ramsey spectroscopy. An initial pulse with a strong Rabi 
frequency, and hence short pulse time, of area θ1 and δ =​ 0 excites 
all atoms into a coherent superposition of clock states that are then 
allowed to freely evolve during τ. Although the clock laser is off dur-
ing this period, the atoms accumulate a phase in the rotating frame 
of the laser and thereby retain the imprinted optical phase. As a 
result, the atoms continue to experience the SOC-induced effective 
magnetic field δΩ= =qB n( , , 0, 0)i rSOC i

 throughout the dark time τ.  
One observable we measure using this procedure is the Ramsey 
fringe contrast, Ŝ Ŝ= + ∕C N2 x y2 2 , which is the length of the 
projection of the collective magnetization in the ^ −^e ex y plane of the 
Bloch sphere. Here Ŝ Ŝ Ŝ^=S [ , , ]x y z  are collective spin operators with 
Ŝ Ŝ=∑ =

x y z
i
N

i
x y z{ , , }

1
{ , , }.

The concentration of atoms at the two Van Hove singularities 
allows us to qualitatively understand the ensuing dynamics as aris-
ing mainly from these two groups of atoms, with quasimomenta 
q ~ 0 and q ~ π​, and corresponding detunings of δ±, respectively. 
Figure 1c depicts the Bloch sphere visualization of Ramsey spec-
troscopy for the case when the two groups are non-interacting and 
for θ1 =​ π​/2. For a variable evolution time τ, the atoms with oppo-
site detunings δ± evolve around the equator of the Bloch sphere in 
opposite directions (dashed blue arrows). Consequently, the length 
of the collective spin vector (solid blue arrow) changes, but the vec-
tor direction remains parallel or anti-parallel to êx.

Representative single-particle contrast curves are shown in  
Fig. 1d for tunnelling rates J1/(2π​) =​ 3.2 Hz (green triangles) and  
J2/(2π​) =​ 17.6 Hz (blue circles) as a function of τ. This data was taken 
in the non-interacting regime by using a small number of atoms 
(N <​ 500). The collapses and revivals in the contrast can be read-
ily understood from the simple model of the two atom groups. 
When the two groups of atoms accumulate a phase difference of π​,  

the length of the collective Bloch vector will be zero (C =​ 0). The 
detuning, δ± ≈​ ±​4J determines the precession rate around the Bloch 
sphere, and we thus expect the contrast to collapse and revive with 
a periodicity proportional to 1/J. In Fig. 1e the x-axis is scaled as a 
function of Jτ/(2π​), illustrating that the contrast curves for different 
J values then collapse onto a single curve.

An obvious feature of the observed contrast evolution is the 
long-term decay, which is not captured by the simple two-group 
approximation. While the joint density of states is the largest at the 
Van Hove singularities, all q values are in fact populated, with atoms 
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Fig. 1 | Ramsey spectroscopy with spin-orbit coupling. a, Spin-orbit 
coupled bands (solid lines) due to the coupling of the ground bands of the 
bare clock state ∣ ⟩g q, nnrr

 (red, dashed) and the momentum-shifted clock 
state ϕ+∣ ⟩e q, nnrr

 (blue, dashed) with a band splitting given by the Rabi 
frequency, Ω, and a bandwidth 4J, where J is the tunnelling rate and ϕ =​  
π​λL/λc. Van Hove singularities (VHS) occur at quasimomenta q ~ 0 and  
q ~ π​ (yellow and blue arrows). b, SOC results in a split atomic lineshape 
with the VHS at clock laser detunings δ± =​ ±​4J sin(ϕ/2) (yellow and blue 
arrows). Data is black squares and theory fit is solid line taken for J/(2π​) =​  
230 Hz. c, Bloch spheres for single particle Ramsey dynamics. The two 
subsets of atoms at the two VHS, with δ±, approximate our system. (i) Both 
atom groups initially start in ∣ ⟩g q, nnrr

. A strong pulse of area θ1 =​ π​/2 (δ =​ 0) 
rotates them around �eey to a superposition of ∣ ⟩g q, nn irr

 and ϕ+∣ ⟩e q, nnrr
.  

(ii) During τ the VHS precess around the Bloch sphere in opposite directions, 
changing the length of the collective spin vector (solid arrow). (iii) A readout 
pulse of area θ2 =​ π​/2 extracts the Ramsey fringe contrast by measuring the 
excited state fraction. d, The contrast decay for different tunnelling rates  
J1/(2π​) =​ 3.2 Hz (green triangles), J2/(2π​) =​ 17.6 Hz (blue circles), and  
J3/(2π​) =​ 0 Hz (red squares) as a function of τ without interactions. e, The 
same data as in d, with the x-axis scaled to Jτ/(2π​). The solid lines are theory 
curves and the dashed line is an exponential fit with a decay constant of 
~0.6 s, and the error bars are 1σ confidence intervals.
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contributing at detunings in-between δ±. Summing over the contri-
butions from all q, the resulting time-dependence of the contrast is 
given by θ τ ϕ= ∣ ∕ ∣C J Jsin( ) [4 sin( 2)]1 0 , where J0 is a zeroth-order 
Bessel function of the first kind, as shown in Fig. 1d,e.

To validate that the collapses, revivals, and overall decay in con-
trast are due to BSOC(q), we can remove its effect by adding a spin 
echo pulse to the Ramsey sequence. Any dephasing from the static 
SOC-induced effective magnetic field during the first τ/2 period 
of free evolution will re-phase during the second τ/2 free evolu-
tion period, due to the π​ echo pulse, which flips the sign of phase 
accumulation. Figure 2a shows the effect of spin echo (orange dia-
monds) for J/(2π​) =​ 4.2 Hz. The spin echo eliminates the collapses 
and revivals from the Ramsey fringe contrast (purple circles), and 
prolongs the overall contrast decay. However, the observed decay 
in contrast at long times is still fast compared to the contrast decay 
time for J =​ 0 (~1 s, see Methods). Contrast decays under spin echo 
for different values of J are shown in Fig. 2b,c. The spin echo decays 
do not collapse to a single curve when the free evolution time is 
scaled to Jτ/(2π​), indicating that the additional dephasing does not 
scale linearly with J, and that quasimomentum is not conserved at 
large τ. It is this additional dephasing that results in the suppression  
of the revivals in contrast at lower tunnelling rates, as shown in  
Fig. 1d,e (green triangles). Throughout the rest of this work we incor-
porate the empirically observed J dependence of this dephasing, 
which we call diffusive dephasing, into our model (see Methods).

Having characterized the single-particle dynamics under 
SOC, we introduce interactions by increasing the atomic density. 
As shown in Fig. 3, signatures of strong spin interactions start to 
emerge as N increases. The blue circles are the case of no interac-
tions (N <​ 500) and red squares are the case where we introduce 
interactions by increasing the atom number by more than an order 
of magnitude (N ~ 1 ×​ 104). We observe in Fig. 3a that for an initial 
Ramsey pulse θ1 =​ π​/4, an increase in atomic density qualitatively 
alters the dynamics, suppressing the collapses in contrast observed 
for the low-density case. For θ1 =​ π​/2 we observe that interactions 
shift the zeros of the contrast compared to the non-interacting case 
(Fig. 3c), and by further increasing the density and reducing the 
tunnelling rate, we see that the first collapse of the contrast can be 
suppressed altogether (Fig. 3d). We note that for J =​ 0 the contrast 
decay has been previously seen to be highly sensitive to the initial 
Ramsey pulse area, and no contrast revival with interactions has 
been observed19,20.

In order to quantitatively understand the complex interplay 
between interactions and SOC, we consider the spin model that has 

previously been successfully used to understand many-body inter-
actions in optical lattice clocks19,20. During these measurements all 
atoms are initially prepared in the ∣ ⟩g  spin state, and each atom 
occupies a single motional mode in the lattice. The initial mode 
distribution is preserved during clock interrogation as the collision 
energy is insufficient to alter the motional eigenstates. Since the 
motional degrees of freedom are frozen, we can treat the single-par-
ticle modes as corresponding lattice sites spanning an energy space. 
Thus, s-wave and p-wave contact interactions are mapped into non-
local, infinite-range collective interactions between the electronic 
pseudospins in the energy-space lattice19. The Hamiltonian for our 
system, including interactions, then becomes Ĥ Ĥ Ĥ= +SOC int, with 
Ĥint given by

Ĥ
χ

Ŝ Ŝ
ξ∕ℏ= + + ^ ⋅ ^

L
C
L

N
L
S S( ) ( ) (2)z z

int
2

The spin couplings χ =​ (Vgg +​ Vee −​ 2Veg)/2, C =​ (Vee −​ Vgg)/2, and 
ξ= − ∕−V U( ) 2eg eg  depend on Vαβ and αβ

−U , which are the p-wave and 
s-wave mean interaction parameters, respectively. L is the number 
of lattice sites, and thus N/L represents the mean number of atoms 
per site. Due to the temperature of the atoms in the lattice being  
>​1 μ​K, the s-wave and p-wave interactions are similar in magnitude 
(see Methods).

The term proportional to ξ encapsulates the exchange inter-
action process mediated by both s-wave and p-wave collisions. 
For the nuclear spin-polarized identical fermions initially pre-
pared in the lattice, and in the absence of SOC, this term becomes 
a constant of motion and is thus irrelevant to the dynamics. 
However, when J ≠​ 0, the effective q-dependent SOC magnetic 
field δqB n( , , 0, )i rSOC i

 causes the initially spin-polarized atoms to 
dephase with respect to each other, thereby introducing exchange 
interactions between them, which directly compete with the sin-
gle-particle SOC dynamics.

The p-wave interaction terms proportional to χ and C generate a 
collective Ising Hamiltonian which commutes with ̂S

2
 and have pre-

viously, in the absence of SOC, been shown to induce many-body 
spin dynamics19 for any superposition of e and g. These terms are 
unchanged in the presence of SOC, and have a negligible effect on 
the spin contrast for the experimental conditions and timescales we 
study here.

Throughout this work, we find that the explored experimental 
timescales are in a regime where the mean-field approximation is 
valid. In this approximation the interaction terms can be treated as 

1.0a b c

0.8

0.6

0.4

0.2

0.0

C
on

tr
as

t

1.0

0.8

0.6

0.4

0.2

0.0

C
on

tr
as

t

1.0

0.8

0.6

0.4

0.2

0.0

C
on

tr
as

t

0 0 50 100 1500.1 0.2 0 0.2 0.4 0.6 0.80.3

Jτ/(2π) Jτ/(2π)

J/(2π) ~ 4.2 Hz

τ (ms)

J/(2π) ~ 15 Hz

J/(2π) ~ 1.8 Hz

J/(2π) ~ 4.5 Hz

J/(2π) ~ 15 Hz

J/(2π) ~ 1.8 Hz

J/(2π) ~ 4.5 Hz

J/(2π) ~ 0 Hz

Fig. 2 | Non-interacting echo decay. a, A spin echo pulse (orange, diamonds) removes the static dephasing caused by SOC for 
a Ramsey sequence for the same J (purple circles, theory is solid purple line). b, Spin echo decay of contrast for four different J 
values as a function of τ. c, Same data as in b (for non-zero J) as a function of Jτ. All J >​ 0 curves decay as τ τ− ∕∝e ( )d

3
, where τd is a 

nonlinear function of J, implying an extra diffusive dephasing, and do not collapse to a single curve when the free precession time 
is rescaled to Jτ (see Methods). For J =​ 0 the echo data decays τ τ− ∕∝e ( )d0 . All error bars are 1σ confidence intervals from individual contrast 
fits, and all solid lines for the J >​ 0 (J =​ 0) echo data are fits τ τ− ∕∝e ( )d

3
 τ τ− ∕∝ ( )( e )d0 .
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an additional time-dependent magnetic field generated by the col-
lective spin vector, Bint. This allows us to factor out a collective spin 
operator from Ĥint, as given in equation (2), in order to arrive at the 
mean-field Hamiltonian including both interactions and SOC:

∑ ∑Ĥ δ∕ℏ=− Ω ⋅ ^ + ⋅ ^

= =

qB n S B S( , , , ) (3)
i

N

i i
i

N

ir
MF

1
SOC

1
inti

where Ŝ Ŝ Ŝ= +ξ ξ ξ χ+



( ) NB , , 2

L
x

L
y

L
z C

Lint
2 2 . The êx and êy 

components can be written together as a collective, evolving, trans-
verse magnetic field, Ŝξ ⊥

t( )
L
2  around which individual atom 

Bloch vectors rotate. This term competes with the single-particle 
dephasing term, δΩqB n( , , , )i rSOC i

, and forces the pseudo-spins to 
remain aligned, causing interaction-dependent changes to the con-
trast. The êz component of the interaction magnetic field is a con-
stant of motion and gives rise to a collective precession of the Bloch 
vectors at a rate θ− χ ξ+( )N cosC

L L 1 , where Ŝ θ⟨ ⟩ =− ∕N 2 cosz
1. 

When the tunnelling rate J is zero, none of the terms proportional 
to ξ in Ĥ MF affect the contrast or frequency shift.

The competition between the interaction-induced transverse 
magnetic field and the static SOC dephasing is shown schematically 
in Fig. 3b,e under the simple two-group approximation for θ1 =​ π​/4 
and θ1 =​ π​/2, respectively. For θ1 =​ π​/4, the collective rotation differ-
entially changes the projected length of the individual Bloch vectors 
on the transverse plane, generating a net Ŝ∣ ⟨ ⟩ ∣ >t( ) 0y . As a result, 
when the vectors are π​ out of phase, they no longer completely can-
cel, leaving a finite contrast at all times, as opposed to the complete 
collapse observed for the non-interacting case where Ŝ∣ ⟨ ⟩ ∣ =t( ) 0y .  
This is apparent in the data shown in Fig. 3a, where the contrast 
remains finite for the interacting case (red squares, Nξ/L =​ −​2.0 Hz, 
Nχ/L =​ 1.2 Hz).

For θ1 =​ π​/2, due to symmetry, the rotation of the Bloch vectors 
(red, dashed arrows in Fig. 3e) around the collective spin vector 
(red, solid arrow) does not change the relative transverse length of 
the vectors, which imposes Ŝ∣ ⟨ ⟩ ∣ =t( ) 0y . The effects of interactions 
are shown in Fig. 3c,d for varying strengths of interactions (Nξ/L) 
compared to J. When the interactions are still small compared to the 
tunnelling ( ξ> ∣ ∕ ∣J N L , with Nξ/L =​ −​3.5 Hz and Nχ/L =​ 1.3 Hz) 
(Fig. 3c), they cause no qualitative change to C compared to the 
non-interacting case, except for a weak rephasing of the spins that 
slightly delays the contrast collapse and decreases the revival ampli-
tude. This is manifested as an interaction-induced shift of the time 
of the first contrast zero, ∝​N2ξ2/L2J2.

If J is decreased such that ξ~ ∣ ∕ ∣J N L , then the exchange interac-
tions produce a qualitatively different behaviour, as shown in Fig. 3d. 
For J/(2π​) =​ 1.3 Hz, the non-interacting case (blue circles) shows the 
characteristic collapse and revival. In contrast, the interacting case 
(with Nξ/L =​ −​5.6 Hz, Nχ/L =​ 3.4 Hz) shows no collapse whatsoever, 
instead exhibiting only a monotonic decay with Jτ. The suppression of 
the collapse and revivals is a result of the exchange-induced rephasing 
of the spins (Fig. 3e). Ideally, this type of spin locking would preserve 
the coherence indefinitely, as can been seen directly from the interact-
ing Hamiltonian (2), where for large ξ the initial state is an eigenstate. 
Indeed, long-term synchronization has been previously observed in 
other cold atom experiments23 with dominant s-wave interactions. In 
our OLC we also need to account for competing mechanisms.

One important decoherence mechanism is atom loss due to 
inelastic two-body e–e p-wave collisions27,28, which becomes partic-
ularly relevant for a large N. The effect of the losses on the contrast, 
however, is largely compensated when the contrast is normalized  
by the total atom number, as we do throughout this work (see 
Methods). The most relevant contribution to decoherence for 
the current experiment is the single-particle diffusive dephasing 

observed in Fig. 2. Its effect on the contrast can already be seen in the 
non-interacting case (blue circles) and is exacerbated when operat-
ing at the low tunnelling rates required to enter the ξ~ ∣ ∕ ∣J N L  
regime. We anticipate that quasimomentum conservation, and 
signatures of spin-locking at longer times, will be achievable in a 
3D optical lattice, where coupling to the thermally populated radial 
modes would be eliminated (see Methods).

To complete our full characterization of the spin system and 
to disentangle the interaction dynamics from decoherence, we 
also study the effects of interactions on the phase accumulated 
by the collective spin vector during the free precession time τ, 

Δν τ Ŝ Ŝπ = ⟨ ⟩ ∕ ⟨ ⟩tan( 2 ) y x . In optical lattice clocks this is tradition-
ally described by a density-dependent frequency shift19,29 (Δ​ν).
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Fig. 3 | Spin-orbit coupling with varying interactions. a, Contrast data 
for high density (red squares) and low density (blue circles) for θ1 =​ π​/4. 
The high-density contrast does not go to zero due to the rotation caused 
by exchange interactions. b, As the VHS (dashed arrows) rotate around 
the Bloch sphere they become distinguishable and exchange interactions 
induce rotations, shown as purple and green trajectories. For θ1 =​ π​/4 
this rotation leads to the Bloch vectors for the two VHS being of unequal 
length in the −� �ee eex y plane so that the collective spin vector (solid arrow) 
remains finite. c,d, Contrast curves for θ1 =​ π​/2. c, ξ> ∕ =∣ ∣J N L 3.5 Hz and 
the interactions cause the zero in the contrast to be pushed to larger Jτ. 
d, ξ ∕ =∣ ∣J N L~ 5.6 Hz and interactions prevent static dephasing and the 
contrast approaches zero only at long times. Solid lines are theory including 
atom loss and diffusive dephasing (see Fig. 2). e, For θ1 =​ π​/2 (bottom) the 
exchange-induced rotation is symmetric and the two Bloch vectors are the 
same length in the −� �ee eex y plane. All error bars are 1σ confidence intervals 
from individual contrast fits.
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For J =​ 0 (no SOC), ξ is a constant of motion, and the density 
shift arises entirely from the Ising p-wave interactions. In Fig. 4a a 
density shift measurement without SOC shows a clear linear depen-
dence on the fraction of the atoms in the excited clock state (shown 
on the Bloch sphere in Fig. 4b), fully consistent with previous stud-
ies19,20. These works were all performed in the regime J =​ 0, where 
Δ​ν has been well characterized and found to be independent of 
the dark time between the Ramsey pulses. In this work the mea-
sured shift in the absence of SOC agrees with the prediction from 
the mean-field Hamiltonian (equation (3)) ν θΔ = − χ

= ( )N cosJ
C
L L0 1 ,  

where the shift depends linearly on the fraction of atoms in the 
excited clock state (Pe =​ (1 −​ cos θ1)/2).

In contrast, interactions in the presence of SOC give rise to a fre-
quency shift that is dependent on the dark time between the Ramsey 
pulses (Fig. 4c,d). From this data the frequency shift extrapolated to 
zero excitation fraction is seen to diverge when the single-particle 
contrast decays to zero (see Fig. 4d).

For J >​ 0 (with SOC), the situation becomes more complicated. 
To develop an intuitive understanding, we return again to the 
two-atom-group model, where a simple analytic expression can be 
derived to first order in interactions (for a more generic lattice treat-
ment, see Methods),

ν ν
ξ

θ τ
τ

Δ =Δ − −=








N
L

J
J

cos( ) 1 tan(4 )
4

(4)J 0 1

The same exchange term that produces the time-dependent 
collective transverse field responsible for modifying the contrast 
dynamics also results in a frequency shift. This term diverges 
when cos(4Jτ) =​ 0, which physically corresponds to the case when 
the two non-interacting atom group vectors are π​ radians out 
of phase on the Bloch sphere, as illustrated in Fig. 4e. When the 
spins rephase and the contrast becomes finite again, the exchange-
induced shift diminishes. It completely turns off in the two atom-
group approximation when the spins re-align. However, for the 
experimentally relevant case of a thermally populated band with 
all q values participating, the density shift will change in magni-
tude with time, but will not disappear completely, since the spins 
do not completely rephase.

The experimentally measured dependence of the SOC density 
shift on τ at a finite tunnelling rate of J/(2π​) =​ 2.2 Hz is shown 
in Fig. 4c,d for Nξ/L =​ −​2.7 Hz and Nχ/L =​ 1.6 Hz. The observed 
shift is not entirely linear in excitation fraction, indicating that 
the interactions can no longer be described by first-order per-
turbation theory, and higher-order corrections are required (see 
Methods). Figure 4d compares the contrast to the extrapolated 
density shift for zero excitation fraction Δν∣ =P 0e

 for the same data 
as in Fig. 4c. The extracted quantity Δν∣ =P 0e

 shows a divergence 
around the zero of the contrast, consistent with equation (4). The 
highly non-trivial functional form of the density shift indicates 
that SOC-induced exchange interactions will be a major factor 
in optical lattice clocks if the effects of tunnelling are not sup-
pressed. However, the experimentally observed density shift and 
contrast, which encapsulate the magnetisation dynamics, can be 
well described by theory. This agreement highlights the fact that 
for the experimentally relevant timescales, the complex interplay 
between SOC and many-body dynamics can be understood and 
explored precisely.

In conclusion, we have explored the emergence of complex 
dynamics with interacting fermions under engineered spin–orbit 
coupling in a Sr optical lattice clock. The many-body dynamics are 
fully characterized by a collective XXZ Hamiltonian aside from 
extra dephasing arising from non-conserved quasimomenta. In the 
future we plan to suppress this dephasing by using more sophisti-
cated pulse sequences30 or by employing a three-dimensional (3D) 

optical lattice, where the p-wave interactions would also be sup-
pressed. The lower temperatures associated with loading a Fermi-
degenerate gas in a 3D lattice geometry31 will also enable the study 
of SOC in higher dimensions, precise control of the SOC phase16,18 
ϕ, and exploration of a new strongly interacting regime where the 
collective XXZ model is no longer applicable, and where richer 
exotic behaviours, including topological superfluids1 and Kondo-
correlated metallic phases can emerge32.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0029-0.
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Fig. 4 | Interactions with and without spin–orbit coupling. a, With J =​ 0 
(no SOC) atoms interact via p-wave collisions only, leading to a frequency 
shift linearly dependent on excitation fraction, Pe. b, On the Bloch sphere 
for θ1 <​ π​/2 the collective vector for atoms with interactions (red) rotates 
to give a negative phase shift with respect to the non-interacting (blue) 
vector. For θ1 >​ π​/2 the interactions lead to a positive shift. c, Density shifts 
for J/(2π​) =​ 2.2 Hz (with SOC) for different Jτ measured by varying τ, as 
indicated in panel d. The magnitude and sign of the density shift can be 
seen to vary with time. d, The non-interacting contrast curve, including 
additional grey contrast data, and the Δν =∣P 0e

 density shift for 4,000 atoms 
corresponding to the data in c, including theory curves for J >​ 0 (solid, 
black) and J =​ 0 (dashed, black). e, The divergence can be understood by 
considering the Bloch vectors for the different VHS (dashed arrows) with 
τ. As the contrast goes through zero for no interactions (blue), the SOC-
induced exchange interactions (red) prevent the collective spin vector  
(red, solid arrow) from going to zero. As the non-interacting collective  
spin vector (blue, solid) goes through zero it changes sign, causing 
a change in sign of the slope of the density shift. All error bars are 1σ 
confidence intervals.
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Methods
Experimental methods. In our experiment the lattice is formed by a ~3 W 
incoming laser beam that is focused to a waist of ω0 =​ 40 μ​m at the position of the 
atoms. After exiting the vacuum chamber, the laser beam is collimated and then 
retro-reflected back on itself after passing through two acousto-optical modulators 
(AOMs). These AOMs are used to dynamically ramp the lattice depth without 
changing the frequency of the retro-reflected beam. During each experimental 
cycle the atoms are loaded into a lattice of depth Uz/ER =​ 130, where ER is the 
recoil energy. This lattice depth corresponds to an axial trapping frequency of 
ν ≈ ∕ ∕ πℏ =E U E2 (2 ) 80z zR R  kHz. The atoms are then sideband cooled to the 
ground band, and then the lattice is ramped down adiabatically to give the desired 
tunnelling rate. To measure interaction effects, the atom number is varied without 
changing the initial distribution of atoms within the lattice.

To measure the contrast following a Ramsey or spin echo sequence, the laser 
detuning is kept constant and the phase of the second π​/2 Ramsey pulse is varied 
with respect to the phase of the first π​/2 Ramsey pulse during many cycles of 
the experiment to produce a Ramsey fringe. The contrast is extracted by fitting 
the Ramsey fringe with a sinusoid, with phase and amplitude as the only free 
parameters. To measure the contrast change with density, Ramsey fringe contrast 
measurements are taken for high and low atom densities at each dark time. Each 
Ramsey fringe measurement consists of ~80 individual experimental cycles, where 
the cycle time is ~1.5 s.

For the frequency shift measurement at J/(2π​) ~ 0 Hz, for different initial pulse 
areas and a set τ =​ 80 ms free precession time, the phase of the final π​/2 Ramsey 
pulse is again varied while interleaving measurements with the atom number 
switching between ~300–4000 atoms. The Ramsey fringes are then again fitted 
with sinusoids and the phase difference between the high-density and low-density 
case is extracted and converted to a frequency shift. Between each data set the 
excitation fraction is also measured by applying only the first Ramsey pulse, then 
measuring the clock state populations. For J ≠​ 0 the same process is repeated for 
different dark times. To extract Δν∣ =P 0e

 we fit each experimental density shift 
measurement with a linear fit.

For J >​ 1 Hz, the SOC-induced dephasing dominates over all other dephasing 
mechanisms in our clock. While our Hamiltonian accounts for the static 
dephasing, a systematic investigation of the relevant range of J reveals that the 
spin echo data has an additional decay with the functional form of ∝ τ τ− ∕e ( )d

3
 as 

shown in Fig. 2b in the main text. This form of spin echo decay is well known 
from NMR and solid-state spin-defect experiments33,34, where the dephasing is 
the result of a slow, random diffusion of magnetic field with time. In our case this 
corresponds to a diffusion of the SOC effective magnetic field BSOC(q), indicating 
that the quasimomentum is not conserved at large τ. The extracted decay rate 
(1/τd) for different J is shown in Supplementary Fig. 1. The scaling is consistent 
with 1/τd ∝​ J1/2. We observe the same scaling of decay rate with J for the Ramsey 
sequences, and include this decay in our theory model. The most likely mechanism 
for this empirically observed diffusion of BSOC is the coupling of axial motion to the 
thermally populated radial modes. The spatial inhomogeneity in J across the lattice 
due to the finite Rayleigh range of the lattice beams may also contribute.

Theoretical methods. Hamiltonian. The Hamiltonian governing a nuclear spin-
polarized ensemble of fermionic atoms with two accessible clock levels, 1S0(g) -3P0(e), 
which are controlled by a linearly polarized clock laser beam27 is given in the 
rotating frame of the clock laser by:

Ĥ Ĥ Ĥ Ĥ= + + (5)0 L int
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Here the clock laser (detuned from the bare atomic transition by δ =​ ωc −​ ω0 and 
with Rabi frequency Ω) propagates along the axial direction, ̂Z, with wavevector 
kc =​ 2π​/λc. Atoms are trapped in an external potential Vext(R), generated by 
the magic lattice beams also propagating along ̂Z. The lattice induces a weak 
harmonic radial (transverse) confinement with an angular frequency 2π​νr and 
creates an array of coupled two-dimensional pancakes. The operator ψα=� R( )g e,  is 
a fermionic field operator at position R for atoms with mass m in electronic state 

α, and ψ ψ=α α α
†� ��N R R R( ) ( ) ( ). We have included only s-wave and p-wave channels, 

an assumption valid at μ​K temperatures. Since nuclear spin-polarized fermions 
are in a symmetric nuclear-spin state, their s-wave interactions are characterized 
by only one scattering length −aeg , describing collisions between two atoms in the 
antisymmetric electronic state, ∣ ⟩−∣ ⟩ge eg( )1

2
. The p-wave interactions enter  

with three different scattering volumes bgg
3 , bee

3  and beg
3 , associated with the three 

possible electronic symmetric states (∣ ⟩gg , ∣ ⟩ee  and ∣ ⟩ + ∣ ⟩ge eg( )1
2

, respectively.  
In addition to elastic interactions, 87Sr atoms exhibit inelastic collisions. Among those, 
however, only the e–e ones have been observed to give rise to measurable losses28. 
We denote the relevant inelastic p-wave scattering length as βee. The magnitude of 
the measured s- and p-wave scattering lengths20 are ~−a a68eg 0, bgg ~ 74.6a0, beg ~  
−​169a0 bee ~ −​119a0 and βee ~ 121a0, with a0 the Bohr radius.

We expand the field operator in terms of single-particle eigenstates of Ĥ0, 
which to a good approximation are harmonic oscillator states along the transverse 
directions and Bloch functions, ψq(Z), along the axial lattice direction. The 
harmonic oscillator states are characterized by the quantum numbers nr =​ (nX, nY) 
and the Bloch functions by the quasimomentum q and band quantum number nZ, 
which is prepared in only the lowest band nZ =​ 0 for the current loading conditions.

As described in the main text, under our typical operating conditions, the 
interaction energy per particle is weaker than the spacing between single-particle 
energy levels. Thus, at the leading order, collisions conserve the total single-
particle energy and the atom population is frozen in the initially populated modes, 
which act as effective lattice sites in single-particle mode space27. For an initial 
state with at most one atom per mode (∣ ⟩g -polarized state), it is thus possible 
to reduce Ĥ  to a spin-1/2 model written in terms of pseudo-spin 1/2 operators 

ĉ σ ĉ^ = ∕ ∑α β α αβ β
† →S 1 2i q qn n, , , , ,i i i ir r

. Here σ σ σ σ=→ � � �{ , , }x y z  are Pauli matrices in the e,g 

basis and ĉα q n, ,i ir
 ĉα

†( )q n, ,i ir
 are the fermionic annihilation (creation) operators of an 

atom in the electronic clock state α, radial mode nri
 and quasimomentum qi.

While the effective spin-spin coupling constants depend on the radial mode 
quantum number11,19,27, to a good approximation, we can replace them by their 
thermally averaged values. Under these approximations we obtain the interaction 
Hamiltonian Ĥint given by equation (2) in the main text which has been written 
in terms of the collective spin operators Ŝ x y z, , . The s- and p-wave interactions are 

given by ≈ ⟨ ⟩− πℏ . −
U Weg ma
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BZ  the Wannier function for the ground band of 
the 1D lattice along Z and the summation is over the quasimomenta in the first 
Brillouin zone. Here =

π ν
ℏa
mr 2 r

 the radial harmonic oscillator length, ar ≈​ 450 nm, 
and T the radial temperature in the effective harmonic oscillator units hνr/kB. For 
typical experimental conditions, T ≈​ 100. Supplementary Fig. 2a shows the ratio of 
ξ/χ as a function of the radial temperature and Supplementary Fig. 2b shows the 
different interaction parameters as a function of νz for different temperatures. We 
note that for current experimental conditions, the s-wave and p-wave interactions 
are of the same order of magnitude and further cooling of the radial modes would 
be required to enter the regime where s-wave interactions truly dominate.

Mean-field. For the currently accessible time scales, beyond mean-field corrections 
are not resolvable in the dynamics. We have verified this by comparing the mean-
field dynamics to the many-body dynamics obtained by the discrete truncated 
Wigner approximation (DTWA)35, which accounts for the lowest-order quantum 
correlations. Therefore, it is sufficient to use the mean-field equations of motion 
to study the dynamics of our system. At the mean-field level, expectation values of 
products of spin operators are factorized as Ŝ Ŝ⟨ ⟩ ≈α β α βS Si j i j , ignoring the build-up of 
quantum correlations. Here, we have defined Ŝ⟨ ⟩ =α αSi i . The above approximation 
is consistent with the picture that the net effect of interactions on an atom i is to 
induce an effective magnetic field generated by the other atoms. Under the mean-
field approximation, the Hamiltonian becomes equation (3) given in the main text.

This Hamiltonian formulation is only valid if one ignores inelastic collisions. 
To incorporate them one should formally use a master equation. However, at the 
mean-field level the so-called recycling terms in the master equation vanish and 
the inelastic dynamics can be accounted for by replacing27 Vee →​ Vee −​ iΓee/2 in 
equation (3), where Γ ≈ ⟨ ⟩βπ ℏ . Wee

ma aa
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r
2 . The mean-field equations including the 

inelastic losses and the single particle SOC terms are given by:
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where we have used = ++S S Sij j
x

j
y, and = +N N Nj j

e
j
g  the number of particles in 

lattice site j. Finally =∑N Ne
j j

e and =∑α αS Sj j  with α =​ x, y, z.
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We note that within the simulations we include the thermal effects in the 
single-particle dynamics by sampling radial modes for each particle from a 
thermal distribution. Each particle is assigned a given Δ​(qi, nr) depending on the 
radial mode nr it occupies. At lowest order in the radial-axial coupling, the radial 
mode dependence of the tunnelling is given by11,17 = +Δ +J J J n n( ) ,X Yn 0r

 with 

≈ . − . ∕
.( ) ( )J U E1 36 exp 2 12U

E z0

1 057

R
z
R

 and Δ ≈ . − . ∕
.( ) ( )J U E0 5 exp 2 71U

E z

1 7

R
z
R

.

Two particles. We can gain insight into the behaviour of the many-body system 
by considering the case of two particles in two sites with quasimomenta q1 =​ 0, 
and q2 =​ π​, corresponding to Δ =±q Jn( , ) 4i ri

, and later extending it to two groups 
of particles at the aforementioned quasimomenta. Given that for the parameter 
regime of interest the Ising terms provide a simple collective rotation whose 
behaviour is well understood, as shown in Fig. 4a in the main text, we are going 
to ignore them for the following discussion. Namely we will set χ =​ C =​ 0 and keep 
only the terms proportional to ξ. In this case, we can provide simple analytical 
expressions for the dynamics:

Ŝ τ θ ξ τ τξ τ τξ⟨ ⟩ = +
























J

J J
( ) sin( ) 2 sin

2
sin( ) cos

2
cos( ) (10)

x
1

eff

eff eff

Ŝ τ θ θ ξ τ τξ τ τξ⟨ ⟩ = −
























J

J J
( ) sin( )cos( ) 2 sin

2
cos( ) cos

2
sin( ) (11)

y
1 1

eff

eff eff

where ξ= +J J2 (4 )eff
2 2 . From the above expressions, we obtain 

ν τ ξ θΔ = −τ
τ( )( ) cos 1tan J

J1
(4 )
4

 to first order in interactions. From the above 
expressions the following points are clear: first, if ξ =​ 0 then Ŝ τ⟨ ⟩ =( ) 0y  at any 
tipping angle and all times and thus no density shift is present. Second, for ξ =​ 0, at 
times 4Jτn =​ (2n +​ 1)π​/2 the contrast τC( )n  vanishes, since at those times Ŝ τ⟨ ⟩ =( ) 0x n .  
Third, finite ξ generates non-zero Ŝ τ⟨ ⟩ >( ) 0y , introducing a density shift for 

θ∣ ∣ >cos( ) 01 . The density shifts diverges at linear order of interaction at τn. Lastly, 

finite interactions slow down the contrast decay. When interactions are weak, 
|ξ| <​ J, the contrast decays but the first zero crossing is delayed to later times 
τ0 →​ π​(1 +​ ϵ)/(8J), where ϵ =​ (ξ/8J)2. Moreover, in this regime, the second revival 
peak is reduced by 2π​2ε. For large interactions, ξ∣ ∣≫ J , the contrast no longer 
decays to zero but saturates at a finite value which approaches its original value 
Ŝ τ θ⟨ ⟩ →( ) sin( )x

1  in the strongly interacting limit. While the conclusions were 
inferred from the two-particle dynamics they remain approximately valid for the 
many-body system. This protection can be seen in Supplementary Fig. 3, where the 
dashed line displays this saturation for N/L ~ 25. We note that the results presented 
in the main text include the effects of single-particle diffusion, which hinders our 
ability to see this phenomena. In particular, for the two groups of N/2 particles, in 
many situations one can obtain the approximate N-particle dynamics by replacing 
ξ →​ Nξ/L. See, for example, equation (4) in the main text.

So far we have mainly discussed the Hamiltonian dynamics. The immediate 
effect of the losses is the decay of the e state population, which modifies S z and 
reduces the overall coherence of the state. For θ1 =​ π​/2, losses tilt the collective spin 
out of the equatorial plane and generate a non-zero S y component. This in turn 
helps prevent the contrast from decaying when normalized by the total  
particle number.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon reasonable 
request.
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