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Useful states and entanglement distillation
Felix Leditzky, Nilanjana Datta, and Graeme Smith

Abstract—We derive general upper bounds on the
distillable entanglement of a mixed state under one-way
and two-way LOCC. In both cases, the upper bound
is based on a convex decomposition of the state into
‘useful’ and ‘useless’ quantum states. By ‘useful’, we
mean a state whose distillable entanglement is non-
negative and equal to its coherent information (and
thus given by a single-letter, tractable formula). On the
other hand, ‘useless’ states are undistillable, i.e., their
distillable entanglement is zero. We prove that in both
settings the distillable entanglement is convex on such
decompositions. Hence, an upper bound on the distillable
entanglement is obtained from the contributions of the
useful states alone, being equal to the convex combination
of their coherent informations. Optimizing over all such
decompositions of the input state yields our upper bound.
The useful and useless states are given by degradable and
antidegradable states in the one-way LOCC setting, and
by maximally correlated and PPT states in the two-way
LOCC setting, respectively. We also illustrate how our
method can be extended to quantum channels.

Interpreting our upper bound as a convex roof ex-
tension, we show that it reduces to a particularly sim-
ple, non-convex optimization problem for the classes of
isotropic states and Werner states. In the one-way LOCC
setting, this non-convex optimization yields an upper
bound on the quantum capacity of the qubit depolarizing
channel that is strictly tighter than previously known
bounds for large values of the depolarizing parameter. In
the two-way LOCC setting, the non-convex optimization
achieves the PPT-relative entropy of entanglement for
both isotropic and Werner states.

I. INTRODUCTION

A. Entanglement distillation

Entanglement is an integral part of quantum in-
formation theory and quantum mechanics, acting as
an indispensable resource for quantum information
protocols such as teleportation [1], superdense coding
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[2], or entanglement-assisted classical [3] and quan-
tum [4] communication through quantum channels. In
these protocols, the entanglement resource is usually
assumed to have the special form of independent
and identically distributed (i.i.d.) copies of an ebit
|Φ+〉 := 1√

2
(|00〉 + |11〉), that is, a pure maximally

entangled state between two qubits. This assumption
simplifies the aforementioned protocols and makes
them amenable to a detailed theoretical analysis as
well as experimental realization in the laboratory. It
is therefore important to find entanglement distillation
protocols, which convert n copies of a noisy or mixed
bipartite entangled state into mn ebits Φ+ to arbitrary
precision with increasing n.

In a general entanglement distillation protocol, two
parties (say, Alice and Bob) are allowed to use local
operations and classical communication (LOCC). One
usually distinguishes between the following two set-
tings: either the classical communication is restricted
to only one-way communication from Alice to Bob,
or two-way communication between Alice and Bob
is possible. In both settings, Alice and Bob initially
share n copies of a mixed bipartite state ρAB , and their
goal is to obtain, via one-way or two-way LOCC, a
state that is close to Φ⊗mn+ with respect to a suitable
distance measure (such as the purified distance [5]).
If the distance between the final and the target state
vanishes asymptotically, then the asymptotic rate at
which ebits are generated, limn→∞mn/n, is called
an achievable rate for one-way (two-way) entangle-
ment distillation. The one-way distillable entanglement
D→(ρAB) is defined as the supremum over all achiev-
able rates under one-way LOCC. Likewise, the two-
way distillable entanglement D↔(ρAB) is defined as
the supremum over all achievable rates under two-way
LOCC. Since every one-way LOCC operation is also
a two-way LOCC operation, we have for all bipartite
states ρAB that

D→(ρAB) ≤ D↔(ρAB).

Devetak and Winter [6] proved the hashing bound,
establishing the coherent information as an achievable
rate for one-way entanglement distillation (and thus
also for two-way entanglement distillation):

D→(ρAB) ≥ I(A〉B)ρ, (1)

where the coherent information is defined as
I(A〉B)ρ := S(B)ρ−S(AB)ρ, with the von Neumann
entropy S(A)ρ := −Tr(ρA log ρA). Furthermore, they
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derived the following regularized formulae for the
distillable entanglement under one-way and two-way
LOCC [6]:

D→(ρAB) = lim
n→∞

1

n
D(1)
→ (ρ⊗nAB) (2)

D↔(ρAB) = lim
n→∞

1

n
D(1)
↔ (ρ⊗nAB). (3)

Here, D(1)
∗ (·) for ∗ ∈ {→,↔} is defined as

D
(1)
∗ (ρAB) := max

Λ: AB→A′B′
I(A′〉B′)Λ(ρ),

where the maximization is over one-way and two-way
LOCC operations Λ: AB → A′B′, respectively.

Similar to the quantum capacity, the regularizations
in (2) and (3) render the distillable entanglement
intractable to compute in most cases. Hence, it is
desirable to identify classes of bipartite states for
which the formulae in (2) and (3) reduce to single-
letter formulae that can be easily computed. Moreover,
we are interested in computable upper bounds on
D→(ρAB) and D↔(ρAB) for arbitrary bipartite states.
We address both problems in the present paper.

B. Method and main results

To obtain computable upper bounds on the regu-
larized formulae (2) and (3) for the distillable en-
tanglement under one-way and two-way LOCC, we
first identify classes of ‘useful’ and ‘useless’ states
in both settings. Here, we call a state ρAB useful,
if D

(1)
∗ (ρAB) is equal to the coherent information

I(A〉B)ρ for ∗ ∈ {→,↔}, and thus additive on tensor
products ρ⊗nAB . It then follows immediately from (2)
and (3) that also D∗(ρAB) = I(A〉B)ρ. In the one-way
setting, the useful states are degradable states (DEG)
(cf. Definition II.2), while in the two-way setting the
useful states are maximally correlated states (MC)
(cf. Definition III.1). Note that we have MC ⊆ DEG.

On the other hand, useless states σAB are such
that D(1)

∗ (σ⊗nAB) is zero for all n ∈ N, from which
D∗(σAB) = 0 follows. The class of useless states is
given by antidegradable states (cf. Definition II.2) in
the one-way setting, and by states with positive partial
transpose (or PPT states for short) in the two-way
setting. We list the four classes of states in Table I
below.

useful useless

1-way DEG ADG

2-way MC PPT

TABLE I: Useful and useless states for one-
way and two-way entanglement distillation.
DEG, ADG, MC, and PPT stand for degrad-
able, antidegradable, maximally correlated,
and positive partial transpose, respectively.

The crucial step in proving our main results is to
observe that D∗(·) is convex on convex combinations
of the corresponding useful and useless states. This is
proved in Proposition II.7 for the one-way setting by
adapting an argument by Wolf and Pérez-Garcı́a [7],
and in Proposition III.6 for the two-way setting in-
spired by an argument by Rains [8]. Together with the
known values of the distillable entanglement on useful
and useless states (given by their coherent information
and 0, respectively), this proves the upper bounds on
the one-way distillable entanglement in Theorem II.8
and on the two-way distillable entanglement in Theo-
rem III.7, which constitute our main result. We note
that in both settings the class of useful states includes
all pure quantum states (that is, every pure state is both
degradable and maximally correlated). Hence, any
pure-state ensemble of a bipartite state yields a decom-
position into useful states. In both settings, the optimal
such pure-state ensemble yields the entanglement of
formation, and our upper bounds can be understood
as an improvement over the latter. Moreover, in the
one-way setting our result can be straightforwardly
extended to quantum channels, yielding an analogous
upper bound on the quantum capacity of a quantum
channel in Theorem II.14 that was first reported by
Yang [9].

Finally, we focus on the distillable entanglement
of isotropic states and Werner states. Interpreting our
upper bounds on the distillable entanglement as convex
roof extensions allows us to use a result by Voll-
brecht and Werner [10] that exploits the symmetries
of isotropic states and Werner states to facilitate the
computation of the convex roof extension. The result is
a simplification of our upper bound to a (non-convex)
optimization problem that can be solved numerically
for small dimensions. In particular, this yields an upper
bound on the quantum capacity of the qubit depolar-
izing channel that is tighter than the best previously
known upper bound for large values of the depolarizing
parameter.

The rest of this paper is structured as follows. We
first fix some notation in Section I-C. We then dedicate
Section II to developing the method outlined above
for one-way entanglement distillation. Furthermore,
we introduce and discuss the notion of approximately
(anti)degradable states in Section II-E, which is in-
spired by and analogous to the notion of approximately
degradable quantum channels in [11]. The derivation
of our main result for two-way entanglement distil-
lation is carried out in Section III. Apart from the
results mentioned above, we also discuss a method for
constructing decompositions into maximally correlated
states via the generalized Bell basis in Section III-D.
In Section IV we derive the non-convex optimization
form of our upper bounds for isotropic and Werner
states. Finally, we give some concluding remarks in
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Section V. The appendix contains a discussion of
antidegradable states and their maximal overlap with
maximally entangled states.

C. Notation

Throughout the paper we only consider finite-
dimensional Hilbert spaces. For Hilbert spaces H1 and
H2, we denote by B(H1,H2) the set of linear maps
fromH1 toH2, and we write B(H) = B(H,H) for the
algebra of linear operators on a single Hilbert spaceH.
Upper-case indices are used to label quantum systems:
for a Hilbert space HA corresponding to a quantum
system A, we write |ψ〉A ∈ HA and ρA ∈ B(HA), and
we use the notation HA1A2... := HA1

⊗HA2
⊗. . . . We

write |A| := dimHA for the dimension of a quantum
system A with associated Hilbert space HA, and rk ρA
for the rank of the operator ρA. We use the shorthand
A ∼= B to indicate that the Hilbert spaces associated
to A and B are isomorphic, HA ∼= HB . A quantum
state (or simply state) is an operator ρA ∈ B(HA) with
ρA ≥ 0 and Tr ρA = 1, and we denote the set of states
on HA by D(HA). We write ψA ≡ |ψ〉〈ψ|A ∈ B(HA)
for the rank-1 projector associated to the pure state
|ψ〉A ∈ HA.

The von Neumann entropy of a state ρA is de-
fined by S(A)ρ := −Tr(ρA log ρA), the coherent
information of a bipartite state ρAB by I(A〉B)ρ :=
S(B)ρ − S(AB)ρ, and the conditional entropy by
S(A|B)ρ := −I(A〉B)ρ. For a probability distribution
{pi}i, the Shannon entropy is defined by H({pi}i) :=
−
∑
i pi log pi. For p ∈ [0, 1], the binary entropy is

defined by h(p) := −p log p− (1− p) log(1− p). All
exponentials and logarithms are taken to base 2.

A quantum channel N : B(H) → B(K) is a linear,
completely positive (CP), trace-preserving (TP) map
between the algebras B(H) and B(K) of linear opera-
tors on Hilbert spaces H and K. We write N : A→ B
for a quantum channel from B(HA) to B(HB). Let
N (ρA) = TrE(V ρAV

†) be the Stinespring represen-
tation of N with the isometry V : HA → HB ⊗HE .
Then the complementary channel N c : A → E is de-
fined by N c(ρA) := TrB(V ρAV

†). We often omit the
identity map denoted by id, i.e., for a map T : A→ A′

acting on the A part of a state ρAB , we also write
T (ρAB) instead of (T ⊗ idB)(ρAB).

Let {|Φn,m〉}n,m=0,...,d−1 be the generalized Bell
basis defined as follows. We define the generalized
Pauli operators X and Z via their action on a fixed
basis {|k〉}d−1

k=0 of Cd,

X|k〉 := |k + 1(mod d)〉
Z|k〉 := ωk|k〉,

(4)

where ω := exp(2πi/d) is a d-th root of unity.
The generalized Pauli operators satisfy XZ = ωZX .

Setting |Φ+〉 := 1√
d

∑d−1
i=0 |ii〉, we define

|Φn,m〉 := (1d ⊗XmZn)|Φ+〉, (5)

which satisfy 〈Φn,m|Φn′,m′〉 = δn,n′δm,m′ .
Finally, for a vector |ψ〉 =

∑
i,j λij |i〉A ⊗

|j〉B ∈ HA ⊗ HB , we define an associated operator
op(ψAB) ∈ B(HB ,HA) by

op(ψAB) :=
∑
i,j

λij |i〉A〈j|B . (6)

II. ONE-WAY ENTANGLEMENT DISTILLATION

A. Operational setting

Given a mixed bipartite state ρAB , the one-way
distillable entanglement D→(ρAB) is defined as the
optimal rate of distilling ebits from many copies of
ρAB via local operations and forward (or one-way)
classical communication (LOCC) from Alice to Bob.

A general one-way LOCC operation can be modeled
as a quantum instrument T : A→ A′M , defined by

T (θA) :=
∑

m
Tm(θA)⊗ |m〉〈m|M ,

where {|m〉}m is an orthonormal basis for the classical
register M , and for each m the map Tm : A → A′ is
CP such that

∑
m Tm is TP.

As mentioned in the introduction, Devetak and
Winter [6] derived the following regularized formula
for the one-way distillable entanglement:

D→(ρAB) = lim
n→∞

1

n
D(1)
→ (ρ⊗nAB),

where D(1)
→ (ρAB) can be expressed as

D(1)
→ (ρAB) := max

T

∑
m
λmI(A′〉B)ρm . (7)

Here, the maximization is over instruments T : A →
A′M , and we set ρm := 1

λm
Tm(ρAB), with λm :=

Tr(Tm(ρAB)) denoting the probability of obtaining
the outcome m of T . Equivalently, (7) can be written
as

D(1)
→ (ρAB) = max

T
I(A′〉BM)T (ρAB). (8)

Instead of maximizing the coherent information in
(8) over instruments T , it can be more convenient to
consider a maximization over isometric extensions of
an instrument in the following way. First, we note that
it suffices to consider instruments T =

∑
m Tm ⊗

|m〉〈m| where each of the CP maps Tm has only one
Kraus operator, i.e., Tm(·) = Km ·K†m for each m and
operators Km : A→ A′ [6]. In this case, an isometric
extension V : A→ A′MN can be defined as1

V :=
∑
m

Km ⊗ |m〉M ⊗ |m〉N (9)

1In the general case where each TP map Tm might have more
than one Kraus operator, say {Km,j}j , an isometric extension can
be defined by including an additional system F with orthonormal
basis {|φm,j〉F }m,j that acts as the environment for each Tm.
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for a classical register N ∼= M . Since
∑
m Tm =∑

mKm · K†m is TP by definition of a quantum in-
strument, we have

∑
mK

†
mKm = 1A, which implies

V †V = 1A. Hence, V is indeed an isometry, and we
have T (ρA) = TrN (V ρAV

†) for all ρA. Using (9),
we can write (8) as

D(1)
→ (ρAB) = max

V
I(A′〉BM)ω, (10)

where ωA′BM = TrN (V ρABV
†).

Lemma II.1. D(1)
→ (ρAB) ≥ 0 for all bipartite states

ρAB .

Proof. Since D(1)
→ (ρAB) can be expressed as a max-

imization over all instrument isometries V of the
form (9) as stated in (10), the lemma is proved
by constructing a particular V for which we obtain
I(A′〉BM)ω = 0 with ωA′BM = TrN (V ρABV

†).
To this end, let |φ〉ABE be a purification of ρAB ,

and consider a Schmidt decomposition of |φ〉ABE with
respect to the bipartition A|BE,

|φ〉ABE :=
∑

i
λi|i〉A|i〉BE ,

where the Schmidt coefficients λi ≥ 0 for all i. We
define the instrument isometry V : A→ A′MN ,

V :=
∑

i
|i〉A′〈i|A ⊗ |i〉M ⊗ |i〉N ,

where A′ ∼= A. Applying V to the purification |φ〉ABE
of ρAB , we obtain the pure state

|ω〉A′MNBE = V |φ〉ABE =
∑

i
λi|iii〉A′MN |i〉BE ,

whose marginals ωBM and ωEN are given by

ωBM =
∑

i
λ2
i |i〉〈i|M ⊗ TrE |i〉〈i|BE

ωEN =
∑

i
λ2
i |i〉〈i|N ⊗ TrB |i〉〈i|BE .

Evaluating the coherent information of the state
ωA′BM yields

I(A′〉BM)ω = S(BM)ω − S(A′BM)ω

= S(BM)ω − S(EN)ω

=
∑

i
λ2
i [S(TrE |i〉〈i|BE)

−S(TrB |i〉〈i|BE)]

= 0,

which proves the claim.

B. (Conjugate) degradable and antidegradable states

We now define the classes of ‘useful’ and ‘use-
less’ states for one-way entanglement distillation, as
explained in Section I-B.

Definition II.2. Let ρAB be a bipartite state with
purification |φ〉ABE . The state ρAB is called:

(i) degradable, if there is an isometry U : B → E′G
with E′ ∼= E such that for the state |ϕ〉AE′GE =
U |φ〉ABE we have

ϕAE = ϕAE′ = φAE ; (11)

(ii) conjugate degradable, if (11) holds up to com-
plex conjugation, that is,

ϕAE = C(ϕAE′) = φAE ,

where C denotes entry-wise complex conjugation
with respect to a fixed basis of E′ ∼= E;

(iii) antidegradable, if there is an isometry V : E →
B′F with B′ ∼= B such that for the state
|ψ〉ABB′F = V |φ〉ABE we have

ψAB′ = ψAB = φAB .

We note that Definition II.2 is independent of the
chosen purification of ρAB , since any two purifications
of ρAB are related by an isometry acting only on the
purifying systems. We can then compose the (conju-
gate) (anti)degrading isometries from Definition II.2
with the isometry relating the different purifications.

The coherent information of a degradable state ρAB
is non-negative, I(A〉B)ρ ≥ 0, since

I(A〉B)ρ = I(A〉E′G)ϕ

≥ I(A〉E′)ϕ
= I(A〉E)φ

= −I(A〉B)ρ,

where we used the data processing inequality for the
coherent information in the first inequality, and the du-
ality relation I(A〉B)ψ = −I(A〉E)ψ for a pure state
|ψ〉ABE in the last equality. Using a similar argument,
an antidegradable state σAB has non-positive coherent
information, I(A〉B)σ ≤ 0. Symmetric states, which
are both degradable and antidegradable, therefore have
zero coherent information.

Every pure state |ψ〉AB is degradable, which can be
seen by choosing an arbitrary purification |φ〉ABE =
|ψ〉AB ⊗ |χ〉E with some pure state |χ〉E , and
considering the isometry U defined by U |θ〉B :=
|θ〉B ⊗ |χ〉E . A large class of mixed (conjugate)
(anti)degradable states can be obtained from (conju-
gate) (anti)degradable quantum channels. We call a
quantum channel N : A → B degradable, if there
exists a quantum channel D : B → E (called a
degrading map) such that

N c = D ◦ N . (12)

The channelN is conjugate degradable [12], if instead
of (12) we have

C ◦ N c = D ◦ N ,

where C denotes entry-wise complex conjugation with
respect to a fixed basis as in Definition II.2. Finally,

4
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a channel N is called antidegradable, if there exists a
quantum channel A : E → B (called an antidegrading
map) such that

N = A ◦ N c.

Let now |Φ〉A′A be a maximally entangled state be-
tween A′ ∼= A and A, then the Choi state τA′B of
N : A→ B is defined as

τA′B := N (ΦA′A). (13)

Similarly, we define the Choi state τA′E = N c(ΦA′A)
of the complementary channel N c. The following
result is obvious:

Lemma II.3. Let N : A→ B be a quantum channel.
Then the Choi state τA′B as defined in (13) is (conju-
gate) (anti)degradable if and only if N is (conjugate)
(anti)degradable.

Finally, we note that we occasionally simplify Defi-
nition II.2 to the following (equivalent) form, which is
closely related to the channel picture above: a state
ρAB with purification |φ〉ABE and ‘complementary
state’ ρAE := TrB φABE is degradable if there ex-
ists a CPTP degrading map D : B → E such that
ρAE = D(ρAB). In this case, the degrading isometry
U from Definition II.2 can be chosen as the Stinespring
isometry (cf. Section I-C) of D. Conversely, every
degrading isometry as in Definition II.2 gives rise to
a degrading map by defining D(·) := TrG(V · V †)
and identifying E with E′. We also use analogous
simplifications in the case of conjugate degradability
and antidegradability.

C. Upper bounds on the one-way distillable entangle-
ment

The hashing bound (1) states that for any state ρAB
the coherent information I(A〉B)ρ is an achievable rate
for one-way entanglement distillation. The first result
of this section shows that for (conjugate) degradable
states the coherent information is the optimal rate for
entanglement distillation:

Proposition II.4. Let ρAB be a (conjugate) degrad-
able state. Then D(1)

→ (ρAB) is equal to the coherent
information I(A〉B)ρ and thus additive: for all n ∈ N,

D(1)
→ (ρ⊗nAB) = nD(1)

→ (ρAB) = nI(A〉B)ρ.

Hence, the one-way distillable entanglement of ρAB is
equal to the coherent information,

D→(ρAB) = I(A〉B)ρ. (14)

Proof. Let us first assume that ρAB is degradable, that
is, we have

ϕAE = ϕAE′ (15)

where |ϕ〉AE′GE = W |φ〉ABE and W : B → E′G is
a degrading isometry. Let us furthermore define the
following pure states:

|ω〉A′MNBE := V |φ〉ABE
|σ〉A′MNE′GE := W |ω〉A′MNBE = V |ϕ〉AE′GE ,

where V : A → A′MN is given as in (9). Consider
now the following steps:

I(A′〉BM)ω = I(A′〉E′GM)σ

= S(E′GM)σ − S(A′E′GM)σ

= S(E′GM)σ − S(NE)σ

= S(E′GM)σ − S(ME)σ

= S(E′GM)σ − S(ME′)σ (16)
= S(G|E′M)σ

≤ S(G|E′)σ
= S(GE′)σ − S(E′)σ

= S(GE′)σ − S(E)σ (17)
= S(GE′)σ − S(A′MNE′G)σ

= S(B)ρ − S(AB)ρ

= I(A〉B)ρ

where the third line follows from the fact that
σA′MNE′GE is a pure state, the fourth line follows
from the symmetry in M and N (which is evident
from the definition (9) of the isometry V ), the fifth line
follows from the degradability (15) of the state ρAB ,
the seventh line follows from the fact that conditioning
reduces entropy, the ninth line follows again from the
degradability of ρAB , and the tenth line follows from
the fact that σA′MNE′GE is pure.

Hence, the trivial isometry achieves the maximum
in maxV I(A′〉BM)ω , and D(1)

→ (ρAB) = I(A〉B)ρ.
Since the coherent information is additive on tensor
products, we then have D(1)

→ (ρ⊗nAB) = nI(A〉B)ρ, and
(14) follows from (2).

If ρAB is only conjugate degradable, (15) is replaced
by

ϕAE = C(ϕAE′), (18)

where C denotes entry-wise complex conjugation with
respect to a fixed basis. Note that both σME′ and σME

are classical-quantum states, that is, they are of the
form

∑
m pm|m〉〈m|M ⊗ τmE and

∑
m pm|m〉〈m|M ⊗

τmE′ , respectively, with τmE = C(τmE′) for all m. Hence,
we can use (18) instead of (15) in steps (16) and (17)
above, since the von Neumann entropy is invariant
under complex conjugation. This yields the claim in
the case of conjugate degradability of ρAB .

The following lemma shows the well-known fact
(see e.g. [13]) that the one-way distillable entangle-
ment of antidegradable states is 0. We provide a short
proof for the sake of completeness.

5



0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2776907, IEEE
Transactions on Information Theory

Lemma II.5. Let σAB be an antidegradable state.
Then D(1)

→ (σAB) = 0 and D→(σAB) = 0.

Proof. Let |ψσ〉ABE be a purification of σAB , and
denote by A : E → B the antidegrading map satis-
fying σAB = A(σAE), where σAE = TrB ψ

σ . Let
V : A→ A′MN be an arbitrary isometry of the form
(9), and consider the following steps for the coherent
information evaluated on the state V σABV †:

I(A′〉BM) ≤ I(A′〉EM)

= −I(A′〉BN)

= −I(A′〉BM),

where we used data processing with respect to A in the
inequality, duality for the coherent information in the
first equality, and symmetry in M ↔ N in the second
inequality. It follows that I(A′〉BM) ≤ 0 for any
instrument isometry V , and hence, D(1)

→ (σAB) ≤ 0.
Together with Lemma II.1, this proves D(1)

→ (σAB) = 0
for all antidegradable states σAB . Since σ⊗nAB is an-
tidegradable for all n ∈ N (with the antidegrading map
given by A⊗n), we then have D→(σAB) = 0.

We now derive a general upper bound on the one-
way distillable entanglement of arbitrary, not neces-
sarily degradable, bipartite states. To this end, we first
prove the following proposition, which shows that we
can ignore the contributions from antidegradable states
for the D(1)

→ (·) quantity.

Proposition II.6. Let ρA1B1 be degradable and σA2B2

be antidegradable. Then

D(1)
→ (ρA1B1

⊗ σA2B2
) = D(1)

→ (ρA1B1
).

Proof. We first observe that

D(1)
→ (ρA1B1 ⊗ σA2B2) ≥ D(1)

→ (ρA1B1)

holds for any two states ρA1B1
and σA2B2

not nec-
essarily degradable and antidegradable. This follows
from extending an optimal instrument for ρA1B1

triv-
ially to A2 and using the data processing inequality
for the coherent information with respect to tracing
out the B2 system.

To prove the other inequality, let ρA1B1
with pu-

rification |ψρ〉A1B1E1
be degradable with degrading

map D : B1 → E1, and let σA2B2 with purifica-
tion |ψσ〉A2B2E2 be antidegradable with antidegrading
isometry W : E2 → B′2E

′
2 such that |τ〉A2B2B′2E

′
2

:=
W |ψσ〉A2B2E2

satisfies

τA2B′2
= τA2B2

= σA2B2
.

Denoting by FB2B′2
the swap operator exchanging B2

and B′2, we define the state

|Ω〉A2B2B′2E
′
2CB

:=
1√
2

(
|τ〉A2B2B′2E

′
2
⊗ |0〉CB

+FB2B′2
|τ〉A2B2B′2E

′
2
⊗ |1〉CB

)
,

which satisfies |Ω〉 = FB2B′2
⊗XCB |Ω〉 and ΩA2B2

=
σA2B2

. Here, XCB denotes the Pauli X operator on
the CB system. Let T : A1A2 → A′M be an arbitrary
instrument with isometry V : A1A2 → A′MN , then
we have

I(B1;MB2)T (ρ⊗τ) ≥ I(E1;NB′2)(D◦T )(ρ⊗τ),

which is equivalent to

S(B1) + S(MB2)− S(E1)− S(NB′2)

≥ S(MB1B2)− S(NE1B
′
2) (19)

by the data processing inequality for the mutual infor-
mation with respect to D, and because

S(MB2)T (ρ⊗τ) = S(NB′2)T (ρ⊗τ). (20)

Consider now the following steps:

I(A′〉MB1B2)T (ρ⊗σ)

= S(MB1B2)T (ρ⊗σ) − S(A′MB1B2)T (ρ⊗σ)

= S(MB1B2)− S(NE1B
′
2E
′
2CB)T (ρ⊗τ)

= S(MB1B2)− S(NE1B
′
2) + S(NE1B

′
2)

− S(NE1B
′
2E
′
2CB)

≤ S(B1)− S(E1) + S(MB2)− S(NB′2)

+ I(E′2CB〉NE1B
′
2)

= I(A1〉B1) + I(E′2CB〉NE1B
′
2), (21)

where we used (19) in the inequality, and once again
(20) in the last equality. For the second coherent
information in (21), observe that

I(E′2CB〉NE1B
′
2) ≤ I(E′2CB〉NB1B

′
2)

= I(E′2CB〉MB1B2)

= −I(E′2CB〉A′NE1B
′
2)

≤ −I(E′2CB〉NE1B
′
2).

Here, the first and second inequality follow from the
data processing inequality for the coherent information
with respect to D and partial trace over A′, respec-
tively. The second line follows from symmetry of
V (|ψρ〉 ⊗ |Ω〉) in M ↔ N , and from the invariance
of the coherent information under the local unitary
FB2B′2

⊗ XCB . Hence, I(E′2CB〉NE1B
′
2) ≤ 0, and

(21) yields

D(1)
→ (ρA1B1

⊗ σA2B2
) = max

T
I(A′〉MB1B2)

≤ I(A1〉B1)

= D(1)
→ (ρA1B1

),

which we set out to prove.

The last ingredient for our general upper bound
on the one-way distillable entanglement D→(·) is
Proposition II.7 below, which establishes that D→(·)
is convex on mixtures of states whose tensor products
have subadditive D(1)

→ (·). This result is analogous to

6
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the corresponding property of the quantum capacity
proved by Wolf and Pérez-Garcı́a [7], and our proof
of Proposition II.7 closely follows the one given in
[7]. We introduce the following notation: For a binary
string wn = (w1, . . . , wn) ∈ {0, 1}n, we denote
by |wn| := |{i : wi = 1}| the Hamming weight
of wn, i.e. the number of 1’s in wn. For states ρ0

and ρ1 and wn = (w1, . . . , wn) ∈ {0, 1}n, we set
ρwn := ρw1 ⊗ . . .⊗ ρwn . We then have the following:

Proposition II.7. Let ρ0 and ρ1 be bipartite states on
AB satisfying

D(1)
→ (ρwn) ≤

∑
i
D(1)
→ (ρwi)

= (n− |wn|)D(1)
→ (ρ0) + |wn|D(1)

→ (ρ1)
(22)

for all wn ∈ {0, 1}n and n ∈ N. Then for all p ∈
[0, 1],

D→(pρ0 + (1− p)ρ1)

≤ pD→(ρ0) + (1− p)D→(ρ1).

Proof. Let n ∈ N, fix an instrument T : An → A′M ,
and observe that we can write

(pρ0 + (1− p)ρ1)⊗n

=
∑

wn∈{0,1}n
pn−|w

n|(1− p)|w
n|ρwn

using the notation introduced above. Consider then the
following steps:

I(A′〉BnM)T ((pρ0+(1−p)ρ1)⊗n)

= I(A′〉BnM)T(
∑
wn p

n−|wn|(1−p)|wn|ρwn)

= I(A′〉BnM)∑
wn p

n−|wn|(1−p)|wn|T (ρwn )

≤
∑

wn
pn−|w

n|(1− p)|w
n|I(A′〉BnM)T (ρwn ),

(23)

where the second line follows from linearity of T ,
and in the last line we used convexity of the co-
herent information. The latter in turn follows from
joint convexity of the quantum relative entropy, de-
fined for positive operators ρ, σ with Tr ρ = 1 as
D(ρ‖σ) := Tr(ρ(log ρ − log σ)) if supp ρ ⊆ suppσ,
and set to +∞ otherwise, and the fact that we can
write I(A〉B)τ = D(τAB‖1A⊗τB). Maximizing both
sides of (23) over all instruments T : An → A′M and
dividing by n, we obtain

1

n
D(1)
→
(
(pρ0 + (1− p)ρ1)⊗n

)
≤ 1

n

∑
wn

pn−|w
n|(1− p)|w

n|D(1)
→ (ρwn)

≤

[
1

n

∑
wn

(n− |wn|)pn−|w
n|(1− p)|w

n|

]
D(1)
→ (ρ0)

+

[
1

n

∑
wn

|wn|pn−|w
n|(1− p)|w

n|

]
D(1)
→ (ρ1),

(24)

where the last line follows from assumption (22).
Setting j = |wn|, we have

1

n

∑
wn
|wn|pn−|w

n|(1− p)|w
n|

=
1

n

n∑
j=1

(
n

j

)
jpn−j(1− p)j

=
n∑
j=1

(
n− 1

j − 1

)
pn−j(1− p)j

= (1− p)
n−1∑
j=0

(
n− 1

j

)
pn−1−j(1− p)j

= (1− p),

where we used the binomial identity j
(
n
j

)
= n

(
n−1
j−1

)
in the second line, and the variable transformation j →
j − 1 in the third line. Similarly, we obtain

1

n

∑
wn

(n− |wn|)pn−|w
n|(1− p)|w

n| = p,

and taking the limit n→∞ in (24) yields

D→(pρ0 + (1− p)ρ1)

≤ pD(1)
→ (ρ0) + (1− p)D(1)

→ (ρ1).

The claim now follows from the fact that the sub-
additivity property (22) implies that D(1)

→ (ρ⊗ni ) =
nD(1)
→ (ρi) for all n ∈ N and i ∈ {0, 1}, since we

always have D(1)
→ (ρ⊗n) ≥ nD(1)

→ (ρ) for any arbitrary
state ρ. Hence, D→(ρi) = D(1)

→ (ρi) for i ∈ {0, 1}.

If ρ0 and ρ1 are degradable, then the state ρwn is
also degradable for any wn ∈ {0, 1}n and n ∈ N.
Hence, by Proposition II.4 the assumption (22) in
Proposition II.7 is satisfied for degradable ρ0 and ρ1.
By Proposition II.6, the assumption (22) is further-
more satisfied for tensor products of degradable and
antidegradable states.

In summary, Proposition II.4, Proposition II.6, and
Proposition II.7 prove that D→(·) is convex on decom-
positions of an arbitrary bipartite state into degradable
and antidegradable states. Thus, we arrive at the upper
bound advertised in Section I-B, which we state in
Theorem II.8 below. First, we recall the definition of
the entanglement of formation EF (ρAB) of a bipartite
state ρAB [13], [14]:

EF (ρAB) := min
{pi,ψiAB}i

∑
i
piS(ψiA), (25)

where the minimization is over all pure-state ensem-
bles {pi, ψiAB}i satisfying

ρAB =
∑

i
pi|ψi〉〈ψi|AB .

7
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Bennett et al. [13] proved that EF (ρAB) is an up-
per bound on the one-way distillable entanglement:
D→(ρAB) ≤ EF (ρAB). Our upper bound, Theo-
rem II.8 below, provides a refinement of this bound:

Theorem II.8. Let ρAB be a bipartite state. Then,

D→(ρAB) ≤ EDA(ρAB) ≤ EF (ρAB), (26)

where the quantity EDA(ρAB) is defined as

EDA(ρAB) := min
k∑
i=1

piI(A〉B)ρi

and the minimization is over all decompositions of the
form

ρAB =
k∑
i=1

piρi +
l∑

i=k+1

piσi (27)

with degradable states ρi and antidegradable states
σi.

Proof. The first inequality follows from applying
Proposition II.4, Proposition II.6, and Proposition II.7
to the decomposition of ρAB in (27). For the second
inequality in (26), recall that every pure state is degrad-
able. Hence, every decomposition of ρAB into pure
states is of the form (27) (with l = k), in particular
the one achieving the minimum in (25).

D. 2-qubit states and decompositions into degradable
states

In the case where both A and B are qubits, there
is a simple method of obtaining decompositions of a
bipartite state ρAB into mixed degradable states. This
method is based on the following result by Wolf and
Pérez-Garcı́a [7] about qubit-qubit quantum channels,
which is easily extended to 2-qubit bipartite states:

Proposition II.9 ([7]). Every qubit-qubit quantum
channel with a qubit environment is either degradable
or antidegradable. Likewise, every 2-qubit bipartite
state of rank 2 is either degradable or antidegradable.

Proposition II.9 gives rise to an easy method for
obtaining decompositions of a state ρAB into mixed
degradable and antidegradable states. We first fix some
k ∈ N such that 2k ≥ rk ρAB , and decompose ρAB
into an even number 2k of pure states:

ρAB =
2k∑
i=1

piψi. (28)

Note that every 2k × 2k unitary matrix gives rise to
such a pure-state decomposition [15]. We then obtain
rank-2 states from the pure states ψi by grouping
together two of them at a time: for j = 1, . . . , k, we
set qj := p2j−1 + p2j , and form the states

ωj :=
p2j−1

qj
ψ2j−1 +

p2j

qj
ψ2j ,

such that ρAB =
∑k
j=1 qjωj . For every j = 1, . . . , k

the state ωj satisfies rkωj = 2, and is therefore
either degradable or antidegradable by Proposition II.9.
Hence, Theorem II.8 yields the following upper bound
on D→(ρAB):

D→(ρAB) ≤ min
U

∑
j : ωj deg.

qjI(A〉B)ωj ,

where the minimization is over all 2k × 2k unitary
matrices U determining the pure-state decomposition
(28), and the sum is over all j such that ωj is
degradable.

E. Approximate degradability

In [11], the authors introduced the concept of an
approximate degradable quantum channel and used it
to derive computable upper bounds on the quantum
capacity of a given quantum channel. More precisely,
given a quantum channel N and its complementary
channel N c, they defined the degradability parameter
ε as the minimum distance in diamond norm between
the complementary channelN c and a degraded version
D ◦ N of the channel, minimized over all possible
CPTP degrading maps D. That is, the degradability
condition (12) for channels is only approximately
satisfied in diamond norm up to ε. The authors derived
upper bounds on the quantum capacity Q(N ) (and
the private capacity P (N )) of N in terms of the
channel coherent information of N and error terms
in ε that vanish in the limit ε → 0, hence reducing
to the channel coherent information for degradable
channels with ε = 0. In this section, we formulate
the notion of approximate degradable states in an
analogous manner, using the trace distance between
quantum states instead. We then use similar ideas
as in [11] to derive an upper bound on the one-
way distillable entanglement in terms of the coherent
information and the degradability parameter.

For a bipartite quantum state ρAB with purification
φABE , the degradability parameter dg(ρAB) is de-
fined as

dg(ρAB) := min
D : B→E

1

2
‖ρAE −D(ρAB)‖1, (29)

where ρAE = TrB φABE , the minimization is over
CPTP maps D : B → E, and the trace norm is
defined as ‖X‖1 := Tr

√
X†X . Similarly, we define

the antidegradability parameter adg(ρAB) as

adg(ρAB) := min
A : E→B

1

2
‖ρAB −A(ρAE)‖1, (30)

where the minimization is over CPTP maps A : E →
B.

The usefulness of the notion of ε-degradable quan-
tum channels stems from the fact that the degradability
parameter ε can be formulated as the solution of a

8
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semidefinite program (SDP) [11], and is hence effi-
ciently computable. With our definition of the (anti-
)degradability parameter in (29) (resp. (30)), this is
also possible:

Lemma II.10. dg(ρAB) is the solution of the SDP

minimize:
1

4
(TrXAE + TrYAE)

subject to:
(

XAE ZAE − ρAE
ZAE − ρAE YAE

)
≥ 0

τB′E ≥ 0

τB′ = 1B

XAE , YAE ≥ 0,

(31)

where ZAE = TrB′
[(
ρTBAB′ ⊗ 1E

)
(1A ⊗ τB′E)

]
with B′ ∼= B and ρAB′ = ρAB , and where τB′E is the
Choi state of the CPTP map D : B → E over which
we optimize in (29).

Similarly, adg(ρAB) is the solution of the SDP

minimize:
1

4
(TrXAB + TrYAB)

subject to:
(

XAB WAB − ρAB
WAB − ρAB YAB

)
≥ 0

τE′B ≥ 0

τE′ = 1E′

XAB , YAB ≥ 0,
(32)

where WAB = TrE′
[(

1B ⊗ ρTEAE
)

(1A ⊗ τE′B)
]

with E′ ∼= E and ρAE′ = ρAE , and where τE′B is
the Choi state of the CPTP map A : E → B over
which we optimize in (30).

Proof. Recall that for arbitrary X ∈ B(H) the trace
norm ‖X‖1 can be expressed as the following SDP
(see e.g. [16, Ex. 1.15]):

minimize:
1

2
(TrW1 + TrW2)

subject to:
(
W1 −X†
−X W2

)
≥ 0,

W1,W2 ≥ 0.

The SDP formulations (31) and (32) of (29) and (30),
respectively, now follow immediately using the well-
known Choi-Jamiołkowski isomorphism.

Based on ideas in [11], this notion of approximate
(anti-)degradability allows us to derive a general, eas-
ily computable upper bound on the one-way distillable
entanglement of an arbitrary bipartite state. Before
we state this result, we recall an improved version
of the Alicki-Fannes inequality recently proved by
Winter [17]:

Proposition II.11 ([17]). Let ρAB and σAB be states
with 1

2‖ρAB − σAB‖1 ≤ ε, then

|S(A|B)ρ − S(A|B)σ|

≤ 2ε log |A|+ (1 + ε)h

(
ε

1 + ε

)
.

Theorem II.12. Let ρAB be a bipartite state with pu-
rification |φ〉ABE , and δ > 0 be such that dg(ρAB) ≤
δ. Then,

I(A〉B)ρ ≤ D→(ρAB)

≤ I(A〉B)ρ + 4δ log |E|+ 2 (1 + δ)h

(
δ

1 + δ

)
,

where h(·) denotes the binary entropy.

Proof. Let D : B → E be the CPTP map such that
dg(ρAB) = 1

2‖ρAE − D(ρAB)‖1 ≤ δ, and denote by
W : B → E′G its Stinespring isometry with E′ ∼= E.
Consider the state ρ⊗nAB and let T : An → A′M be an
instrument with isometry Vn : An → A′MN ,

Vn =
∑

m
Um ⊗ |m〉M ⊗ |m〉N .

For t = 1, . . . , n we define the pure states

|ψt〉 ≡ |ψt〉AnBt+1...BnE′1...E
′
tG1...GtE1...En

:= W1 ⊗ . . .⊗Wt|φ〉⊗nABE
|θt〉 ≡ |θt〉A′MNBt+1...BnE′1...E

′
tG1...GtE1...En

:= Vn|ψt〉,

where Wi = W : Bi → E′iGi for every i = 1, . . . , t.
Abbreviating θ = θn, we have the following:

I(A′〉MBn)Vnρ⊗nV †n
= I(A′〉MGnE′n)θ

= S(MGnE′n)θ − S(A′MGnE′n)θ

= S(MGnE′n)θ − S(NEn)θ

= S(MGnE′n)θ − S(ME′n)θ

+ S(ME′n)θ − S(NEn)θ

= S(Gn|ME′n)θ + S(ME′n)θ − S(MEn)θ

= S(Gn|ME′n)θ

+
n∑
t=1

S(E′t|ME′<tE>t)θt − S(Et|ME′<tE>t)θt

(33)

where we used the symmetry of θ in M and N in the
fifth equality, and the “telescope” identity [18], [11]

S(ME′n)θ − S(MEn)θ

=
n∑
t=1

S(E′t|ME′<tE>t)θt − S(Et|ME′<tE>t)θt

(34)

9
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in the last equality, defining X<t := X1 . . . Xt−1,
and setting X<1 equal to a trivial (one-dimensional)
system. X>t and X>n are defined analogously. The
identity (34) can be proved by simply writing out the
right-hand side.

For every t = 1, . . . , n, we have the following
bound on the trace distance between the two states
θtME′<tE

′
tE>t

and θtME′<tEtE>t
on which the coherent

information is evaluated in (33) resp. (34):∥∥∥θtME′<tE
′
tE>t

− θtME′<tEtE>t

∥∥∥
1

≤
∥∥∥θtA′MNE′<tE

′
tE>t

− θtA′MNE′<tEtE>t

∥∥∥
1

=
∥∥∥ψtAnE′<tE′tE>t − ψtAnE′<tEtE>t∥∥∥1

=
∥∥D(ρAB)⊗t ⊗ ρ⊗n−tAE

−D(ρAB)⊗t−1 ⊗ ρ⊗n−t+1
AE

∥∥
1

≤
∥∥D(ρAB)⊗t−1 −D(ρAB)⊗t−1

∥∥
1

+ ‖D(ρAB)− ρAE‖1 +
∥∥ρ⊗n−tAE − ρ⊗n−tAE

∥∥
1

≤ 2δ,

where the second inequality follows from the fact that

‖ρ1 ⊗ ρ2 − σ1 ⊗ σ2‖1 ≤ ‖ρ1 − ρ2‖1 + ‖σ1 − σ2‖1

holds for any states ρ1, ρ2, σ1, σ2. Hence, by Proposi-
tion II.11, for every t = 1, . . . , n we have

S(E′t|ME′<tE>t)θt − S(Et|ME′<tE>t)θt

≤ 2δ log |E|+ (1 + δ)h

(
δ

1 + δ

)
=: ε. (35)

Using (35) in (33), we then obtain

I(A′〉MBn)Vnρ⊗nV †n
≤ S(Gn|ME′n)θ + nε

≤ S(Gn|E′n)θ + nε

= S(GnE′n)θ − S(E′n)θ + nε

≤ S(GnE′n)θ − S(En)θ + 2nε

= S(GnE′n)θ − S(A′MNGnE′n)θ + 2nε

= I(A′MN〉GnE′n)θ + 2nε

= I(An〉Bn)ρ⊗n + 2nε

= n(I(A〉B)ρ + 2ε), (36)

where in the third inequality we used a similar rewrit-
ing as in (34) to bound the expression S(En)θ −
S(E′n)θ from above by nε. The claim now follows af-
ter dividing (36) by n and taking the limit n→∞.

There is a generalized method of finding upper
bounds on the one-way distillable entanglement that
encompasses both the approximate degradability (AD)
bound of this section and the ‘additive extension’ (AE)
bound in Theorem II.8 in Section II-C. As we will see
later in Section IV-B, for the quantum capacity of the

depolarizing channel the AD bound from [11] provides
the best upper bound for very low noise, while our AE
bound does best for higher noise levels (cf. Figure 3).
By searching for approximately degradable extensions
of quantum states (or channels, for that matter) we can
do no worse than either of these two methods.

The two methods can be combined as follows.
For a given bipartite state ρAB , fix k ∈ N and
consider an extension ρ̃ABC with |C| = k, such that
TrC ρ̃ABC = ρAB . We assume C to be in Bob’s
possession, and consider entanglement distillation with
respect to the A|BC bipartition in the following. Com-
puting the degradability parameter ε = dg(ρ̃ABC) of
this extension and using Theorem II.12, we obtain an
upper bound on the one-way distillable entanglement
D→(ρ̃ABC) of ρ̃ABC , which in turn is an upper bound
on D→(ρAB). We can then optimize this bound over
all extensions ρ̃ABC with |C| = k. Restricting to
trivial extensions of ρAB , this bound reduces to the
AD bound (Theorem II.12 in Section II-E). Restricting
to ‘flagged’ (anti)degradable extensions of the form

ρ̃ABC =
k∑
c=1

ρ̃cAB ⊗ |c〉〈c|C ,

where the states ρ̃cAB are either degradable or an-
tidegradable, the bound reduces to the AE bound
(Theorem II.8 in Section II-C). In this case, we have
ρAB =

∑
c ρ̃

c
AB . It would be interesting to conduct a

thorough numerical investigation of this approach.2

F. Extending our method to the quantum capacity

In this section we show that our method of obtaining
an upper bound on the one-way distillable entangle-
ment can be applied to quantum channels as well.
This allows us to easily establish upper bounds on
the quantum capacity of a quantum channel of the
form first reported by Yang [9]. We include our own
argument for the result here for completeness, as it is
a direct extension of the results in Section II-C. Before
explaining the main steps in the proof, we define the
quantum capacity of a quantum channel in terms of
the task of entanglement generation.

Let N : A→ B be a quantum channel. In entangle-
ment generation, the goal for Alice (the sender) and
Bob (the receiver) is to generate entanglement between
them via n uses of the channel N . To this end, Alice
prepares a pure state |φ〉A′An in her laboratory and

2We tried to implement this combined method to obtain upper
bounds on the quantum capacity of the depolarizing channel (see
Section IV-B). From prior numerical investigations, we know that
the dimension k of the extension register C should be at least 6.
However, for the choice k = 6 the memory needed to solve the
SDP in the computation of dg(ρABC) exceeds 96GB (even when
exploiting the sparsity pattern of the Choi state of the depolarizing
channel). Hence, such a computation is not tractable with the
resources to which we have access.
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sends the An part through the channel N⊗n. Bob then
applies a decoding map D : Bn → Ã to the channel
output state that he received from Alice. The goal
is to obtain a final state (idA′ ⊗D ◦ N⊗n)(φA′An)
that is close to a maximally entangled state ΦM

A′Ã
of

Schmidt rank M up to some error εn (with respect to a
suitable distance measure). If there is an entanglement
generation protocol for which limn→∞ εn = 0, then
limn→∞

logM
n is called an achievable rate for entan-

glement generation. The quantum capacity Q(N ) is
defined as the supremum over all achievable rates.

The following formula for the quantum capacity
was proved (with increasing rigor) by Lloyd [19],
Shor [20], and Devetak [21]:

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n), (37)

where the channel coherent information Q(1)(N ) is
defined as

Q(1)(N ) := max
|φ〉A′A

I(A′〉B)(id⊗N )(φ).

Similarly to the formula (2) for the one-way distillable
entanglement, the formula (37) for the quantum capac-
ity involves a regularization and is therefore intractable
to compute in most cases. However, much like their
state counterparts for entanglement distillation, the
classes of degradable and antidegradable channels that
we defined in Section II-B play a special role: For a
degradable quantum channel N , the channel coherent
information is additive [22],

Q(1)(N⊗n) = nQ(1)(N ),

and thus the regularized formula (37) reduces to the
single-letter formula Q(N ) = Q(1)(N ). Moreover, for
antidegradable channels the channel coherent informa-
tion, and hence the quantum capacity, is zero due to
the no-cloning theorem [13].

Therefore, by once again using the “additivity
implies convexity” argument by Wolf and Pérez-
Garcı́a [7] (this time in its original form for quantum
channels), we arrive at an upper bound to the quantum
capacity, which is stated in Theorem II.14. This result
is analogous to the upper bound for the one-way
distillable entanglement in Theorem II.8. The only
missing piece is a channel analogue of Proposition II.6,
which shows that an antidegradable channel does not
contribute to the channel coherent information of a
degradable channel. This is a consequence of additivity
of the channel coherent information for degradable
channels [22] and the technique of degradable exten-
sions of a quantum channel [23]. Here, a quantum
channel N̂ is called extension of a quantum channel
N , if there is another quantum channel R such that
N = R ◦ N̂ .

Proposition II.13 ([22], [23]). Let N1 : A1 → B1

be a degradable channel and N2 : A2 → B2 be an
antidegradable channel. Then,

Q(1)(N1 ⊗N2) = Q(1)(N1).

Proof. It is proved in [23] that for every antidegradable
channel A there is a degradable extension Â of A
with vanishing quantum capacity, Q(Â) = 0. Let N̂2

be such a degradable extension for the antidegradable
channel N2. We then have the following:

Q(1)(N1) ≤ Q(1)(N1 ⊗N2)

≤ Q(1)(N1 ⊗ N̂2)

= Q(1)(N1) +Q(1)(N̂2)

= Q(1)(N1).

The first and second inequalities follow since N1⊗N2

and N1 can be obtained from N1⊗N̂2 and N1⊗N2 by
post-processing, respectively. The first equality follows
from additivity of Q(1)(·) for degradable channels
[22], and the second equality follows because 0 ≤
Q(1)(N̂2) ≤ Q(N̂2) = 0. Hence, the above chain of
inequalities collapses, which proves the claim.

Finally, to arrive at our main result in this section we
note that the proof of Proposition II.13 goes through if
N1 and N2 are completely positive, but not necessarily
trace-preserving. Hence, we arrive at the following
result:

Theorem II.14 ([9]). For a quantum channelN : A→
B, we have

Q(N ) ≤ min
k∑
i=1

piQ
(1)(Di),

where the minimization is over all decompositions of
the form

N =
k∑
i=1

piDi +
l∑

i=k+1

piAi

with degradable and antidegradable CP maps Di and
Ai, respectively.

III. TWO-WAY ENTANGLEMENT DISTILLATION

A. Operational setting

In this section, we consider the task of entanglement
distillation under two-way LOCC. In contrast to the
one-way setting, we do not concern ourselves with the
structure of two-way LOCC operations. Instead, we
consider the larger class of PPT-preserving operations,
that is, the class of operations Λ: AB → A′B′ for
which Λ(ρAB)ΓB′ ≥ 0 whenever ρΓB

AB ≥ 0. Here,
ΓB denotes transposition on the B system. We de-
fine the PPT-distillable entanglement DΓ(ρAB) in the
same way as D→(ρAB) or D↔(ρAB), only this time

11
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with respect to PPT-preserving operations. Since every
LOCC operation is also PPT-preserving, we have

D↔(ρAB) ≤ DΓ(ρAB). (38)

In the same vein as Rains’ seminal work [8],
[24], we primarily derive upper bounds on the PPT-
distillable entanglement DΓ(ρAB). Subsequently, any
such bound is also an upper bound on D↔(ρAB) by
(38).

B. Maximally correlated and PPT states

Following the method outlined in Section I-B, we
first identify the classes of useful and useless states in
the two-way LOCC and PPT setting.

Definition III.1 ([8]). A bipartite state ρAB on Cd ×
Cd is said to be maximally correlated (MC), if there
exist bases {|i〉A}d−1

i=0 and {|i〉B}d−1
i=0 such that

ρAB =
d−1∑
i,j=0

αij |i〉〈j|A ⊗ |i〉〈j|B ,

where (αij) is a positive semidefinite matrix with unit
trace.

Any pure state |ψ〉AB is MC, which can be seen by
considering a Schmidt decomposition

|ψ〉AB =
∑

i
λi|i〉A ⊗ |i〉B .

It then follows that ψAB is MC with respect to the
bases {|i〉A}i and {|i〉B}i and the matrix (αij) =
λiλj .

Lemma III.2 ([24]). For maximally correlated states
ρAB ,

D↔(ρAB) = I(A〉B)ρ = I(B〉A)ρ.

In particular, both I(A〉B)ρ and I(B〉A)ρ are non-
negative for MC states.

Proof. Rains [24] proved that for MC states ρAB
the PPT-distillable entanglement DΓ(ρAB) is equal to
either one of the coherent informations, and thus

D↔(ρAB) ≤ DΓ(ρAB) = I(A〉B)ρ = I(B〉A)ρ.

On the other hand, by the hashing inequality (1) we
have

D↔(ρAB) ≥ max{I(A〉B)ρ, I(B〉A)ρ}.

The non-negativity of the coherent informations
of ρAB now follows since they are equal to
the operational quantity D↔(ρAB). However, this
can also be proved directly. To this end, let
ρAB =

∑d−1
i,j=0 αij |i〉〈j|A ⊗ |i〉〈j|B for suitable bases

{|i〉A}d−1
i=0 and {|i〉B}d−1

i=0 , and consider the projec-
tive measurement with measurement operators Pk :=
|k〉〈k|A ⊗ 1B . We have

ωAB :=
∑
k

PkρABPk =
∑
i

αii|ii〉〈ii|AB ,

and hence, S(AB)ω = H({α11, . . . , αd−1,d−1}) =
S(B)ρ. Moreover, S(AB)ρ ≤ S(AB)ω , since projec-
tive measurements cannot decrease the von Neumann
entropy. It follows that

I(A〉B)ρ = S(B)ρ − S(AB)ρ ≥ 0,

and furthermore I(A〉B)ρ = I(B〉A)ρ.

Lemma III.3. If ρAB is PPT, then I(A〉B)ρ ≤ 0.

Proof. Clearly, DΓ(ρAB) = 0 for all PPT states ρAB .
Hence,

0 = DΓ(ρAB) ≥ D↔(ρAB) ≥ I(A〉B)ρ,

where the last inequality follows from the hashing
bound (1).

We now turn to the question of how to con-
struct MC states. We say that a collection of vectors
{|ψα〉AB}lα=1 of a bipartite quantum system with
Hilbert space HA⊗HB ∼= Cd⊗Cd is simultaneously
Schmidt decomposable (SSD) [25], if there exist bases
{|i〉A}d−1

i=0 and {|i〉B}d−1
i=0 ofHA andHB , respectively,

such that

|ψα〉AB =
d−1∑
i=0

λ
(α)
i |i〉A ⊗ |i〉B (39)

for α = 1, . . . , l. In contrast to the usual Schmidt de-
composition for a single bipartite pure quantum state,
the coefficients λ(α)

i are complex numbers in general.
It is clear by inspection of (39) and Definition III.1
that, given a probability distribution {pα}lα=1, the
(mixed) state

∑l
α=1 pα|ψα〉〈ψα|AB is MC if the states

{|ψα〉AB}lα=1 are SSD.
We are therefore interested in necessary and suffi-

cient conditions for a collection of vectors to be SSD.
By considering the associated operators {op(ψα)}lα=1

defined through (6), this is equivalent to the exis-
tence of a weak singular value decomposition for
{op(ψα)}lα=1, by which we mean that there are
unitary matrices U and V such that the matrices
U op(ψα)V are (complex) diagonal for all α =
1, . . . , l. Necessary and sufficient conditions for the ex-
istence of such weak singular value decompositions for
a set {Ai}i of matrices were found by Wiegmann [26]
and further refined by Gibson [27]. In our context, their
results can be phrased as follows:

Theorem III.4 ([26], [27]). For quantum systems A
and B, let {|ψα〉AB}lα=1 be a collection of vectors,
and let S = {op(ψα)}lα=1 be the set of associated

12
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operators. Then {|ψα〉AB}lα=1 is SSD if and only if
for all X,Y, Z ∈ S ,

XY †Z = ZY †X.

The concept of simultaneous Schmidt decomposi-
tion was introduced in quantum information theory by
Hiroshima and Hayashi [25], who proved an alterna-
tive version of Theorem III.4.

An easy consequence of Theorem III.4 is the fol-
lowing

Lemma III.5. Let U be a unitary on Cd. Then (1d⊗
U)|Φ+〉 and (1d ⊗ U †)|Φ+〉 are SSD. Moreover, the
set {(1d ⊗ U i)|Φ+〉}d−1

i=0 is SSD.

Proof. Setting |ψ1〉 = (1d⊗U)|Φ+〉 and |ψ2〉 = (1d⊗
U†)|Φ+〉, we have op(ψ1) = 1√

d
U† and op(ψ2) =

1√
d
U . Since [U,U †] = 0 holds for any unitary, the

condition of Theorem III.4 is satisfied for all choices of
X,Y, Z. The same argument shows that the set {(1d⊗
U i)|Φ+〉}d−1

i=0 is also SSD.

C. Upper bounds on the two-way distillable entangle-
ment

To prove the main result of this section, we define
the relative entropy of entanglement EXR (ρAB) for
X ∈ {PPT, SEP} as

EXR (ρAB) := min
σAB∈X

D(ρAB‖σAB),

where SEP and PPT denote the sets of bipartite sepa-
rable and PPT states on HA ⊗HB , respectively.

Proposition III.6. The two-way distillable entangle-
ment is convex on convex combinations of MC and
PPT states.

Proof. First, recall that DΓ(ρAB) ≤ EPPT
R (ρAB) [8].

Consider now the following decomposition of a state
ρAB ,

ρAB =
k∑
i=1

piωi +
l∑

i=k+1

piτi, (40)

where the ωi are MC states and the τi are PPT.
Since ωi is MC, there are bases {|i〉A}i and
{|i〉B}i of HA and HB , respectively, such that
ωi =

∑
k,l αkl|kk〉〈ll|AB . The dephased state ω′i =∑

k αkk|kk〉〈kk|AB is manifestly PPT, and satisfies
[8]

D(ωi‖ω′i) = I(A〉B)ωi = D↔(ωi).

Since the set of PPT states is convex, the state σAB :=∑k
i=1 piω

′
i +
∑l
i=k+1 piτi is also PPT, and we obtain

the following chain of inequalities:

D↔(ρAB) ≤ DΓ(ρAB)

≤ EPPT
R (ρAB)

≤ D(ρAB‖σAB)

≤
k∑
i=1

piD(ωi‖ω′i) +
l∑

i=k+1

piD(τi‖τi)

=
k∑
i=1

piD↔(ωi) +
l∑

i=k+1

piD↔(τi)

=
k∑
i=1

piI(A〉B)ωi ,

where we used joint convexity of D(·‖·) in the last
inequality.

We can now formulate our main result:

Theorem III.7. For a bipartite state ρAB , we have
the following upper bound on the two-way distillable
entanglement:

D↔(ρAB) ≤ EMP(ρAB) ≤ EF (ρAB),

where the quantity EMP(ρAB) is defined as

EMP(ρAB) := min
k∑
i=1

piI(A〉B)ωi ,

and the minimization is over all decompositions of
ρAB of the form

ρAB =

k∑
i=1

piωi +

l∑
i=k+1

piτi,

with MC states ωi and PPT states τi.

Proof. The first inequality immediately follows from
Proposition III.6, minimizing over all decompositions
of ρAB of the form (40). The second inequality follows
from the fact that every pure state ψAB is MC.

We also define

EM(ρAB) := min
k∑
i=1

piI(A〉B)ωi ,

where the minimization is now restricted to decompo-
sitions of ρAB into MC states alone, that is, decom-
positions of the form

ρAB =
k∑
i=1

piωi,

where the ωi are MC. Clearly, EMP(ρAB) ≤ EM(ρAB)
for all ρAB .

Lemma III.8.
(i) For all ρAB , EPPT

R (ρAB) ≤ EMP(ρAB).
(ii) For all ρAB , ESEP

R (ρAB) ≤ EM(ρAB).
(iii) If ρAB is MC, then

EM(ρAB) = I(A〉B)ρ

= I(B〉A)ρ

13
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= ESEP
R (ρAB).

(iv) There are states ρAB for which

EMP(ρAB) < ESEP
R (ρAB).

Proof. (i) is clear from the proof of Theorem III.7. The
same line of arguments for a decomposition ρAB =∑k
i=1 piωi into MC states alone, together with the fact

that EPPT
R (ρAB) ≤ ESEP

R (ρAB) for all ρAB , shows (ii).
(iii) Let ρAB =

∑
piωi be a further decomposition

of the MC state ρAB into MC states ωi. Then

I(A〉B)ρ ≤
∑

i
piI(A〉B)ωi

by the convexity of the coherent information. Hence,
the trivial decomposition of ρAB into MC states
achieves a minimum among all such decompositions,
and hence EM(ρAB) = I(A〉B)ρ.

To prove that for an MC state ρAB also
ESEP
R (ρAB) = I(A〉B)ρ, we note that for general states

ρAB we have [28]

ESEP
R (ρAB) ≥ max{I(A〉B)ρ, I(B〉A)ρ, 0}.

Together with (ii), this implies for an MC state ρAB
that

I(A〉B)ρ = EM(ρAB) ≥ ESEP
R (ρAB) ≥ I(A〉B)ρ.

Hence, this chain of inequalities collapses, and the
same holds for the one with I(B〉A)ρ.

To prove (iv), note that any entangled PPT (and
hence bound entangled) state ρAB satisfies 0 =
EMP(ρAB) < ESEP

R (ρAB).

In view of Lemma III.8, an interesting question is
whether

EMP(ρAB)
?
≤ ESEP

R (ρAB)

holds for all ρAB .

D. Block-diagonal states in the generalized Bell basis

In this section, we investigate our upper bound
EMP(·) on quantum states that are block-diagonal
in the generalized Bell basis {|Φn,m〉}n,m=0,...,d−1,
where |Φn,m〉 is defined by (5). To this end, we first
note that the SSD criterion for pure states given in
Theorem III.4 reduces to a simple algebraic relation for
the generalized Bell basis (see also [25] for a similar
relation):

Corollary III.9. A subset {|Φnα,mα〉}α=1,...,l of the
generalized Bell states with l ≤ d is SSD if and only if
the following equation is satisfied for all α, β, γ ∈ [l]:

mα(nγ − nβ)− nγmβ

= nα(mγ −mβ)−mγnβ mod d (41)

Note that the rank of an MC state ρAB =∑
i,j αij |i〉〈j|A ⊗ |i〉〈j|B is equal to the rank of

the |A| × |B| matrix (αij), and hence at most
min{|A|, |B|}. In this section, |A| = |B| = d, and
we focus on MC states with maximal rank d that
lie in the span of a collection of d distinct Bell
states {|Φnα,mα〉}α=1,...,d. Let us first introduce a
different numbering k ≡ k(n,m) = nd + m + 1
for the generalized Bell states, and take d = 3 and
B = {1, 6, 8} as an example. Then Corollary III.9
implies that any state of the form

ωAB =
∑
i, j∈B

αij |Φi〉〈Φj |AB (42)

with (α)ij ≥ 0 and Trα = 1 is MC. In fact, we
can use Corollary III.9 to search for all blocks B of
size d such that a state in the span of {|Φi〉}i∈B is
MC. Table II lists all these blocks of size d for d ∈
{2, 3, 4, 5}.

Corollary III.9 and Table II provide a method of
constructing MC states that are block-diagonal in the
generalized Bell basis, allowing us to test the quality
of our upper bound EMP(·) on D↔(·). As a benchmark
we use the following SDP bound on D↔(·) recently
derived by Wang and Duan [29]:

EWD(ρAB) := log λ(ρAB), (43)

where λ(ρAB) is the solution of the SDP

maximize: Tr(ρABRAB)

subject to: RAB ≥ 0,−1AB ≤ RΓB
AB ≥ 1AB .

In [29] the authors proved that

EWD(ρAB) ≤ EN (ρAB)

for all states ρAB , where

EN (ρAB) = log ‖ρΓB
AB‖1

is the logarithmic negativity [30], [31]. We set d = 3
and consider states of the form

ρAB = (1− p)ωAB + p τAB , (44)

where p ∈ [0, 1], the state ωAB is defined as in (42)
for a valid block B of size 3 from Table II, and τAB
is the following PPT entangled state [32]:

τAB =
1

5



1
2 0 0 0 1

2 0 0 0 1
2

0 1
2 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 1
2

0 0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 3
4 0

√
3

4
0 0 0 0 0 0 0 1

2 0
1
2 0 0 0 1

2 0
√

3
4 0 3

4


In Figure 1, we compare the bounds EMP(·) and

EWD(·) for 1000 random states of the form given
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d blocks

2 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

3 {1, 2, 3}, {1, 4, 7}, {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {2, 5, 8}, {2, 6, 7},
{3, 4, 8}, {3, 5, 7}, {3, 6, 9}, {4, 5, 6}, {7, 8, 9}

4 {1, 2, 3, 4}, {1, 3, 9, 11}, {1, 3, 10, 12}, {1, 5, 9, 13}, {1, 6, 11, 16},
{1, 7, 9, 15}, {1, 8, 11, 14}, {2, 4, 9, 11}, {2, 4, 10, 12}, {2, 5, 12, 15},
{2, 6, 10, 14}, {2, 7, 12, 13}, {2, 8, 10, 16}, {3, 5, 11, 13}, {3, 6, 9, 16},
{3, 7, 11, 15}, {3, 8, 9, 14}, {4, 5, 10, 15}, {4, 6, 12, 14}, {4, 7, 10, 13},
{4, 8, 12, 16}, {5, 6, 7, 8}, {5, 7, 13, 15}, {5, 7, 14, 16}, {6, 8, 13, 15},
{6, 8, 14, 16}, {9, 10, 11, 12}, {13, 14, 15, 16}

5 {1, 2, 3, 4, 5}, {1, 6, 11, 16, 21}, {1, 7, 13, 19, 25}, {1, 8, 15, 17, 24},
{1, 9, 12, 20, 23}, {1, 10, 14, 18, 22}, {2, 6, 15, 19, 23}, {2, 7, 12, 17, 22},
{2, 8, 14, 20, 21}, {2, 9, 11, 18, 25}, {2, 10, 13, 16, 24}, {3, 6, 14, 17, 25},
{3, 7, 11, 20, 24}, {3, 8, 13, 18, 23}, {3, 9, 15, 16, 22}, {3, 10, 12, 19, 21},
{4, 6, 13, 20, 22}, {4, 7, 15, 18, 21}, {4, 8, 12, 16, 25}, {4, 9, 14, 19, 24},
{4, 10, 11, 17, 23}, {5, 6, 12, 18, 24}, {5, 7, 14, 16, 23}, {5, 8, 11, 19, 22},
{5, 9, 13, 17, 21}, {5, 10, 15, 20, 25}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15},
{16, 17, 18, 19, 20}, {21, 22, 23, 24, 25}

TABLE II: Blocks of size d for d ∈ {2, 3, 4, 5} giving rise to MC states according to Corollary III.9.

in (44) (selecting both the block B as well as the
matrix α uniformly at random) for the values p ∈
{0.1, 0.25, 0.5, 0.75}. For a state ρAB of the form
given in (44), our bound evaluates to

EMP(ρAB) = (1− p)I(A〉B)ω

due to Theorem III.7. Evidently, it performs particu-
larly well for low values of p, for which the state ρAB
is almost MC.

Particular examples of states of the form as in (44)
are

θ
(k)
AB = (1− p)

∑
i, j∈{1,6,8}

α
(k)
ij |Φi〉〈Φj |AB + p τAB

(45)

for k = 1, 2, where

α(1) =
1

2
(|0〉〈0|+ |ψ〉〈ψ|)

α(2) = |ψ〉〈ψ|

|ψ〉 =
1√
3

(|0〉+ |1〉+ |2〉),

and where {|0〉, |1〉, |2〉} is the computational basis of
C3. In Figure 2, we plot EMP(θ

(k)
AB) and EWD(θ

(k)
AB)

for k = 1, 2 as a function of p.

IV. EXPLOITING SYMMETRIES

In this section, we derive special forms of the upper
bound EDA(·) on the one-way distillable entanglement
(Theorem II.8), and of the upper bound EMP(·) on the
two-way distillable entanglement (Theorem III.7), re-
spectively, when evaluated on states with symmetries.
In particular, we focus on the classes of isotropic and
Werner states [33]. To this end, we first demonstrate
how both EDA(·) and EMP(·) can be understood as
convex roof extensions. We then exploit a theorem
by Vollbrecht and Werner [10] that simplifies the

calculation of such convex roof extensions under a
given symmetry, and apply these results to isotropic
and Werner states.

A. Bounds on distillable entanglement as convex roof
extensions

We first review convex roof extensions of a function.
Let K be a compact convex set, M ⊂ K an arbitrary
subset, and ϕ : M → R := R ∪ {∞} a function. The
convex roof ϕ̂ of ϕ on K is defined as

ϕ̂ : K −→ R

x 7−→ inf
{∑

i
λiϕ(mi)

}
,

where the infimum is over all convex decompositions
x =

∑
i λimi with mi ∈M for all i.

Denoting the sets of degradable, antidegradable,
maximally correlated, and positive partial transpose
states by DEG,ADG,MC, and PPT, respectively, we
have

EDA(ρAB) = inf
{∑

i : ωi∈DEG
piI(A〉B)ωi

}
,

where the infimum is over all convex decompositions
ρAB =

∑
i piωi with ωi ∈ DEG ∪ ADG for all i, and

EMP(ρAB) = inf
{∑

i : ωi∈MC
piI(A〉B)ωi

}
,

where the infimum is over all convex decompositions
ρAB =

∑
i piωi with ωi ∈ MC ∪ PPT for all i.

Choosing K as the set of bipartite quantum states
(which is convex and compact) and

ϕ(ρAB) = max{I(A〉B)ρ, 0},

it follows that both quantities can be regarded as the
convex roof extension of ϕ for different choices of the
subset M :

ϕ̂(ρAB) =

{
EDA(ρAB) for M = DEG ∪ ADG
EMP(ρAB) for M = MC ∪ PPT.
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Fig. 1: Plot of EWD(ρAB) [29] given in (43) against EMP(ρAB) from Theorem III.7, with each dot
corresponding to one of 1000 randomly generated (according to the Haar measure) states ρAB as defined in
(44) with the indicated value of p ∈ {0.1, 0.25, 0.5, 0.75} from top left to bottom right, respectively. The
red line indicates that EMP(·) = EWD(·), and a dot above (resp. below) the red line indicates a state ρAB

for which EMP(ρAB) < EWD(ρAB) (resp. EMP(ρAB) > EWD(ρAB)).

We now consider states that are invariant under
a given symmetry group. First, we introduce some
notation. Let G be a compact group, and let K be
a set with a G-action3

G×K 3 (g, k) 7−→ g · k ∈ K

that preserves convex combinations, i.e.,

g · (λx+ (1− λ)y) = λg · x+ (1− λ)g · y

3For a group G and a set K, a G-action on K is a map G×K →
K, (g, k) 7→ g · k satisfying (gh) · k = g · (h · k) for all g, h ∈ G
and k ∈ K, and e · k = k for all k ∈ K and the identity element
e of G.

for x, y ∈ K and λ ∈ [0, 1]. Denoting the Haar
measure on G by dg, we define the G-twirl

TG(x) :=

∫
G

dg g · x,

and we denote by TG(K) := {k ∈ K : TG(k) = k} the
set of all G-invariant elements in K. For any function
ϕ : M → R, we define the following function on G-
invariant elements:

ϕG : TG −→ R
x 7−→ inf {ϕ(y) : y ∈M, TG(y) = x}.

(46)
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Fig. 2: Plot of EMP(θ
(k)
AB) from Theorem III.7 (blue, solid) and EWD(θ

(k)
AB) [29] given in (43) (red, dashed)

as a function of p for k = 1 (left) and k = 2 (right), where θ(k)AB for k = 1, 2 are defined in (45). Both
quantities are upper bounds on the two-way distillable entanglement D↔(θAB).

The main result we employ is the following theorem
by Vollbrecht and Werner [10] (see also [34]).

Theorem IV.1 ([10]). Let G be a compact group with
an action on a compact convex set K that preserves
convex combinations, and let ϕ : M → R be a function
defined on an arbitrary subset M of K. Furthermore,
assume that G ·M ⊂ M and ϕ(g · x) = ϕ(x) for all
g ∈ G and x ∈M . Then for all x ∈ TG(K),

ϕ̂(x) = ϕ̂G(x).

In particular, if ϕG is itself convex on TG(K), then
ϕ̂(x) = ϕG(x).

B. Isotropic states and depolarizing channels

We choose G = U(d), the unitary group on Cd,
and K = D(HA ⊗ HB), where |A| = |B| = d. We
consider the following action of a unitary U ∈ G on
a quantum state ρAB ∈ K:

U · ρAB := (U ⊗ Ū)ρAB(U ⊗ Ū)†.

This action is linear and thus preserves convex com-
binations. The set of G-invariant states, TG(K), is the
one-parameter family {Id(f) : f ∈ [0, 1]} of isotropic
states:

Id(f) := fΦ+ +
1− f
d2 − 1

(1d2 − Φ+).

We have TG(ρAB) = Id(f) with f = 〈Φ+|ρAB |Φ+〉
for all ρAB . Hence, setting

ϕ(ρAB) = max{I(A〉B)ρ, 0}
M = DEG ∪ ADG,

we can compute EDA(Id(f)) by first computing
ϕG(Id(f)) and then taking the convex hull of this
function, which coincides with the convex roof ϕ̂G.

The d-dimensional isotropic state Id(f) is the Choi
state of the qudit depolarizing channel

Dp(ρ) = (1− p)ρ+
p

d2 − 1

∑
(i,j)∈I

XiZjρ(XiZj)†,

where p = 1− f , the sum runs over the index set

I := {(i, j) : 0 ≤ i, j ≤ d− 1, (i, j) 6= (0, 0)},

and X and Z are the generalized Pauli operators
defined in (4). Since the depolarizing channel is
teleportation-simulable,4 its quantum capacity is equal
to the one-way distillable entanglement of its Choi
state [13],

Q(D1−f ) = D→(Id(f)).

Note that the quantum capacity does not increase
under the assistance by forward classical commu-
nication [13], [36]. Hence, evaluating our upper
bound EDA(Id(f)) directly yields an upper bound on
Q(D1−f ).

Johnson and Viola [37] proved that Id(f) is sym-
metrically extendible (and hence antidegradable by
Lemma A.1) for f ≤ 1+d

2d , and hence, EDA(Id(f)) = 0

4 Here, we call a channel teleportation-simulable, if the action
of the channel can be simulated by a teleportation protocol between
Alice and Bob using the Choi state of the channel as an entanglement
resource. More precisely, a channel N : A → B with Choi state
τA′B is called teleportation-simulable, if for any given input state
ρA the channel output N (ρA) can be obtained by Alice and Bob
performing a teleportation protocol on the joint state ρA ⊗ τA′B ,
where A and A′ are with Alice, and B is with Bob. Note that Alice
and Bob can establish the Choi state τA′B between them by Alice
sending one half of a maximally entangled state through the channel.

Teleportation-simulable channels in the above sense were called
Choi-stretchable in [35]. There, the authors also consider more
general simulation protocols of quantum channels, consisting of
trace-preserving LOCC operations acting on the input state to the
channel and a resource state shared between the two parties.
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for f ≤ 1+d
2d . Note that this was first proved for

d = 2 by Bennett et al. [38]. Moreover, Lemma A.2
in Section A shows that the maximal overlap of
any antidegradable state with the maximally entangled
state is at most 1+d

2d . Consequently, for f ≥ 1+d
2d we

can restrict M in the definition of ϕG in (46) to DEG,
the set of degradable states.

Numerics for low dimensions (d = 2, 3) suggest that
ϕG is convex on TG(K) = {Id(f) : f ∈ [0, 1]} as a
function of f , indicating that taking the convex roof in
the following theorem is not necessary (we interpret
Id(f) as the Choi state of the qudit depolarizing
channel Dp with p = 1− f ):

Theorem IV.2. For d ∈ N, d ≥ 2 and 0 ≤ p ≤ d−1
2d ,

we have the following upper bound on the quantum
capacity of the qudit depolarizing channel Dp:

Q(Dp) ≤ ϕ̂G(p),

where the function ϕG(p) is defined as

ϕG(p) := inf
ρAB∈DEGp

{I(A〉B)ρ},

and the infimum is over the set

DEGp := {ρAB ∈ DEG : 〈Φ+|ρAB |Φ+〉 = 1− p}.

Note that computing ϕG(p) is a non-convex opti-
mization problem, since the set DEG is not convex.
However, for low dimensions we can still solve this
problem numerically. For d = 2 we use the normal
form of degradable quantum channels derived by Wolf
and Pérez-Garcı́a [7] to efficiently carry out the opti-
mization in Theorem IV.2. We apply the result from
[7] to states by interpreting a bipartite state as the Choi
state of a CP, but not necessarily TP map. Hence, we
consider states of the form

ρAB =
2

r2
1 + r2

2

(
(1A ⊗K1)Φ+(1A ⊗K1)†

+ (1A ⊗K2)Φ+(1A ⊗K2)†
) (47)

where 0 ≤ r1, r2 ≤ 1, and for α, β ∈ R,

K1 =

(
r1 cosα 0

0 r2 cosβ

)
K2 =

(
0 r2 sinβ

r1 sinα 0

)
.

By an extension of the result (about channels) in
[7] to states, any quantum state ρAB of the form in
(47) is degradable or antidegradable. Moreover, for
these states, the condition 〈Φ+|ρAB |Φ+〉 = 1 − p in
Theorem IV.2 is equivalent to

(r1 cosα+ r2 cosβ)2

2(r2
1 + r2

2)
= 1− p. (48)

The minimization of I(A〉B)ρ over states ρAB of the
form (47) satisfying condition (48) can be carried

out using MatLab’s fmincon function. The result-
ing bound is plotted in Figure 3, together with the
previously known upper bound on Q(Dp) derived in
[11], [23]. We note that the upper bound derived in
[11], which is based on approximate degradability
of channels, is identical to the one obtained from
Theorem II.12 based on approximate degradability of
states.

For d = 3, we use another idea from [7] to
numerically optimize over degradable states. Given a
bipartite state ρAB together with its complementary
state ρAE , the degradability condition reads

ρAE = (idA⊗D)(ρAB). (49)

We regard ρAB and ρAE as (unnormalized) Choi
states of trace-non-preserving CP maps, and assign to
ρAB , ρAE , and the Choi state of the degrading map
D : B → E their respective transfer matrices T (·).5

The condition (49) then becomes

T (D) = T (ρAE)T (ρAB)−1, (50)

where we used the fact that composition and inver-
sion of channels translate to matrix multiplication and
inversion for their transfer matrices, respectively (see
e.g. [39]). It follows that ρAB is degradable if and only
if the linear map D defined through (50) is CP.

To numerically carry out the optimization in Theo-
rem IV.2, we use MatLab’s fmincon to optimize over
states ρAB satisfying 〈Φ+|ρAB |Φ+〉 = 1− p, and for
which T (ρAE)T (ρAB)−1 defines the transfer matrix
of a completely positive, trace-preserving degrading
map D : B → E. The resulting upper bound on Q(Dp)
is depicted in Figure 4.

We now consider the two-way setting. The best
known bound on D↔(Id(f)) is given by the PPT-
relative entropy of entanglement, which for isotropic
states is equal to the SEP-relative entropy of entangle-
ment, and admits a particularly simple formula [8]:

EPPT
R (Id(f)) = ESEP

R (Id(f))

= log d− (1− f) log(d− 1)− h(f).
(51)

In the following, we use the results from Section IV-A
to arrive at a different expression for this bound.

Rains [8] proved that 〈Φ+|ρAB |Φ+〉 ≤ 1
d holds for

any PPT state ρAB . Hence, for f ≥ 1
d we can restrict

to the set of maximally correlated states, M = MC.
Setting once again ϕ(ρAB) = max{I(A〉B)ρ, 0}, we
first show that the function ϕG defined in (46) achieves
the PPT-relative entropy of entanglement (51), and is
thus convex as a function of f :

5For a CP map N with Choi state τN , the transfer matrix
T (N ) is defined to be the matrix with elements 〈ij|T (N )|kl〉 =
〈lj|τN |ki〉. The map T is a linear involution, i.e., T 2 = id.
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Fig. 3: Upper and lower bounds on the quantum capacity Q(Dp) of the qubit depolarizing channel (d = 2) for
the interval p ∈ [0, 0.25]. The hashing bound (1) yields the channel coherent information (black, dashed) as
a lower bound on Q(Dp). Our upper bound ϕG(p) (blue, solid) obtained via Theorem IV.2 (which is convex
itself and thus equal to ϕ̂G(p)) is compared to the upper bound obtained in [11], [23] (red, dash-dotted).
Note that the latter is identical to the upper bound on D→(J (Dp)) obtained from Theorem II.12.

Lemma IV.3. Let ϕG(f) be defined as

ϕG(f) := inf
ρAB∈MCf

{I(A〉B)ρ},

where the infimum is over the set

MCf := {ρAB ∈ MC : 〈Φ+|ρAB |Φ+〉 = f}. (52)

Then for all d ≥ 2 and f ∈ [0, 1], we have

ϕG(f) = EPPT
R (Id(f)).

In particular, ϕG(f) is convex in f .

Proof. Consider the state

ρAB = fΦ0,0 +
1− f
d− 1

d−1∑
i=1

Φ0,i, (53)

where Φ0,0 = Φ+. Since the generalized Bell states
are orthogonal to each other, the state ρAB satisfies
〈Φ+|ρAB |Φ+〉 = f , and a simple calculation shows
that

I(A〉B)ρ = log d− (1− f) log(d− 1)− h(f).

It remains to be shown that ρAB ∈ MC.
By Corollary III.9, a mixture of the Bell states
{Φnα,mα}α=1,...,l with l ≤ d is MC if and only if (41)
holds for all α, β, γ ∈ [l]. Since (n1,m1) = (0, 0)
in our situation, (41) reduces to nαmβ = mαnβ

mod d for all α, β ∈ [l], and these conditions are
easily verified for the state ρAB defined in (53) with
{(nα,mα)}α=1,...d = {(0, 0), . . . , (0, d− 1)}.

Convexity of ϕG(f) now follows from convexity of
EPPT
R (Id(f)) in f , which can be seen as follows. First,

note that for any λ ∈ [0, 1], we have

λId(f1) + (1− λ)Id(f2) = Id(λf1 + (1− λ)f2).

Consider then the following:

EPPT
R (Id(λf1 + (1− λ)f2))

= inf
σ∈PPT

D(λId(f1) + (1− λ)Id(f2)‖σ)

≤ D(λId(f1) + (1− λ)Id(f2)‖λσ1 + (1− λ)σ2)

≤ λD(Id(f1)‖σ1) + (1− λ)D(Id(f2)‖σ2)

= λEPPT
R (Id(f1)) + (1− λ)EPPT

R (Id(f2)),

where in the first inequality we considered PPT-states
σi optimizing the PPT-relative entropy of Id(fi) for
i = 1, 2, respectively, and in the second inequality we
used joint convexity of the quantum relative entropy.

Hence, we arrive at the following result:

Theorem IV.4. For d ∈ N, d ≥ 2 and f ≥ 1
d ,

D↔(Id(f)) ≤ inf
ρAB∈MCf

{I(A〉B)ρ},
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Fig. 4: Upper and lower bounds on the quantum capacity Q(Dp) of the qutrit depolarizing channel (d = 3)
for the interval p ∈ [0, 0.33]. The hashing bound (1) yields the channel coherent information (black, dashed)
as a lower bound on Q(Dp). The function ϕ(p) obtained via Theorem IV.2, which is convex up to numerical
noise, is depicted in solid blue.

where the infimum is over the set MCf defined in (52).

C. Werner states
We again set G = U(d) and K = D(HA⊗HB), and

consider the following action of U ∈ G on ρAB ∈ K:

U · ρAB := (U ⊗ U)ρAB(U ⊗ U)†.

The set of G-invariant states is the one-parameter
family of Werner states {Wd(p) : p ∈ [0, 1]} [33] with

Wd(p) :=
1− p
d2 + d

(1d2 + Fd) +
p

d2 − d
(1d2 − Fd),

where Fd :=
∑d−1
i,j=0 |i〉〈j|⊗|j〉〈i| is the swap operator

on Cd ⊗ Cd. We have for all ρAB that TG(ρAB) =
Wd(p) with p = 1

2 (1− Tr(FdρAB)).
In the two-way setting, the best known upper bound

on the distillable entanglement D↔(Wd(p)) is Rains’
bound on DΓ(Wd(p)) [24]:

DΓ(Wd(p))

≤


0 0 ≤ p ≤ 1

2

1− h(p) 1
2 ≤ p ≤

1
2 + 1

d

log
(
d−2
d

)
+ p log

(
d+2
d−2

)
1
2 + 1

d ≤ p ≤ 1.

Note that for p ≥ 1/2 we have

EPPT
R (Wd(p)) = min

σ∈PPT
D(Wd(p)‖σ)

= D(Wd(p)‖Wd(1/2))

= 1− h(p), (54)

since the Werner states are PPT if and only if p ∈
[0, 1/2], and for p ≥ 1/2 the PPT-Werner state closest
(in relative entropy distance) to Wd(p) is Wd(1/2).
The expression for EPPT

R (Wd(p)) in (54) was proved
by Vedral et al. [40] for the case d = 2. Moreover,
Vollbrecht and Werner [10] derived an expression for
the SEP-relative entropy of entanglement of Werner
states in arbitrary dimensions that is identical to (54)
and implies it by the argument above. We see that
Rains’ bound on DΓ(Wd(p)) is equal to EPPT

R (Wd(p))
for 1

2 ≤ p ≤
1
2 + 1

d , and strictly tighter for p > 1
2 + 1

d .
We have for any PPT state σAB that Tr(FdσAB) ≥

0 and hence 1
2 (1 − Tr(FdσAB)) ≤ 1

2 , since Fd =

d(Φ+)ΓB and σΓB
AB ≥ 0 by assumption. Therefore,

we set M = MC for p ∈ ( 1
2 , 1), and ϕ(ρAB) =

max{I(A〉B)ρ, 0} as before. As for the isotropic
states, we first show that the function ϕG in (46)
achieves the PPT-relative entropy of entanglement, and
is thus convex:

Lemma IV.5. Let ϕG(p) be defined as

ϕG(p) := inf
ρAB∈MC′p

{I(A〉B)ρ},

where the infimum is over the set

MC′p := {ρAB ∈ MC : Tr(FdρAB) = 1− 2p}. (55)
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Then, for all d ≥ 2 and 1
2 ≤ p ≤ 1 we have

ϕG(p) = EPPT
R (Wd(p)).

In particular, ϕG(p) is convex in p.

Proof. We consider the state

ρAB = (1− p)Ψ+ + pΨ−,

where |Ψ±〉 = 1√
2
(|01〉 ± |10〉) satisfying Fd|Ψ±〉 =

±|Ψ±〉. Hence, Tr(FdρAB) = 1−2p, and furthermore
I(A〉B)ρ = 1 − h(p). Moreover, ρAB is MC as a
mixture of two Bell states [25], which concludes the
proof of the equality. The convexity of ϕG(p) in p
follows in the same way as in Lemma IV.3.

We thus arrive at the following result:

Theorem IV.6. For d ≥ 2 and p ≥ 1
2 , we have

the following upper bound on the two-way distillable
entanglement of Werner states:

D↔(Wd(p)) ≤ inf
ρAB∈MC′p

{I(A〉B)ρ},

where the infimum is over the set MC′p defined in (55).

V. CONCLUDING REMARKS

In this paper we derived upper bounds on the one-
way and two-way distillable entanglement of bipartite
quantum states. In both settings we identified ‘useful’
classes of states for which the regularized formulae for
D→(·) resp. D↔(·) reduce to the coherent informa-
tion I(A〉B)ρ, and thus a single-letter formula. These
useful states are given by degradable and maximally
correlated states, respectively. Moreover, we identified
‘useless’ states for which the distillable entanglement
is always zero. These are the antidegradable and PPT
states, respectively. Our upper bounds on the distillable
entanglement follow from the fact that in both the one-
way and two-way LOCC setting it is convex on convex
combinations of useful and useless states. The bounds
are similar in spirit to the additive extensions bounds
in [23], and always at least as good an upper bound as
the entanglement of formation. We also extended our
method to obtain an upper bound on the quantum ca-
pacity based on decompositions of a quantum channel
into degradable and antidegradable completely positive
maps, recovering a result by Yang [9].

By interpreting our upper bounds as convex roof ex-
tensions, we were able to formulate the upper bounds
on the distillable entanglement of isotropic and Werner
states as a non-convex optimization problem. For the
one-way distillable entanglement of the Choi state of
the qubit depolarizing channel, this optimization led to
an upper bound on its quantum capacity that is strictly
tighter than the best previously known upper bound
for large values of the depolarizing parameter. For the
two-way distillable entanglement of both isotropic and

Werner states, the non-convex optimization achieves
the respective PPT-relative entropy of entanglement,
and thus provides new expressions for the latter.

Comparing the one-way and two-way LOCC set-
tings with respect to how our upper bound performs
in comparison to previously known upper bounds on
the distillable entanglement, we notice the following
discrepancy: While we get a strictly tighter bound
in the one-way setting in certain cases, we can only
achieve the PPT-relative entropy of entanglement in
the two-way setting. This leads us to the following
question: Can we develop an extended theory of one-
way entanglement distillation in the same spirit as
Rains’ work on the PPT-distillable entanglement in
[8], [24]? One possible approach to develop such
a theory could be to augment the class of allowed
operations from one-way LOCC to antidegradability-
preserving operations.
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APPENDIX

Maximal overlap of antidegradable states with an
MES In order to prove Lemma A.2, we need the
following result characterizing antidegradable states:

Lemma A.1 ([41]). A state ρAB is antidegradable if
and only if it has a symmetric extension.

Using Lemma A.1, we can formulate the overlap
of antidegradable states with the maximally entangled
state as an SDP, for which strong duality holds:

Lemma A.2. The maximal overlap of an antidegrad-
able state ρAB with the maximally entangled state Φ+

can be formulated as the following SDP:

maximize:
1

2
Tr(ρABB′(ΦAB ⊗ 1B′ + ΦAB′ ⊗ 1B))

subject to: Tr(ρABB′) = 1

ρABB′ ≥ 0.

Proof. By Lemma A.1, the state ρAB is antidegradable
if and only if there is an extension ρABB′ with B′ ∼=
B satisfying TrB′ ρABB′ = ρAB and FρABB′F =
ρABB′ , where F is the swap operator on the BB′
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system. Hence, we can write any antidegradable state
ρAB as

ρAB = TrB′ ρ̃ABB′ ,

where ρ̃ABB′ = 1
2 (ρABB′ +FρABB′F) for some arbi-

trary (not necessarily symmetric) state ρABB′ . Substi-
tuting this in Tr(ρABΦAB) = Tr(ρ̃ABB′(ΦAB⊗1B′))
then gives the SDP in the lemma.

The solution of the dual problem in Lemma A.2
is equal to the largest eigenvalue of the operator
1
2 (ΦAB ⊗ 1B′ + ΦAB′ ⊗ 1B), and therefore equal
to 1+d

2d [37]. Hence, this is the maximal overlap of
any antidegradable state with the maximally entangled
state.
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[7] M. M. Wolf and D. Pérez-Garcı́a, “Quantum capacities of
channels with small environment,” Physical Review A, vol. 75,
no. 1, p. 012303, 2007.

[8] E. M. Rains, “Bound on distillable entanglement,” Physical
Review A, vol. 60, no. 1, pp. 179–184, 1999.

[9] D. Yang, “Upper bounds for capacities of quantum channels,”
in preparation.

[10] K. G. H. Vollbrecht and R. F. Werner, “Entanglement measures
under symmetry,” Physical Review A, vol. 64, no. 6, p. 062307,
2001.

[11] D. Sutter, V. B. Scholz, A. Winter, and R. Renner, “Approxi-
mate degradable quantum channels,” arXiv preprint, 2015.

[12] K. Brádler, N. Dutil, P. Hayden, and A. Muhammad, “Con-
jugate degradability and the quantum capacity of cloning
channels,” Journal of Mathematical Physics, vol. 51, no. 7,
p. 072201, 2010.

[13] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, “Mixed-state entanglement and quantum error cor-
rection,” Physical Review A, vol. 54, no. 5, pp. 3824–3851,
1996.

[14] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, “Purification of noisy
entanglement and faithful teleportation via noisy channels,”
Physical Review Letters, vol. 76, no. 5, pp. 722–725, 1996.

[15] L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete
classification of quantum ensembles having a given density
matrix,” Physics Letters A, vol. 183, no. 1, pp. 14–18, 1993.

[16] J. Watrous, Theory of Quantum Information. (to be pub-
lished), 2016.

[17] A. Winter, “Tight uniform continuity bounds for quantum
entropies: conditional entropy, relative entropy distance and
energy constraints,” arXiv preprint, 2015.

[18] D. Leung and G. Smith, “Continuity of quantum channel
capacities,” Communications in Mathematical Physics, vol.
292, no. 1, pp. 201–215, 2009.

[19] S. Lloyd, “Capacity of the noisy quantum channel,” Physical
Review A, vol. 55, no. 3, p. 1613, 1997.

[20] P. W. Shor, “The quantum channel capacity and coherent
information,” 2002.

[21] I. Devetak, “The private classical capacity and quantum capac-
ity of a quantum channel,” IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 44–55, 2005.

[22] I. Devetak and P. W. Shor, “The capacity of a quantum channel
for simultaneous transmission of classical and quantum infor-
mation,” Communications in Mathematical Physics, vol. 256,
no. 2, pp. 287–303, 2005.

[23] G. Smith and J. A. Smolin, “Additive extensions of a quantum
channel,” in 2008 IEEE Information Theory Workshop (ITW).
IEEE, 2008, pp. 368–372.

[24] E. M. Rains, “A semidefinite program for distillable entan-
glement,” IEEE Transactions on Information Theory, vol. 47,
no. 7, pp. 2921–2933, 2001.

[25] T. Hiroshima and M. Hayashi, “Finding a maximally correlated
state: Simultaneous schmidt decomposition of bipartite pure
states,” Physical Review A, vol. 70, no. 3, p. 030302, 2004.

[26] N. A. Wiegmann, “Some analogs of the generalized principal
axis transformation,” Bulletin of the American Mathematical
Society, vol. 54, no. 10, pp. 905–908, 10 1948.

[27] P. Gibson, “Simultaneous diagonalization of rectangular com-
plex matrices,” Linear Algebra and its Applications, vol. 9, pp.
45–53, 1974.

[28] M. B. Plenio, S. Virmani, and P. Papadopoulus, “Operator
monotones, the reduction criterion and the relative entropy,”
Journal of Physics A: Mathematical and General, vol. 33,
no. 22, pp. L193–L197, 2000.

[29] X. Wang and R. Duan, “Improved semidefinite programming
upper bound on distillable entanglement,” Physical Review A,
vol. 94, no. 5, p. 050301, 2016.

[30] G. Vidal and R. F. Werner, “Computable measure of entangle-
ment,” Physical Review A, vol. 65, p. 032314, 2002.

[31] M. B. Plenio, “Logarithmic negativity: A full entanglement
monotone that is not convex,” Physical Review Letters, vol. 95,
p. 090503, 2005.

[32] P. Horodecki, “Separability criterion and inseparable mixed
states with positive partial transposition,” Physics Letters A,
vol. 232, no. 5, pp. 333 – 339, 1997.

[33] R. F. Werner, “Quantum states with einstein-podolsky-rosen
correlations admitting a hidden-variable model,” Physical Re-
view A, vol. 40, no. 8, pp. 4277–4281, 1989.

[34] B. M. Terhal and K. G. H. Vollbrecht, “Entanglement of for-
mation for isotropic states,” Physical Review Letters, vol. 85,
no. 12, pp. 2625–2628, 2000.

[35] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fun-
damental limits of repeaterless quantum communications,”
arXiv preprint, 2015.

[36] H. Barnum, E. Knill, and M. A. Nielsen, “On quantum fideli-
ties and channel capacities,” IEEE Transactions on Information
Theory, vol. 46, no. 4, pp. 1317–1329, 2000.

[37] P. D. Johnson and L. Viola, “Compatible quantum correlations:
Extension problems for werner and isotropic states,” Physical
Review A, vol. 88, no. 3, p. 032323, 2013.

[38] D. Bruß, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Mac-
chiavello, and J. A. Smolin, “Optimal universal and state-
dependent quantum cloning,” Physical Review A, vol. 57, no. 4,
pp. 2368–2378, 1998.

[39] M. M. Wolf, Quantum Channels and Operations - Guided
Tour. Lecture notes, 2012.

[40] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight,
“Quantifying entanglement,” Physical Review Letters, vol. 78,
no. 12, pp. 2275–2279, 1997.

[41] G. O. Myhr, “Symmetric extension of bipartite quantum states
and its use in quantum key distribution with two-way postpro-

22



0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2776907, IEEE
Transactions on Information Theory

cessing,” Ph.D. dissertation, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2010.

Felix Leditzky is a postdoctoral research associate at JILA, Uni-
versity of Colorado Boulder. After obtaining diploma degrees in
Mathematics (2012) and Physics (2013) from the University of
Vienna, Austria, he started a PhD in Quantum Information Theory at
the University of Cambridge, UK, under the supervision of Nilanjana
Datta. He obtained his PhD degree in 2016, and subsequently joined
Graeme Smith’s group at JILA, University of Colorado Boulder.
His research focuses on quantum information theory, in particu-
lar quantum Shannon theory, the structure of quantum channels,
mathematical properties of entropic quantities, and strong converse
theorems.

Nilanjana Datta received the Ph.D. degree from ETH Zurich,
Switzerland, in 1996. From 1997 to 2000, she was a Postdoctoral
Researcher at the Dublin Institute of Advanced Studies, C.N.R.S.
Marseille, and EPFL in Lausanne. In 2001 she joined the University
of Cambridge, U.K., as a Lecturer in Mathematics of Pembroke
College, and a member of the Statistical Laboratory in the Centre
for Mathematical Sciences. She is currently a Lecturer in Quantum
Information Theory at the Department of Applied Mathematics and
Theoretical Physics (DAMTP), and a Fellow of Pembroke College.
Her scientific interests include quantum information theory and
mathematical physics.

Graeme Smith has been an assistant professor of physics at the
University of Colorado Boulder, and an associate fellow at JILA
since 2016. He has recently been awarded an NSF CAREER award.
Graeme was previously a research staff member (2010-2016) and
postdoc (2007-2010) at IBM’s TJ Watson Research Center. He
was a research associate in computer science at the University of
Bristol from 2006-2007, and received a PhD in theoretical physics
from Caltech in 2006. Graeme is interested in computation and
communication in noisy settings, quantum Shannon theory, coding
theory, cryptography, quantum estimation and detection, optical
communications, and the physics of information.

23


