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Useful states and entanglement distillation

Felix Leditzky, Nilanjana Datta, and Graeme Smith

Abstract—We derive general upper bounds on the
distillable entanglement of a mixed state under one-way
and two-way LOCC. In both cases, the upper bound
is based on a convex decomposition of the state into
‘useful’ and ‘useless’ quantum states. By ‘useful’, we
mean a state whose distillable entanglement is non-
negative and equal to its coherent information (and
thus given by a single-letter, tractable formula). On the
other hand, ‘useless’ states are undistillable, i.e., their
distillable entanglement is zero. We prove that in both
settings the distillable entanglement is convex on such
decompositions. Hence, an upper bound on the distillable
entanglement is obtained from the contributions of the
useful states alone, being equal to the convex combination
of their coherent informations. Optimizing over all such
decompositions of the input state yields our upper bound.
The useful and useless states are given by degradable and
antidegradable states in the one-way LOCC setting, and
by maximally correlated and PPT states in the two-way
LOCC setting, respectively. We also illustrate how our
method can be extended to quantum channels.

Interpreting our upper bound as a convex roof ex-
tension, we show that it reduces to a particularly sim-
ple, non-convex optimization problem for the classes of
isotropic states and Werner states. In the one-way LOCC
setting, this non-convex optimization yields an upper
bound on the quantum capacity of the qubit depolarizing
channel that is strictly tighter than previously known
bounds for large values of the depolarizing parameter. In
the two-way LOCC setting, the non-convex optimization
achieves the PPT-relative entropy of entanglement for
both isotropic and Werner states.

I. INTRODUCTION

A. Entanglement distillation

Entanglement is an integral part of quantum in-
formation theory and quantum mechanics, acting as
an indispensable resource for quantum information
protocols such as teleportation [1], superdense coding
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[2], or entanglement-assisted classical [3] and quan-
tum [4] communication through quantum channels. In
these protocols, the entanglement resource is usually
assumed to have the special form of independent
and identically distributed (i.i.d.) copies of an ebit
|®,) = %(H)O) + |11)), that is, a pure maximally
entangled state between two qubits. This assumption
simplifies the aforementioned protocols and makes
them amenable to a detailed theoretical analysis as
well as experimental realization in the laboratory. It
is therefore important to find entanglement distillation
protocols, which convert n copies of a noisy or mixed
bipartite entangled state into m,, ebits & to arbitrary
precision with increasing n.

In a general entanglement distillation protocol, two
parties (say, Alice and Bob) are allowed to use local
operations and classical communication (LOCC). One
usually distinguishes between the following two set-
tings: either the classical communication is restricted
to only one-way communication from Alice to Bob,
or two-way communication between Alice and Bob
is possible. In both settings, Alice and Bob initially
share n copies of a mixed bipartite state p 45, and their
goal is to obtain, via one-way or two-way LOCC, a
state that is close to @%m” with respect to a suitable
distance measure (such as the purified distance [5]).
If the distance between the final and the target state
vanishes asymptotically, then the asymptotic rate at
which ebits are generated, lim,,_,o, m,/n, is called
an achievable rate for one-way (two-way) entangle-
ment distillation. The one-way distillable entanglement
D_,(pap) is defined as the supremum over all achiev-
able rates under one-way LOCC. Likewise, the two-
way distillable entanglement D, (pap) is defined as
the supremum over all achievable rates under two-way
LOCC. Since every one-way LOCC operation is also
a two-way LOCC operation, we have for all bipartite
states pap that

D_,(paB) < De(paB).

Devetak and Winter [6] proved the hashing bound,
establishing the coherent information as an achievable
rate for one-way entanglement distillation (and thus
also for two-way entanglement distillation):

D_,(pag) > I(A)B),, (1)

where the coherent information is defined as
I(A)B), = S(B),—S(AB),, with the von Neumann
entropy S(A), == —Tr(pa log p4). Furthermore, they
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derived the following regularized formulae for the
distillable entanglement under one-way and two-way
LOCC [6]:

o1 n
D_(pap) = lim ~DO(p3p) e

1 n
Des(pap) = lim —DE)(p3). (3)

Here, DS})(‘) for * € {—, <>} is defined as

DM (pap) = I(A")B')a(

A ABSA B P)’
where the maximization is over one-way and two-way
LOCC operations A: AB — A’ B’, respectively.

Similar to the quantum capacity, the regularizations
in (2) and (3) render the distillable entanglement
intractable to compute in most cases. Hence, it is
desirable to identify classes of bipartite states for
which the formulae in (2) and (3) reduce to single-
letter formulae that can be easily computed. Moreover,
we are interested in computable upper bounds on
D_,(pap) and D, (pap) for arbitrary bipartite states.
We address both problems in the present paper.

B. Method and main results

To obtain computable upper bounds on the regu-
larized formulae (2) and (3) for the distillable en-
tanglement under one-way and two-way LOCC, we
first identify classes of ‘useful’ and ‘useless’ states
in both settings. Here, we call a state pap useful,
if Dil)(pAB) is equal to the coherent information
I(A)B), for x € {—, <}, and thus additive on tensor
products p%%. It then follows immediately from (2)
and (3) that also D, (pap) = I(A)B),. In the one-way
setting, the useful states are degradable states (DEG)
(cf. Definition I1.2), while in the two-way setting the
useful states are maximally correlated states (MC)
(cf. Definition IIL.1). Note that we have MC C DEG.

On the other hand, useless states o4p are such
that DV (6%%) is zero for all n € N, from which
D,(cap) = 0 follows. The class of useless states is
given by antidegradable states (cf. Definition I1.2) in
the one-way setting, and by states with positive partial
transpose (or PPT states for short) in the two-way
setting. We list the four classes of states in Table I
below.

useful  useless
1-way  DEG ADG
2-way MC PPT

TABLE I: Useful and useless states for one-
way and two-way entanglement distillation.
DEG, ADG, MC, and PPT stand for degrad-
able, antidegradable, maximally correlated,
and positive partial transpose, respectively.

The crucial step in proving our main results is to
observe that D,(-) is convex on convex combinations
of the corresponding useful and useless states. This is
proved in Proposition II.7 for the one-way setting by
adapting an argument by Wolf and Pérez-Garcia [7],
and in Proposition II1.6 for the two-way setting in-
spired by an argument by Rains [8]. Together with the
known values of the distillable entanglement on useful
and useless states (given by their coherent information
and 0, respectively), this proves the upper bounds on
the one-way distillable entanglement in Theorem I1.8
and on the two-way distillable entanglement in Theo-
rem III.7, which constitute our main result. We note
that in both settings the class of useful states includes
all pure quantum states (that is, every pure state is both
degradable and maximally correlated). Hence, any
pure-state ensemble of a bipartite state yields a decom-
position into useful states. In both settings, the optimal
such pure-state ensemble yields the entanglement of
formation, and our upper bounds can be understood
as an improvement over the latter. Moreover, in the
one-way setting our result can be straightforwardly
extended to quantum channels, yielding an analogous
upper bound on the quantum capacity of a quantum
channel in Theorem II.14 that was first reported by
Yang [9].

Finally, we focus on the distillable entanglement
of isotropic states and Werner states. Interpreting our
upper bounds on the distillable entanglement as convex
roof extensions allows us to use a result by Voll-
brecht and Werner [10] that exploits the symmetries
of isotropic states and Werner states to facilitate the
computation of the convex roof extension. The result is
a simplification of our upper bound to a (non-convex)
optimization problem that can be solved numerically
for small dimensions. In particular, this yields an upper
bound on the quantum capacity of the qubit depolar-
izing channel that is tighter than the best previously
known upper bound for large values of the depolarizing
parameter.

The rest of this paper is structured as follows. We
first fix some notation in Section I-C. We then dedicate
Section II to developing the method outlined above
for one-way entanglement distillation. Furthermore,
we introduce and discuss the notion of approximately
(anti)degradable states in Section II-E, which is in-
spired by and analogous to the notion of approximately
degradable quantum channels in [11]. The derivation
of our main result for two-way entanglement distil-
lation is carried out in Section III. Apart from the
results mentioned above, we also discuss a method for
constructing decompositions into maximally correlated
states via the generalized Bell basis in Section III-D.
In Section IV we derive the non-convex optimization
form of our upper bounds for isotropic and Werner
states. Finally, we give some concluding remarks in
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Section V. The appendix contains a discussion of
antidegradable states and their maximal overlap with
maximally entangled states.

C. Notation

Throughout the paper we only consider finite-
dimensional Hilbert spaces. For Hilbert spaces #; and
Ho, we denote by B(Hi,H2) the set of linear maps
from H; to Ho, and we write B(H) = B(H, H) for the
algebra of linear operators on a single Hilbert space H.
Upper-case indices are used to label quantum systems:
for a Hilbert space H 4 corresponding to a quantum
system A, we write [1))4 € H 4 and pg € B(H4), and
we use the notation Ha, 4,... = Ha, @Ha, D.... We
write |A| .= dim H 4 for the dimension of a quantum
system A with associated Hilbert space H 4, and rk p4
for the rank of the operator p4. We use the shorthand
A = B to indicate that the Hilbert spaces associated
to A and B are isomorphic, Ha = Hp. A quantum
state (or simply state) is an operator p4 € B(H 4) with
pa > 0and Trps = 1, and we denote the set of states
on Ha by D(Ha). We write 14 = |){(1p|4 € B(Ha)
for the rank-1 projector associated to the pure state
)4 € Ha.

The von Neumann entropy of a state p4 is de-
fined by S(A), = —Tr(palogpa), the coherent
information of a bipartite state pap by I(A)B), =
S(B), — S(AB),, and the conditional entropy by
S(A|B), = —I(A)B),. For a probability distribution
{pi}:, the Shannon entropy is defined by H ({p;};) =
— >, pilogp;. For p € [0,1], the binary entropy is
defined by h(p) := —plogp — (1 — p)log(1 — p). All
exponentials and logarithms are taken to base 2.

A quantum channel A': B(H) — B(K) is a linear,
completely positive (CP), trace-preserving (TP) map
between the algebras B(7) and B(K) of linear opera-
tors on Hilbert spaces H and K. We write N': A — B
for a quantum channel from B(H4) to B(Hp). Let
N(pa) = Trg(VpaVT) be the Stinespring represen-
tation of A with the isometry V: Hy — Hp @ HE.
Then the complementary channel N¢: A — E is de-
fined by N¢(pa) = Trg(VpaVT). We often omit the
identity map denoted by id, i.e., foramap T: A — A’
acting on the A part of a state pap, we also write
T(pap) instead of (T ®@1idg)(pan).

Let {|®, m)}n,m=0,...d—1 be the generalized Bell
basis defined as follows. We define the generalized
Pauli operators X and Z via their action on a fixed
basis {|k)}4_} of C4,

X|k) = |k + 1(mod d))

Z|k) = |k, @

where w := exp(2mi/d) is a d-th root of unity.
The generalized Pauli operators satisfy XZ = wZX.

Setting | ) == f Z
|[Prm) = (La @ X" Z")| D), ()

which SatiSfy <(I)n,m|q>n/,m’> = 6n,n’5m,m’~

Finally, for a vector [¢)) = >, Ayli)a ®
|7)B € Ha ® Hp, we define an associated operator
op(¥ag) € B(Hp,Ha) by

}:&A

II. ONE-WAY ENTANGLEMENT DISTILLATION

! |id), we define

op(YaB) : (- (6)

A. Operational setting

Given a mixed bipartite state pap, the one-way
distillable entanglement D_,(pap) is defined as the
optimal rate of distilling ebits from many copies of
pap via local operations and forward (or one-way)
classical communication (LOCC) from Alice to Bob.

A general one-way LOCC operation can be modeled
as a quantum instrument T: A — A’M, defined by

T(0a) = Zm

where {|m)},, is an orthonormal basis for the classical
register M, and for each m the map T,,,: A — A’ is
CP such that ) T,, is TP.

As mentioned in the introduction, Devetak and
Winter [6] derived the following regularized formula
for the one-way distillable entanglement:

T (04) @ [m)(m|ar,

D_(pan) = lim ~DW(p5R)
where D(_Q (paB
D(_1>) (PAB

) can be expressed as
— /
)= mj@xzm A I(ANYB),. . (7)

Here, the maximization is over instruments 7: A —
A’M, and we set p,, = )%me(pAB), with A, =
Tr(T,,(pap)) denoting the probability of obtaining
the outcome m of T'. Equivalently, (7) can be written
as

DY (pap)

Instead of maximizing the coherent information in
(8) over instruments 7°, it can be more convenient to
consider a maximization over isometric extensions of
an instrument in the following way. First, we note that
it suffices to consider instruments 7' = Zm T ®
|m){m| where each of the CP maps T,,, has only one
Kraus operator, i.e., Tj,(-) = K,,,- K, for each m and
operators K,,: A — A’ [6]. In this case, an isometric
extension V: A — A’M N can be defined as!

V=Y Kpn®|mhy ®|m)y 9)

:mj@XI(A’>BM)T(pAB). )

'In the general case where each TP map T}, might have more
than one Kraus operator, say {K,, ;};, an isometric extension can
be defined by including an additional system F' with orthonormal
basis {|¢m, ;) F}m,; that acts as the environment for each T, .
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for a classical register N = M. Since ), T, =
>, Ky - K}, is TP by definition of a quantum in-
strument, we have Zm K;;LKm = 1 4, which implies
VTV = 14. Hence, V is indeed an isometry, and we
have T'(ps) = Trn(VpaVT) for all ps. Using (9),
we can write (8) as

DY (pap) = max [(A)BM),,  (10)

where wa/ gy = Trny(VpapVh).
Lemma IL1. DY (pap) > 0 for all bipartite states
PAB-

Proof. Since D) (pap) can be expressed as a max-
imization over all instrument isometries V' of the
form (9) as stated in (10), the lemma is proved
by constructing a particular V' for which we obtain
I(A"YBM),, = 0 with wapy = Try(VpapVT).

To this end, let |¢) apr be a purification of pap,
and consider a Schmidt decomposition of |¢) 4 g With
respect to the bipartition A|BE,

|9)aBE = Zl Aili) ali) BE,

where the Schmidt coefficients A\; > 0 for all 7. We
define the instrument isometry V: A — A’MN,

Vo= Z i) ar (il a @ |i)pr ® |i)w,

where A’ 2 A. Applying V to the purification |p) apE
of pap, we obtain the pure state

\w)armnpe = VI|9)apr = Zl Ailiii) ar v i) BE,S
whose marginals wp)s and wgy are given by
wen = ) ANl @ Trg i) (il e
wen =) ANy @ Trp [0) (il
Evaluating the coherent information of the state
warpMm yields
I(AYBM), = S(BM),, — S(A'BM),,
= S(BM), — S(EN),,
= N [S(Trp |i)(ilsp)
=S(Trp |i)(ilsE)]
=0,

which proves the claim. O

B. (Conjugate) degradable and antidegradable states

We now define the classes of ‘useful’ and ‘use-
less’ states for one-way entanglement distillation, as
explained in Section I-B.

Definition IL2. Let psp be a bipartite state with
purification |¢) 4pg. The state pap is called:

(i) degradable, if there is an isometry U: B — E'G
with E' 2 F such that for the state |p) ap g =
U|p) apr we have

(1)

(ii) conjugate degradable, if (11) holds up to com-
plex conjugation, that is,

PAE = PAE = QAE;

var =C(par) = daE,

where C denotes entry-wise complex conjugation
with respect to a fixed basis of £’ = F;

(iii) antidegradable, if there is an isometry V: F —
B'F with B’ = B such that for the state

[¥)aBB'F = V|P) apr we have
Yap =1YaB = ¢aB-

We note that Definition 1.2 is independent of the
chosen purification of p 4 g, since any two purifications
of pap are related by an isometry acting only on the
purifying systems. We can then compose the (conju-
gate) (anti)degrading isometries from Definition 1.2
with the isometry relating the different purifications.

The coherent information of a degradable state p4p
is non-negative, I(A)B), > 0, since

I(A)B), = I(AEG),
> I(A)E'),
=I1(A)E)y
— —1(4)B),,

where we used the data processing inequality for the
coherent information in the first inequality, and the du-
ality relation I(A)B),, = —I(A)E), for a pure state
|} ApE in the last equality. Using a similar argument,
an antidegradable state o 4 g has non-positive coherent
information, I(A)B), < 0. Symmetric states, which
are both degradable and antidegradable, therefore have
zero coherent information.

Every pure state |¢)) 45 is degradable, which can be
seen by choosing an arbitrary purification |¢) apr =
|¥)ap ® |x)g with some pure state |x)g, and
considering the isometry U defined by U|f)p =
0 ® |x)E- A large class of mixed (conjugate)
(anti)degradable states can be obtained from (conju-
gate) (anti)degradable quantum channels. We call a
quantum channel N': A — B degradable, if there
exists a quantum channel D: B — E (called a
degrading map) such that

N¢=DoN.

The channel N is conjugate degradable [12], if instead
of (12) we have

CoN¢=DoN,

where C denotes entry-wise complex conjugation with
respect to a fixed basis as in Definition II.2. Finally,

12)
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a channel N is called antidegradable, if there exists a
quantum channel A: E — B (called an antidegrading
map) such that

N = Ao N°©.

Let now |®) 44 be a maximally entangled state be-
tween A’ = A and A, then the Choi state T4 of
N: A — B is defined as

TA'B ::./\/(CI)A/A). (13)

Similarly, we define the Choi state 74 5 = N(® 4/ 4)
of the complementary channel N¢. The following
result is obvious:

Lemma IL3. Let N': A — B be a quantum channel.
Then the Choi state T4/ p as defined in (13) is (conju-
gate) (anti)degradable if and only if N is (conjugate)
(anti)degradable.

Finally, we note that we occasionally simplify Defi-
nition II.2 to the following (equivalent) form, which is
closely related to the channel picture above: a state
pap Wwith purification |¢)app and ‘complementary
state’ pap = Trp ¢apg is degradable if there ex-
ists a CPTP degrading map D: B — E such that
pae = D(pap). In this case, the degrading isometry
U from Definition I1.2 can be chosen as the Stinespring
isometry (cf. Section I-C) of D. Conversely, every
degrading isometry as in Definition II.2 gives rise to
a degrading map by defining D(-) = Trg(V - V1)
and identifying E with E’. We also use analogous
simplifications in the case of conjugate degradability
and antidegradability.

C. Upper bounds on the one-way distillable entangle-
ment

The hashing bound (1) states that for any state p4p
the coherent information I(A) B), is an achievable rate
for one-way entanglement distillation. The first result
of this section shows that for (conjugate) degradable
states the coherent information is the optimal rate for
entanglement distillation:

Proposition I1.4. Let pap be a (conjugate) degrad-
able state. Then DY) (pap) is equal to the coherent
information I(A)B), and thus additive: for all n € N,

DD (p5) = nDWD (pag) = nI(4)B),.

Hence, the one-way distillable entanglement of pap is
equal to the coherent information,

D_y(pap) = I(A)B),.

Proof. Let us first assume that p o p is degradable, that
is, we have

(14)

PAE = PAE’ (15)

where |p)apceg = Wlp)apr and W: B — E'G is
a degrading isometry. Let us furthermore define the
following pure states:

lw)arminBe = VI|p)aBE
|o)armnEce =Ww)amnse = V]p)arcE,

where V: A — A’MN is given as in (9). Consider
now the following steps:

I(AYBM),, = I(A'YE'GM),

=S(E'GM), — S(AE'GM),,
= S(E'GM), — S(NE),
= S(E'GM), — S(ME),
= S(E'GM), — S(ME"),  (16)
= S(G|E'M),
< S(G|E'),
= S(GE") — S(E),
— S(GE'), — S(E), (17)
=S(GE')y — S(AAMNE'G),
=S(B), — S(AB),

=1(A)B),

where the third line follows from the fact that
oA MNE'GE 1S a pure state, the fourth line follows
from the symmetry in M and N (which is evident
from the definition (9) of the isometry V'), the fifth line
follows from the degradability (15) of the state pap,
the seventh line follows from the fact that conditioning
reduces entropy, the ninth line follows again from the
degradability of p4p, and the tenth line follows from
the fact that o4/ prNE/GE 1S pure.

Hence, the trivial isometry achieves the maximum
in maxy I(A"YBM),, and DY) (pap) = I(A)B),.
Since the coherent information is additive on tensor
products, we then have D) (p%7%) = nI(A)B),, and
(14) follows from (2).

If pap is only conjugate degradable, (15) is replaced
by

par = C(parr), (18)

where C denotes entry-wise complex conjugation with
respect to a fixed basis. Note that both o and oy g
are classical-quantum states, that is, they are of the
form ., pualm) (mlar @ 75 and 3, pra ) (mlas &
T, respectively, with 7' = C (TE?,) for all m. Hence,
we can use (18) instead of (15) in steps (16) and (17)
above, since the von Neumann entropy is invariant
under complex conjugation. This yields the claim in
the case of conjugate degradability of p4p. O

The following lemma shows the well-known fact
(see e.g. [13]) that the one-way distillable entangle-
ment of antidegradable states is 0. We provide a short
proof for the sake of completeness.
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Lemma IL.5. Let o4 be an antidegradable state.
Then DY) (0 a5) =0 and D_,(cap) = 0.

Proof. Let |¥°)apgr be a purification of o045, and
denote by A: E — B the antidegrading map satis-
fying oap = A(cag), where o4y = Trp1°. Let
V:A— A’MN be an arbitrary isometry of the form
(9), and consider the following steps for the coherent
information evaluated on the state Vo5V 1:

I(AYBM) < I(A'YEM)
— _I(A")BN)
= —I(A"YBM),

where we used data processing with respect to A in the
inequality, duality for the coherent information in the
first equality, and symmetry in M <+ N in the second
inequality. It follows that I(A")BM) < 0 for any
instrument isometry V', and hence, Dg)(UAB) < 0.
Together with Lemma I1.1, this proves D) (0 45) = 0
for all antidegradable states o 4p. Since 0%, is an-
tidegradable for all n € N (with the antidegrading map
given by A®"), we then have D_,(c45) = 0. O

We now derive a general upper bound on the one-
way distillable entanglement of arbitrary, not neces-
sarily degradable, bipartite states. To this end, we first
prove the following proposition, which shows that we
can ignore the contributions from antidegradable states
for the D()(-) quantity.

Proposition 1L.6. Let p 4, g, be degradable and o 4, ,
be antidegradable. Then

D(—1>) (pAlBl ® UAZBQ) = D(—1>) (pAlBl)'
Proof. We first observe that

Dg})(pAlBl ® UA232) > Dg)(pAlBl)

holds for any two states pa,p, and 04,p, not nec-
essarily degradable and antidegradable. This follows
from extending an optimal instrument for p4, p, triv-
ially to Ao and using the data processing inequality
for the coherent information with respect to tracing
out the By system.

To prove the other inequality, let p4,p, with pu-
rification [¢?)4,p, r, be degradable with degrading
map D: By — Ej, and let 04,5, with purifica-
tion |17) 4, B, E, be antidegradable with antidegrading
isometry W': Ey — BjEy such that |7)a,5,5,5; =
W) A, B, E, satisfies

TAyB, = TA;By = OA3Bs-

Denoting by Fp, p; the swap operator exchanging B»
and B, we define the state

1

1 A,B,8,E,05 = —= (IT) ABaBLEL @ [0) 0
V2

+F B,y |T) A, BBy, © 1))

which satisfies [2) = Fp,p; ® Xcy[€2) and Qa,p, =
0A,B,- Here, X, denotes the Pauli X operator on
the Cp system. Let T': A; Ay — A’M be an arbitrary
instrument with isometry V: A; Ay — A’M N, then
we have

I(Bla MBQ)T(p(X)T) > I(E1, NBé)(DOT)(p@T))

which is equivalent to

S(B1) + S(MBy) — S(E1) — S(NBj)

> S(MByBy) — S(NE1B})  (19)

by the data processing inequality for the mutual infor-
mation with respect to D, and because

S(MB2)1(p9r) = S(NB3)1(per)-
Consider now the following steps:

I(A")M B1B2) 1(p50)
= S(MB1B)1(p00) — S(A'MB1B3) (00
=S(MB;1Bsy) — S(NElBéEQCB)T(F@T)
=S(MB;1Bs) — S(NElBé) + S(NElBé)
— S(NElBéEéCB)

< S(B1) — S(Er) + S(MBs) — S(NBj)
+ I(E3Cp) N ELBy)

=I(A1)B;) + I(EQCB>NElBé),

(20)

ey

where we used (19) in the inequality, and once again
(20) in the last equality. For the second coherent
information in (21), observe that

I(Ey,Cp)N E1By) < I(E;Cp)N By By)
= [(E;Cp)M B1 By)
= —I(E,Cp)A’NE; BY)
< —I(E3Cp)NE\ By).

Here, the first and second inequality follow from the
data processing inequality for the coherent information
with respect to D and partial trace over A’, respec-
tively. The second line follows from symmetry of
V(j9*) ® |2)) in M < N, and from the invariance
of the coherent information under the local unitary
Fp,5, ® Xcj. Hence, I(E5Cp)NEB;) < 0, and
(21) yields

DY (pa,p, ®0aym,) = mqf}X[(A/>MBle)
< I(A1)Bh)
= DY (pa,5,),
which we set out to prove. O

The last ingredient for our general upper bound
on the one-way distillable entanglement D_,(-) is
Proposition II.7 below, which establishes that D_,(+)
is convex on mixtures of states whose tensor products
have subadditive D)(-). This result is analogous to
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the corresponding property of the quantum capacity
proved by Wolf and Pérez-Garcia [7], and our proof
of Proposition II.7 closely follows the one given in
[7]. We introduce the following notation: For a binary
string w" = (wq,...,w,) € {0,1}", we denote
by |w"] {i: w; = 1}| the Hamming weight
of w", i.e. the number of 1’s in w™. For states py
and p; and w" = (wy,...,w,) € {0,1}", we set
Pun = Pu; @ ... & py, . We then have the following:

Proposition I1.7. Let py and p1 be bipartite states on
AB satisfying

1) pw" < Z D qu

= (n—w") DY (po) + [w"| DY) (p1)
(22)

for all w™ € {0,1}"™ and n € N. Then for all p €
[0,1],
Do (ppo + (1 =p)p1)
< pD—(po) + (1 =p) D (p1)-

Proof. Let n € N, fix an instrument T': A™ — A'M
and observe that we can write

(ppo + (1 —p)p1)®"

- ¥

wne{0,1}"

n |

p" L = p) gy

using the notation introduced above. Consider then the
following steps:

I(A/>BnM)T((ppoHl—p)m)@")
= IAVB M) (s, pnrami (1=p) o pun)
= I(A/>BnM)Ewn pr =W (1—p) @™ T (pyn)

<> A=) A B Mg,
(23)

where the second line follows from linearity of T,
and in the last line we used convexity of the co-
herent information. The latter in turn follows from
joint convexity of the quantum relative entropy, de-
fined for positive operators p,o with Trp = 1 as
D(pllo) == Tr(p(log p — log o)) if supp p C suppo,
and set to +oo otherwise, and the fact that we can
write [(A)B),; = D(tap||1a®7p). Maximizing both
sides of (23) over all instruments 7': A™ — A’M and
dividing by n, we obtain

DY ((ppo + (1 —p)p1)®™)

n

1 n
<= n=letlq
_ngp (

wn

LS

wn

)" DY) (pn)

IN

(1= p) "1 DY (po)

% > fwmpn (1 - p)'wn'] DY (py),
’ 24)

where the last line follows from assumption (22).
Setting j = |w"|, we have

1
7 D

Jw™|pn (1 = p)

1< /n
= <j>jp"‘J(1 —p)’
=1

=1
[ty
—<1—p>2< . )pn (1= p)
=0~ J
where we used the binomial identity j(’;) = n(? D

in the second line, and the variable transformatlon J—
j — 1 in the third line. Similarly, we obtain

1 o o
=Y =t = ) =,

and taking the limit n — oo in (24) yields

D_,(ppo + (1 —p)p1)

< pDY(po) + (1 —p) DY (py).
The claim now follows from the fact that the sub-

®n) _
nD®)(p;) for all n € N and i € {0,1}, since we
always have D) (p®") > nDU)(p) for any arbitrary
state p. Hence, D_, (p;) = D) (p;) fori € {0,1}. O

additivity property (22) implies that D) (p;

If pg and p; are degradable, then the state p,» is
also degradable for any w™ € {0,1}" and n € N.
Hence, by Proposition I1.4 the assumption (22) in
Proposition I1.7 is satisfied for degradable pg and p;.
By Proposition II.6, the assumption (22) is further-
more satisfied for tensor products of degradable and
antidegradable states.

In summary, Proposition I1.4, Proposition II.6, and
Proposition IL.7 prove that D_, (-) is convex on decom-
positions of an arbitrary bipartite state into degradable
and antidegradable states. Thus, we arrive at the upper
bound advertised in Section I-B, which we state in
Theorem I1.8 below. First, we recall the definition of
the entanglement of formation Er(pap) of a bipartite

state pap [13], [14]:
| min > piSUh),

AB1

Er(paB) : (25)

where the minimization is over all pure-state ensem-
bles {p;, ¥’y g} satisfying

pas =) pilv') W' |as.
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Bennett et al. [13] proved that Er(pap) is an up-
per bound on the one-way distillable entanglement:
D_(pag) < Er(pap). Our upper bound, Theo-
rem II.8 below, provides a refinement of this bound:

Theorem IL.8. Let pap be a bipartite state. Then,

D_(paB) < Epa(pap) < Er(pan), (26)

where the quantity Epa(pag) is defined as
k

Epa(pap) = mianiI(A

=1

)B)p

0

and the minimization is over all decompositions of the
form

PAB = vapz + Z Pigi

i=k-+1

27)

with degradable states p; and antidegradable states
g;.

Proof. The first inequality follows from applying
Proposition 1.4, Proposition II.6, and Proposition I1.7
to the decomposition of pap in (27). For the second
inequality in (26), recall that every pure state is degrad-
able. Hence, every decomposition of p4p into pure
states is of the form (27) (with [ = k), in particular
the one achieving the minimum in (25). O]

D. 2-qubit states and decompositions into degradable
states

In the case where both A and B are qubits, there
is a simple method of obtaining decompositions of a
bipartite state p4p into mixed degradable states. This
method is based on the following result by Wolf and
Pérez-Garcia [7] about qubit-qubit quantum channels,
which is easily extended to 2-qubit bipartite states:

Proposition 119 ([7]). Every qubit-qubit quantum
channel with a qubit environment is either degradable
or antidegradable. Likewise, every 2-qubit bipartite
state of rank 2 is either degradable or antidegradable.

Proposition I1.9 gives rise to an easy method for
obtaining decompositions of a state psp into mixed
degradable and antidegradable states. We first fix some
k € N such that 2k > rkpap, and decompose pap
into an even number 2k of pure states:

2k
pap =Y piti.
i=1

Note that every 2k x 2k unitary matrix gives rise to
such a pure-state decomposition [15]. We then obtain
rank-2 states from the pure states v; by grouping
together two of them at a time: for j = 1,...,k, we
set q; := p2j—1 + p2;, and form the states

p2‘
Ly,
4q;

(28)

pz; 1

wj = wj,

such that pap = Z§=1 gjw;. Forevery j =1,....k
the state w; satisfies rkw; = 2, and is therefore
either degradable or antidegradable by Proposition I1.9.
Hence, Theorem I1.8 yields the following upper bound

on D_,(paB):
D (pap) < min > gI(A)B).,,

j: w; deg.

where the minimization is over all 2k x 2k unitary
matrices U determining the pure-state decomposition
(28), and the sum is over all j such that w; is
degradable.

E. Approximate degradability

In [11], the authors introduced the concept of an
approximate degradable quantum channel and used it
to derive computable upper bounds on the quantum
capacity of a given quantum channel. More precisely,
given a quantum channel N and its complementary
channel V¢, they defined the degradability parameter
€ as the minimum distance in diamond norm between
the complementary channel A/¢ and a degraded version
D o N of the channel, minimized over all possible
CPTP degrading maps D. That is, the degradability
condition (12) for channels is only approximately
satisfied in diamond norm up to €. The authors derived
upper bounds on the quantum capacity Q(N') (and
the private capacity P(N')) of N in terms of the
channel coherent information of A" and error terms
in ¢ that vanish in the limit ¢ — 0, hence reducing
to the channel coherent information for degradable
channels with ¢ = 0. In this section, we formulate
the notion of approximate degradable states in an
analogous manner, using the trace distance between
quantum states instead. We then use similar ideas
as in [11] to derive an upper bound on the one-
way distillable entanglement in terms of the coherent
information and the degradability parameter.

For a bipartite quantum state p 4p with purification
daBE, the degradability parameter dg(pap) is de-
fined as
(29)

dg(pap) = HPAE —D(pan)ll;

DBE2

where par = Trp ¢ apg, the minimization is over
CPTP maps D: B — FE, and the trace norm is
defined as || X|; == TrvXTX. Similarly, we define
the antidegradability parameter adg(pap) as

(30)

adg(pap) = ||pAB — A(pae)ll,

min
ATESB2
where the minimization is over CPTP maps A: E —
B.

The usefulness of the notion of e-degradable quan-
tum channels stems from the fact that the degradability
parameter £ can be formulated as the solution of a
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semidefinite program (SDP) [11], and is hence effi-
ciently computable. With our definition of the (anti-
)degradability parameter in (29) (resp. (30)), this is
also possible:

Lemma IL10. dg(pag) is the solution of the SDP

1
minimize: E(Tr Xap+TrYag)

XaE ZAE — PAE)

>0
ZAE — PAE YaE

subject to: (
(31)

T5'E 2 0

g =1p

Xag,Yag 20,

where Zag = Trp [(pEBB, ® ]lE) (1a® TB'E)}
with B' = B and pap' = pap, and where T/ g is the
Choi state of the CPTP map D: B — E over which
we optimize in (29).

Similarly, adg(pap) is the solution of the SDP

1
minimize: Z(Tr Xap+TrYap)

) Xap Wag — paB
subject to: >0
) (WAB — PAB Yap -
Terg >0
TE/ = ILE’

XaB,Yap >0,
(32)

Tr g [(]13 X pz%) (]lA ® TE’B):|
with B/ = FE and pap' = pag, and where Tgig is
the Choi state of the CPTP map A: E — B over
which we optimize in (30).

where Wap =

Proof. Recall that for arbitrary X € B(H) the trace
norm || X||; can be expressed as the following SDP
(see e.g. [16, Ex. 1.15]):

1
minimize: 3 (Tr W7y + Tr Wa)

. (W —Xxt
subject to: (—X W, ) >0,
Wla W2 > 0.

The SDP formulations (31) and (32) of (29) and (30),
respectively, now follow immediately using the well-
known Choi-Jamiotkowski isomorphism. O

Based on ideas in [11], this notion of approximate
(anti-)degradability allows us to derive a general, eas-
ily computable upper bound on the one-way distillable
entanglement of an arbitrary bipartite state. Before
we state this result, we recall an improved version
of the Alicki-Fannes inequality recently proved by
Winter [17]:

Proposition I1.11 ([17]). Let pap and o op be states
with %HpAB —oagll1 <e then

|S(A|B), — S(A|B)s|

€
< 2¢el A 1 h .
<2log|A|+(1+¢) <1+5)

Theorem IL.12. Let psp be a bipartite state with pu-
rification |9) apg, and 6 > 0 be such that dg(pap) <
0. Then,

I(A)B), < D (paB)

5
<
_I@DB%+46MQEL+M1+®h(1+6)

where h(-) denotes the binary entropy.

Proof. Let D: B — E be the CPTP map such that
dg(pap) = %HPAE —D(pagp)|1 < 4, and denote by
W: B — E’G its Stinespring isometry with E' & F.
Consider the state p5 % and let T: A™ — A’M be an
instrument with isometry V,,: A" — A’MN,

Vi = Zm Un ® ‘m>M ® |m>N
For t =1,...,n we define the pure states

[9*) = |¢t>A"BtH...BnE;...E;Gl...GtEl...E"
=W @...0 Wil$)ihpe
0") = |9t>A/MNB,,+1...BnEg...E;Gl...GtEl...En
= Vn‘wt>a
where W, = W: B; — E!G, for every i = 1,...,t.
Abbreviating § = 6™, we have the following:
I(A,>MBn)Vnp®an
I(AYMG"E™)y
S(MG"E™)g — S(A'MG"E"™)g
S(MG"E™)g — S(NE™)g
S(MG"E'™)g — S(ME"™)g
+S(ME™)g — S(NE™)y
S(G"ME™)g+S(ME™)g — S(ME™),
S(G"[ME™)

+ 3 S(E|MEL Exst)g: — S(E|MEL,Esy)ge
t=1
(33)
where we used the symmetry of # in M and N in the
fifth equality, and the “telescope” identity [18], [11]
S(ME/”)O _ S(ME")Q
= S(E{IMEL,Es)g — S(E|MEL,Ex)g:

t=1

(34)
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in the last equality, defining X, = X;...X;_1,
and setting X1 equal to a trivial (one-dimensional)
system. X, and X, are defined analogously. The
identity (34) can be proved by simply writing out the
right-hand side.

For every t = 1,...,n, we have the following
bound on the trace distance between the two states
0, e, 5 p., and 0%, E.,B,5-, O0 Which the coherent
information is evaluated in (33) resp. (34):

et _ (91‘,
ME_ E;Ex¢ ME_ EiExy

1

t t
< HQA'MNE;tE;EM - 9A’MNE’<tEtE>t L

= waw/ Bl Esy ﬂ’fan;tEtE»
_HDPAB ®t®p®n t

— D(pap)® ! @ p8 t+1H1
S HD PAB ®t 1 ®t71H1

+D(pas) -
< 26,

1

- D(pAB
pael, + |55

Qn—

=5 Il

where the second inequality follows from the fact that

lp1 @ p2 — o1 ®0oall1 < [lp1 — p2lls + |lor — o021

holds for any states p1, p2, 01, 02. Hence, by Proposi-
tion II.11, for every ¢ = 1,...,n we have

S(Eg ‘ME/<tE>t)9* - S(Et |ME/<tE>t)0t

)
< -
2510g|E+(1+5)h(1+5>

L&

(35)

Using (35) in (33), we then obtain
I(A/>MBn)Vnp®an

< S(G"|ME"™)g + ne
G™|E™)g + ne
G"E™)g — S(E™)g + ne
G"E"™)g — S(E™)g + 2ne
G"E"™)g — S(AMNG"E"™)g + 2ne
I(AAMN)YG"E™)g + 2ne
I(A™)B") 00 + 2ne
= n(I(A)B), +2e),

IN

S
S
S

S(
(
(
(

(36)

where in the third inequality we used a similar rewrit-
ing as in (34) to bound the expression S(E™)g —
S(E'"™)e from above by ne. The claim now follows af-
ter dividing (36) by n and taking the limit n — co. [

There is a generalized method of finding upper
bounds on the one-way distillable entanglement that
encompasses both the approximate degradability (AD)
bound of this section and the ‘additive extension’ (AE)
bound in Theorem II.8 in Section II-C. As we will see
later in Section IV-B, for the quantum capacity of the

10

depolarizing channel the AD bound from [11] provides
the best upper bound for very low noise, while our AE
bound does best for higher noise levels (cf. Figure 3).
By searching for approximately degradable extensions
of quantum states (or channels, for that matter) we can
do no worse than either of these two methods.

The two methods can be combined as follows.
For a given bipartite state pap, fix & € N and
consider an extension papc with |C| = k, such that
Tro papc = pap. We assume C' to be in Bob’s
possession, and consider entanglement distillation with
respect to the A|BC bipartition in the following. Com-
puting the degradability parameter ¢ = dg(papc) of
this extension and using Theorem II.12, we obtain an
upper bound on the one-way distillable entanglement
D_,(papc) of papc, which in turn is an upper bound
on D_,(pap). We can then optimize this bound over
all extensions papc with |C| k. Restricting to
trivial extensions of p4p, this bound reduces to the
AD bound (Theorem II.12 in Section II-E). Restricting
to ‘flagged’ (anti)degradable extensions of the form

k
pasc =Y Pap @ lo)(clo,
c=1
where the states p%p are either degradable or an-
tidegradable, the bound reduces to the AE bound
(Theorem I1.8 in Section II-C). In this case, we have
pAB = »_.p%p- It would be interesting to conduct a
thorough numerical investigation of this approach.?

F. Extending our method to the quantum capacity

In this section we show that our method of obtaining
an upper bound on the one-way distillable entangle-
ment can be applied to quantum channels as well.
This allows us to easily establish upper bounds on
the quantum capacity of a quantum channel of the
form first reported by Yang [9]. We include our own
argument for the result here for completeness, as it is
a direct extension of the results in Section II-C. Before
explaining the main steps in the proof, we define the
quantum capacity of a quantum channel in terms of
the task of entanglement generation.

Let N': A — B be a quantum channel. In entangle-
ment generation, the goal for Alice (the sender) and
Bob (the receiver) is to generate entanglement between
them via n uses of the channel A. To this end, Alice
prepares a pure state |¢)san in her laboratory and

2We tried to implement this combined method to obtain upper
bounds on the quantum capacity of the depolarizing channel (see
Section IV-B). From prior numerical investigations, we know that
the dimension k of the extension register C' should be at least 6.
However, for the choice K = 6 the memory needed to solve the
SDP in the computation of dg(papc) exceeds 96GB (even when
exploiting the sparsity pattern of the Choi state of the depolarizing
channel). Hence, such a computation is not tractable with the
resources to which we have access.
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sends the A™ part through the channel A’®™. Bob then
applies a decoding map D: B" — A to the channel
output state that he received from Alice. The goal
is to obtain a final state (idas @D o N®")(paran)
that is close to a maximally entangled state ®%' - of
Schmidt rank M up to some error &,, (with respect to a
suitable distance measure). If there is an entanglement
generation protocol for which lim,_,, €, = 0, then
lim, oo logn M is called an achievable rate for entan-
glement generation. The quantum capacity Q(N) is
defined as the supremum over all achievable rates.

The following formula for the quantum capacity
was proved (with increasing rigor) by Lloyd [19],
Shor [20], and Devetak [21]:

QW) = lim QW W),

n—oo N

(37

where the channel coherent information QM) (N) is
defined as

Q(l)(N) = max I(A/>B)(id®/\/)(¢)'
|#) ara

Similarly to the formula (2) for the one-way distillable
entanglement, the formula (37) for the quantum capac-
ity involves a regularization and is therefore intractable
to compute in most cases. However, much like their
state counterparts for entanglement distillation, the
classes of degradable and antidegradable channels that
we defined in Section II-B play a special role: For a
degradable quantum channel A/, the channel coherent
information is additive [22],

QW N =nQW W),

and thus the regularized formula (37) reduces to the
single-letter formula Q(N') = Q™) (N). Moreover, for
antidegradable channels the channel coherent informa-
tion, and hence the quantum capacity, is zero due to
the no-cloning theorem [13].

Therefore, by once again using the “additivity
implies convexity” argument by Wolf and Pérez-
Garcia [7] (this time in its original form for quantum
channels), we arrive at an upper bound to the quantum
capacity, which is stated in Theorem II.14. This result
is analogous to the upper bound for the one-way
distillable entanglement in Theorem II.8. The only
missing piece is a channel analogue of Proposition II.6,
which shows that an antidegradable channel does not
contribute to the channel coherent information of a
degradable channel. This is a consequence of additivity
of the channel coherent information for degradable
channels [22] and the technique of degradable exten-
sions of a quantum channel [23]. Here, a quantum
channel A is called extension of a quantum channel
N, if thereA is another quantum channel R such that

N =RoN.

11

Proposition I1.13 ([22], [23]). Let Ni: A1 — B
be a degradable channel and Ny: Ay — By be an
antidegradable channel. Then,

QYN @ N2) = QW (N).

Proof. 1t is proved in [23] that for every antidegradable
channel A there is a degradable extension A of A
with vanishing quantum capacity, Q(A) = 0. Let N
be such a degradable extension for the antidegradable
channel N3. We then have the following:

QW (M) < QW(N ® Na)
< QN @ Ny)
= QM) + QM (N
— Q(l)(/\/l).

The first and second inequalities follow since ] @ N>
and V; can be obtained from N7 @ N5 and NV; @ N by
post-processing, respectively. The first equality follows
from additivity of Q()(-) for degradable channels
[22], and the second equality follows because 0 <
QW (N3) < Q(N2) = 0. Hence, the above chain of
inequalities collapses, which proves the claim. O

Finally, to arrive at our main result in this section we
note that the proof of Proposition II.13 goes through if
N7 and N3 are completely positive, but not necessarily
trace-preserving. Hence, we arrive at the following
result:

Theorem I1.14 ([9]). For a quantum channel N': A —
B, we have

k
QW) <min > p,QM (D),
i=1
where the minimization is over all decompositions of
the form

k l
N=>"pDi+ Y piA
i=1 i=k+1
with degradable and antidegradable CP maps D; and
A;, respectively.

III. TWO-WAY ENTANGLEMENT DISTILLATION
A. Operational setting

In this section, we consider the task of entanglement
distillation under two-way LOCC. In contrast to the
one-way setting, we do not concern ourselves with the
structure of two-way LOCC operations. Instead, we
consider the larger class of PPT-preserving operations,
that is, the class of operations A: AB — A’B’ for
which A(pap)'® > 0 whenever pi% > 0. Here,
I'p denotes transposition on the B system. We de-
fine the PPT-distillable entanglement Dr(p4p) in the
same way as D_,(pag) or D (pag), only this time
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with respect to PPT-preserving operations. Since every
LOCC operation is also PPT-preserving, we have

D (paB) < Dr(pan). (38)

In the same vein as Rains’ seminal work [8],
[24], we primarily derive upper bounds on the PPT-
distillable entanglement Dr(p4p). Subsequently, any
such bound is also an upper bound on D, (pap) by
(38).

B. Maximally correlated and PPT states

Following the method outlined in Section I-B, we
first identify the classes of useful and useless states in
the two-way LOCC and PPT setting.

Definition IIL.1 ([8]). A bipartite state p4p on C x
C% is said to be maximally correlated (MC), if there

exist bases {|i)4}9=) and {|i)p}¢=} such that
d—1
pap =Y aiyli)(jla®|i){jls,
i,j=0

where (a;;) is a positive semidefinite matrix with unit
trace.

Any pure state |¢)) 45 is MC, which can be seen by
considering a Schmidt decomposition

[W)as =) Ailida®li)e.

It then follows that )45 is MC with respect to the

bases {|i)a}; and {|i)p}; and the matrix (a;;) =
,)\]

Lemma IIL.2 ([24]). For maximally correlated states

PAB,

D (pag) = 1(A)B),

In particular, both 1(A)B), and I(B)A), are non-
negative for MC states.

I(B)A),.

Proof. Rains [24] proved that for MC states pap
the PPT-distillable entanglement Dr(pap) is equal to
either one of the coherent informations, and thus

D (paB) < Dr(pas) =1(A)B),

=I(B)A),.
On the other hand, by the hashing inequality (1) we
have

Des(pas) = max{I(A)B),, I(B)A),}.

Iz
The non-negativity of the coherent informations
of pap now follows since they are equal to
the operational quantity D, (pap). However, this
can also be proved directly. To this end, let

PAB = Z?;io a;;|9){jla @ |i)(j| g for suitable bases

12

{|i)a}¢=3 and {|i)p}¢=), and consider the projec-

tive measurement with measurement operators Py =
|k) (k|4 @ 15. We have

wap =Y PupapPe =Y aulii)(iiap,
K 5

and hence, S(AB), = H({o1,...,0q-14-1}) =
S(B),. Moreover, S(AB), < S(AB).,, since projec-
tive measurements cannot decrease the von Neumann
entropy. It follows that

I(A)B), = 5(B), — S(AB), > 0,

and furthermore I(A)B), = I(B)A),. O

Lemma IIL3. If p4p is PPT, then I(A)B), < 0.

Proof. Clearly, Dr(pagp) = 0 for all PPT states pap.
Hence,

0= Dr(paB) > D (pap) > I(A)B),,

where the last inequality follows from the hashing
bound (1). O]

We now turn to the question of how to con-
struct MC states. We say that a collection of vectors
{|Ya)ap},_; of a bipartite quantum system with
Hilbert space H 4 ® Hp = C? ® C? is simultaneously
Schmidt decomposable (SSD) [25], if there exist bases
{}3) a}=) and {|i) 5 }¢=7 of H 4 and H p, respectively,
such that

d—1
[Ya)aB = Z My a @ Ji)p (39)
i=0
for « = 1,...,[. In contrast to the usual Schmidt de-

composition for a single bipartite pure quantum state,
the coefficients AE“) are complex numbers in general.
It is clear by inspection of (39) and Definition III.1
that, given a probability distribution {p,}._;, the
(mixed) state Zla:1 PalVa)(Va|ap is MC if the states
{|Ya)aB},_; are SSD.

We are therefore interested in necessary and suffi-
cient conditions for a collection of vectors to be SSD.
By considering the associated operators {op (%) },_;
defined through (6), this is equivalent to the exis-
tence of a weak singular value decomposition for
{op(a)},—1» by which we mean that there are
unitary matrices U and V' such that the matrices
Uop(1,)V are (complex) diagonal for all «
1,...,l. Necessary and sufficient conditions for the ex-
istence of such weak singular value decompositions for
a set {A;}; of matrices were found by Wiegmann [26]
and further refined by Gibson [27]. In our context, their
results can be phrased as follows:

Theorem II1.4 ([26], [27]). For quantum systems A
and B, let {|po)ap},_, be a collection of vectors,
and let S = {op(¥a)},_; be the set of associated
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operators. Then {|1o)ap}l,_, is SSD if and only if
forall XY, Z € S,

Xvytz=2zvtx.

The concept of simultaneous Schmidt decomposi-
tion was introduced in quantum information theory by
Hiroshima and Hayashi [25], who proved an alterna-
tive version of Theorem III.4.

An easy consequence of Theorem II1.4 is the fol-
lowing

Lemma IIL5. Let U be a unitary on C%. Then (1,®
U)|®@,) and (14 @ UY)|®,) are SSD. Moreover, the
set {(1g @ UY)| @)} is SSD.

Proof. Setting |1)1) = (1,0U)|®4) and |¢2) = (14®
UT)|®,), we have op(v) = ﬁUT and op(vs) =
idU . Since [U,UT] = 0 holds for any unitary, the
condition of Theorem IIL.4 is satisfied for all choices of
X, Y, Z. The same argument shows that the set {(1,®
UH| @)} is also SSD. O

C. Upper bounds on the two-way distillable entangle-
ment
To prove the main result of this section, we define

the relative entropy of entanglement Ex (pap) for
X € {PPT, SEP} as

Ep (pap) = gf,r;igx D(paBlloan),

where SEP and PPT denote the sets of bipartite sepa-
rable and PPT states on H4 ® H g, respectively.

Proposition II1.6. The two-way distillable entangle-
ment is convex on convex combinations of MC and
PPT states.

Proof. First, recall that Dr(pag) < E¥T(pag) [8].
Consider now the following decomposition of a state

PAB>

PAB = szwl + Z PiTi,

i=k-+1

where the w; are MC states and the 7; are PPT.
Since w; is MC, there are bases {|i)a}; and
{li)g}: of Ha and Hp, respectively, such that
wi = > ai|kk)(ll|ap. The dephased state w; =
>k Okk|kk)(kk|ap is manifestly PPT, and satisfies
[8]

(40)

D(wil|w;) = I(A)B)u, = Do (wi).

Since the set of PPT states is convex, the state o4 :=
SN piwl+ S, pii is also PPT, and we obtain
the following chain of inequalities:

D (pa) < Dr(pas)
< ER ' (paB)

< D(paslloan)

k
<Y piD(willw)) +
=1
k
= ZpiDH (wi) +
=1
k
= pil(A)B).,,
1=1

where we used joint convexity of D(:]|-) in the last
inequality. O

l
> piD(mi||m)

i=k+1

l
Z PiDe (i)

i=k+1

We can now formulate our main result:

Theorem IIL.7. For a bipartite state pap, we have
the following upper bound on the two-way distillable
entanglement:

< Er(paB),

where the quantity Evp(pag) is defined as

oL

and the minimization is over all decompositions of
paB of the form

PAB = szwl + Z DiTi,

1=k+1
with MC states w; and PPT states T;.

D (paB) < Emp(pas)
) is

Emp(paB) Jeis

Proof. The first inequality immediately follows from
Proposition II1.6, minimizing over all decompositions
of pap of the form (40). The second inequality follows
from the fact that every pure state 45 is MC. O

We also define
k

Em(pap) = mianiI(
i=1

A)B)ws,

where the minimization is now restricted to decompo-
sitions of psp into MC states alone, that is, decom-
positions of the form

k
PAB = Zpiwm
i=1

where the w; are MC. Clearly, Eyp(pas) < Em(pan)
for all pap.
Lemma IIL.8.
(i) For all pap, ER " (paB) < Ewp(pan)-
(ii) For all pap, EY*(pas) < Em(pas).
(i) If pap is MC, then
Bu(pas) = I(A)B),
= I<B>A)p
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= E¥*(pas).

(iv) There are states pap for which

Ewvp(pan) < EF* (pap)-

Proof. (i) is clear from the proof of Theorem III.7. The

same line of arguments for a decomposition pap =

Zf: 1 Piw; into MC states alone, together with the fact

that E¥T(pap) < E3*(pap) for all pag, shows (ii).

(iii) Let pap = Y piw; be a further decomposition
of the MC state psp into MC states w;. Then

I(A>B)p < Zl piI(A>B)wri

by the convexity of the coherent information. Hence,
the trivial decomposition of psp into MC states
achieves a minimum among all such decompositions,
and hence Eni(pap) = I(A)B),.

To prove that for an MC state pap also
ESFP(pap) = I(A)B),, we note that for general states
pap we have [28]

B (pa) > max{I(4)B),, I(B)A),,0}.

Together with (ii), this implies for an MC state psp
that

I(A)B), = Bu(pas) = E¥*(pap) = I(A)B),.

Hence, this chain of inequalities collapses, and the
same holds for the one with I(B)A),.

To prove (iv), note that any entangled PPT (and
hence bound entangled) state pap satisfies 0
Enmp(pa) < E¥F(paB).

In view of Lemma IIL.8, an interesting question is
whether

O

?
Ewp(pap) < E3¥(pap)

holds for all p4p.

D. Block-diagonal states in the generalized Bell basis

In this section, we investigate our upper bound
Emp(-) on quantum states that are block-diagonal
in the generalized Bell basis {|®y ) }n,m=0,...d—1
where |®,, ,,) is defined by (5). To this end, we first
note that the SSD criterion for pure states given in
Theorem I11.4 reduces to a simple algebraic relation for
the generalized Bell basis (see also [25] for a similar
relation):

Corollary IIL9. A subset {|®y, m., )} a=1....1 of the
generalized Bell states with | < d is SSD if and only if
the following equation is satisfied for all o, 8,~ € [l]:

Mma(ny —ng) — nymg
= na(my —mg) —myng modd (41)

Note that the rank of an MC state pap
> i @ijli)(jla ® |i)(jlp is equal to the rank of

14

the |A| x |B| matrix (cy;), and hence at most
min{|A|, |B|}. In this section, |A| = |B| = d, and
we focus on MC states with maximal rank d that
lie in the span of a collection of d distinct Bell
states {|®y, m. ) a=1,..4- Let us first introduce a
different numbering k¥ = k(n,m) nd +m + 1
for the generalized Bell states, and take d = 3 and
B = {1,6,8} as an example. Then Corollary III.9
implies that any state of the form

wap = ) ayl®:)(®;lap
i,jEB
with (a);; > 0 and Tra = 1 is MC. In fact, we
can use Corollary III.9 to search for all blocks B of
size d such that a state in the span of {|®;)}icp is
MC. Table II lists all these blocks of size d for d €
{2,3,4,5}.

Corollary III.9 and Table II provide a method of
constructing MC states that are block-diagonal in the
generalized Bell basis, allowing us to test the quality
of our upper bound Eyp(-) on D, (-). As a benchmark
we use the following SDP bound on D, (-) recently
derived by Wang and Duan [29]:

(42)

Ewp(pap) =1log AM(paB), (43)
where A(pap) is the solution of the SDP

maximize: Tr(papRap)

subject to: Rap > 0,—14p < REXBB >1M1ap.
In [29] the authors proved that

Ewp(pag) < Ex(paB)

for all states p4p, where

En(pap) =log|lp'%Ih
is the logarithmic negativity [30], [31]. We set d = 3
and consider states of the form

pap = (1 —p)wap +pTas, (44)

where p € [0, 1], the state wap is defined as in (42)
for a valid block B of size 3 from Table II, and 745
is the following PPT entangled state [32]:

1000 L0 0 0 %
0 £ 0000 0 0 0
0042 000 0 0 O
000100 0 0 0
rap=-13 000 3 0 0 0 1
(00000011 0 0 0
000000 3 0 ¥
000O0O0O0O 0 3 0
V3
£ 000 4 0 ¥ 0o 3

In Figure 1, we compare the bounds Fyp(-) and
Ewp(-) for 1000 random states of the form given
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,9,11}, {2,4,10,12}, {2,5,12,15},

,10,15}, {4,6,12,14}, {4,7,10,13},

d  blocks

2 {1,2}, {1,3} {1,4}, {2,3}, {2,4}, {3,4}

3 {1,2,3} {1,4,7}, {1,5,9}, {1,6,8}, {2,4,9}, {2,5,8}, {2,6,7},
{3,4,8}, {3,5,7}, {3,6,9}, {4,5,6}, {7,8,9}

4 {1,2,3,4},{1,3,9,11}, {1,3,10,12}, {1,5,9,13}, {1,6,11,16},
{1,7,9,15}, {1,8,11,14}, {2,4
{2,6,10,14}, {2,7,12,13}, {2,8,10,16}, {3,5,11,13}, {3,6,9, 16},
{3,7,11,15}, {3,8,9,14}, {4,5
{4,8,12,16}, {5,6,7,8}, {5,7,13,15}, {5,7, 14, 16}, {6, 8, 13,15},
{6,8,14,16}, {9,10,11,12}, {13,14, 15,16}

5 {1,2,3,4,5}, {1,6,11,16,21}, {1,7,13,19,25}, {1,8,15,17, 24},
{1,9,12,20, 23}, {1,10, 14, 18,22}, {2,6, 15,19, 23}, {2,7,12,17, 22},
{2,8,14,20,21}, {2,9,11, 18,25}, {2,10,13,16, 24}, {3,6,14,17,25},
{3,7,11,20,24}, {3,8,13,18,23}, {3,9,15,16, 22}, {3,10,12,19, 21},
{4,6,13,20,22}, {4,7,15,18,21}, {4,8,12,16,25}, {4,9, 14,19, 24},
{4,10,11,17,23}, {5,6,12,18,24}, {5,7,14,16, 23}, {5,8,11, 19, 22},
{5,9,13,17,21}, {5, 10, 15,20, 25}, {6,7,8,9,10}, {11,12,13,14,15},
{16,17,18,19, 20}, {21, 22,23, 24, 25}

TABLE II: Blocks of size d for d € {2,3,4,5} giving rise to MC states according to Corollary IIL.9.

in (44) (selecting both the block B as well as the
matrix « uniformly at random) for the values p €
{0.1,0.25,0.5,0.75}. For a state psp of the form
given in (44), our bound evaluates to

Ewvip(pap) = (1 —p)I(A)B).,

due to Theorem IIL.7. Evidently, it performs particu-
larly well for low values of p, for which the state p4p
is almost MC.

Particular examples of states of the form as in (44)

are

) = o |0:)(®;] a5 +pTas
i,7€{1,6,8}

045 =(1—p)
(45)

for k = 1,2, where

RO % (10){0] + [0} (&)

a® = [y)(y|
1
|¥) = 7 (10) +[1) +12)),
and where {|0), |1),|2)} is the computational basis of

C3. In Figure 2, we plot Eyp(60%)) and Ewp (6%}

for £ = 1,2 as a function of p.

)

IV. EXPLOITING SYMMETRIES

In this section, we derive special forms of the upper
bound Epa(-) on the one-way distillable entanglement
(Theorem I1.8), and of the upper bound Eyp(-) on the
two-way distillable entanglement (Theorem II1.7), re-
spectively, when evaluated on states with symmetries.
In particular, we focus on the classes of isotropic and
Werner states [33]. To this end, we first demonstrate
how both Eps(-) and Eyp(-) can be understood as
convex roof extensions. We then exploit a theorem
by Vollbrecht and Werner [10] that simplifies the

calculation of such convex roof extensions under a
given symmetry, and apply these results to isotropic
and Werner states.

A. Bounds on distillable entanglement as convex roof
extensions

We first review convex roof extensions of a function.
Let K be a compact convex set, M C K an arbitrary
subset, and ¢: M — R := RU {oco} a function. The
convex roof ¢ of ¢ on K is defined as

$: K — R

x —> inf {Zz )\iw(mi)},

where the infimum is over all convex decompositions
x =Y. \sm; with m; € M for all 4.

Denoting the sets of degradable, antidegradable,
maximally correlated, and positive partial transpose
states by DEG, ADG, MC, and PPT, respectively, we
have

Epalpap) = inf {Zz w; EDEG piI(A>B)“”}’

where the infimum is over all convex decompositions
pag = Y, piw; with w; € DEG U ADG for all 4, and

Bur(pas) =inf {37 pid(4)B), }.

where the infimum is over all convex decompositions
paB = »;piw; with w; € MC U PPT for all i.
Choosing K as the set of bipartite quantum states
(which is convex and compact) and

¢(pap) = max{I(4)B),, 0},

it follows that both quantities can be regarded as the
convex roof extension of ¢ for different choices of the
subset M:

P(pap) = {

i: w; EMC

for M = DEG U ADG
for M = MC U PPT.

Epa(pan)
Emp(paB)

15

0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2017.2776907, IEEE

Transactions on Information Theory

—_

[\)

ot
T

EWD

041}

0.2

0.4 0.6
Envp

p=0.25
T T
1.25 . B
1 - |
0.75 |- =
z
&3
0.5 R
0.25 - =
0 | |
| | | | | |
0 0.2 04 06 0.8 1
Enp
p =075
T
0.5 R
0.4 R
0.3 R
S
£y
0.2 R
0.1} R
0 - |
| | | |
0 0.1 0.2 0.3
Ewmp

Fig. 1: Plot of Ewp(par) [29] given in (43) against Emp(pap) from Theorem III.7, with each dot
corresponding to one of 1000 randomly generated (according to the Haar measure) states pap as defined in
(44) with the indicated value of p € {0.1,0.25,0.5,0.75} from top left to bottom right, respectively. The
red line indicates that Evp(-) = Ewp(:), and a dot above (resp. below) the red line indicates a state pap
for which EMP(pAB) < EWD(PAB) (resp. EMp(pAB) > EWD(pAB)).

We now consider states that are invariant under
a given symmetry group. First, we introduce some
notation. Let G be a compact group, and let K be
a set with a G-action®

GxK>(g,k)—g-keK
that preserves convex combinations, i.e.,

g A +(1=Ny)=Ag-z+(1-Ng-y

3For a group G' and a set K, a G-action on K is a map G x K —
K, (g,k) — g -k satisfying (gh) -k =g-(h-k) forall g,h € G
and k € K, and e - k = k for all £ € K and the identity element
e of G.

for z,y € K and A € [0,1]. Denoting the Haar
measure on GG by dg, we define the G-twirl

Ta(x) ::/Gdgg~x,

and we denote by 75 (K) == {k € K: Tg(k) = k} the
set of all G-invariant elements in K. For any function
©: M — R, we define the following function on G-
invariant elements:

(pG:Tg—>R

. (46)
z+—inf {o(y): y € M, Tg(y) = x}.
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Fig. 2: Plot of Eyp(6'Y}) from Theorem IIL7 (blue, solid) and Ewn(6'5%) [29] given in (43) (red, dashed)
as a function of p for £ = 1 (left) and k = 2 (right), where Hff])g for k = 1,2 are defined in (45). Both
quantities are upper bounds on the two-way distillable entanglement D, (645).

The main result we employ is the following theorem
by Vollbrecht and Werner [10] (see also [34]).

Theorem IV.1 ([10]). Let G be a compact group with
an action on a compact convex set K that preserves
convex combinations, and let ¢: M — R be a function
defined on an arbitrary subset M of K. Furthermore,
assume that G- M C M and ¢(g - x) = ¢(x) for all
g € G and x € M. Then for all x € Tg(K),

o(r) = ¢g ().

In particular, if ¢ is itself convex on Tg(K), then
¢(x) = pa(x).

B. Isotropic states and depolarizing channels

We choose G = U(d), the unitary group on C?,
and K = D(Ha ® Hp), where |A| = |B| = d. We
consider the following action of a unitary U € G on
a quantum state pap € K:

U-pap = (U®U)pAB(U®U)T.

This action is linear and thus preserves convex com-
binations. The set of G-invariant states, 75 (K), is the
one-parameter family {I;(f): f € [0, 1]} of isotropic
states:
1-7
La(f) = f s + =7 (La2 = B4)-

We have 7¢(pag) = La(f) with f = (2F[pap|®T)
for all p4p. Hence, setting

¢(pap) = max{I(A)B),, 0}
M = DEG U ADG,
we can compute FEpa(I;(f)) by first computing

we(Ia(f)) and then taking the convex hull of this
function, which coincides with the convex roof p¢.

17

The d-dimensional isotropic state I4(f) is the Choi
state of the qudit depolarizing channel

_ P i i iy
Dplp) = (1=p)p+ (Z):EIX 20 p(XZ9)T,
2,7

where p = 1 — f, the sum runs over the index set

Z:={(,7):0<4,j <d—1,(i,7) # (0,0)},

and X and Z are the generalized Pauli operators
defined in (4). Since the depolarizing channel is
teleportation-simulable,* its quantum capacity is equal
to the one-way distillable entanglement of its Choi
state [13],

Q(D1-5) = D (La())-

Note that the quantum capacity does not increase
under the assistance by forward classical commu-
nication [13], [36]. Hence, evaluating our upper
bound Epa(I4(f)) directly yields an upper bound on

Q(D1-y).
Johnson and Viola [37] proved that I;(f) is sym-
metrically extendible (and hence antidegradable by

Lemma A.1) for f < L2 and hence, Epa(I4(f)) =0

4 Here, we call a channel teleportation-simulable, if the action
of the channel can be simulated by a teleportation protocol between
Alice and Bob using the Choi state of the channel as an entanglement
resource. More precisely, a channel N': A — B with Choi state
Ta/ g is called teleportation-simulable, if for any given input state
pa the channel output AV'(p4) can be obtained by Alice and Bob
performing a teleportation protocol on the joint state p4 ® T4/ g,
where A and A’ are with Alice, and B is with Bob. Note that Alice
and Bob can establish the Choi state 74/ between them by Alice
sending one half of a maximally entangled state through the channel.

Teleportation-simulable channels in the above sense were called
Choi-stretchable in [35]. There, the authors also consider more
general simulation protocols of quantum channels, consisting of
trace-preserving LOCC operations acting on the input state to the
channel and a resource state shared between the two parties.
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for f < 1%;. Note that this was first proved for
d = 2 by Bennett et al. [38]. Moreover, Lemma A.2
in Section A shows that the maximal overlap of
any antidegradable state with the maximally entangled
state is at most 12%;1. Consequently, for f > % we
can restrict M in the definition of ¢ in (46) to DEG,
the set of degradable states.

Numerics for low dimensions (d = 2, 3) suggest that
e is convex on Tg(K) = {I4(f): f € [0,1]} as a
function of f, indicating that taking the convex roof in
the following theorem is not necessary (we interpret
I;(f) as the Choi state of the qudit depolarizing
channel D, with p =1 — f):

Theorem IV.2. For d € N,d > 2 and 0 < p < %’

we have the following upper bound on the quantum
capacity of the qudit depolarizing channel Dy:

Q(Dy) < ¢c(p),

where the function pg(p) is defined as
{1(A)B),},

and the infimum is over the set

inf

va(p) = Jone

DEG,, := {pap € DEG: (T |pap|®T) =1 — p}.

Note that computing ¢ (p) is a non-convex opti-
mization problem, since the set DEG is not convex.
However, for low dimensions we can still solve this
problem numerically. For d = 2 we use the normal
form of degradable quantum channels derived by Wolf
and Pérez-Garcia [7] to efficiently carry out the opti-
mization in Theorem IV.2. We apply the result from
[7] to states by interpreting a bipartite state as the Choi
state of a CP, but not necessarily TP map. Hence, we
consider states of the form

— (s ® K)®t (14 @ Kp)t
T%—i—r% (( AQ KD (14 ® Ky)
+ (14 ® K2)®T (14 ® K»)T)

where 0 < rq,r, <1, and for o, 8 € R,

PAB = @7

__[ricosa 0
K= ( 0 T9 COS ﬁ)

. 0 7o sin 3
Ky = (rlsinoz 0 )

By an extension of the result (about channels) in
[7] to states, any quantum state pap of the form in
(47) is degradable or antidegradable. Moreover, for
these states, the condition (®¥|pap|®T) =1 —pin
Theorem IV.2 is equivalent to

(71 cos a + 73 cos 3)?

2(rf +13) (*5)

=1-—p.

The minimization of I(A)B), over states psp of the
form (47) satisfying condition (48) can be carried
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out using MatLab’s fmincon function. The result-
ing bound is plotted in Figure 3, together with the
previously known upper bound on Q(D,) derived in
[11], [23]. We note that the upper bound derived in
[11], which is based on approximate degradability
of channels, is identical to the one obtained from
Theorem II.12 based on approximate degradability of
states.

For d = 3, we use another idea from [7] to
numerically optimize over degradable states. Given a
bipartite state p4p together with its complementary
state pap, the degradability condition reads

pag = (ida ®D)(pap). 49)

We regard pap and psap as (unnormalized) Choi
states of trace-non-preserving CP maps, and assign to
pAB, pAE, and the Choi state of the degrading map
D: B — E their respective transfer matrices 7'(-).>
The condition (49) then becomes

T(D) = T(pae)T(pas) "

where we used the fact that composition and inver-
sion of channels translate to matrix multiplication and
inversion for their transfer matrices, respectively (see
e.g. [39]). It follows that p 4 g is degradable if and only
if the linear map D defined through (50) is CP.

To numerically carry out the optimization in Theo-
rem IV.2, we use MatLab’s fmincon to optimize over
states pap satisfying (®1|pap|®t) =1 — p, and for
which T(pagr)T(pap)~! defines the transfer matrix
of a completely positive, trace-preserving degrading
map D: B — E. The resulting upper bound on Q(D,)
is depicted in Figure 4.

We now consider the two-way setting. The best
known bound on D, (I4(f)) is given by the PPT-
relative entropy of entanglement, which for isotropic
states is equal to the SEP-relative entropy of entangle-
ment, and admits a particularly simple formula [8]:

ER"(1a(f)) = Ex* (1a(f))

= logd — (1 — f)log(d — 1) — h(f).
1)

(50)

In the following, we use the results from Section IV-A
to arrive at a different expression for this bound.

Rains [8] proved that (®|psp5|®T) < L holds for
any PPT state p4p. Hence, for f > é we can restrict
to the set of maximally correlated states, M = MC.
Setting once again ¢(pap) = max{I(A)B),,0}, we
first show that the function ¢ defined in (46) achieves
the PPT-relative entropy of entanglement (51), and is
thus convex as a function of f:

SFor a CP map N with Choi state 7ar, the transfer matrix
T(N) is defined to be the matrix with elements (ij|T'(N)|kl) =
(I7|Tar|ki). The map T is a linear involution, i.e., T2 = id.

0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2017.2776907, IEEE

Transactions on Information Theory

1 T T T T
- - - Channel coherent information
R -----Sutter et al. [11], Smith and Smolin [23]
‘. — pc(p) = ¢c(p
05| N (v) = $c(p) |
06 [ \\\ |
0.4 |
02 [ \\\ \".\.\ |
0f e
| | | |
0 0.05 0.1 0.15 0.2 0.25
p

Fig. 3: Upper and lower bounds on the quantum capacity Q (D, ) of the qubit depolarizing channel (d = 2) for
the interval p € [0, 0.25]. The hashing bound (1) yields the channel coherent information (black, dashed) as
a lower bound on Q(D)). Our upper bound ¢ (p) (blue, solid) obtained via Theorem IV.2 (which is convex
itself and thus equal to @G (p)) is compared to the upper bound obtained in [11], [23] (red, dash-dotted).
Note that the latter is identical to the upper bound on D_,(J(D,)) obtained from Theorem II.12.

Lemma IV.3. Let pi(f) be defined as
polf)i= | f {IA)B))
where the infimum is over the set
MC; = {pap € MC: (T [pap|®T) = f}.
Then for all d > 2 and f € [0,1], we have
va(f) = BR " (La(f))

In particular, oG (f) is convex in f.

(52)

Proof. Consider the state

1—f d—1
= fo —_— Dy, 53
PAB fo,oer_l; 0, (33)
where @y, = ®T. Since the generalized Bell states
are orthogonal to each other, the state psp satisfies

(®T|pap|®PT) = f, and a simple calculation shows
that

I(A)B), = logd — (1 - f)log(d — 1) — h(f).

It remains to be shown that psp € MC.
By Corollary II1.9, a mixture of the Bell states
{®n, ma ta=1,..1 With I < d is MC if and only if (41)
holds for all o, 3,y € [l]. Since (n1,m1) = (0,0)
in our situation, (41) reduces to n,mg = mang

mod d for all o, € [l], and these conditions are
easily verified for the state psp defined in (53) with
{(Res M) bt = 1(0,0), ., (0,d — 1)},

Convexity of pg(f) now follows from convexity of
EPPT(14(f)) in f, which can be seen as follows. First,
note that for any A € [0, 1], we have

Ma(f1) + (1 = MN1a(f2) = La(A f1 + (1 = A) fa).

Consider then the following:

ERT(Ta(\Mfr+ (1= N f2))
= JIGI}){;TD(AId(fl) + (1= MNa(f2)lo)
< D(Ma(f1) + (1 = MNIa(f2)l[Aor + (1 = o)
S AD(La(f1)llor) + (1 = A)D(La(f2)llo2)
=ABR " (La(f1)) + (1 = NER" (La(f2)),
where in the first inequality we considered PPT-states
o; optimizing the PPT-relative entropy of I(f;) for
i = 1,2, respectively, and in the second inequality we

used joint convexity of the quantum relative entropy.
O

Hence, we arrive at the following result:

Theorem IV4. For d € N,d > 2 and f > 1,
P
Do (1a(f)) < M;E‘{acf {1(A)B),},
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Fig. 4: Upper and lower bounds on the quantum capacity Q(

D,) of the qutrit depolarizing channel (d = 3)

for the interval p € [0,0.33]. The hashing bound (1) yields the channel coherent information (black, dashed)

as a lower bound on Q(D,
noise, is depicted in solid blue.

where the infimum is over the set MCy defined in (52).

C. Werner states

We again set G = U(d) and K = D(HA®Hp), and
consider the following action of U € G on pap € K:

U-pap=UcaU)pap(UeU).

The set of G-invariant states is the one-parameter
family of Werner states {Wy(p): p € [O 1]} [33] with
Wa(p) = (L + Fa) +

142 —Fq),

d2 +d d? d(
where F; := Z” Zol9)(4|®]4) (4] is the swap operator
on C? @ C% We have for all psp that Tg(pas) =
Wa(p) with p = 5(1 = Te(Fapap)).

In the two-way setting, the best known upper bound
on the distillable entanglement D, (Wy(p)) is Rains’
bound on Dr(Wy(p)) [24]:

Dr(Wa(p))
0 0<p<3

< h(p) 1<p<i4id
log(d—f)erlog(di) %+é§p§1.

Note that for p > 1/2 we have
PPT .
Er”(Wa(p)) = min D(Wa(p)llo)

20

). The function ¢(p) obtained via Theorem IV.2, which is convex up to numerical

= D(Wa(p)[Wa(1/2))
=1- h(p), (54)

since the Werner states are PPT if and only if p €
[0,1/2], and for p > 1/2 the PPT-Werner state closest
(in relative entropy distance) to Wy(p) is Wyu(1/2).
The expression for EXT(W,(p)) in (54) was proved
by Vedral et al. [40] for the case d = 2. Moreover,
Vollbrecht and Werner [10] derived an expression for
the SEP-relative entropy of entanglement of Werner
states in arbitrary dimensions that is identical to (54)
and implies it by the argument above. We see that
Rains’ bound on Dr(Wy(p)) is equal to EXT(W,(p))
for % <p< % + é, and strictly tighter for p > % + é.

We have for any PPT state 0 45 that Tr(Fyoap) >
0 and hence (1 — Tr(Fqoap)) < 3, since Fy
d(®*T)'s and 05‘% > 0 by assumption. Therefore,
we set M = MC for p € (3,1), and ¢(pag)
max{I(A)B),,0} as before. As for the isotropic
states, we first show that the function g in (46)
achieves the PPT-relative entropy of entanglement, and
is thus convex:

Lemma IV.5. Let oi(p) be defined as
pa(p) = IH&CL{I(MB)p}a

where the infimum is over the set

MC; = {pap € MC: Tr(Fgpap) =1—2p}. (55)
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Then, for all d > 2 and % < p <1 we have
va(p) = E " (Wa(p)).
In particular, o (p) is convex in p.
Proof. We consider the state
pap = (1—p)¥y +p¥_,

where |U.) = %(\01) + |10)) satisfying Fq|UL) =
+|U4). Hence, Tr(Fypap) = 1—2p, and furthermore
I1(A)B), 1 — h(p). Moreover, pap is MC as a
mixture of two Bell states [25], which concludes the
proof of the equality. The convexity of pg(p) in p

follows in the same way as in Lemma IV.3. O
We thus arrive at the following result:
Theorem IV.6. For d > 2 and p > % we have

the following upper bound on the two-way distillable
entanglement of Werner states:

D (W, < inf I(A)B
o (Wa(p)) < pABHéMc;{ (A)B),},
where the infimum is over the set MC;J defined in (55).

V. CONCLUDING REMARKS

In this paper we derived upper bounds on the one-
way and two-way distillable entanglement of bipartite
quantum states. In both settings we identified ‘useful’
classes of states for which the regularized formulae for
D_ () resp. D (+) reduce to the coherent informa-
tion I(A)B),, and thus a single-letter formula. These
useful states are given by degradable and maximally
correlated states, respectively. Moreover, we identified
‘useless’ states for which the distillable entanglement
is always zero. These are the antidegradable and PPT
states, respectively. Our upper bounds on the distillable
entanglement follow from the fact that in both the one-
way and two-way LOCC setting it is convex on convex
combinations of useful and useless states. The bounds
are similar in spirit to the additive extensions bounds
in [23], and always at least as good an upper bound as
the entanglement of formation. We also extended our
method to obtain an upper bound on the quantum ca-
pacity based on decompositions of a quantum channel
into degradable and antidegradable completely positive
maps, recovering a result by Yang [9].

By interpreting our upper bounds as convex roof ex-
tensions, we were able to formulate the upper bounds
on the distillable entanglement of isotropic and Werner
states as a non-convex optimization problem. For the
one-way distillable entanglement of the Choi state of
the qubit depolarizing channel, this optimization led to
an upper bound on its quantum capacity that is strictly
tighter than the best previously known upper bound
for large values of the depolarizing parameter. For the
two-way distillable entanglement of both isotropic and

21

Werner states, the non-convex optimization achieves
the respective PPT-relative entropy of entanglement,
and thus provides new expressions for the latter.

Comparing the one-way and two-way LOCC set-
tings with respect to how our upper bound performs
in comparison to previously known upper bounds on
the distillable entanglement, we notice the following
discrepancy: While we get a strictly tighter bound
in the one-way setting in certain cases, we can only
achieve the PPT-relative entropy of entanglement in
the two-way setting. This leads us to the following
question: Can we develop an extended theory of one-
way entanglement distillation in the same spirit as
Rains’ work on the PPT-distillable entanglement in
[8], [24]? One possible approach to develop such
a theory could be to augment the class of allowed
operations from one-way LOCC to antidegradability-
preserving operations.
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APPENDIX

Maximal overlap of antidegradable states with an
MES In order to prove Lemma A.2, we need the
following result characterizing antidegradable states:

Lemma A.1 ([41]). A state pap is antidegradable if
and only if it has a symmetric extension.

Using Lemma A.1, we can formulate the overlap
of antidegradable states with the maximally entangled
state as an SDP, for which strong duality holds:

Lemma A.2. The maximal overlap of an antidegrad-
able state p op with the maximally entangled state ®+
can be formulated as the following SDP:

maximize: %Tr(pABB/(‘I)AB R1lp +Pap ®15))
subject to: Tr(papp) =1

pap = 0.
Proof. By Lemma A.1, the state p 4 p is antidegradable
if and only if there is an extension papp/ with B’ =

B satisfying Trp' papp = pap and Fpapp'F =
papp’, where F is the swap operator on the BB’
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system. Hence, we can write any antidegradable state
PAB as

pap = Trp paBp,

where papp = % (pABB’ + FPABB’F) for some arbi-
trary (not necessarily symmetric) state p4pp’. Substi-
tuting this in Tr(pAB(I)AB) = Tr(ﬁABB/ (CDAB®]IB/))
then gives the SDP in the lemma. O

The solution of the dual problem in Lemma A.2
is equal to the largest eigenvalue of the operator
1(Pap ® 1p + Pap @ 1), and therefore equal

to L2 [37]. Hence, this is the maximal overlap of

any antidegradable state with the maximally entangled
state.
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