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Abstract—We derive an upper bound on the one-way distillable
entanglement of bipartite quantum states. To this end, we revisit
the notion of degradable, conjugate degradable, and antidegrad-
able bipartite quantum states [1]. We prove that for degradable
and conjugate degradable states the one-way distillable entangle-
ment is equal to the coherent information, and thus given by a
single-letter formula. Furthermore, it is well-known that the one-
way distillable entanglement of antidegradable states is zero. We
use these results to derive an upper bound for arbitrary bipartite
quantum states, which is based on a convex decomposition
of a bipartite state into degradable and antidegradable states.
This upper bound is always at least as good an upper bound
as the entanglement of formation. Applying our bound to the
qubit depolarizing channel, we obtain an upper bound on its
quantum capacity that is strictly better than previously known
bounds in the high noise regime. We also transfer the concept
of approximate degradability [2] to quantum states and show
that this yields another easily computable upper bound on the
one-way distillable entanglement. Moreover, both methods of
obtaining upper bounds on the one-way distillable entanglement
can be combined into a generalized one.

I. INTRODUCTION

One-way entanglement distillation is the task in which

two parties (Alice and Bob) aim to convert n copies of

a shared bipartite quantum state into mn ebits using local

operations and forward (or one-way) classical communication

(LOCC). More precisely, given a mixed state ρ⊗n
AB , Alice

and Bob’s goal is to obtain, via one-way LOCC, a state

that is close to Φ⊗mn
+ (with respect to a suitable distance

measure), where |Φ+〉 := 1√
2
(|00〉 + |11〉) denotes an ebit,

i.e., a maximally entangled state of Schmidt rank 2. If there

is a one-way entanglement distillation protocol such that the

distance between final and target state vanishes asymptotically,

then the normalized number of ebits, limn→∞ mn/n, is called

an achievable rate for one-way entanglement distillation. The

one-way distillable entanglement D→(ρAB) is defined as the

supremum over all achievable rates.

Devetak and Winter [3] proved the hashing bound, estab-

lishing that the coherent information I(A〉B)ρ is an achievable

rate for one-way entanglement distillation:

D→(ρAB) ≥ I(A〉B)ρ := S(B)ρ − S(AB)ρ, (1)

where S(A)ρ := −Tr(ρA log ρA) is the von Neumann en-

tropy. Furthermore, they derived the following regularized

formula:

D→(ρAB) = lim
n→∞

1

n
D(1)

→ (ρ⊗n
AB), (2)

where D(1)
→ (ρAB) is defined as

D(1)
→ (ρAB) := max

T

∑
m
λmI(A〉B)ρm

,

and the maximization is over quantum instruments T : A →
A′M with T (·) := ∑

m Tm(·)⊗ |m〉〈m|M , where {|m〉}m is

an orthonormal basis for the classical register M , for each m
the map Tm : A → A′ is completely positive, and

∑
m Tm

is trace-preserving. We set ρm := 1
λm

(Tm ⊗ idB)(ρAB), with

λm := Tr(Tm(ρAB)) denoting the probability of obtaining the

outcome m of T .

As in the case of the quantum capacity, the regularization in

(2) renders the distillable entanglement intractable to compute

in most cases. Hence, it is desirable to identify classes of

bipartite states for which (2) reduces to a single-letter formula

that can be computed efficiently. Moreover, we are interested

in useful upper bounds on D→(ρAB) for arbitrary bipartite

states. In the present work, we address both problems. We

prove that for a degradable bipartite quantum state [1], defined

in Section II, the one-way distillable entanglement is equal to

its coherent information, and this result can be extended to

conjugate degradable states [4]. Moreover, it is well-known

that the one-way distillable entanglement of antidegradable

states is equal to zero.

We use these results to derive a generic upper bound on the

one-way distillable entanglement of arbitrary bipartite states,

starting from a decomposition of the latter into degradable

and antidegradable states. Our upper bound is always less

than or equal to the entanglement of formation EF (·), a

known upper bound on D→(·) [5]. We apply our result to

the Choi state τ of the qubit depolarizing channel Dp for

noise parameter p ∈ [0, 0.25], obtaining an upper bound on

its quantum capacity Q(Dp) = D→(τ) that is tighter than the

best known upper bound obtained by Sutter et al. [2] in the

high-noise regime. We also introduce and discuss the notion

of approximately (anti)degradable states, which is inspired

by and analogous to the notion of approximately degradable

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 1559



quantum channels in [2]. Approximate degradability leads

to an alternative upper bound on the one-way distillable

entanglement. Moreover, both approaches (decomposition into

(anti)degradable parts and approximate degradability) can be

combined into a generalized method. For a more detailed

discussion including proofs of the following results, we refer

to the full version [6] available on the arXiv.

II. DEGRADABLE AND ANTIDEGRADABLE STATES

The central objects in our discussion are degradable and an-

tidegradable bipartite quantum states. In analogy to degradable

quantum channels [7], we call a bipartite state ρAB with purifi-

cation |φ〉ABE and ‘complementary’ state ρAE = TrB φABE

degradable, if there is a quantum operation D : B → E such

that

ρAE = (idA ⊗D)(ρAB). (3)

Equivalently, ρAB is degradable, if there is an isometry

U : HB → HE′ ⊗HG with HE′ ∼= HE such that for the state

|ϕ〉AE′GE = U |φ〉ABE we have ϕAE = ϕAE′ = φAE . A state

is called conjugate degradable, if the degradability condition

holds up to complex conjugation, that is, ϕAE = φAE =
C(ϕAE′), where C denotes entry-wise complex conjugation

with respect to a fixed basis of E′ ∼= E. Finally, ρAB is called

antidegradable, if there is an isometry V : HE → HB′ ⊗HF

with HB′ ∼= HB such that for the state |ψ〉ABB′F = V |φ〉ABE

we have ψAB′ = ψAB = φAB .

III. MAIN RESULT

As mentioned in Section I, for (conjugate) degradable

states ρAB the one-way distillable entanglement D→(·) is

equal to the coherent information: D→(ρAB) = I(A〉B)ρ.
Antidegradable states σAB are useless for one-way entangle-

ment distillation: D→(σAB) = 0. Furthermore, an adaption

of the “additivity implies convexity”-argument by Wolf and

Pérez-Garcı́a [8] shows that D→(·) is convex on mixtures of

degradable and antidegradable states.
We can use these results to derive a general upper bound

on D→(ρAB) for bipartite states ρAB with a decomposition

of the form

ρAB =
k∑

i=1

piρi +
l∑

i=k+1

piσi, (4)

where the states ρi are degradable, and σi are antidegradable.

The following constitutes our main result:

Theorem 1. Let ρAB be a bipartite state. Then

D→(ρAB) ≤ min
k∑

i=1

piI(A〉B)ρi
≤ EF (ρAB),

where the minimization is over all decompositions of ρAB of
the form in (4).

In Theorem 1, EF (·) denotes the entanglement of formation

[5], [9], defined as

EF (ρAB) := min
{pi,ψi

AB}i

∑
i
piS(ψ

i
A),

where the minimization is over all pure-state ensembles

{pi, ψi
AB}i satisfying

ρAB =
∑

i
pi|ψi〉〈ψi|AB .

IV. UPPER BOUND ON THE QUANTUM CAPACITY OF THE

DEPOLARIZING CHANNEL

Our main result, Theorem 1, can be used to obtain an

upper bound on the quantum capacity of the qubit depolarizing
channel Dp, defined for p ∈ (0, 1) and a state ρ of a qubit as

Dp(ρ) := (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ),

where X,Y , and Z are the Pauli operators.

We set HA = HA′ = C
2, and denote by τA′A :=

(idA′ ⊗Dp)(ΦA′A) the Choi state of the depolarizing channel.

Bennett et al. [5] proved that the quantum capacity Q(Dp) of

the depolarizing channel is equal to the one-way distillable

entanglement D→(τA′A) of its Choi state:

Q(Dp) = D→(τA′A).

Hence, upper bounds on Q(Dp) can be obtained from upper

bounds on D→(τA′A) via Theorem 1, for which the starting

point is a decomposition of a bipartite state into degradable and

antidegradable states as in (4). To obtain such a decomposition

of τA′A, we make use of a result by Wolf and Pérez-Garcı́a

[8], which states that all qubit-qubit quantum channels with

a qubit environment are either degradable or antidegradable.

This is easily extended to quantum states: every qubit-qubit

quantum state of rank 2 is either degradable or antidegradable.

Decompositions of τA′A into degradable and antidegradable

states can therefore be obtained from the following procedure:

We first decompose τA′A into 2k pure states for some k ∈ N,

τA′A =
2k∑
i=1

piψi. (5)

Note that every 2k × 2k unitary matrix gives rise to such a

pure-state decomposition [10]. We then group two of them at

a time together into k states ωi of rank 2:

τA′A =

=:q1︷ ︸︸ ︷
(p1 + p2)

(
p1

p1 + p2
ψ1 +

p2
p1 + p2

ψ2

)
︸ ︷︷ ︸

=:ω1

+ . . . ,

which leads to a decomposition of τA′A of the form

τA′A =
k∑

j=1

qjωj , (6)

where for j = 1, . . . , k we define qj := p2j−1 + p2j and

ωj :=
p2j−1

qj
ψ2j−1 +

p2j
qj

ψ2j .

Hence, Theorem 1 yields the following upper bound on

D→(τA′A) = Q(Dp):

Q(Dp) = D→(τA′A) ≤ min
U

∑
j : ωj deg.

qjI(A
′〉A)ωj , (7)
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where the minimization is over all 2k × 2k unitary matrices

U determining the pure-state decomposition (5), and the sum

is over all j such that ωj is degradable.

We applied the method outlined above to Dp with p ∈
[0, 1/4]. To obtain (6), we chose k = 4 and generated an 8×8
unitary at random in MATLAB. We then used the MATLAB

built-in function fmincon to minimize (7) over all 8 × 8
unitaries. This process was repeated 500 times to avoid local

minima. The resulting upper bound on Q(Dp) is shown as the

red line in Figure 1 below. We also compare it to the best

known upper bound on Q(Dp) (blue) obtained by Sutter et

al. [2] (see also [11]), demonstrating that our bound obtained

from Theorem 1 is strictly better in the high noise regime

(p � 0.069). The channel coherent information

Q(1)(Dp) := max
|φ〉A′A

I(A′〉A)(idA′ ⊗Dp)(φA′A), (8)

which is a lower bound to Q(Dp) by the hashing inequality

(1), is plotted as a dashed line.

The improvement of the upper bound to Q(Dp) stems from

the fact that our method can be understood as a general-

ization of the additive extensions method of [11] (the main

contribution for the bound derived in [2] for high values

of p), which is based on a decomposition of the channel

into degradable channels. The corresponding decomposition

of the Choi state is a decomposition into degradable states

as in (4), and hence a candidate for the minimization in

Theorem 1. Our method yields a tighter bound, since we

minimize over all decompositions into degradable states not

necessarily corresponding to Choi states of quantum channels.

For example, the eigenvectors of the Choi state τAB provide

a degradable decomposition of τAB , whereas there seems to

be no corresponding degradable decomposition for channels.

V. APPROXIMATE DEGRADABILITY AND A GENERALIZED

METHOD

In [2], the authors introduced the concept of an approximate

degradable quantum channel and used it to derive computable

upper bounds on the quantum capacity of a given quantum

channel. In analogy to [2], we can define the corresponding

notion of an approximate (anti)degradable state. A state is

called ε-degradable if the degradability condition (3) is only

satisfied up to a parameter ε:

min
DB→E

1

2

∥∥ρAE −DB→E(ρAB)
∥∥
1
≤ ε. (9)

We define the degradability parameter dg(ρAB) as the left-

hand side of (9). Similarly, the antidegradability parameter
adg(ρAB) of a state ρAB is defined as

adg(ρAB) := min
AE→B

1

2

∥∥ρAB −AE→B(ρAE)
∥∥
1
, (10)

and we call a state ε-antidegradable, if adg(ρAB) ≤ ε. Both

parameters can be efficiently computed, since they can be

obtained as the solutions of semidefinite programs (SDPs):

Lemma 2. dg(ρAB) is the solution of the SDP

min.:
1

4
(TrXAE +TrYAE)

subj. to:

(
XAE ZAE − ρAE

ZAE − ρAE YAE

)
≥ 0

τB′E ≥ 0

τB′ = IB

XAE , YAE ≥ 0,

where ZAE = TrB′
[(

ρTB

AB′ ⊗ IE

)
(IA ⊗ τB′E)

]
with B′ ∼=

B and ρAB′ = ρAB , and where τB′E is the Choi state of the
CPTP map DB→E over which we optimize in (9).

Similarly, adg(ρAB) is the solution of the SDP

min.:
1

4
(TrXAB +TrYAB)

subj. to:

(
XAB WAB − ρAB

WAB − ρAB YAB

)
≥ 0

τE′B ≥ 0

τE′ = IE′

XAB , YAB ≥ 0,

where WAB = TrE′
[(

IB ⊗ ρTE

AE

)
(IA ⊗ τE′B)

]
with E′ ∼=

E and ρAE′ = ρAE , and where τE′B is the Choi state of the
CPTP map AE→B over which we optimize in (10).

The notion of approximate degradability leads to an effi-

ciently computable upper bound on the one-way distillable

entanglement, which mirrors the corresponding result for

quantum channels in [2] and can be proven along similar lines:

Theorem 3. Let ρAB be a bipartite state with purification
|φ〉ABE , and δ > 0 be such that dg(ρAB) ≤ δ. Then,

I(A〉B)ρ ≤ D→(ρAB)

≤ I(A〉B)ρ + 4δ log |E|+ 2 (1 + δ)h

(
δ

1 + δ

)
,

where h(·) denotes the binary entropy.

There is a generalized method of finding upper bounds on

the one-way distillable entanglement (resp. the quantum capac-

ity of a teleportation-simulable channel) that encompasses both

approximate degradability (AD) bounds and additive extension

(AE) bounds. The former provides the best upper bounds for

very low noise, while the latter does best for higher noise levels

(cf. Figure 1). By searching for approximately degradable

extensions of quantum states (or channels, for that matter) we

can do no worse than either of these two known methods. In

detail, the two methods can be combined as follows.

For a given bipartite state ρAB , fix k ∈ N and consider

an extension ρ̃ABC with |C| = k, such that TrC ρ̃ABC =
ρAB . We assume C to be in Bob’s possession, and consider

entanglement distillation with respect to the A|BC biparti-

tion in the following. Computing the degradability parameter

ε = dg(ρ̃ABC) of this extension and using Theorem 3, we

obtain an upper bound on the one-way distillable entanglement
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Fig. 1. Upper and lower bounds on the quantum capacity Q(Dp) of the depolarizing channel for the interval p ∈ [0, 0.25]. The hashing bound [3] yields

the channel coherent information Q(1)(Dp) defined in (8) as a lower bound on Q(Dp) (dashed). Our upper bound (red) obtained by the method outlined in
Section IV is compared to the upper bound obtained in [2], [11] (blue).

D→(ρ̃ABC) of ρ̃ABC , which in turn is an upper bound on

D→(ρAB). We can then optimize this bound over all exten-

sions ρ̃ABC with |C| = k. Restricting to trivial extensions

of ρAB , this bound reduces to the AD bound (Theorem 3).

Restricting to ‘flagged’ (anti)degradable extensions of the form

ρ̃ABC =
k∑

c=1

ρ̃cAB ⊗ |c〉〈c|C ,

where the states ρ̃cAB are either degradable or antidegradable,

the bound reduces to the AE bound (Theorem 1). In this case,

we have ρAB =
∑

c ρ̃
c
AB . We leave a thorough numerical

investigation of this generalized method to future work.
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