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Abstract—We derive an upper bound on the one-way distillable
entanglement of bipartite quantum states. To this end, we revisit
the notion of degradable, conjugate degradable, and antidegrad-
able bipartite quantum states [1]. We prove that for degradable
and conjugate degradable states the one-way distillable entangle-
ment is equal to the coherent information, and thus given by a
single-letter formula. Furthermore, it is well-known that the one-
way distillable entanglement of antidegradable states is zero. We
use these results to derive an upper bound for arbitrary bipartite
quantum states, which is based on a convex decomposition
of a bipartite state into degradable and antidegradable states.
This upper bound is always at least as good an upper bound
as the entanglement of formation. Applying our bound to the
qubit depolarizing channel, we obtain an upper bound on its
quantum capacity that is strictly better than previously known
bounds in the high noise regime. We also transfer the concept
of approximate degradability [2] to quantum states and show
that this yields another easily computable upper bound on the
one-way distillable entanglement. Moreover, both methods of
obtaining upper bounds on the one-way distillable entanglement
can be combined into a generalized one.

I. INTRODUCTION

One-way entanglement distillation is the task in which
two parties (Alice and Bob) aim to convert n copies of
a shared bipartite quantum state into m,, ebits using local
operations and forward (or one-way) classical communication
(LOCC). More precisely, given a mixed state p375, Alice
and Bob’s goal is to obtain, via one-way LOCC, a state
that is close to ®5™" (with respect to a suitable distance
measure), where |®,) = %(|OO> + |11)) denotes an ebit,
i.e., a maximally entangled state of Schmidt rank 2. If there
is a one-way entanglement distillation protocol such that the
distance between final and target state vanishes asymptotically,
then the normalized number of ebits, lim,,_,~, m,,/n, is called
an achievable rate for one-way entanglement distillation. The
one-way distillable entanglement D_, (pap) is defined as the
supremum over all achievable rates.

Devetak and Winter [3] proved the hashing bound, estab-
lishing that the coherent information I(A)B), is an achievable
rate for one-way entanglement distillation:

D_(pap) > I(A>B)P = S(B)p - S(AB)P7 (1
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where S(A), = —Tr(palogpa) is the von Neumann en-
tropy. Furthermore, they derived the following regularized
formula:

1 .
D-(pap) = Jim ~DC)(p3p). )

where D) (p4p) is defined as
DW (pap) = max Zm AnI(A)YB),.

and the maximization is over quantum instruments T: A —
A'M with T'(-) := 3 Tp(-) @ [m)(m|ar, where {|m)},, is
an orthonormal basis for the classical register M, for each m
the map 7,,: A — A’ is completely positive, and Y T,,
is trace-preserving. We set p,, = /\%H(Tm ®idg)(pap), with
Am = Tr(T,,(pap)) denoting the probability of obtaining the
outcome m of 7.

As in the case of the quantum capacity, the regularization in
(2) renders the distillable entanglement intractable to compute
in most cases. Hence, it is desirable to identify classes of
bipartite states for which (2) reduces to a single-letter formula
that can be computed efficiently. Moreover, we are interested
in useful upper bounds on D_,(pap) for arbitrary bipartite
states. In the present work, we address both problems. We
prove that for a degradable bipartite quantum state [1], defined
in Section II, the one-way distillable entanglement is equal to
its coherent information, and this result can be extended to
conjugate degradable states [4]. Moreover, it is well-known
that the one-way distillable entanglement of antidegradable
states is equal to zero.

We use these results to derive a generic upper bound on the
one-way distillable entanglement of arbitrary bipartite states,
starting from a decomposition of the latter into degradable
and antidegradable states. Our upper bound is always less
than or equal to the entanglement of formation Er(-), a
known upper bound on D_,(-) [5]. We apply our result to
the Choi state 7 of the qubit depolarizing channel D,, for
noise parameter p € [0,0.25], obtaining an upper bound on
its quantum capacity Q(D,,) = D_,(7) that is tighter than the
best known upper bound obtained by Sutter et al. [2] in the
high-noise regime. We also introduce and discuss the notion
of approximately (anti)degradable states, which is inspired
by and analogous to the notion of approximately degradable
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quantum channels in [2]. Approximate degradability leads
to an alternative upper bound on the one-way distillable
entanglement. Moreover, both approaches (decomposition into
(anti)degradable parts and approximate degradability) can be
combined into a generalized method. For a more detailed
discussion including proofs of the following results, we refer
to the full version [6] available on the arXiv.

II. DEGRADABLE AND ANTIDEGRADABLE STATES

The central objects in our discussion are degradable and an-
tidegradable bipartite quantum states. In analogy to degradable
quantum channels [7], we call a bipartite state p4 5 with purifi-
cation |p) apg and ‘complementary’ state pap = Trp ¢apE
degradable, if there is a quantum operation D: B — FE such
that

pag = (ida ®D)(pan). (3)

Equivalently, psp is degradable, if there is an isometry
U: Hp = Hp @ Hg with Hg, = Hp such that for the state
l)aprae = Ul¢) A we have oap = pap = pag. A state
is called conjugate degradable, if the degradability condition
holds up to complex conjugation, that is, oap = ¢ap =
C(pap’), where C denotes entry-wise complex conjugation
with respect to a fixed basis of £/ = E. Finally, pap is called
antidegradable, if there is an isometry V: Hp — Hp @ Hp
with H g & H p such that for the state |)) app'r = V|p) aBE
we have Y apr = Yap = ¢ap.

III. MAIN RESULT

As mentioned in Section I, for (conjugate) degradable
states pap the one-way distillable entanglement D_,(-) is
equal to the coherent information: D_,(pag) = I(A)B),.
Antidegradable states o 4p are useless for one-way entangle-
ment distillation: D_,(045) = 0. Furthermore, an adaption
of the “additivity implies convexity”-argument by Wolf and
Pérez-Garcia [8] shows that D_,(-) is convex on mixtures of
degradable and antidegradable states.

We can use these results to derive a general upper bound
on D_,(pap) for bipartite states p4p with a decomposition
of the form

PAB = szpz + Z Pi0i, (4)

i=k-+1

where the states p; are degradable, and o; are antidegradable.
The following constitutes our main result:

Theorem 1. Let pap be a bipartite state. Then
k

D_(pap) <min» pI(A)B),
=1

. < Er(pan),

where the minimization is over all decompositions of pap of
the form in (4).

In Theorem 1, E(-) denotes the entanglement of formation
[5], [9], defined as
> piS(h).

min

Er(paB)
( {vawAB}L

where the minimization is over all pure-state ensembles
{pi, ¥y g }: satisfying
pAB = Zipi|1/ll><¢z|AB-
I'V. UPPER BOUND ON THE QUANTUM CAPACITY OF THE
DEPOLARIZING CHANNEL

Our main result, Theorem 1, can be used to obtain an
upper bound on the quantum capacity of the qubit depolarizing
channel D,,, defined for p € (0,1) and a state p of a qubit as

p
Dylp) = (1 = p)p+ 5 (XpX +YpY + ZpZ),
where X, Y, and Z are the Pauli operators.
We set Ha = Ha = C2, and denote by Tara =

(idar ®D,)(P ar4) the Choi state of the depolarizing channel.
Bennett et al. [5] proved that the quantum capacity Q(D,,) of
the depolarizing channel is equal to the one-way distillable
entanglement D_, (74 4) of its Choi state:

Q(Dy) = D (Tara).

Hence, upper bounds on Q)(D,) can be obtained from upper
bounds on D_,(74s4) via Theorem 1, for which the starting
point is a decomposition of a bipartite state into degradable and
antidegradable states as in (4). To obtain such a decomposition
of 744, we make use of a result by Wolf and Pérez-Garcia
[8], which states that all qubit-qubit quantum channels with
a qubit environment are either degradable or antidegradable.
This is easily extended to quantum states: every qubit-qubit
quantum state of rank 2 is either degradable or antidegradable.
Decompositions of 74,4 into degradable and antidegradable
states can therefore be obtained from the following procedure:
We first decompose 74/ 4 into 2k pure states for some £ € N,

2k
Taa =Y piti. ®)
i=1

Note that every 2k x 2k unitary matrix gives rise to such a

pure-state decomposition [10]. We then group two of them at
a time together into k states w; of rank 2:

=q1
—
P1 P2
Tara = (p1+p2) ( y +
p1+ P2

+
p1+ P2 102)

=w1

which leads to a decomposition of 74/ 4 of the form

k

TAA = ZQjoa (6)

where for j =1,...,k we define ¢; := paj_1 + p2; and
P2j—1

UJj = 1/)23 1 + 71&2]
4j

Hence, Theorem 1 yields the followmg upper bound on
D, (tara) = Q(Dy):

Q(Dp) = D—(7ar4) < min > gIAYA),, O

j: wj deg.
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where the minimization is over all 2k x 2k unitary matrices
U determining the pure-state decomposition (5), and the sum
is over all j such that w; is degradable.

We applied the method outlined above to D, with p €
[0,1/4]. To obtain (6), we chose k = 4 and generated an 8 x 8
unitary at random in MATLAB. We then used the MATLAB
built-in function fmincon to minimize (7) over all 8 x 8
unitaries. This process was repeated 500 times to avoid local
minima. The resulting upper bound on Q(D,,) is shown as the
red line in Figure 1 below. We also compare it to the best
known upper bound on Q(D,) (blue) obtained by Sutter et
al. [2] (see also [11]), demonstrating that our bound obtained
from Theorem 1 is strictly better in the high noise regime
(p 2 0.069). The channel coherent information

QM (D,) = max I(A")A)(id, @D, (640 ) (3)
() ara
which is a lower bound to Q(D,) by the hashing inequality
(1), is plotted as a dashed line.

The improvement of the upper bound to Q(D,) stems from
the fact that our method can be understood as a general-
ization of the additive extensions method of [11] (the main
contribution for the bound derived in [2] for high values
of p), which is based on a decomposition of the channel
into degradable channels. The corresponding decomposition
of the Choi state is a decomposition into degradable states
as in (4), and hence a candidate for the minimization in
Theorem 1. Our method yields a tighter bound, since we
minimize over all decompositions into degradable states not
necessarily corresponding to Choi states of quantum channels.
For example, the eigenvectors of the Choi state 74 provide
a degradable decomposition of 74p, whereas there seems to
be no corresponding degradable decomposition for channels.

V. APPROXIMATE DEGRADABILITY AND A GENERALIZED
METHOD

In [2], the authors introduced the concept of an approximate
degradable quantum channel and used it to derive computable
upper bounds on the quantum capacity of a given quantum
channel. In analogy to [2], we can define the corresponding
notion of an approximate (anti)degradable state. A state is
called e-degradable if the degradability condition (3) is only
satisfied up to a parameter ¢:

1
min 2 ||pas — D7 F(pan)|, < e ©)

DB—E 9

We define the degradability parameter dg(pap) as the left-

hand side of (9). Similarly, the antidegradability parameter

adg(pap) of a state pap is defined as
1

adg(pas) = Algile 3 lpas — AP 7B (pag)|

L (0
and we call a state e-antidegradable, if adg(pap) < . Both
parameters can be efficiently computed, since they can be
obtained as the solutions of semidefinite programs (SDPs):

Lemma 2. dg(pap) is the solution of the SDP

1
min.:Z(TrXAE +TrYag)

. Xag ZAE — PAE
subj. to: >0
! (ZAE — PAE Yar -
3E >0
T = 1Ip

Xag,Yag >0,

where Zap = Trp {(pz%/ ®RIg)(Ia @ 7R E)| With B' =
B and pap = pap, and where T/ g is the Choi state of the
CPTP map DP7F over which we optimize in (9).

Similarly, adg(pag) is the solution of the SDP

1
min.:Z(TrXAB +TrYap)

. XaB Wag — paB
subj. to: >0
) <WAB — PAB Yan o
T =0
TE/ = IE/

Xap,Yap >0,

where Wuap = Trg: [(IB ®p£%) (Ia ®7'Er3)] with B’ =
E and pap = pag, and where T/ g is the Choi state of the

CPTP map AE=B over which we optimize in (10).

The notion of approximate degradability leads to an effi-
ciently computable upper bound on the one-way distillable
entanglement, which mirrors the corresponding result for
quantum channels in [2] and can be proven along similar lines:

Theorem 3. Let pap be a bipartite state with purification
|@) apE, and 6 > 0 be such that dg(pap) < 0. Then,

I(A)B), < D (pas)
< I(A)B), + 45 log |E| + 2 (1 + 6) h<1i5)

where h(-) denotes the binary entropy.

There is a generalized method of finding upper bounds on
the one-way distillable entanglement (resp. the quantum capac-
ity of a teleportation-simulable channel) that encompasses both
approximate degradability (AD) bounds and additive extension
(AE) bounds. The former provides the best upper bounds for
very low noise, while the latter does best for higher noise levels
(cf. Figure 1). By searching for approximately degradable
extensions of quantum states (or channels, for that matter) we
can do no worse than either of these two known methods. In
detail, the two methods can be combined as follows.

For a given bipartite state pap, fix £ € N and consider
an extension papc with |C| = k, such that Tre papc =
pap- We assume C' to be in Bob’s possession, and consider
entanglement distillation with respect to the A|BC biparti-
tion in the following. Computing the degradability parameter
e = dg(papc) of this extension and using Theorem 3, we
obtain an upper bound on the one-way distillable entanglement
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Fig. 1. Upper and lower bounds on the quantum capacity Q(Dp) of the depolarizing channel for the interval p € [0, 0.25]. The hashing bound [3] yields
the channel coherent information Q(l)(Dp) defined in (8) as a lower bound on Q(Dj) (dashed). Our upper bound (red) obtained by the method outlined in

Section IV is compared to the upper bound obtained in [2], [11] (blue).

D_,(papc) of papc, which in turn is an upper bound on
D_,(pap). We can then optimize this bound over all exten-
sions papc with |C| = k. Restricting to trivial extensions
of pap, this bound reduces to the AD bound (Theorem 3).
Restricting to ‘flagged’ (anti)degradable extensions of the form
k
pasc =Y pap®lo)ce,
c=1

where the states p% 5 are either degradable or antidegradable,
the bound reduces to the AE bound (Theorem 1). In this case,
we have pap = > .p%p. We leave a thorough numerical
investigation of this generalized method to future work.
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