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Abstract. High frequency integral equation methodologies display the capability of reproducing
single-scattering returns in frequency-independent computational times and employ a Neumann series
formulation to handle multiple scattering effects. This requires the solution of an enormously large
number of single-scattering problems to attain a reasonable numerical accuracy in geometrically
challenging configurations. Here we propose a novel and effective Krylov subspace method suitable for
the use of high frequency integral equation techniques that significantly accelerates the convergence
of Neumann series. We additionally complement this strategy utilizing a preconditioner based upon
Kirchhoff approximations that provides a further reduction in the overall computational cost.
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1. Introduction. In the last two decades significant advances have taken place
in the realm of computational scattering with notable theoretical as well as practi-
cal contributions in the domains of finite elements [29, 17, 9] and integral equations
[12, 4, 8, 36, 11]. However, simulation strategies based upon the former are usually re-
stricted to low and mid frequency applications. Indeed, use of finite element methods
in exterior scattering simulations requires not only utilization of an artificial interface
to truncate the infinite computational domain but also introduction of appropriate
absorbing boundary conditions on this interface to effectively replicate the behavior
of solution at infinity [6, 21, 26, 27, 28]. Recently some new methodologies have been
proposed in [22, 35, 37] to effectively solve the issues related to large frequencies. How-
ever, these difficulties are further amplified on models involving multiple scatterers,
such as the one treated in the present paper, because the distance that separates the
obstacles naturally increases the size of the truncated domain. Integral equation meth-
ods, in contrast, are more adequate for these situations since, on the one hand, they
explicitly enforce the radiation condition by simply choosing an appropriate outgoing
fundamental solution and, on the other hand, they are solely based on the knowledge
of solution confined only to the scatterers. This, in return, provides a dimensional
reduction in the computational domain for surface scattering applications [16]. Never-
theless, they deliver dense linear systems whose sizes increase in proportion to kp with
increasing wavenumber k, where p is the dimension of the computational manifold.
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HIGH FREQUENCY MULTIPLE SCATTERING B1131

Broadly speaking, the success of integral equation approaches in high-frequency
simulations is directly linked with the incorporation of asymptotic characteristics of
the unknown into the solution strategy. This is essentially the path we follow in
this manuscript, since it transforms the problem into the determination of a new
unknown whose oscillations are virtually independent of frequency. The pioneering
work in this direction is due to Nedéléc and co-authors [1, 2] who, in two-dimensional
simulations, have provided a reduction from O(k) to O(k1/3) in the number of de-
grees of freedom needed to obtain a prescribed accuracy. What has had a significant
impact is the single-scattering algorithm of Bruno et al. [13] (based on a combination
of Nyström method, extensions of the method of stationary phase, and a change of
variables around the shadow boundaries—the points where the rays are tangential
to the boundary) as it has demonstrated the possibility of O(1) solution of surface
scattering problems. (See [10] for a three-dimensional variant.) Alternative imple-
mentations of this approach built on collocation and geometrical theory of diffraction
[24], collocation, and steepest descent [32] and a p-version Galerkin interpretation
[18] have later appeared. In this latter setting, Ecevit and Özen [19] have recently
developed a rigorous method which demands, for any smooth convex scatterer, an
increase of O(kε) (for any ε > 0) in the number of degrees of freedom to maintain a
prescribed accuracy independent of frequency.

The single-scattering algorithm [13] has been successfully extended by Bruno,
Geuzaine, and Reitich [14] to encompass the high-frequency multiple scattering prob-
lems considered in this paper, relating precisely to a finite collection of smooth, strictly
convex obstacles. Roughly speaking, the approach in [14] was based on the follow-
ing: (1) representation of the overall solution η (namely, the normal derivative of
the total field in acoustics and the surface current in electromagnetics) as an infi-
nite superposition of single scattering effects through use of a Neumann series that
takes on the form η =

∑∞
m=0 η

m, where ηm corresponds exactly to the waves that
have undergone precisely m geometrical reflections; (2) determination of the phase
associated with each one of these effects using a spectral geometrical optics solver
wherein the assumption that the obstacles are smooth and strictly convex ensures
that the phase functions are single valued; and (3) utilization of the high-frequency
single scattering algorithm [13] for the frequency independent evaluation of these
effects. While every numerical implementation in [14] has displayed the spectral
convergence of Neumann series for two smooth strictly convex obstacles, unfortu-
nately, a rigorous proof of this fact was not available. Indeed, we have later shown
for several smooth convex obstacles in both two- [20] and three-dimensional [5] set-
tings that the Neumann series can be rearranged into contributions associated with
primitive periodic orbits and an explicit rate of convergence formula can be rigor-
ously derived on each periodic orbit in the high-frequency regime. While, on the
one hand, these analyses depict the convergence of Neumann series for all sufficiently
large wavenumbers k, on the other hand, the rate of convergence formulas display
that convergence can be rather slow particularly when (at least) one pair of nearby
obstacles exists. This analysis of the rate convergence [20, 5] was performed by using
double layer potentials. In this work, we show that use of combined field integral
equations lead to the same rate of convergence. Accordingly, novel mechanisms are
much needed for the accelerated solution of multiple scattering problems that re-
tain the frequency independent operation count underlying the algorithm in [14].
However, this is a rather challenging task since the algorithm in [14] undeviatingly
rests on reducing the problem, at each iteration, to the computation of an unknown
with a single-valued phase, and thus any strategy aimed at accelerating the conver-
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B1132 Y. BOUBENDIR, F. ECEVIT, AND F. REITICH

gence of Neumann series must also preserve the phase information related with the
iterates.

In this paper, we develop a Krylov subspace method that significantly accelerates
the convergence of Neumann series, in particular in the case where the distance be-
tween obstacles decreases, hence deteriorating the rate of convergence. For instance,
in [25] the authors design an efficient multiple scattering algorithm for Maxwell’s
equations but also discuss the difficulties arising when the distance between the ob-
stacles is small. The method we propose herein is well adapted to the high frequency
aspect of the present problem as it retains the phase information associated with the
iterates and delivers highly accurate solutions in a small number of iterations. Note
specifically that a direct implementation of Krylov subspace methods inhibits the use
of the algorithm in [14] as this makes it impossible to track the phase information of
the corresponding iterates. As we shall see, a natural attempt to overcome this issue
would be to simply use the binomial formula; however, this disrupts the convergence
of the method as displayed in the numerical results. We defeat this additional diffi-
culty by introducing an alternative numerically stable decomposition of the iterates.
In summary, our approach is based on three main elements: (1) utilization of an ap-
propriate formulation of the multiple scattering problem in the form of an operator
equation of the second kind, (2) alternative representation of the associated Krylov
subspaces so as to guarantee that basis elements are single-phased and thus retain
the frequency independent operation count underlying the algorithm in [14], and (3)
a novel decomposition of the iterates entering in a (standard) Krylov recursion to
prevent instabilities that would otherwise arise in a typical implementation based on
binomial identity. Indeed, as depicted in our numerical implementations, the resulting
methodology is immune to numerical instabilities as it removes the additive cancella-
tions arising from a direct use of binomial theorem. Moreover, it provides additional
savings in the number of needed iterations when compared with the classical Padé
approximants used in [14].

We additionally complement our Krylov subspace approach utilizing a precondi-
tioner based upon Kirchhoff approximations to further reduce the number of itera-
tions needed to obtain a given accuracy. Indeed, since knowledge of the illuminated
regions—where the inner product of the incidence direction and the exterior surface
normal is negative—at each iteration is readily available through the geometrical op-
tics solver we have used to precompute the phase of multiple scattering iterations,
essentially the only additional computation needed for the application of this pre-
conditioner is the use of stationary phase method to deal with nonsingular integrals
wherein the only stationary points are the target ones. This kind of dynamical pre-
conditioning is unusual and its originality resides in the fact that the location of
illuminated regions varies at each reflection. This clearly distinguishes our precon-
ditioning strategy from classical approaches where the preconditioners are usually
steady by design.

While the success of this Kirchhoff preconditioner is clearly displayed in our nu-
merical tests, the utilization of Kirchhoff approximations for the multiple scattering
iterations naturally raises the question of convergence of the associated Neumann se-
ries. We address this problem by showing that this series converges for each member
of a general general class of functions, and explain the exact sense in which the spec-
tral radius of the Kirchhoff operator is strictly less than 1. The importance of this
result is twofold. First, it verifies that the multiple scattering problem can be solved
by using solely the Kirchhoff technique, and further it rigorously answers the validity
of our preconditioning strategy.
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HIGH FREQUENCY MULTIPLE SCATTERING B1133

The rest of the paper is organized as follows. In section 2, we introduce the
scattering problem and provide a comparison of the equivalent differential and in-
tegral equation formulations of multiple scattering problems. Section 3 is reserved
for a comparison of convergence characteristics of these approaches. In section 4, we
provide a short review of the algorithm in [14] as the ideas therein lie at the core of fre-
quency independent evaluation of multiple scattering iterations as well as the iterates
associated with our newly proposed Krylov subspace method detailed in section 5.
In section 6, we explain how this Krylov subspace approach can be preconditioned
while utilizing Kirchhoff approximations. Finally, in section 7, we present numerical
implementations validating our newly proposed methodologies.

2. Scattering problem and multiple scattering formulations. Given an
incident field uinc satisfying the Helmholtz equation in Rn (n = 2, 3), we consider the
solution of sound-soft scattering problem

(1)


(
∆ + k2

)
u = 0 in Rn\Ω,

u = −uinc on ∂Ω,

lim|x|→∞ |x|(n−1)/2
(
∂|x| − ik

)
u(x) = 0

in the exterior of a smooth compact obstacle Ω ⊂ Rn. Potential theoretical con-
siderations entail that [16] the scattered field u satisfying (1) admits the single-layer
representation

u(x) = −
∫
∂K

Φ(x, y) η(y) ds(y),

where

η = ∂ν
(
u+ uinc) on ∂Ω

is the unknown normal derivative of the total field (called the surface current in
electromagnetics), ν is the exterior unit normal to ∂Ω,

Φ(x, y) =


i

4
H

(1)
0 (k|x− y|), n = 2,

1
4π

eik|x−y|

|x− y|
, n = 3,

is the fundamental solution of the Helmholtz equation, and H(1)
0 is the Hankel function

of the first kind and order zero. Although η can be recovered through a variety of
integral equations [16], we use the uniquely solvable combined field integral equation
(CFIE)

(2) η(x)−
∫
∂Ω

(
∂ν(x) + ik

)
G(x, y) η(y) ds(y) = f(x), x ∈ ∂Ω,

where G = −2Φ and f(x) = 2
(
∂ν(x) + ik

)
uinc(x).

In case the obstacle Ω consists of finitely many disjoint subscatterers Ω1, . . . ,ΩJ ,
denoting the restrictions of η and f to ∂Ωj by ηj and fj so that

(3) η = (η1, . . . , ηJ)t and f = (f1, . . . , fJ)t ,

(2) gives rise to the coupled system of integral equations

(4) (I − S) η = f,
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B1134 Y. BOUBENDIR, F. ECEVIT, AND F. REITICH

where

(Sjj′ηj′) (x) =
∫
∂Ωj′

(
∂ν(x) + ik

)
G(x, y) ηj′(y) ds(y), x ∈ ∂Ωj .

In connection with the operator I −S, the following result will be useful in extending
our two-dimensional results in [20] concerning the convergence of multiple scattering
iterations to the case of CFIE.

Theorem 1. For each k > 0, the diagonal operator D = diag(I −S) : L2(∂Ω)→
L2(∂Ω) defined by

Djj′ =
{
Ij − Sjj if j = j′,

0 otherwise

is continuous with a continuous inverse. Moreover, if each Ωj is star-like with respect
to a point in its interior, then given k0 > 0 there exists a constant Ck0 > 0 such that

(5) ‖D−1‖2 ≤ Ck0

for all k ≥ k0.

Proof. This is immediate since D is a diagonal operator and, as shown in [15,
Theorem 4.3], each operator I −Sjj (j = 1, . . . , J) on its diagonal satisfies inequality
(5).

Multiplying (4) with the inverse of D yields the equivalent operator equation of
the second kind

(6) (I − T ) η = g,

where

(7) Tjj′ =
{

0, j = j′,

(I − Sjj)−1 Sjj′ , j 6= j′,

and
g = (g1, . . . , gJ)t

with gj = (I − Sjj)−1
fj . Under suitable restrictions on the geometry of scatterers,

the solution of the operator equation (6) is given by the Neumann series [20, 5]

(8) η =
∞∑
m=0

ηm,

where the multiple scattering iterations

(9) ηm = (ηm1 , . . . , η
m
J )t

are defined by

(10) ηm =
{

g, m = 0,
T ηm−1, m ≥ 1.

As was presented in [7], the multiple scattering problem described above possesses
an equivalent differential equation formulation. Naturally, the convergence analysis
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HIGH FREQUENCY MULTIPLE SCATTERING B1135

carried out in [7] is directly linked with that of the Neumann series (8) and here we
present the exact connection. Indeed, the fields uj given by the single-layer potentials

uj(x) = −
∫
∂Ωj

Φ(x, y) ηj(y) ds(y)

in connection with the components of η in (3) correspond precisely to the unique
solutions of the exterior sound-soft scattering problems

(
∆ + k2

)
uj = 0 in Rn\Ωj ,

uj = −uinc −
∑
j′ 6=j uj′ on ∂Ωj ,

lim|x|→∞ |x|(n−1)/2
(
∂|x| − ik

)
uj(x) = 0,

and they provide the decomposition of the scattered field u as

(11) u =
J∑
j=1

uj .

On the other hand, the iterated fields umj given by the single-layer potentials

(12) umj (x) = −
∫
∂Ωj

Φ(x, y) ηmj (y) ds(y)

in relation with the components of ηm in (9) are precisely the unique solutions of the
exterior sound-soft scattering problems

(
∆ + k2

)
umj = 0 in Rn\Ωj ,

umj = −hmj on ∂Ωj ,

lim|x|→∞ |x|(n−1)/2
(
∂|x| − ik

)
umj (x) = 0

with

hmj =

{
uinc, m = 0,∑
j′ 6=j u

m−1
j′ , m ≥ 1,

and thus, in case the Neumann series (8) converges, each solution uj can be expressed
as the superposition

(13) uj =
∞∑
m=0

umj .

3. Convergence of multiple scattering iterations. Preliminary work on the
justification of identity (13) in a three-dimensional setting has appeared in [7]. Indeed,
while [7, Theorem 1] establishes uniqueness of decomposition (11), [7, Theorem 3] jus-
tifies the convergence of the series in (13) under suitable restrictions on the geometry
of the obstacles Ωj as stated in the next theorem.

Theorem 2 (cf. [7]). Assume that uinc ∈ H1(∂Ω) and, for j = 1, . . . , J , the
obstacle Ωj is nontrapping in the sense that

βj =
1

diam (Ωj)
sup
y∈Ωj

inf
x∈∂Ωj

ν(x) · (x− y) > 0.
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B1136 Y. BOUBENDIR, F. ECEVIT, AND F. REITICH

Let

δ = max
1≤j≤J

diam (Ωj) , d = min
1≤j,j′≤J

dist (Ωj ,Ωj′) , |∂Ω| = surface area of ∂Ω.

Then there exists a constant β > 0 that depends on β1, . . . , βJ such that if

δ d2

|∂Ω|
β > k3 (1 + (δk)2)√1 + 2 (δk)2,

then, for j = 1, . . . , J , identity (13) holds in the sense of convergence in H1
loc (Rn\Ωj).

As is clear, Theorem 2 establishes convergence of the series (13) for nontrapping
obstacles only if the wavenumber k is sufficiently small. Work on rigorous justification
of the convergence of Neumann series (8) (and thus of identity (13)) in high-frequency
applications, on the other hand, reduces to our work [20] and [5] that relates to a finite
collection of smooth strictly convex (and thus nontrapping in the sense of Theorem 2)
obstacles in two and three dimensions, respectively. Indeed, as we have shown in
[20, 5], the Neumann series (8) can be rearranged into a sum over primitive periodic
orbits and a precise (asymptotically geometric) rate of convergence Rp (where p is
the period of the orbit), which depends only on the relative geometry of the obstacles
Ωj , can be derived on each periodic orbit in the asymptotic limit as k →∞.

To review these results, for the sake of simplicity of exposition, we assume that
the scatterer Ω consists only of two smooth strictly convex obstacles Ω1 and Ω2 in
which case there are only two (primitive) periodic orbits (initiating from each Ωj and
traversing the obstacles in a 2-periodic manner) and relation (10) is equivalent to

(14) Dηm = fm, (m ≥ 0) ,

where
f0 = f = 2 (∂ν + ik)uinc, on ∂Ω,

and, for m ≥ 1,

(15) fm =
[

0 S12
S21 0

]
ηm−1.

In connection with identity (14), Theorem 1 implies in two-dimensional configurations
that, given any k0 > 0, there exists Ck0 > 0 such that for any k ≥ k0

(16) ‖ηm+2 −Rηm‖L2(∂Ω) ≤ Ck0 ‖fm+2 −Rfm‖L2(∂Ω)

holds for any constant R ∈ C, and thus the aforementioned geometric rate of conver-
gence of the Neumann series (8) is directly linked with that of the right-hand sides fm.
Indeed, assuming that the incidence is a plane-wave uinc(x) = eik α·x with direction
α (|α| = 1) with respect to which the obstacles Ω1 and Ω2 satisfy the no-occlusion
condition

{x+ tα : x ∈ ∂Ω1 & t ∈ R} ∩ ∂Ω2 = ∅

(which amounts to requiring that there is at least one ray with direction α that passes
between Ω1 and Ω2 without touching them), denoting by aj ∈ ∂Ωj the uniquely
determined points minimizing the distance between Ω1 and Ω2, and setting d =
|a1 − a2|, we have the following relation among the leading terms fmA in the asymptotic
expansions of fm which extends our analyses in [20, 5] to the case of CFIE.

D
ow

nl
oa

de
d 

05
/1

1/
18

 to
 1

28
.2

35
.8

3.
14

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH FREQUENCY MULTIPLE SCATTERING B1137

Theorem 3. There exist constants C = C(Ω, α) > 0, δ = δ(Ω, α) ∈ (0, 1), and
R2 = R2(Ω, k) ∈ C with the property that, for all m ≥ 1,

(17)
∥∥fm+2
A −R2f

m
A

∥∥
L2(∂Ω) ≤ C k δ

m.

The constant R2 is given in two-dimensional configurations by

R2 = e2ikd
(√

(1 + dκ1) (1 + dκ2)×
[
1 +

√
1− [(1 + dκ1)(1 + dκ2)]−1

])−1

,

where κj is the curvature at the point aj, and in three-dimensional configurations

R2 = e2ikd
(√

det [(I + dκ1) (I + dκ2)]

× det
[
I +

√
I − [T (I + dκ1)T−1 (I + dκ2)]−1

])−1

,

where I is the identity matrix,

κj =
[
κ1(aj) 0

0 κ2(aj)

]
is the matrix of principal curvatures at the point aj, and T is the rotation matrix
determined by the relative orientation of the surfaces ∂Ωj at the points aj.

Proof. Assume first that the dimension is n = 2. Writing fm = [fm1 fm2 ]t and
fmA = [fmA,1 f

m
A,2]t, it suffices to show that, for ` = 1, 2,

(18)
∥∥∥f (m+2)
A,` −R2f

m
A,`

∥∥∥
L2(∂Ω`)

≤ C` k δm

for some constant C` = C` (Ω, α). On the other hand, [20, Theorems 3.4 and 4.1]
displays that (a more general version of) this estimate holds on any compact sub-
set of the illuminated regions (see the next section for a precise definition of these
regions) when fm+2

A,` and fmA,` are replaced by the leading terms ηm+1
A,` and ηm−1

A,` in
the asymptotic expansions of ηm+1

` and ηm−1
` . Finally applying the stationary phase

lemma [23] to each component of identity (15), the same techniques used to prove [20,
Theorem 4.1] deliver estimate (18). In the case n = 3, the argument is the same and
is based upon [5, Theorems 3.3 and 4.3].

Although Theorem 3 is valid under the no-occlusion condition, extensive numeri-
cal tests in [20, 5] display that the conclusion of Theorem 3 is valid not only when this
condition is violated but also when the convexity assumption is conveniently relaxed.
For theoretical considerations in the present manuscript, however, we will continue to
assume that the obstacles are smooth and strictly convex.

Remark 4. In light of estimates (16)–(17), for M � log k, we have

η =
∞∑
m=0

ηm ∼
M∑
m=0

ηm +
(
ηM+1 + ηM+2) ∞∑

m=0

Rm2 ,

which signifies that the Neumann series converges with the geometric rate R2. Note
however that, as the distance between the obstacles Ω1 and Ω2 decreases to zero, |R2|
increases to 1, and thus convergence of the Neumann series significantly deteriorates.
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The same remark is valid when the configuration consists of more than two sub-
scatterers and involves at least one pair of nearby obstacles. Indeed, as we have shown
in [20, 5], this is also completely transparent from a theoretical point of view since, in
this case, the Neumann series can be completely dismantled into single-scattering ef-
fects and rearranged into a sum over primitive periodic orbits including, in particular,
2-periodic orbits.

The next section is devoted to the description of how we adopt the high-frequency
integral equation method in [14] to the evaluation of iterates arising in our Krylov
subspace approach and also in its preconditioning through Kirchhoff approximations.
As explained in the introduction, the strength of the work in [14] is due to retaining
information on the phases of multiple scattering iterations, and therefore our Krylov
subspace and Kirchhoff preconditioning strategies are also designed to posses the same
property.

4. High-frequency integral equations for multiple scattering configura-
tions. For simplicity of exposition we continue to assume that the obstacle Ω consists
only of two disjoint subscatterers Ω1 and Ω2. In what follows, for j, j′ ∈ {1, 2}, we
will always assume that j 6= j′. In this case, relation (14) can be written, for j = 1, 2,
in components as

(19) (I − Sjj) η0
j = f0

j on ∂Ωj

and

(20) (I − Sjj) ηmj = Sjj′ ηm−1
j′ on ∂Ωj

for m ≥ 1. As identity (19) displays, η0
j is exactly the surface current generated by

the incidence uinc on ∂Ωj ignoring interactions between Ω1 and Ω2. Similarly, for
m ≥ 1, (20) depicts that ηmj is precisely the surface current generated by the field
um−1
j′ (note that Sjj′ ηm−1

j′ = 2 (∂ν + ik)um−1
j′ ) acting as an incidence on ∂Ωj ignoring,

again, interactions between Ω1 and Ω2. Therefore identities (19) and (20) entail that
the Neumann series (8) completely dismantles the single scattering contributions and
allows for a representation of the surface current η as a superposition of these effects.
More importantly, in geometrically relevant configurations, these observations allow
us to predetermine the phase ϕmj of ηmj and express it as the product of a highly
oscillating complex exponential modulated by a slowly varying amplitude in the form

(21) ηmj = eik ϕ
m
j ηm, slow

j

and this, in turn, grants the frequency-independent solution of (19)–(20) as described
in [14]. To review the algorithm in [14] and set the stage for the rest of the paper,
we first describe the phase functions ϕmj in combination with the various regions they
determine on the boundary of the scatterers, and we present one of the main results
in [20, 5] that displays the asymptotic characteristics of the amplitudes ηm, slow

j .
Indeed, in the case the obstacles Ω1 and Ω2 are smooth, strictly convex, and

satisfy the no-occlusion condition with respect to the direction of incidence α, the
phase ϕmj in (21) is given by

(22) ϕm1 =

{
φm1 , m is even,

φm2 , m is odd,
and ϕm2 =

{
φm2 , m is even,

φm1 , m is odd.
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HIGH FREQUENCY MULTIPLE SCATTERING B1139

Here, for any of the two obstacle paths {Γm1 }m≥0 and {Γm2 }m≥0 defined by(
Γ2m

1 ,Γ2m+1
1

)
= (∂Ω1, ∂Ω2) and

(
Γ2m

2 ,Γ2m+1
2

)
= (∂Ω2, ∂Ω1)

for all m ≥ 0, the geometrical phase φm` at any point x ∈ Γm` (` = 1, 2) is uniquely
defined as [20, 5]

φm` (x) =


α · x, m = 0,

α · Xm0 (x) +
m−1∑
r=0
|Xmr+1(x)−Xmr (x)|, m ≥ 1 ,

where the points (Xm0 (x), . . . ,Xmm (x)) ∈ Γ0
` × · · · × Γm` are specified by

(a) Xmm (x) = x,

(b) α · ν(Xm0 (x)) < 0,
(c) (Xmr+1(x)−Xmr (x)) · ν(Xmr (x)) > 0,

(d)
Xm1 (x)−Xm0 (x)
|Xm1 (x)−Xm0 (x)|

= α− 2α · ν(Xm0 (x)) ν(Xm0 (x)),

(e)
Xmr+1(x)−Xmr (x)
|Xmr+1(x)−Xmr (x)|

=
Xmr (x)−Xmr−1(x)
|Xmr (x)−Xmr−1(x)|

− 2
Xmr (x)−Xmr−1(x)
|Xmr (x)−Xmr−1(x)|

· ν(Xmr (x)) ν(Xmr (x))

for 0 < r < m. These conditions simply mean the phase φm` (x) is determined by
the ray with initial direction α sequentially hitting at and bouncing off the points
Xmr (x) (r = 0, . . . ,m − 1) according to the law of reflection to finally arrive at x ∈
Γm` . Moreover, these rays divide Γm` into two open connected subsets, namely, the
illuminated regions

Γm` (IL) =


{
x ∈ Γ0

` : α · ν(x) < 0
}
, m = 0,{

x ∈ Γm` : (Xmm (x)−Xmm−1(x)) · ν(x) < 0
}
, m ≥ 1,

and the shadow regions

Γm` (SR) =


{
x ∈ Γ0

` : α · ν(x) > 0
}
, m = 0,{

x ∈ Γm` : (Xmm (x)−Xmm−1(x)) · ν(x) > 0
}
, m ≥ 1,

and their closures intersect at the shadow boundaries

Γm` (SB) =


{
x ∈ Γ0

` : α · ν(x) = 0
}
, m = 0,{

x ∈ Γm` : (Xmm (x)−Xmm−1(x)) · ν(x) = 0
}
, m ≥ 1,

each of which consists of two points in two-dimensional configurations or a smooth
closed curve in three dimensions. In connection with the phase functions (22), il-
luminated regions ∂Ωmj (IL), shadow regions ∂Ωmj (SR), and the shadow boundaries
∂Ωmj (SB) are then given by

∂Ωm1 ( · ) =

{
Γm1 ( · ), m is even,

Γm2 ( · ), m is odd,
and ∂Ωm2 ( · ) =

{
Γm2 ( · ), m is even,

Γm1 ( · ), m is odd.
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B1140 Y. BOUBENDIR, F. ECEVIT, AND F. REITICH

Generally speaking this means that the rays emanating from ∂Ωmj return to ∂Ωmj after
an even number of reflections, and those initiating from ∂Ωmj′ arrive ∂Ωmj after an odd
number of reflections. Finally let us note that the phase functions φmj are smooth
and periodic as they are confined to the boundary of the associated scatterers. The
computation of these phases are performed using a spectrally accurate geometrical
optics solver. This also allows for a simple and accurate determination of the shadow
boundary points and thus the illuminated and shadow regions.

With these definitions we can now state one of the main results in [20, 5] that
completely clarifies the asymptotic behavior of amplitudes ηm, slow

j in (21).

Theorem 5 (see [20, 5]).
(i) On the illuminated region ∂Ωmj (IL), ηm, slow

j (x, k) belongs to the Hörmander
class S1

1,0(∂Ωmj (IL)× (0,∞)) (cf. [30, 31]) and admits the asymptotic expan-
sion

(23) ηm, slow
j (x, k) ∼

∑
p≥0

k1−pamj,p(x),

where amj,p are complex-valued C∞ functions. Consequently, for any P ∈
N ∪ {0}, the difference

(24) rmj,P (x, k) = ηm, slow
j (x, k)−

P∑
p=0

k1−pamj,p(x)

belongs to S−P1,0 (∂Ωmj (IL)× (0,∞)) and thus satisfies the estimates

(25)
∣∣Dβ

xD
n
k r
m
j,N (x, k)

∣∣ ≤ Cm,β,n,S(1 + k)−P−n

on any compact subset S of ∂Ωmj (IL) for any multi-index β and n ∈ N∪{0}.
(ii) Over the entire boundary ∂Ωj, η

m, slow
j (x, k) belongs to the Hörmander class

S1
2/3,1/3(∂Ωj × (0,∞)) and admits the asymptotic expansion

(26) ηm, slow
j (x, k) ∼

∑
p,q≥0

k2/3−2p/3−q bmj,p,q(x)Ψ(p)(k1/3Zmj (x)),

where bmj,p,q(x) are complex-valued C∞ functions, Zmj (x) is a real-valued C∞

function that is positive on ∂Ωmj (IL), negative on ∂Ωmj (SR), and vanishes
precisely to first order on ∂Ωmj (SB), and the function Ψ admits the asymptotic
expansion

(27) Ψ(τ) ∼
∑
`≥0

c`τ
1−3` as τ →∞,

and it is rapidly decreasing in the sense of Schwartz as τ → −∞. Note
specifically then, for any P,Q ∈ N ∪ {0}, the difference

RmP,Q(x, k) = ηm, slow
j (x, k)−

P,Q∑
p,q=0

k2/3−2p/3−q bmj,p,q(x)Ψ(p)(k1/3Zmj (x))

belongs to S−µ2/3,1/3(∂Ωj × (0,∞)), µ = min {2P/3, Q}, and thus satisfies the
estimates

(28)
∣∣Dβ

xD
n
kR

m
P,Q(x, k)

∣∣ ≤ Cm,β,n(1 + k)−µ−2n/3+|β|/3

for any multi-index β and n ∈ N ∪ {0}.
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The first main ingredient underlying the algorithm in [14] was the observation
that, while ηm, slow

j admits a classical asymptotic expansion in the illuminated region
∂Ωmj (IL) as displayed by (23), it possesses boundary layers of order O(k−1/3) around
the shadow boundaries ∂Ωmj (SB) and rapidly decays in the shadow region ∂Ωmj (SR)
as implied by the expansion (26) and the mentioned change in the asymptotic expan-
sions of the function Ψ. Therefore, as depicted in [14], utilizing a cubic root change of
variables in k around the shadow boundaries, the unknown ηm, slow

j can be expressed
in a number of degrees of freedom independent of frequency, and this transforms the
problem into the evaluation of highly oscillatory integrals.

Indeed, a second main element of the algorithm in [14] is based on the realization
that the identity

(29)
d

dz
H

(1)
0 (z) = −H(1)

1 (z)

combined with the asymptotic expansions of Hankel functions [3] entails

(
∂ν(x) + ik

)
G(x, y) ∼ eik |x−y|

(
e−iπ/4

(
k

2π |x− y|

)1/2(
1 +

x− y
|x− y|

· ν(x)
))

,

and thus, in light of factorization (21), (19)–(20) take on the form
(30)

eik ϕ
0
j (x) η0, slow

j (x)−
∫
∂Ωj

eik (ϕ0
j (y)+|x−y|) F (x, y) η0, slow

j (y) ds(y) = f0
j (x), x ∈ ∂Ω0

j ,

and, for m ≥ 1,

(31) eik ϕ
m
j (x) ηm, slow

j (x)−
∫
∂Ωj

eik (ϕm
j (y)+|x−y|) F (x, y) ηm, slow

j (y) ds(y)

=
∫
∂Ωj′

eik (ϕm−1
j (y)+|x−y|) F (x, y) ηm−1, slow

j′ (y) ds(y), x ∈ ∂Ωmj ,

where
F (x, y) = e−ik |x−y|

(
∂ν(x) + ik

)
G(x, y).

As depicted in [14], frequency independent evaluations of integrals in (30)–(31) can
then be accomplished to any desired accuracy utilizing a localized integration (around
stationary points of the combined phase ϕmj (y) + |x − y| or the singularities of the
integrand) procedure based upon suitable extensions of the method of stationary
phase.

The third main element of the algorithm in [14] is the use of Nysröm and trape-
zoidal discretizations and Fourier interpolations to render the method high order, and
the scheme is finally completed with a matrix-free Krylov subspace linear algebra
solver to obtain accelerated solutions.

While the above discussion provides a brief summary of the algorithm in [14],
it clearly signifies the importance of retaining the phase information in connection
with the multiple scattering iterations since this allows for a simple utilization of
the aforementioned localized integration scheme. Accordingly, any strategy aiming
at accelerating the convergence of Neumann series must also preserve the phase in-
formation. As we explain, both the novel Krylov subspace method we develop in the
next section and its preconditioning discussed in section 6 possess this property.
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5. Novel Krylov subspace method for accelerating the convergence of
Neumann series. As with the solution of matrix equations, Krylov subspace meth-
ods provide a convenient mechanism for the approximate solution of operator equa-
tions

Aη = g

in Hilbert spaces (see, e.g., [34] and the references therein). These methods are
orthogonal projection methods wherein, given an initial approximation µ(0) to η, one
seeks an approximate solution µ(m) from the affine space µ(0) +Km related with the
Krylov subspace

Km = span
{
r(0),Ar(0),A2r(0), . . . ,Am−1r(0)

}
of the operator A associated with the residual r(0) = g−Aµ(0) imposing the Petrov–
Galerkin condition

g −Aµ(m) ⊥ Km.

In connection with the operator equation (6), taking A = I − T and µ(0) = 0,
the approximate solution µ(m) belongs to the Krylov subspace

Km = span
{
g, (I − T )g, (I − T )2g, . . . , (I − T )m−1g

}
for which, in light of identity (10), the functions (I −T )ng can be expressed as linear
combinations of the multiple scattering iterations η` through use of the binomial
theorem as

(32) (I − T )n g =
n∑
`=0

(
n

`

)
(−1)` T ` g =

n∑
`=0

(
n

`

)
(−1)` η`.

This relation clearly entails

Km = span
{
η0, . . . , ηm−1}

and thus, any information about the Krylov subspace Km can be obtained in frequency
independent computational times using the algorithm briefly described in section 4.

A particular Krylov subspace method we favor for the solution of multiple scat-
tering problem (6) is the classical ORTHODIR [34] iteration which, for the initial
guess µ(0) = 0, takes on the form

1. Set r(0) = p(0) = g,

2. For j = 0, 1 . . . DO

2.1 αj = 〈r(j),Ap(j)〉/〈Ap(j),Ap(j)〉,
2.2 µ(j+1) = µ(j) + αj p

(j),

2.3 r(j+1) = r(j) − αj Ap(j),

2.4 For i = 0, . . . , j, βij = −〈A2p(j),Ap(i)〉/〈Ap(i),Ap(i)〉,
2.5 p(j+1) = Ap(j) +

∑j
i=0 βij p

(i).

This iteration entails, through a straightforward induction argument, the following
recurrence relation for A = I − T , where T is the iteration operator specified by (7).
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Theorem 6. For A = I − T , the iterates p(j) generated by the ORTHODIR
algorithm satisfy the recurrence relation

(33) p(j) = (I − T )j p(0) +
j−1∑
`=0

∑̀
i=0

βi` (I − T )j−1−`
p(i), j = 0, 1, . . . .

Although this relation can be used in combination with the binomial identity (32)
to recursively compute p(j), this approach is bound to result in numerical instabilities
when the distance d between the obstacles Ω1 and Ω2 is close to zero since, in this case,
the asymptotic rate of convergenceR2 is close to 1. Concentrating, for instance, on the
term (I − T )j p(0), this instability is apparent from the subtractive cancellations in
binomial identity (32) upon noting that p(0) = g and η`+2 ∼ R2η

` ∼ η` for `� log k
by inequality (16) and Theorem 3.

On the other hand, since p(0) = g, a combined use of (32) and (33) clearly shows
that the iterates p(j) generated by the ORTHODIR algorithms can alternatively be
computed through the following identification procedure.

Corollary 7. Each p(j) is a linear combination of η0, . . . , ηj, say,

(34) p(j) =
j∑
i=0

γij η
i,

and this allows for the computation of the next iterate as

p(j+1) = (I − T ) p(j) +
j∑
i=0

βij p
(i) =

j∑
i=0

γij η
i −

j∑
i=0

γij η
i+1 +

j∑
i=0

βij p
(i)

=
j+1∑
i=0

γi,j+1 η
i,(35)

where the new coefficients γi,j+1 are easily computed by identification.

In connection with step 2 in the ORTHODIR iteration we note explicitly that

T p(j) =
j∑
i=0

γij η
i+1 and T 2p(j) =

j∑
i=0

γij η
i+2

and these can then be used to easily evaluate Ap(j) = (I − T )p(j) and A2p(j) =
(I − 2T + T 2)p(j). Let us mention that in the evaluation of A2p(j), we only need to
compute the quantity T 2p(j) because the one related to (I − 2T )p(j) is derived from
the previous calculations in the same iteration. As for the identification procedure,
we have

p(j+1) = Ap(j) +
j∑
i=0

βij p
(i) =

j∑
i=0

γij η
i −

j∑
i=0

γij η
i+1 +

j∑
i=0

βij

i∑
`=0

γ`i η
`

so that interchanging the order of summation in the double sum in this latter identity,
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we obtain the explicit expression

p(j+1) =
j∑
i=0

γij η
i −

j∑
i=0

γi,j η
i+1 +

j∑
i=0

j∑
`=i

β`j γi` η
i

=

(
γ0j +

j∑
`=0

β`j γ0`

)
η0 +

j∑
i=1

(
γij − γi−1,j +

j∑
`=i

β`j γi`

)
ηi − γjj ηj+1

=
j+1∑
i=0

γi,j+1 η
i.

In light of these identities, we note specifically that since the phases of ηi are
known, identity (34) allows for a utilization of the localized integration scheme briefly
summarized in section 4 in the evaluation of inner products in steps 2.1 and 2.4
in the ORTHODIR iteration. On the other hand, the identification procedure (35)
provides a numerically stable way of recursively computing p(j) as it clearly eliminates
subtractive cancellations arising from the use of binomial identity (32).

6. Preconditioning using Kirchhoff approximations. Although the novel
Krylov subspace approach discussed in the previous section provides an effective mech-
anism for the accelerated solution of multiple scattering problem (6), this can be
further improved if the operator equation (6) is properly preconditioned. Indeed,
for an appropriately defined operator K approximating the iteration operator T , the
preconditioned form of (6) reads

(36) (I − K)−1 (I − T ) η = (I − K)−1
g.

In this connection, we note the following useful alternative.

Theorem 8. If the spectral radius r(K) of K is strictly less than 1, then the
preconditioned equation (36) can be written alternatively as

(37)

(
I −

∞∑
`=0

K` (T − K)

)
η =

∞∑
`=0

K`g.

Proof. Since r(K) < 1, we have the Neumann series representation [33]

(38) (I − K)−1 =
∞∑
`=0

K`.

Use of (38) in the identity

(I − K)−1 (I − T ) = I − (I − K)−1 (T − K)

delivers the desired result.

It is therefore natural to approximate the solution of (6) with the solution of the
truncated equation

(39)

(
I −

N∑
`=0

K` (T − K)

)
η =

M∑
`=0

K`g,
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HIGH FREQUENCY MULTIPLE SCATTERING B1145

which we shall write as

(40) AK,N
η = gK,M

.

While (40) displays the preconditioning strategy we shall utilize for the solution of
multiple scattering problem (6), it is clearly amenable to a treatment by the Krylov
subspace method developed in the preceding section to further accelerate the solution
of problem (6).

As for the requirement that K has to approximate the iteration operator T , we
recall that each application of T corresponds exactly to the evaluation of the surface
current on each of the obstacles Ω1 and Ω2 generated by the fields scattered from,
respectively, Ω2 and Ω1 at the previous reflection as depicted by the identity[

ηm1

ηm2

]
= T

[
ηm−1

1

ηm−1
2

]
=

[
0 (I − S11)−1 S12

(I − S22)−1 S21 0

][
ηm−1

1

ηm−1
2

]
.

It is therefore reasonable to define the operator K in the form

K =
[

0 K12
K21 0

]
and require that ηmj ≈ Kjj′ η

m−1
j′ . Accordingly, the operators Kjj′ must retain the

phase information to preserve the frequency independent operation count while, con-
currently, providing a reasonable approximation to the slow densities to guarantee an
accurate preconditioning. This requirement can be satisfied only if the operators Kjj′
are defined in a dynamical manner so as to respect the information associated with the
iterates, and this distinguishes our preconditioning strategy from classical approaches
where the preconditioners are steady by design. The most natural approach is to
design the operators Kjj′ so that they yield the classical Kirchhoff approximations as
these preserve the phase information exactly and approximate ηm, slow

j with the lead-
ing term in its asymptotic expansion. Concentrating on two-dimensional settings, in
this connection, a basic relation we exploited in [20] was the observation that while,
on the one hand, this term coincides with that of twice the normal derivative of um−1

j′

in (12) on the illuminated region ∂Ωmj (IL), and on the other hand, identity (29)
combined with asymptotic expansions of Hankel functions [3] entails

(41) ∂ν(x)G(x, y) ∼ eik |x−y|
(
e−iπ/4

√
k

2π |x− y|
x− y
|x− y|

· ν(x)

)
so that use of (41) in (12) yields
(42)

2 ∂ν(x)u
m−1
j′ (x) ∼

∫
∂Ωj′

√
k

2π
e
ik (ϕm−1

j′ (y)+|x−y|)−iπ/4
ηm−1, slow
j′ (y)F (x, y) ds(y), x∈ ∂Ωj ,

where

(43) F (x, y) =
1√
|x− y|

x− y
|x− y|

· ν(x).

As for the oscillatory integral in (42), as we have shown in [20], it is treatable through
an appropriate use of stationary phase method [23] which states that the main con-
tribution to an oscillatory integral comes from the stationary points of the phase.
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Lemma 9 (stationary phase method). Let ψ ∈ C∞[a, b] be real valued, and let
h ∈ C∞0 [a, b]. Suppose that t0 is the only stationary point of ψ in (a, b), ψ′′(t0) 6= 0,
and σ = signψ′′(t0). Then there exists a constant C such that, for all k > 1,∣∣∣∣∣

∫ b

a

eikψ(t) h(t) dt− eikψ(t0)+iπσ/4 h(t0)

√
2π

k |ψ′′t0|

∣∣∣∣∣ ≤ C k−1 ‖h‖C2[a,b].

Indeed, it turns out [20] that the combined phase function

ϕmjj′(x, y) = ϕm−1
j′ (y) + |x− y|

has two stationary points, one in the shadow region ∂Ωm−1
j′ (SR) with a contribution

of O(k−n) (for all n ∈ N) due to rapid decay of the amplitude ηm−1, slow
j′ , and another

one in the illuminated region ∂Ωm−1
j′ (IL) given by y(x) = Xmm−1(x) (at which the com-

bined phase has a positive “second derivative”) whose contribution agrees, to leading
order, with that given by stationary phase evaluation of the integral in (42). While
this discussion clarifies how Kirchhoff operators Kjj′ must be designed so that they
yield the leading terms in the asymptotic expansions of ηmj on the illuminated regions
∂Ωmj (IL) at each iteration, the rapid decay of ηmj in the shadow region ∂Ωmj (SR),
in turn, provides the motivation that Kjj′ must simply approximate ηmj by zero in
these regions. Being aware of these, we use γj(tj) = (γ1

j (tj), γ2
j (tj)) to denote the arc

length parametrezation of ∂Ωj (in the counterclockwise orientation) with period Lj
(j = 1, 2) so that, for each xj ∈ ∂Ωj , tj is the unique point in [0, Lj) with γj(tj) = xj ,
and define the Kirchhoff operators Kjj′ as follows.

Definition 10. For a smooth phase φj′ : ∂Ωj′ → R having the property that, for
each xj ∈ ∂Ωj, the function φjj′ : ∂Ωj × ∂Ωj′ → R given by

φjj′(xj , xj′) = φj′(xj′) + |xj − xj′ |

has a unique stationary point yj′ = xj′(xj) ∈ ∂Ωj′ such that [xj , yj′ ] ∩ ∂Ωj′ = yj′ ,
define the transformed phase φj : ∂Ωj → R by setting

φj(xj) = φjj′(xj , yj′).

Assume further that φjj′(tj , tj′) = φjj′(xj , xj′) has ∂2
tj′
φjj′(tj , τj′) > 0 at τj′ =

γ−1
j′ (yj′) and for a given amplitude Aj′ : ∂Ωj′ → C, define the transformed am-

plitude Aj : ∂Ωj → C by setting

Aj(xj) =

 Bj(xj) if [xj , yj′ ] ∩ ∂Ωj = {xj},

0 otherwise,

where, with the function F as defined in (43),

Bj(xj) = Aj′(yj′)F (xj , yj′)
(
∂2
tj′
φjj′(tj , τj′)

)−1/2
.

Finally, define the Kirchhoff operator Kjj′ by setting

(44) Kjj′(φj′ , Aj′) = (φj , Aj).
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HIGH FREQUENCY MULTIPLE SCATTERING B1147

We abbreviate identity (44) as

(45) Kjj′
(
eik φj′ Aj′

)
= eik φj Aj

and extend Kjj′ by linearity so that

(46) Kjj′
(

N∑
`=0

eik φ
`
j′ A`j′

)
=

N∑
`=0

Kjj′
(
eik φ

`
j′ A`j′

)
.

In connection with the requirement that the operators Kjj′ must retain the phase
information exactly while providing a reasonable approximation to the slow densities,
we note that

Kjj′
(
e
ik ϕm−1

j′ ηm−1, slow
j′

)
(x) = eik ϕ

m
j (x) λm, slow

j (x), x ∈ ∂Ωj ,

where, with F as given in (43),

λm, slow
j (x)

=


ηm−1, slow
j′ (Xmm−1(x))F (x,Xmm−1(x)) (∂2

tj′
ϕmjj′(tj , τj′))

−1/2, x ∈ ∂Ωmj (IL),

0, otherwise,

so that Kjj′ preserves the phase information, and the leading term in the asymptotic
expansion of λm, slow

j agrees with that of ηm, slow
j in the illuminated region ∂Ωmj (IL)

as desired (cf. [20, Theorems 3.3 and 3.4]).
As for the alternative form (37) of the preconditioned equation (36), we have the

following result.

Theorem 11. Suppose that the obstacles Ω1 and Ω2 satisfy the no-occlusion con-
dition with respect to the direction of incidence α. Considering any given function
h ∈ C(∂Ω) as h(x) = eik α·x h0(x), the series

∞∑
`=0

‖K`h‖∞

converges for all k > 0.

Proof. The same technique used to prove [20, Theorem 4.1] entails the existence
of constants C = C(Ω, α) > 0 and δ = δ(Ω, α) ∈ (0, 1) such that, for all ` ∈ Z+,∥∥K`+2h−R2K`h

∥∥
∞ ≤ δ

`
(
min

{
2, exp

(
Ck δ`

)
− 1
}
δ2 + Cδ`−2) ‖h‖∞,

which yields ∥∥K`+2h−R2K`h
∥∥
∞ ≤ δ

`
(
2δ2 + Cδ`−2) ‖h‖∞.

Using C = C(Ω, α) to denote a positive constant whose value may be different at each
appearance in what follows, this inequality clearly implies∥∥K`+2h−R2K`h

∥∥
∞ ≤ C δ

`‖h‖∞.
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B1148 Y. BOUBENDIR, F. ECEVIT, AND F. REITICH

Since |R2| < 1, choosing δ larger, if necessary, we may assume that δ2 ∈ (|R2|, 1). In
this case, the preceding inequality yields, for ` ∈ Z+ and m = 0, 1,

∥∥Km+2`h
∥∥
∞ ≤

∥∥R`2Kmh∥∥∞ +
`−1∑
j=0

∥∥∥R`−(j+1)
2 Km+2(j+1)h−R`−j2 Km+2jh

∥∥∥
∞

= |R2|` ‖Kmh‖∞ +
`−1∑
j=0

|R2|`−(j+1)
∥∥∥Km+2(j+1)h−R2Km+2jh

∥∥∥
∞

≤ |R2|` ‖Kmh‖∞ + C
`−1∑
j=0

|R2|`−(j+1)δm+2j‖h‖∞

= |R2|` ‖Kmh‖∞ + C δm
|R2|` − δ2`

|R2| − δ2 ‖h‖∞

≤ δ2` ‖Kmh‖∞ + C δm+2`‖h‖∞.

Since we clearly have ‖Kmh‖∞ ≤ C‖h‖∞ for m = 0, 1, we conclude∥∥Km+2`h
∥∥
∞ ≤ C

(
δ2` + δm+2`) ‖h‖∞ ≤ C δm+2` ‖h‖∞,

and this gives, for all ` ∈ Z+,

(47)
∥∥K`h∥∥∞ ≤ C δ` ‖h‖∞.

Thus the result follows.

Remark 12. Considering K as an operator K : C(∂Ω) → C(∂Ω), inequality (47)
implies

r(K) = lim
`→∞

∥∥K`∥∥1/`
∞ ≤ δ < 1

for the spectral radius of K, and this explains the sense in which identity (37) in
Theorem 8 holds.

In connection with the application of the ORTHODIR iteration to the precondi-
tioned equation (39), setting ϕm = [ϕm1 , ϕ

m
2 ]t and using µ` (` = 0, 1, . . .) to denote

generic functions defined on ∂Ω which may be different from line to line, we thus see
through (45)–(46) that

p(0) = gK,M
=

N∑
`=0

K`g =
M∑
`=0

K`
(
eik ϕ

0
η0, slow

)
is of the form

(48) p(0) =
M∑
`=0

eik ϕ
`

µ`.

More generally, we have the following result.

Theorem 13. For j = 0, 1, 2 . . . , the ORTHODIR iterates p(j) are of the form

(49) p(j) =
M+j(N+1)∑

`=0

eik ϕ
`

µ`.

D
ow

nl
oa

de
d 

05
/1

1/
18

 to
 1

28
.2

35
.8

3.
14

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH FREQUENCY MULTIPLE SCATTERING B1149
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-2

0

   κ1 = 1
   κ2 = 2/3
    d ≈ 0.314
|R2| ≈ 0.493

Ω2

Ω1

k = 200

(a) Circles

-10 0 10

-8

0

8

Ω1

Ω2

k = 40

  κ1 ≈ 0.011
  κ2 ≈ 0.041
    d ≈ 0.22
|R2| ≈ 0.898

(b) Ellipses

Fig. 1. Multiple scattering configurations.

Proof. This follows by a straightforward induction based on (45)–(46), (48), and
the recursion

(50) p(j+1) = AK,N
p(j) +

j∑
i=0

βij p
(i) =

(
I −

N∑
`=0

K` (T − K)

)
p(j) +

j∑
i=0

βij p
(i).

The main point behind this theorem is that use of (49) in (50) clearly allows for
an application of the aforementioned localized integration scheme in connection with
the execution of the operator T in (50). Moreover, it is clear that each realization of
the Kirchhoff operator K is frequency independent. Consequently, the preconditioned
equation (39) is amenable to a treatment by the Krylov subspace method described in
section 5 to obtain even more accelerated solutions of the multiple scattering problem
(6) while still retaining the frequency independent operation count if desired.

7. Numerical implementations. In this section we present several numerical
examples that display the benefits of our Krylov subspace approach as well as its
preconditioning based on the Kirchhoff approximations. The results are produced
on a single core (3.7 GHz Intel Xeon processor) of a MacPro machine with 64Gb of
memory by a MATLAB implementation of our algorithm. In all the examples, we
use the high frequency integral equations (30) and (31) or their generalized versions
as described in [20]. For implementation details regarding the frequency independent
numerical solution of these integral equations we refer to [13].

The first two examples concern two smooth convex obstacles consisting of circles
and ellipses (see Figure 1). The radii of the circles are 1 and 1.5, they are centered at
the origin and (0.9625,−2.6444), and they are illuminated by a plane-wave incidence
coming in from the left with wavenumber k = 200. Ellipses are chosen to be parallel
with centers at (0, 0) and (0,−4.5) and major/minor axes 10/1 and 7/2. In this case
the illumination is provided by a plane wave with direction along the major axes and
wavenumber k = 40. For both configurations, the number of points we have used to
discretize the high frequency integral equations (30) and (31) on the surface of each
scatterer is 240.

Figure 2 provides a comparison of (a) the Neumann series, (b) the Padé approxi-
mants, (c) the Krylov subspace method based on a combined use of binomial formula
(32) and identity (33), and (d) the alternative implementation of the latter based on
decomposition (34) leading to (35). More precisely, Figure 2 depicts the number of
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(b) Ellipses

Fig. 2. Acceleration provided by the Krylov subspace method.
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(b) Ellipses

Fig. 3. Preconditioning through Kirchhoff approximations.

reflections versus the logarithmic L2 error

log10 ‖η − η̂‖2

between the exact solution η and the approximations η̂ obtained by the four aforemen-
tioned schemes. In both cases, the reference solution η is computed using an integral
solver with sufficiently many disretization points to guarantee 14 digits of accuracy.
As we anticipated, combined use of binomial formula (32) and identity (33) suffers
from subtractive cancellations and fails to approximate the solution as the number of
reflections increases. The implementation of the Krylov subspace method based on
decomposition (34) and the resulting equation (35) clearly resolves this issue. Further-
more, when compared with the Padé approximants considered in [14], approximations
provided by this alternative implementation of the Krylov subspace method are more
stable and give better accuracy at each iteration. Incidentally, note specifically that a
direct use of Neumann series would require about 77/522 iterations to obtain 12 dig-
its of accuracy for circular/elliptical configurations in Figure 1, and thus our Krylov
subspace approach provides savings of 78%/87% in the required number of reflections.

Finally, in Figure 3, we display a comparison of (a) the Neumann series, (b) the
stable implementation of our Krylov subspace approach based on decomposition (34)
and (35), and (c) Kirchhoff preconditioning of the latter. Note precisely that (c)
is based on the Krylov subspace iterations (described in section 5) applied to the
truncated version (40) of preconditioned form (37) of the multiple scattering problem
(6) utilizing the Kirchhoff operator K. In our implementations we have taken N = M
in (40) and used N = 12/40 for the circular/elliptical configurations in Figure 1. As
depicted in Figure 3, in both cases only three ORTHODIR iterations are sufficient
to obtain 3-digits of accuracy which would require 20/100 iterations if the Neumann
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(a) Circle of radius r = 1
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(b) Circle of radius r = 1.5

Fig. 4. Values of phase functions plotted against arclength parameterization for (periodic)
reflections m = 0, 2, 4, 6, 8, 10, 12 related with the circles of radii r = 1 (left) and r = 1.5 (right) in
the left of Figure 1.
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(c) d = 0.001

Fig. 5. The distribution of the eigenvalues in the complex plane for the operator T depending
on the separation distance d between two unit circles; k = 400.

series is directly used. The fact that the error does not attain the machine precision is
due to the truncation of the series used to compute the preconditioner (N = 12/40).
Obviously inclusion of more terms yields better accuracy but at the expense of slightly
more expensive numerics.

It is well known that the differences of phases associated with periodic reflections
converge, as the number of iterations m goes to infinity, with a geometric rate to
twice the distance between the obstacles for two periodic orbits and to the “periodic
distance” for larger periodic orbits (cf. [20, 5]). It is therefore conceivable that the
performance of the Neumann series and the modified Krylov method with or without
the Kirchhoff preconditioner depend on this “stabilization” of the periodic phases
(cf. Figure 4). However, as we can see even with this stabilization the Neumann
series slowly converges in contrast with the new Krylov method with or without the
Kirchhoff preconditioner (see Figures 2 and 3). Although this slow convergence of the
Neumann series can be easily explained based on the rate of convergence formulas
in Theorem 3, an additional problem arises at the numerical level as the distance
between the obstacles decreases. Indeed, as Figure 5 displays, the distribution of the
eigenvalues of (the discretized version of) the operator T in the complex plane depends
on the separation distance between the obstacles and overflows the unit circle with
decreasing distances. On the other hand, as depicted in Figure 6, the distribution of
the eigenvalues of the operator I − T works in favor of the Krylov subspace methods
since they are clustered around 1 even when the separation distance between the
obstacles decreases.
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Fig. 6. The distribution of the eigenvalues in the complex plane for the operator I−T depending
on the separation distance d between two unit circles; k = 400.

Table 1
Number of iterations needed for the convergence of the modified ORTHODIR algorithm and the

related times for the circler configuration (left) and elliptical configuration (right).

k ORTH iter Time (s)
400 14 9
800 15 10
1200 15 11
1600 15 13
2000 15 14

k ORTH iter Time (s)
400 32 35
800 39 37
1200 45 40
1600 48 44
2000 50 46

Table 2
Number of iterations needed for the convergence of the modified ORTHODIR algorithm cou-

pled with the Kirchhoff preconditioner and the related times for the circler configuration (left) and
elliptical configuration (right).

k Prec. ORTH iter Time (s)
400 9 7
800 11 8
1200 11 8
1600 12 11
2000 12 11

k Prec. ORTH iter Time (s)
400 18 25
800 22 27
1200 23 28
1600 23 30
2000 24 32

In the next set of numerical experiments we continue with the same configuration
of circles and ellipses in Figure 1, and we test our modified Krylov method for higher
values of k, namely, k = 400, 800, 1200, 1600, and 2000. Since we do not have access
to a reasonable approximate solution that can be computed through use of a classical
solver for larger values of k, we only compute the number of iterations necessary to
obtain a residual of 10−4. In all the implementations, the number of discretization
points used on the surface of each circle/ellipse is 400/800; note that the circumfer-
ences of ellipses are more than two times those of the circles. The obtained results
are summarized in Table 1. We can observe that the number of iterations required
by the modified Krylov method is clearly bounded as k → ∞. For the coupling of
our modified Krylov method with the dynamical Kirchhoff preconditioning, the asso-
ciated numerical tests for the same range of values of k are presented in Table 2. As
this table depicts, although there is a good improvement in the number of iterations
in both cases, that related with computational times is not significant for circles but
notable for ellipses. The number of iterations can be further reduced if we increase the
number M retained in the Kirchhoff approximation (39); however, this will require
more computational time.
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Table 3
Number of iterations needed for the convergence of the modified ORTHODIR algorithm and its

preconditioning through use of Kirchhoff approximations and the related times for No unit circles;
k = 800.

No ORTH iter Time (s) Prec. ORTH iter Time (s)
4 19 21 14 12
12 32 168 21 121
20 39 214 25 197
28 45 305 32 270
36 49 418 34 357
44 51 675 35 589

Table 4
Number of iterations needed for the convergence of the modified ORTHODIR algorithm and

its preconditioning through use of Kirchhoff approximations and the related times for No ellipses;
k = 800.

No ORTH iter Time (s) Prec. ORTH iter Time (s)
4 11 61 14 12
12 26 180 19 127
20 39 265 26 203
28 45 346 33 282
36 48 485 33 374
44 50 674 33 599

In the following, we test the modified Krylov subspace method and the Kirchhoff
preconditioner in the case of several obstacles. Specifically, we consider families of
obstacles consisting of No = 4, 12, 20, 28, 36, 44 circles and the same numbers of ellipses
obtained by translations and rotations of an ellipse with major and minor axes 2.7
and 0.9. All the configurations are designed to allow for ray tracing in the sense that
the convex hull of any two obstacles does not meet with any other and contain a pair
of nearby obstacles. On each obstacle the number of discretization points used to
implement the generalized versions of high frequency integral equations (30) and (31)
(see [20, 5]) is chosen to be 200 and is independent of the wavenumber k. Note that a
standard approach would require about 10×k points per obstacle, which corresponds
to 10 points per wavelength λ = 2π/k, and result in 10 × k × No unknowns which
can easily exceed hundreds of thousands or even millions. Tables 3 and 4 display the
number of iterations necessary to attain a residual of 10−4 for the modified Krylov
subspace method and its preconditioning for the wavenumber k = 800. Again, similar
observations can be done regarding the number of iterations and the computational
times. We note that surprisingly the number of necessary iterations stabilize after a
certain number of scatterers in particular in the case of ellipses.

8. Conclusion. We have developed an acceleration strategy for the solution of
multiple scattering problems based on a novel and effective use of the Krylov sub-
space method that retains the phase information and provides significant savings in
computational times. Further, we have coupled this approach with an original pre-
conditioning strategy based upon Kirchhoff approximations that greatly reduces the
number of iterations needed to obtain a prescribed accuracy. However, although this
preconditioner greatly enhances the convergence of the Krylov subspace method, its
utilization requires some numerical optimization in order to reduce the computational
time. This issue will be addressed in a forthcoming work as well as extension of these
techniques to three-dimensional configurations.
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[37] L. Zepeda-Núñez and L. Demanet, Nested domain decomposition with polarized traces for
the 2D Helmholtz equation, SIAM J. Sci. Comput., to appear.

D
ow

nl
oa

de
d 

05
/1

1/
18

 to
 1

28
.2

35
.8

3.
14

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Scattering problem and multiple scattering formulations
	Convergence of multiple scattering iterations
	High-frequency integral equations for multiple scattering configurations
	Novel Krylov subspace method for accelerating the convergence of Neumann series
	Preconditioning using Kirchhoff approximations
	Numerical implementations
	Conclusion
	References

