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Abstract: The spintronic stochastic spiking neuron (S3N) developed herein realises biologically mimetic stochastic spiking
characteristics observed within in vivo cortical neurons, while operating several orders of magnitude more rapidly and exhibiting
a favourable energy profile. This work leverages a novel probabilistic spintronic switching element device that provides
thermally-driven and current-controlled tunable stochasticity in a compact, low-energy, and high-speed package. In order to
close the loop, the authors utilise a second-order complementary metal-oxide-semiconductor (CMOS) synapse with variable
weight control that accumulates incoming spikes into second-order transient current signals, which resemble the excitatory post-
synaptic potentials found in biological neurons, and can be used to drive post-synaptic S3Ns. Simulation program with
integrated circuit emphasis (SPICE) simulation results indicate that the equivalent of 1 s of in vivo neuronal spiking
characteristics can be generated on the order of nanoseconds, enabling the feasibility of extremely rapid emulation of in vivo
neuronal behaviours for future statistical models of cortical information processing. Their results also indicate that the S3N can
generate spikes on the order of ten picoseconds while dissipating only 0.6-9.6 yW, depending on the spiking rate. Additionally,
they demonstrate that an S3N can implement perceptron functionality, such as AND-gate- and OR-gate-based logic processing,

and provide future extensions of the work to more advanced stochastic neuromorphic architectures.

1 Introduction

Since the advent of the information revolution, research towards
understanding and emulating brain-like intelligence by computer
systems has yielded a plethora of neuronal models that underpin
significant paradigms within artificial intelligence and machine
learning. Such models range from computationally simple binary
perceptrons [1], which output a one if the weighted sum is greater
than a threshold, to complex biologically mimetic models, such as
the Hodgkin—Huxley model that details somatic membrane
potential dynamics due to ion channel conductance modulation [2].
Other intermediate models that can realise spike-based temporal
information integration while being computationally efficient
include the integrate-and-fire and leaky-integrate-and-fire models
[3]. Such models have given rise to artificial neural networks
(ANNG5) that have performed tasks such as stock market prediction
[4, 5] and defeating a 9-dan Go player [6].

Although the capability and utility of ANNs continue to
increase, they are typically implemented on Von-Neumann style
hardware that does not realise the ultra-low-power ultra-parallel
capabilities of biological systems due to the Von-Neumann
bandwidth bottleneck between the memory and processor [7].
Meanwhile, neuronal-inspired VLSI circuits and systems have
been and are being researched and developed to take advantage of
the inherent low-power and highly parallel nature of ANNs to
achieve viable results [7]. However, much of the work towards
hardware-based ANN designs have focused strictly on
deterministic computational approaches, which lack the stochastic
sub-threshold spiking characteristics found in in vivo neuronal
measurements [8]. The stochastic dynamics of biological neural
systems have been shown to be beneficial for signal detection,
decision-making, memory recall, attention, Bayesian inference, and
other neuronal behaviours [9-11]. It is widely acknowledged,
stemming from the biological perspective, that in order to truly
implement brain-like circuits and systems, some sufficient level of
stochastic facilitation will be essential. Several recent works have
aimed towards realising stochastic spiking neuronal hardware using
both traditional CMOS as well as circuits utilising the intrinsically
stochastic behaviours of some emerging devices. As shown in the
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following section, the proposed spintronic stochastic spiking
neuron (S3N) circuit improves the previous designs by leveraging a
novel spintronic probabilistic-bit (p-bit) device [12] that combines
thermally driven stochasticity with electrically tunable bias to
enable high-speed and low-power Poisson spike train generation
within a compact design.

This paper is organised as follows: Section 2 details previous
neural circuit designs utilising both CMOS and emerging devices.
Section 3 describes the design and operation of the spintronic p-bit
device utilised in the proposed design. Section 4 defines the S3N
circuitry and the synapse circuit utilised herein. Section 5
delineates the simulation methodology and results. Section 6
provides a discussion of the limitations of the approach as well as
its impact and extensions. Section 7 concludes the paper.

2 Previous works

Numerous works have aimed towards the realisation of
neuromorphic circuits and systems, of which we review a recent
selection of both deterministic and stochastic neural circuit
approaches in this section.

2.1 Deterministic neural circuits

Neuromorphic circuits utilising CMOS technology have been
developed ranging from low-power analogue designs [13—17] to
fully digital designs that could be realised on field programmable
gate srrays (FPGAs) [17, 18]. Additionally, VLSI neuromorphic
chips have begun to emerge, demonstrating the feasibility of
running various large-scale neural systems at low power on
specialised hardware [7, 19].

Recent works have coalesced a large variety of specialised
CMOS circuits capable of emulating a majority of the dynamics
found in biological neurons, including temporal spike summation,
spike-event generation, spike-frequency adaptation, thalamic relay,
and dendritic tree effects [17]. Such circuits have been integrated to
realise LIF models in both analogue and digital hardware, as
previously discussed, as well as biophysically mimetic Hodgkin—
Huxley models in mixed-signal VLSI [13].



Large-scale neuromorphic VLSI research projects such as
IBM's TrueNorth and Stanford's Neurogrid have developed chips
that demonstrate the impressive integration of up to millions of
neurons and billions of synapses at exceptionally low levels of
power consumption [7, 19]. While neurogrid focused on realising
more biologically mimetic neuronal characteristics based on ion-
channel modulation, TrueNorth abstracts neuronal spike dynamics
into event-driven general purpose computations capable of
implementing a variety of neuromorphic models. Some impressive
capabilities of such hardware are the implementation of real-time
multi-object recognition using just 63 mW [7] and semantic
emotion recognition at just 50 pW [20]. Although the highly
parallel nature of such systems has demonstrated impressive results
at low power, the clock-rate is severely limited. For instance,
TrueNorth operates at 1 kHz and Neurogrid at an average of 3.7 Hz
compared to the GHz speeds of modern Von-Neumann processors.

In addition to CMOS-only neuromorphic circuits, hybrid
designs utilising both CMOS devices and emerging devices, such
as spintronics and memristors, have been developed. Memristor-
based neural circuits have demonstrated a variety of behaviours
found in cortical neurons such as regular spiking, intrinsic bursting,
chattering, and fast spiking [21] within a compact one-memristor
and three-transistor design, although the slow switching speed of
memristors, compared to CMOS and spintronics, limits the
operational speed of the circuit. Spintronic neural circuit designs
have also been proposed that are of high speed (on the order of
nanoseconds) and low area [22-24].

2.2 Stochastic neural circuits

Table 1 lists recent representative stochastic neural circuits and
contrasts them to the proposed S3N design. For instance, IBM's
TrueNorth chip, a purely digital CMOS design, has the capability
of introducing stochasticity into neurons by stochastically varying
the threshold voltage according to a pseudo-random number
generator (PRNG), such as a linear feedback shift register [7].
Although PRNGs are effective for digital CMOS designs, they are
not ideal because they lack true uncorrelated randomness and
require significant area compared to designs using emerging
devices. The ‘spikes’ of the TrueNorth chip are simply digital
event signals that are synchronised and updated at a rate of 1 kHz.

Various hybrid CMOS/memristor designs have been proposed
that utilise the stochastic formation of the conductive filament
under weak programming conditions to determine if the circuit has
‘spiked’ or not [25-27]. This requires the circuit to cycle through a
write phase, where the input signal (either voltage or current
depending on the technology) attempts to switch the memristor, a
read phase, where the circuit senses the state of the memristor and
determines if a spike has occurred or not, and then a reset phase,
where the memristor must be reset by a large deterministic reset
signal prior to the next write cycle. This cycling behaviour as well
as the long switching time of memristors limits the speed of the
design, and the reset requirement after each read significantly
increases the energy requirement.

Hybrid CMOS/phase-change neurons operate similarly to
CMOS/memristor stochastic neurons by integrating the input signal
into the crystallisation of atomic structure in chalcogenide phase-
change materials, increasing the conductance [28]. Once the
conductance reaches a certain threshold, a spike is emitted, and
then a strong reset pulse returns the material to its amorphous

Table 1 Comparison of stochastic spiking neural circuits

phase, ready to begin the integration-crystallisation cycle again.
The stochasticity of the device arises from the random atomic
configuration in the amorphous state, which affects the rate of
crystallisation in the integration phase.

Hybrid CMOS/spintronic circuits have been proposed to
leverage the stochastic switching of low-energy-barrier nanoscale
magnets in the thermally activated switching regime to realise
stochastic neuron functionality in a write-rest-read-reset scheme
similar to hybrid CMOS/memristor designs previously described
[29-31]. Additionally, an asynchronous approach has been
proposed to utilise ultra-low-energy barrier nanomagnets, which
will stochastically switch due to thermal noise without the presence
of magnetic or electrical bias, and can be tuned with such a bias
[29]. Although the aforementioned approach is considered a
spiking neuron design, it is not directly evident how distinct spike
events are generated since just the state of the spintronic device is
continuously sensed and propagated. As shown in the table, hybrid
CMOS/spintronic designs are typically much faster and lower area
than alternative stochastic neuron approaches and offers true
uncorrelated randomness due to the utilisation of thermal noise.
Thus, the circuit design proposed herein, as will be described more
in depth in Section 4, takes a hybrid CMOS/spintronic approach to
generate high-speed distinct asynchronous spike events at a rate
tunable via input current by leveraging the thermally driven
stochasticity of ultra-low-energy barrier nanomagnets.

3 Probabilistic spintronic logic device

The primary building block of the circuit proposed in this paper is
a hardware unit called the probabilistic bit (p-bit) (Fig. 1a), which
was recently described in the context of a novel type of
probabilistic logic for Boolean and non-Boolean problems [12, 32].
The device combines a heavy metal (HM) exhibiting giant spin hall
effect (GSHE) and a magnetic tunnel junction (MTJ) whose free
layer magnetisation is modulated by the GSHE layer. Unlike
standard experiments combining the HM with an MT]J that utilises
ferromagnets with energy barriers of the order of 40-60 kT [33,
34], the p-bit uses an unstable ferromagnet, with an energy barrier
of 0—1 kT, which can be obtained by either reducing the volume of
a stable magnet [35] or by using circular magnets that effectively
have no barrier in the absence of a geometrically preferred easy
axis [36].

The MTJ resistance is modulated by the free layer
magnetisation and an average resistance (Ry='%[Gp+ Gap] ™)) is

placed between the MTJ and two supply voltages (V") and (V7),
which creates a voltage divider circuit that produces a voltage
fluctuating around the symmetry point of the CMOS inverter chain
(Fig. 1b). In the absence of any GSHE current, the magnetisation
fluctuates with average (m,) =0 and the inverter chain amplifies
this signal to produce rail-to-rail spikes between 0 and VDD. An
input current into the GSHE generates a spin current that
influences the magnetisation of the circular magnet, which
effectively biases the spike probability.

The device components for modelling the GSHE/MT]J of the p-
bit are represented by individually benchmarked circuit models.
These models couple magnetisation dynamics to underlying
transport equations [37, 38] that extend standard charge-based
circuits to ‘spin-circuits’ by explicitly considering spin and charge
voltages at each node, extending conventional resistors to 4 x 4
matrices. For example, the GSHE model converts a charge current

[7] [25-27] [28] [29-31] Proposed herein
Technology CMOS Hybrid CMOS/ Hybrid CMOS/phase Hybrid CMOS/ Hybrid CMOS/
memristor change spintronic spintronic
Source of stochasticity PRNG Memristor switching Random atomic Thermal energy Thermal energy
probability configuration
spike implementation event signal  write-read-reset cycle integrate-fire-reset write-rest-read-reset cycle, intrinsic circuit
device sense behaviour
spike time-scale order 1ms 1-10 ys 10-100 ns 1ns 10 ps
normalised device count >10x ~1x% ~2x% ~0.5 x 1%
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(a) The bottom layer represents an HM exhibiting the giant spin hall effect (GSHE) that injects a spin current into an adjacent ‘free layer’ of a magnetic tunnel junction. The free

layer is a circular magnet with no preferred easy axis (Eg =0 kT) that fluctuates in the z—x plane in the presence of thermal noise. The MTJ is connected to an average resistance R(

creating a fluctuating voltage that is amplified by two inverters, () Circuit equivalent READ circuit is also shown
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Fig. 2 Spintronic stochastic spiking neuron circuit
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Fig. 3 Transient response of the p-bit: The transient response of the p-bit at different input currents (1.) flowing in the GSHE layer is shown. When there is no

current, the output fluctuates between 0 and VDD = 0.8 V with equal probability, p = 0.5 and a mean of VDD/2. A positive input current in the GSHE increases
the average output probability of 0 and a negative current increases the average output probability of VDD

Table 2 P-bit simulation parameters

Parameter Value

RA product (MTJ) 10 Q-pym?

Circular magnet diameter, 50 nm, 0.5 nm
thickness (FM)

saturation magnetisation, ms 300 emu/cc

damping coefficient, a 0.01

HM length, width, thickness, 50 nm, 50 nm, 3.15 nm, 2.1 nm, 0.5,
spin-flip length, spin-hall 200 pQ-cm

angle, HM resistivity

CMOS technology PTM 14 nm-HP FinFET, VDD =0.8 V

temperature 300 K

supply voltages V+=VR+VDD/2 V- =VDD/2, VR =
0.25V

to a spin-current that acts as a spin-torque input to the stochastic
LLG module that solves for magnetisation dynamics, simulated
self-consistently on a SPICE platform. The details of the spin-
circuit formalism are given in [37]. For the CMOS inverters,
predictive technology models (PTMs) are used [39]. Assuming
short-circuit conditions where the FM absorbs all of the non-
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collinear spin-current, the GSHE layer produces a current / related
to the charge current, running in the GSHE, /; as

oL t
Is = (IC)(T)(l - sech[i]) (1)
dm . A
G =~ lrm X Hegp — alylm X m X Hesy
—LAxAxI+iAxI @
g I X A TN s

where 6 is the spin-Hall angle, L, ¢, and 4 are the length, thickness
and the spin-flip length of the GSHE layer, respectively [38]. The
spin-current flows normal to the plane of the magnet (y-direction in
Fig. 2a) spatially, with a spin-polarisation that is in the + z
direction. A sufficiently large current can reduce the spiking
probability or entirely suppress it by pinning the magnetisation of
the circular magnet. Fig. 3 shows the transient Vgyr response as a
function of different biases using the simulation parameters in
Table 2.

The magnetisation dynamics of the circular magnet are obtained
by solving the stochastic Landau-Lifshitz—Gilbert equation with
the spin-torque component from the GSHE layer, and in the
presence of the thermal noise within a monodomain approximation.

3
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Fig. 4 Neuromorphic synapse circuit used herein

Table 3 S3N and synapse simulation parameters

Parameter Value
Vi 0.7V
CymeM 10 fF
R, 500 kQ
C, 1fF
C, 1 fF
£ 0.54V
V, 047V

We assume that the circular magnet does not possess any in-plane
anisotropy (Hyg =0) but has a large demagnetising field that keeps

it in the plane. The effective field of the magnet is written as

H.p = —4xMs m, y. The thermal noise field is assumed to have
three uncorrelated components with zero mean in all three
directions (i=xy,2) in cgs units:

H,‘h =0, (Hm)j =QakTly Mg vol. At ), where o is the
damping coefficient of the magnet, y is the gyromagnetic ratio for
the electron, M is the saturation magnetisation, and vol. is the
volume of the magnet. The s-LLG equation is shown in (2) where ¢
is the charge of an electron, N; is the number of spins in the total
volume, N;=M; vol/ug, where ug is the Bohr magneton, and
I, = |I,| 7 is the present coordinate system.

3.1 Equivalent read circuit

We assume a bias-independent MTJ conductance of the form
Gwiry = Go(1 + P’m;) [40]. The average resistance Ry is chosen to
be the average of Gp and Gap so that when the average
magnetisation is 0, the input to the inverter chain becomes halfway
between V' and V™. The supply voltages are adjusted such that the
inverter characteristics are symmetric between (V¥+V7)/2. We
assume that the inverter characteristics can be shifted accordingly
by sizing the p- and n-type FETs as needed. It is important to note
that the net voltage drop between V' and V™ can be small so that
the READ voltage does not disturb the current state of the magnet
through the fixed layer of the MTJ. This is possible in the presence
of the inverter chain that provides gain and isolation.

4 Hybrid spin-CMOS stochastic spiking neuron

The S3N circuit developed herein is depicted in Fig. 2. It consists
of a spintronic p-bit device to provide a tunable stochastic output
via a bias driven by the input current at iy, a capacitor (Cygm)
representing the membrane potential of a neuron to accumulate
temporal information about the state of the p-bit, two inverters
preceding Cygy to sense the state of the p-bit, two inverters
proceeding Cygem to detect if the voltage Vygm has reached a
threshold (Vy,), which is the same as the threshold for a CMOS

inverter, and an n-type metal-oxide-semiconductor (NMOS) (M,)
to discharge Cygm upon detecting an output spike. The overall
circuit operation is as follows: by tuning the input current, iy, the
p-bit will be stochastically biased towards either its high state or
low state, with a statistically equal amount of time between the two
states if ijy is zero. Based on the state of the p-bit, Cyigy Will either
charge or discharge, and if charged enough, spikegyt will go high,
subsequently turning on M,, which discharges Cygy and then sets
spikegut low. Thus, generating brief pulses, or spikes, at spikegyt
with timing characteristics dependent upon transistor parameters
and the capacitance of Cygy.

It is worthy to note that the stochasticity of the p-bit device is
due to the effects of thermal noise on low-energy barrier
nanomagnets, and the tunability is introduced by methods of
magnetic bias, such as the GSHE wused herein. Therefore,
alternative designs of p-bit devices that utilise alternative methods
of magnetic bias, such as the magnetoelectric effect [41], can be
readily implemented with the S3N scheme, providing future
avenues of exploration and improvement to the design.

4.1 Second-order synapse

In order to emulate the postsynaptic transient currents found in
biological neurons following a preceding spike, the neuromorphic
VLSI second-order synapse developed in [42] and depicted in
Fig. 4 is utilised to convert incoming spikes into linearly additive
temporally extended current pulses. The circuit is essentially a
cascade of two current-mode lowpass filters, whereby the effective
weight of the circuit can be tuned by adjusting Vy, and the
temporal characteristics of the circuit can be tuned by adjusting V,
Vs, C,, and C,. For the results demonstrated in the following
section, Vy is either fixed or varied deterministically in order to
demonstrate the effect of varying the weight. As such, no learning
mechanism has been implemented. This synapse circuit was chosen
due to its high degree of biological mimicry, demonstrating full
neuron-synapse-neuron communication as similar to biological
structures in addition to its utility in demonstrating an elementary
computational network in the following section. Although we
utilise the synaptic circuit herein in a completely excitatory sense,
such a circuit could be used for inhibitory currents by connecting
iout to the V™ terminal of an S3N. As will be discussed in Section
6, alternative synaptic architectures that prefer area efficiency over
biological mimicry, such as crossbar arrays, could be utilised with
the S3N for dense stochastic spiking neural network computational
paradigms.

5 Results

The simulations provided in this section were performed in
HSPICE using 14 nm FinFET transistor models [39]. The p-bit
device was simulated using benchmarked SPICE spin-circuit
models as described in Section 3. All inverter and synapse
transistors are minimally sized with just a single fin, and M, has
five fins. It is critical that M, has stronger driving characteristics
than the inverter transistors since it must pull down Vygm
regardless of the state of the p-bit device. After testing multiple
values for Cygm, 10 fF provided the desired circuit characteristics.
Vs, V,, Cy, and C, were found by experimentation and are included
with the parameters provided in Table 3.

5.1 Stochastic spiking neuron

Fig. 5 shows the results of a single S3N neuron receiving a
stepwise increasing input current. Every nanosecond, the input
current is increased by 50 nA. m; is the z component unit vector of
the magnetisation of the free layer of the p-bit. As shown, when ijy
is low, m; stochastically switches between +1 and —1 in about equal
amounts. As iy is increased, m, becomes increasingly biased
towards —1, which is the high state of the p-bit in this
configuration, while still exhibiting stochastic switching. When the
p-bit is in the high state, Vygm begins to charge, and if it is asserted
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Fig. 5 Stochastic spiking neuron simulation graphs illustrating, from the bottom up, iy, m,, Vigy, and spikeoyr

for a long enough period, Vygm will reach Vi, and a spike is
generated at spikegyr and Vygym is subsequently pulled down.
Thus, the Poissonian spike rate of the S3N can be controlled via
iin. The power consumption of the S3N with an input current of
0.8 pA, which elicits a very high rate of spiking is 9.6 uW, and
with an input current of 0 pA, which elicits almost no spiking, the
SSN uses just 0.6 uW. The average spike width from (V,,;/2) to
(V4a/2) is just 15 ps. The average spike interval during high rates
of spiking, such as with an input current of 0.8 pA, is about 120 ps.

5.2 Synaptic dynamics and weight control

The S3N combined with the second-order synapse circuit described
in Section 4 was simulated by connecting the spikegyr of the S3N
circuit to the spikepy terminal of the synapse and applying a fixed
current of 0.5 pA at the iy terminal of the S3N with V,, set to 0.14
V, which can be considered as a strong weight, which means that
the output current is significant enough to elicit a high rate of
spikes in the post-synaptic S3N if the pre-synaptic S3N is strongly
spiking. As shown in Fig. 6a, the output current of the second-
order synapse, ioyr, follows a prolonged and slightly delayed
integration of the incoming spikes. Single spikes or a few dispersed
spikes have little effect on igyt, but prolonged periods of intense
spiking elicit a strong increase in output current, similar to the
EPSPs found in biological neurons. The saturation current of igyt
depends upon the weight of the synapse, which is determined by
the voltage at V. Fig. 60 shows the effect of decreasing V,, which
effectively increases the weight of the synapse. A single-input S3N
with an input current of 0.7 pA is used to generate the spike pattern
spike,, which is then fed to the spikeyy terminal of a synapse,
whose resulting output current is used as the input current for
another S3N to generate the spike pattern spike,. All other
parameters are the same as previous simulations. As shown, when
Vyw is decreased, the synaptic output current, igyt, Saturation point
is increased, and thus, the spiking rate of spike, increases as well.
The potential range of current output from the synapse circuit is
quite large compared to the effect it has on proceeding S3Ns since
Vw could potentially be varied from gnd to V,,, and our results
show that just varying V,, from 0.14-0.2 V is enough to modulate
the output from very high spiking to almost no spiking.
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5.3 Boolean two-input perception

In order to demonstrate rudimentary computational capabilities
utilising the S3N, we simulated a two-input one-output perceptron
implementing AND and OR logic functions. For this
demonstration, a high rate of spikes indicates a logic ‘1°, and a low
rate of spikes indicates a logic ‘0’. The circuit consists of two
(input) S3Ns whose output terminals are connected to two
synapses, whose outputs are combined into the input of a third
(output) S3N. For both functions, the circuit topology is the same,
and just the weight, V,,, is changed for both synapses, effectively
changing the network operation. By using a high weight of 0.14 V,
the output SSN will spike at a high rate when either of the inputs
spike at a high rate; thus, implementing OR logic. This is shown in
Fig. 7a, where input current pulses of 0.7 pA are applied to input 1
from 24 ns and from 6-8 ns and to input 2 from 4-8 ns. As
shown, a high rate of spiking activity at the output (spike;) occurs
when either input is firing. Fig. 7b shows the results of the same
simulation, but with V,, at 0.2V, which is equivalent to a low
synaptic strength. As shown, the output only becomes highly active
when both inputs are active with a high rate of spikes,
implementing AND logic.

6 Discussion

In this section, the limitations of the proposed realisation are
identified and discussed. Additionally, discussions are provided for
extending this work to more advanced neuromorphic architectures
that can utilise the stochastic nature of the proposed design.

6.1 Limitations of the proposed implementation

The primary contribution of this work is the demonstration of a
novel compact stochastic neuron circuit that leverages true
randomness from thermally driven magnetic excitations in an ultra-
low-energy barrier spintronic device to generate high-speed spikes
in a fashion which exhibits a Poisson distribution. As such, a rather
simple choice of synapse and test case was used to demonstrate and
evaluate the speed, power, and biological mimicry of the design
without designing an elaborate architecture, which could be done
in future works as will be discussed later. Therefore, the synapse
circuit chosen, although biologically mimetic, requires a significant
device count for each synapse and utilises voltage levels for
weight-value implementation, which would require additional
memory and programming elements in order to implement the

5
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weight in a programmable/learnable manner. For the perceptron
test cases used herein, we assumed fixed weights that were tailored
to the particular operation.

Secondly, the spintronic device we proposed in this work that
combines an MTJ that has a thermally unstable nanomagnet with
an HM exhibiting GSHE has not been experimentally
demonstrated yet, even though each individual component has been
demonstrated by different authors. Two-terminal MTJs having
unstable free layers have been experimentally utilised for TRNG
applications [43-46] while GSHE-driven MTJs with stable free
layers are also commonly demonstrated [33, 34] for memory
applications. More recently, an embedded magnetoresistive random
access memory-based implementation of a p-bit was proposed that
uses a two-terminal MTJ with an unstable free layer along with an
NMOS transistor [47]. Our main results would remain essentially
unchanged if such an alternative p-bit replaces the three-terminal

6

device proposed herein, and whether a three-terminal device proves
to be more flexible due to the separate control terminal deserves
further study.

6.2 Extensions and future work

Theoretical neuroscience has demonstrated that networks of
stochastic neurons having firing rates which follow a Poisson
distribution can achieve Markov Chain Monte-Carlo sampling of
an underlying probability distribution as encoded by their weights.
Referred to as neural sampling, various aspects of probabilistic
inference become feasible, which provides a particularly
interesting explanation being elaborated for various cognitive
processes [48]. Thus, a natural application and extension to the
S3N functionality developed herein is to leverage it to implement
hardware-based neural sampling networks using intrinsic thermally
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driven stochasticity in a low area hardware design operating with
low-energy consumption. Realisation of hardware-based ANN
acceleration leveraging the stochastic properties of spintronics
leads to a fresh direction towards increasing performance and
efficiency. Namely, software-based approaches to artificial
intelligence systems suffering from massive switching plurality due
to an underlying binary-value representation and layers of software
bloat are reduced substantially.

With regards to the underlying learning paradigms, it has been
demonstrated that competitive networks of stochastic neurons with
lateral inhibition, a structural organisation prevalent throughout the
mammalian cortex, in conjunction with very simple Hebbian
learning rules converges high-dimensional stochastic spiking
inputs to an implicit generative model through expectation
maximisation [49]. With such a generative model, Bayesian
computations are readily implemented for probabilistic inference in
both the spatial and spatio-temporal regimes, giving the ability to
make predictions and classifications on new data. Therefore,
utilising the S3N with an appropriate synaptic architecture, one
could realise a computational system that intrinsically ‘learns’ a
generative model of high-dimensional input distributions with
improved performance and efficiency over software-only-based
approaches or CMOS-only hardware accelerators.

In order to alleviate the utilisation of floating point weights,
which either require a large amount of memory per synapse (32—64
bits), or are difficult to reliably encode intrinsically in hardware,
such as through memristors, several works have demonstrated
impressive results of classification and detection utilising binary
synaptic weights with probabilistic Hebbian learning rules [S0-53].
Hence, it should be possible to implement S3Ns with dense arrays
of binary stochastically switching memory devices, such as spin-
transfer torque (STT)-MTJs or conductive-bridging random access
memory (CBRAM)), to realise dense and fast unsupervised learning
architectures for future cognitive systems.

7 Conclusion

The spintronic stochastic spiking neuron introduced herein was
demonstrated to achieve tunable high-speed Poisson-distributed
spike generation within a compact hybrid spin-CMOS circuit using
just 0.8-9.6 uW. The circuit, when combined with a neuromorphic
second-order synapse, is capable of realising perceptron
functionality such as AND and OR logic, for a readily
implementable test of the computational capabilities of such a
circuit. A variety of potential future works for the S3N design draw
inspiration from theoretical neuroscience to focus on the realisation
of hardware-based online learning architectures utilising stochastic
learning algorithms.
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