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ABSTRACT. In order to study the impact of control measures and limited
resource on dengue transmission dynamics, we formulate a stage-structured
dengue model. The basic investigation of the model, such as the existence of
equilibria and their stability, have been proved. It is also shown that this model
may undergo backward bifurcation, where the stable disease-free equilibrium
co-exists with an endemic equilibrium. The backward bifurcation property can
be removed by ignoring the disease-induced death in human population and
the global stability of the unique endemic equilibrium has been proved. Sensi-
tivity analysis with respect to Rg has been carried out to explore the impact
of model parameters. In addition, numerical analysis manifests that the more
intensive control measures in targeting immature and adult mosquitoes are
both effective in preventing dengue outbreaks. It is also shown that the earlier
the control intervention begins, the less people would be infected and the ear-
lier dengue would be eradicated. Even later epidemic prevention and control
can also effectively reduce the severity of pandemic. Moreover, comprehensive
control measures are more effective than a single measure.

1. Introduction. Dengue, a mosquito-borne disease caused by any of four closely-
related virus serotypes of the genus Flavivirus, is endemic in at least 100 countries
in Africa, the Americas, the Eastern Mediterranean and subtropical regions of the
world, inhibited by over 2.5 billion people([6, 29]). Dengue ranks second to malaria
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amongst deadly mosquito-borne diseases, each year claiming about 100 million in-
fections and 20,000 deaths globally [29].

Dengue exhibits as many as four coexisting types of serotype (strains) in a re-
gion. Infection by any dengue virus strain produces long-lasting immunity but only
temporary cross-immunity to other serotypes. A person infected by one of the four
serotypes will lose immunity to the three other serotypes (heterologus immunity)
in about 12 weeks and then becomes more susceptible to developing dengue haem-
orrhagic fever. Three of the vectors are Aedes aegypti Linnaeus, Aedes albopictus
Skuse, and Aedes scutellaris Walk. Dengue infection follows the bite of a competent
mosquito vector, principally Aedes aegypti (L.). Aedes aegypti mosquitoes acquire
infection from infected individuals 6 to 18 h before onset of fever and then for the
duration of the fever. A minimum extrinsic incubation period of 8 to 14 days is
required after an infective blood meal before the mosquito becomes infectious [18].

The early models of dengue can be back to the models in [25]. Since then, more
and more complicated models have been developed ( [3], [4], [7], [11], [12], [13], [14],
[18], [19], [20], [32] etc). Feng et al.([18]) studied a system that models the popu-
lation dynamics of a SIR vector transmitted disease with two pathogen strains and
argued that the existence of competitive exclusion in their system is a product of the
interplay between the host superinfection process and frequency-dependent (vector
to host) contact rates. Esteva et al.([11]) proposed a one-serotype dengue model
with a constant human population and variable vector population. With the as-
sumption that the human population was supposed to grow exponentially, the same
authors proposed another model considering only one serotype [12]. In [13], the im-
pact of vertical transmission and interrupted feeding on the dynamics of the disease
has been studied. Besides, a multi-serotype of dengue was also studied by them in
[14]. They discussed conditions for the asymptotic stability of equilibria, supported
by analytical and numerical methods and found that coexistence of both types of
serotype was possible for a large range of parameters. Billings et al.([4]) formulated
a multi-serotype disease model which did not include vector variables investigated
the complex dynamics induced by Antibody-dependent Enhancement (ADE). Con-
sidering the effect of vaccination, a new multi-serotype disease model was studied in
[3]. In addition, Shaw et al.([28]) formulated and analyzed a compartmental model
for multiple types of serotype exhibiting ADE. Using center manifold techniques,
they showed how the dynamics rapidly collapsed to a lower dimensional system.
In [10], authors studied a SEIR dengue by examining the role of temperature in
driving vector dynamics.

Several experiments suggest that rate of mosquito development and the mosquito
lifespan fluctuate with changes in temperature. Temperature also impacts the ex-
trinsic incubation period of the virus within a mosquito host [5, 34]. Moreover,
the population dynamics of mosquitoes is closely related to the environment and
resource in a region [2, 17, 22, 33]. One can see that few models mentioned above
include the immature mosquito stage which is more sensitive to climate change
and resource. Recently, several mosquito-borne disease models incorporating stage-
structured mosquitoes have been studied ([1, 22], etc.) Li ([22]) studied a malaria
model with a aquatic-stage class of mosquitoes. A nonlinear maturation rate was
assumed to model the intraspecific competition between larvae. In [1], Ai et al.
formulated a mosquito-stage-structured malaria model which include four distinct
metamorphic stages of mosquitoes. Nevertheless, the competition for reproduction
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resource (like blood meals and water reservoir) between adult female mosquitoes
has not been considered.

Some control measures, like spraying insecticide and clearing standing water,
would be implemented to control dengue [5]. While, mathematical models can
provide useful strategic insights into control measures for dengue [23].

It is our aim to formulate a new dengue transmission model incorporating the
immature mosquito stage explicitly and study the impact of the limited resource
and some control measures on mosquito population and dengue transmission, as
well as assess the effectiveness of different intervention strategies.

The rest of the paper is organized as follows. A dengue model incorporating
some control measures is derived in Section 2. In Section 3, the basic investigation
of the model, such as the existence and stability of equilibria, is performed in this
part. Some numerical analysis and discussion are given in Section 4.

2. Model formulation. Mosquito life includes four distinct stages of development
during a lifetime: egg, larva, pupa, and adult [2, 22]. We group the three aquatic
stages of mosquitoes into one class and divide the mosquito population into only
two class, one of which consists of the first three stages, denoted by A(t), and the
other one of which is the adult stage, denoted by M ().

The total population of adult mosquitoes M (¢) is subdivided into three classes:
susceptible Mg (t), exposed Mg(t), infective M (t). We ignore recovered mosquitoes
in the model because of the short lifespan of mosquitoes. The total population of
humans H(t) is subdivided into four classes: susceptible Hg(t), exposed Hg(t),
infective H(t), and recovered Hg(t). All the state variables are listed in Table 1.

State variables Mosquito Human

Aquatic A

Susceptible Mg Hg
Exposed Mg Hg
Infectious adults M H;
Recovered Hp
Total adults M H

TABLE 1. State variables

Since the resource related to mosquito reproduction is limited, we assume that
there is competition between female adult individuals for finding an appropriate
water reservoir and blood meals to lay eggs. It’s natural to adopt a saturated
birth rate function paM/(1 + M) to reflect the restriction of limited resource for
reproduction of eggs, where p4 is the maximum value of the recruitment rate of
viable mosquito eggs. The idea is inspired by [17, 33]. 7, is the maturation rate of
larvae. d, and & are the density independent and dependent death rate, respectively,
and the death rate of adults is d,,.

It is worth emphasizing that it is different from the idea using in [22] in which the
birth rate of mosquito eggs is not affected by limited resource and there is intraspe-
cific competition between immature mosquitoes during the maturation process.

Let b be the number of bites on a human per mosquito per unit of time, 3 is
the probability of infection to a human host per bite and f,, is the probability of
infection per bite to a susceptible mosquito from an infective human host. Then, the
infection rate of a human A, is identified by A, =b0}, % Similarly, the infection rate
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of a mosquito A, can be identified by /\m=b/3m%. The major dengue control effort
includes clearing standing water and spraying insecticide in targeting immature and
adult mosquitoes, respectively. Clearing standing water decreases the probability
that a female mosquito finds an appropriate water reservoir to lay eggs and kills some
existing immature mosquitoes. While spraying insecticide can kill adult mosquitoes.
We assume that the maximum of viable egg recruitment rate be (p4 —ay), the death
rate of immature mosquitoes be (d_a + ay) and the death rate of adult mosquitoes
be (d_m + ), where ap, ay and «,, are control intervention parameters.

We let U}, be the input flows of the susceptible humans including births, dj, is the
natural death rates of humans. J, is disease-induced death rates for humans. 1/,
and 1/7,, are the incubation period of humans and mosquitoes, respectively. ny, is
the recovery rate of humans. 1, is the rate of loss of immunity for recovered humans.
It is worth emphasizing that, unlike many of the published modeling studies on
dengue transmission dynamics, the current study assumes that an infected human
host can obtain temporary immunity, but he loses immunity some times later and
then becomes susceptible again. (see, for instance, [8, 9, 32]).

Fig. 1 shows a flow diagram to describe the transmission dynamics of dengue
virus between humans and mosquitoes.

Hence, we can obtain the following system to describe the dynamic of the dengue
transmission:

% — W), — (dn + M) Hs + UnHp,
d% = AuHs — (dy + 1) H,

% — ywHg — (dy + 6 + ) Hr,
d% — i Hy — (dp +n) Hp,

o (1)
dA—M—%A—(Ja—i—aJ)A—mAz,

a1+ M
% = YaA = (dp + o) Mg — Ay M,
% = AnMs — (dm + o) Mg — v Mg,
% = Ym Mg — (din + o) M.
Description of parameters used in the model is given in Table 2.
Adding the equations about Mg, Mg, M| together, we have ”%I = Yo A — (dp +

a, ) M. Together with the equation about A, we get

dA  (pa — o) M 7 2

E - 1+ M ’YaA (da +aJ)A kA ) (2)
dM -

% = ’YaA — (drm‘ + av)]\/f .

If we assume that p4 = pa — o, dq = dy + oy, and d,;, = dpp + . (2) becomes
the model studied in [16]. Let Ry* = According to the result of [16], we
have

PAYa
dm, ('Ya +da) :
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Lemma 2.1. (Theorem in [16]) If R]* < 1, the trivial equilibrium (0,0) of the
system (2) is a locally asymptotically stable, and there exists no positive equilibrium.
If RY* > 1, the trivial equilibrium (0,0) of system (2) is unstable, and there exists a
unique positive equilibrium (A°, M°), which is globally asymptotically stable, where

_(drn"€ + 'Vada + 7(12) + \/(de + 'Yada + 7@2)2 - 47a/’idm('7a + da)(l - Rz)n)
29aK

A0 =

and M° = J—;AO.

In the following, we assume that RJ* > 1 and the positive equilibrium (A%, MY)
is globally asymptotically stable.

Limature
A
Mosquito pf:’:;
Adult = 3
Mozauito [ M l M Ms
u -
L ]
n
-

FiGURE 1. The transmission diagram of dengue virus between
mosquitoes and humans.

For Model 1, the first orthant in the HgHgHy Hr AMs Mg M| space is positively
invariant. Because H(t)' < 0 for H(t) > ¥ /dp, all paths in the first orthant
approach, enter or stay inside the subset () given by

Q= {(HsHpH; HRAMsMpM;)/0 < Ms;0 < Mp:0 < Mj;0< A< A%0 < Hg;

0<Hpg;0<H;;0<Hg;Hs+Hg+ H;+ Hr <WV,/dy, Ms + Mg + M; S]\/fo}.

The continuity of the right side of the previous system and its derivatives implies
that unique solutions exist in the maximal interval. Since solutions approach, enter
or stay in 2 they are eventually bounded and hence exist for ¢ > 0. Therefore the
model is mathematically and epidemiologically well posed.

3. Dynamical analysis.

3.1. Disease-free equilibrium and Ry. Let o1 := dp + Yn, Oho := dp +0p + i,
opg = dp + ¢Yp, and o, = dy, + Y- I there is no infection, we can obtain
H(t) — Wy /dp(t — o0) and M(t) — M. Obviously,

EO(H57 HPm HIv HE7 Mlyj\'{Ev M57A) = (H5070707070707 MSO7AO)

is the disease-free equilibrium, where Hg® = W}, /dp, Ms® = MP.
Following [31], the linear stability of E° can be established using the next gen-
eration operator method. The matrix F' (the new infection terms) and V (the
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Interpretation Parameter Range Reference

The maximum value of the recruitment pa [le+10, be+10] Assumed
rate of viable mosquito eggs
without intervention

Biting rate (the average number of b [0.14, 0.24] [23]
bites per mosquito per day)
The duration of the whole cycle, 1/%a [7,20] days [24]

from egg laying to an adult
mosquito eclosion

Mosquito incubation time 1/vm [2, 10] days [23, 25]
Natural death rate of immature da [0.2, 0.75] [15, 23]
mosquitoes

Natural death rate of adult mosquitoes d, [0.02, 0.07] [15, 23]
Density-dependent mortality rate of K 0.01 [15]
immature mosquitoes

Recruitment rate of human vy, 454 [21]
Human life span 1/dp, 25000 days [25]
Human incubation time /v 5 days [25]
Human infection duration 1/mn 3 days [25]
Human disease-induced death rate On, 0.001, 0.02 [7, 20]
Transmission probability B 0.75 [25]
(from vectors to human)

Transmission probability B 0.75 [25]
(from human to vectors)

Progression rate from Hg to Hg class vy, 0.01 Assumed
Intervention parameter for adult Qy [0, 0.04] Assumed
mosquito death rate

Intervention parameter for immature oy [0, 0.55] Assumed
mosquitoes death rate

Intervention parameter for immature ay [0, pa] Assumed

mosquitoes recruitment rate
TABLE 2. Parameter definitions and values

transition terms) are given respectively, by

0 0 0 b
0 0 0 0

F=lo mast o o |
0 0 0 0

opy 0O 0 0

= on2 O 0
v 0 0 Om 0
0 0 _"y'rn dm

It follows then that the basic reproduction number, denoted by Ry, is given by

b2 m 7nM 0
Ry = p(FV—l) _ \/ B Brnyny SO ' (3)
On10h20mdmHs

Therefore, using Theorem 2 of [31], we have established the following results:
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Theorem 3.1. For the model (1), the disease-free equilibrium E° is locally asymp-
totically stable if Ry < 1, and unstable if Ry > 1.

The epidemiological implication of Theorem 3.1 is that, generally speaking, when
Ry is less than unity, a small influx of infected mosquitoes into a completely sus-
ceptible community would not generate large outbreaks, and the disease dies out
in time. However, we show in the next subsection that the disease may still persist
even if Ry < 1 owing to the backward bifurcation.

3.2. Existence of endemic equilibria and backward bifurcation. Using the
method used in [22], we next explore the existence of endemic equilibria. Let the
right-hand side of system (1) equal to zero and solve Hg, Hg, Hy, Hp in terms of
An, then

v WA
Hg=—" Hp=—n2h
dp + & (dn + &1 An)ony 4)
= Uy An - U ynnnAn
(dn + & An)on10ms (dn + &1An)Tn10n20 s
Therefore,
vy, (1 A
1 n(l+& h)j 5)
dp + &1 An
where ¢; = An0h20h3+drYh T2+ YR Yh (dn+6n) & = Tha0h3+Oh3Yht IR Tt ig casy to see
OR10h20R3 ’ Oh10h20h3 ’ '
that, at the equilibrium,
M=Ta4 (6)
dm,
Then, substituting (6) into the right-hand side of (1) yields
7@'“'3142 + (dm"i + Ya + 73)14 + (dm(’Ya + da) - pA'Va) =0. (7)

Obviously, (7) has a unique positive root A°, if RJ* > 1.
Solving Mg, Mg, My in terms of \,, we have
")/a,A ’Ya)\vA ")’a,'Ym/\vA

M — — = - . 8
S AN T i+ A)om T (d £ Ao)dimOm ®)
Binding A, = b/j‘h% and A\, = bﬁm%, we have
’Ya'Ym)\UA dh + 51)\h
Ap = bf , 9
n O (dm + M) UL+ €20 ©)
A, = OBmynAn (10)
oh10n2(1+ §2An)
Substituting (10) into (9) yields
1+ &M,
AnRo? = A, 11
h0 (1 + €2>\h)(1 + §4>\h) h ( )
where &3 = ifl’ & = & + % The solution A, = 0 corresponds to the

discase-free equilibrium E°. We are now trying to find a positive solution of (11).
Let

F(Mn) = &8N + (& + & — Ro®&) M + (1 — Ro?). (12)
Then, (11) is equivalent to F(A\,) = 0 when A;, > 0. Moreover,
F(0)=1-Ry*, lim F(\,) = oc.
/\h—><>o
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If Ry > 1, then F(0) < 0. Following from the intermediate value theorem,
F(Ap) = 0 has a unique positive solution.

If Ry = 1, then F(\) = §2§4Ah2 + (&2 + &4 — &€3)An. Therefore, there exist a
unique positive solution if and only if &3 > & + 4.

If Ry < 1, then F'(0) > 0.

Case 1. &+&4 > &3, that is & +E&4 > &3 > R02§3, then there is no positive solution.
Case 2. & + &4 < €. We define C = Ry? and consider A.
A= (&4 & — Ro*6s)” — 4661 — Ro®)
= &°C% + (468 — 2(%bs + &4))C + (&2 + &)? — 468,
Solving A = 0 in terms of C, we have

_ §3(6at+8a) — 266+ 2v/E26a (€3 — €4)(&3 — &2)
&° ‘

(13)

Ch2

Therefore,

0 S Ol < w < 02 < 2(£2+§4)£2.3 —4§2£4 -1

&3 &3

Define R, :=+/Cs, then

191 0 < R, < Rg < 1, then A > 0 and Ry? > $25¢, equation F(\) = 0 has
two positive solution.

20 If 0 < R, = Ry < 1, then A = 0 and Ry? > 5%5 equation F(\) = 0 has
one positive solution, which implies that a backward bifurcation appears.

30.If0 < Ry < R. <1, then A < 0 and Ry? > 5%54, equation F(Ay) = 0 has
no positive solution.

Based on the above analysis, we have the following results.

Theorem 3.2. For system (1), there exists a unique endemic equilibrium if Ry > 1.
If &9+ &4 < &3, there exist a threshold value 0 < R, < 1, such that system (1) has no
endemic equilibrium when Ro < R, system (1) has a unique endemic equilibrium
when Ry = R. and system (1) has two endemic equilibrium if R. < Rg < 1, which
implies that a backward bifurcation appears. When & + &4 > &3, system (1) has a
unique endemic equilibrium if and only if Ry > 1 and backward bifurcation can not
occur.

Epidemiologically, our results suggest that, if & + & < &3, even though the
basic reproduction number is smaller than unity, there may be a stable endemic
equilibrium due to backward bifurcation of the model and the basic reproductive
number itself is not enough to describe whether dengue will prevail or not and a
new threshold value R, is needed. If R. < Ry < 1, we should pay more attention to
the initial sizes of the involved populations (See Fig. 2). The associated bifurcation
diagram is depicted in Fig. 3.

3.3. Stability of endemic equilibrium. If §;, < dj,, one can easily prove that

bBm
&2+ &4 — &3 > 0n20n3 + Ynin + /Bd T 3 > 0. (14)

m
Then, system (1) has no endemic equilibrium if Ry < 1 and backward bifurcation
can not occur. Therefore, disease-induced death rate is big enough is a necessary
condition for backward bifurcation. The backward bifurcation property can be
removed by ignoring the disease-induced death in the human population.
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18000

16000 (H/5(0),H_E(0),H_1(0),H_R(0).A(0),M_S(0).M_E(0).M_1(0))
140004 =(1100, 3, 8440, 0, 2236000, 3724999, 1, 1000)

12000

=(8880000, 3, 4440, 0, 2236000, 3724999, 1, 100)

4000 —\ (H_S(0).H_E(0),H_I(0),H_R(0),A(0),M_S(0).M_E(0),M_I(0))

T T T T T T
0 5000 10000 15000 20000 25000
t

FIGURE 2. The time courses of H;(t) with different initial values.
Parameter values used are: b = 0.14, ¥, = 454, d;, = 1/25000,
Bp = 0.75, Yp = 0.01, v = 1/5, &5 = 0.02, np = 1/3, pa = 5e + 10,
Yo = 1/20, k = 0.01, B = 0.75, Y = 0.1, dy = 0.2, dpy, = 0.03.
Ry = 0.513, R, = 0.511, & + & — &3 = —1302.986. With different
initial values, one curve (red) tends to the value of 0, and the other
curve (blue) tends to the value of 19767.

x10t

Untable Endemi
Equilibrium

Stable DFE . Untable DFE

FIGURE 3. Backward bifurcation diagram. Parameter values used
are: b = 0.14, d, = 1/25000, 8, = 0.75, ¢, = 0.01, v, = 1/5,
op = 0.02, np, = 1/3, pa = 5e+10, v, = 1/20, k = 0.01, §,, = 0.75,
Ym = 0.1, dg = 0.2, d,,, = 0.03. & + &4 — &3 = —1302.986 < 0,
R, =0.511.

It is difficult to determine the stability of the unique endemic equilibrium when
Ry > 1. In the following, we are going to prove that the unique endemic equilibrium

E* = (HS*,HR*,HI*,HE*,M[*, ME*v MS*7A*)a
where A* = A, is globally asymptotically stable by ignoring the disease-induced

death and temporal immunity in the human population. The method used here is
inspired by [1]. The main results are given as follows.
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Theorem 3.3. Assume 6, =¥y = 0. If Ry > 1, then E* is globally asymptotically
stable in D\ Dy, where D := Ry3\({A = M = 0} U{H = 0}), Dy := {Hg = H; =
Mg =M;=0}ND.

Proof. We write the solution ¢(t) of system (1) as ¢(t) = (¢1(t), A(t)), where
¢1(t) = (f[g,]‘[}:g,I‘I[,I{E,J\4]7]\4'E7]\J‘9)7

and write E* = (E1", A*), where Er* = (Hg*, Hg*, H;", Hg", M;*, Mg™, Mgs"). Tt
follows from Lemma 2.1 that A(t) — A* as t — oo. Then, the limited system of
(1) is the same as the limited system of Model (2.1) in [1] when d;, = ¢, = 0. By
the proof of Theorem 6.1 in [1], one can easily prove that E* is locally stable and
¢1(t) = E1" ast — oo, if ¢(0) € D\Dy. Therefore, the unique endemic equilibrium
E* is globally asymptotically stable. O

4. Numerical analysis and discussion. In this paper, focusing on the impact
of the limited resource and some control measures on the transmission dynamics of
dengue, we formulated a dengue model with stage-structured mosquito population.
The basic investigation of the model, such as the existence of equilibria and their
stability, have been finished. It was also shown that the stage-structured dengue
model may undergo backward bifurcation, where the stable disease-free equilibrium
co-exists with an endemic equilibrium, which implies that even though the basic
reproduction number is less than unity, there may be an endemic equilibrium due
to the backward bifurcation of the model. The basic reproductive number itself
is not enough to describe whether dengue will prevail or not and a new threshold
value R, is needed. If R, < Ry < 1, we should pay more attention to the initial
sizes of the involved populations. Our results also suggested that the backward
bifurcation property can be removed by ignoring the disease-induced death and the
global stability of the unique endemic equilibrium has been proved.

In order to model the impact of limited resource, we assume the growth rate
function of adult mosquitoes be a saturated function ﬁ% Fig. 4 (a) shows that,
unlike the linear growth rate function or constant growth rate function, the growth
rate increases and tends to a constant with the increasing of the number of adult
mosquitoes M. Fig. 4 (b) depicts the curve of the growth rate function with respect
to time t, which also tends to a constant. Therefore, the saturated growth rate func-
tion can depict the restriction of limited resource related to mosquito reproduction,
like blood meal resource.

Temperature could cause the variation of the following six model parameters:
the biting rate, b, the mosquito incubation time, 1/~,,, the duration of the whole
cycle from egg laying to an adult mosquito eclosion, 1/7,, the maximum value
of the recruitment rate of viable mosquito eggs, pa, the death rate of immature
mosquitoes, d,, and the death rate of adult mosquitoes, d,,. Clear relationships
between temperature and these parameters were noted with corresponding equa-
tions in [23] without control intervention. The temperature range is assumed to
be [10.54°C, 33.41°C] and the variational ranges of the six parameters, b, Yy, DA,
Ya, da, and dp,, are set to be: [0.14,0.24], [0.1,0.5], [1e + 10,5¢ + 10], [1/20,1/7],
[0.2,0.75], and [0.02,0.07], respectively.

In the following, we are going to study the global and local sensitivity indexes of
above six model parameters with respect to the reproductive number of infection,
Ry. Sensitivity analysis (SA) is defined as the study of how uncertainty in the
quantity of interest(Qol) is attributed to different sources of uncertainties ([26],
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(a) The curve of the growth rate function with
respect to M

4.9999 x 10104

pyM 49998 % 10'0

1+M

4.9997 x 1010

4.9996 x 10"

100 200 300 400 500
t

(b) The curve of the growth rate function with
respect to time ¢

FIGURE 4. The curves of the growth rate function.

[27], [30], etc.). It helps to understand how the parameters of a model affect the
quantity of interest(Qol), in our case the reproductive number of infection, Ry. SA
is often employed to rank the model parameters in order of their influence so that
we can determine the most important model parameters.

Fig. 5 demonstrates the global Sobol sensitivity analysis of these parameters.
We observe that d,, is the most global sensitive model parameter with respect
to the basic reproductive number Rg. b, 74, pa and 7, are the second, third,
forth and fifth most global sensitive model parameters, respectively. In addition,
the death rate of immature mosquitoes, d,, is the least sensitive parameter. This
global sensitivity study indicates that temperature variation brings the variation of
Ry and we should pay more attention to obtaining accurate data, especially those
more sensitive parameters, like d,, and b, if we want to have an accurate estimation
of Ro.
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Golbal Sensitivity with respect to R0
0.7

Global Sensitivity Indices
o o o o o
N w S o o

o

b T P A d d,

F1GURE 5. The global Sobol sensitivity indices of the six model
parameters with respect to the basic reproductive number Ry in
the stage-structured dengue model.

Local Sensitivity with respect to R0

5.162e-12

\

o

Local Sensitivity Indices
T < T T
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5 -8.94e6

-10f

-15

FIGURE 6. The local sensitivity indices of the six model parameters
with respect to the basic reproductive number Rj.

In addition, local sensitivity analysis around the corresponding mean position
is also performed to investigate the local sensitivity effect of above six model pa-
rameters on the basic reproductive number, Ry. The local sensitivity analysis can
provide the information on how a small change of a model parameter will cause
the variation of Ry at a given local setting of the six model parameters. Different
from the global sensitivity analysis, the local sensitivity analysis does not depend
on the range of the model parameters [27]. The magnitude of the local sensitivity
indicates how much the variation of Ry will be, given a small change of a model
parameter. The sign of the local sensitivity indice indicates whether the variation
increase of one model parameter will cause the variation increase or decrease of Ry.
As shown in Fig. 6, d,;, is most sensitive and the following are ~,, b and ~,,, which
is different from the global sensitivity study. Moreover, ps and d, have very small
local sensitivity. Since the local sensitivity indexes of v, b, v,,,, and p4 are positive,
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the variation of the reproductive number of infection, Ry, will increase as long as
the variation of one of the four model parameters is increasing. Ry will decrease as
long as the variation of one of the two model parameters d, and d,, are increasing
according to the negative local sensitivity indexes. Therefore, temperature increase
exacerbates dengue transmission because it brings the increase of the values of ~,,
Ty Ym, PA, as well as the decrease of the value of d, and d,,.

The major dengue control effort includes clearing standing water and spray-
ing insecticide in targeting immature and adult mosquitoes respectively. Clearing
standing water decreases the probability that a female mosquito finds an appro-
priate water reservoir to lay eggs (decreases p4) and kills some existing immature
mosquitoes (increases d,). While spraying insecticide can kill adult mosquitoes (in-
creases d,,). We now focus on investigating the effectiveness of this two kinds of
control measures and choose the intervention parameters oy, ap and a,,, as critical
parameters.
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FIGURE 9. The cumulative number of infected human hosts ac-
cording to different control intervention time. Parameter values
used when there is no intervention control measures are: b = 0.14,
Uy, = 454, dp, = 1/25000, B, = 0.75, ¢, = 0.01, v, = 1/5,
op = 0.001, ny, = 1/3, pa = 5e + 10, v, = 1/20, x = 0.01,

Bm = 0.75, v = 0.1, d, = 0.2, d,,, = 0.03 and Ry = 0.527,
&+ &4 — &3 =42.97.
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FIGURE 10. The prevailing time according to different control in-
tervention time. Parameter values used when there is no inter-
vention control measures are: b = 0.14, U;, = 454, d;, = 1/25000,
ﬁh = 0.75, 1./)h = 0.01, Yh = 1/5, 5h = 0.001, Nh = 1/3, prA = 5€+10,
Yo = 1/20, k = 0.01, B,, = 0.75, v, = 0.1, d, = 0.2, d,,, = 0.03
and Ry = 0.527, 52 + 64 - 53 =42.97.

The contour of the basic reproduction number, Ry as a function of a z, ap and ay,
are presented in Fig. 7 and Fig. 8. The parameter ranges have been extended for the
sake of exploring the efficiency of control intervention and catching the trend of Ry.
The results manifest that more intensive control measures in targeting immature
and adult mosquitoes are both effective in preventing dengue outbreaks.
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FIGURE 11. The cumulative number of infected human hosts ac-
cording to different control intervention time with single control
intervention measure. Parameter values used are the same as that
used in Fig. 9 except d,,, pa and d,.

In order to study the impact of intervention time on dengue transmission, we
carried out the numerical analysis on cumulative number of infected human hosts
C(t) and dengue prevailing time according to three different control intervention
strategies in Fig. 9 and Fig. 10. For the control intervention, we assume that
a, = 0.04 and a; = 0.55 and «a; = 4e 4+ 10. Our results show that if the beginning
time of intervention is at 30th day, the ultimate cumulative number of infected
human hosts C(oo) will shrink from 407 to 206, which is a 49.4% decrease. And the
prevailing time will be reduced from 460 days to 150 days. While, if the beginning
time is at 10th day, C'(co) will shrink to 127, which is a 68.8% decrease. And the
prevailing time will be further reduced to 136 days. Hence, the earlier the control
intervention begins, the less people will be infected and the earlier dengue will be
eradicated. Even later epidemic prevention and control can also effectively reduce
the severity of pandemic. In addition, according to comparing Fig. 9 and Fig. 11,
it can be asserted that comprehensive control measures are more effective than a
single measure. Clearing standing water and spraying insecticide should be carried
out simultaneously. The results could be helpful in guiding to use the most effective
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interventions and determine the intervention time in future dengue outbreaks with
a limited budget.

Owing to the existence of backward bifurcation, even small fluctuation of param-
eters can bring a completely different result, especially as the basic reproduction
number is near the subthreshold value R.. In order to control dengue transmission,
people should concentrate on environmental and climate change, pay more atten-
tion to those more sensitive parameters, monitor the number of new cases, and take
intervention measures as early as possible.

As an initial work, we are trying to model the impact of resource and some control
measures on mosquito population and dengue transmission. Nevertheless, mosquito
population may be affected by some other environmental and climate factors, like
humidity and precipitation. Dengue transmission can also be affected by population
mobility, vaccination, and other factors. We’ll incorporate them into our model in
the future work.
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