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Abstract

Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic
systems. However, for problems where the distribution of model parameters is
multimodal, using ES directly would be problematic. One popular solution is to use a
clustering algorithm to identify each mode and update the clusters with ES separately.
However, this strategy may not be very efficient when the dimension of parameter space
is high or the number of modes is large. Alternatively, we propose in this paper a very
simple and efficient algorithm, i.e., the iterative local updating ensemble smoother
(ILUES), to explore multimodal distributions of model parameters in nonlinear
hydrologic systems. The ILUES algorithm works by updating local ensembles of each
sample with ES to explore possible multimodal distributions. To achieve satisfactory
data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the
measurements multiple times. Numerical cases involving nonlinearity and
multimodality are tested to illustrate the performance of the proposed method. It is
shown that overall the ILUES algorithm can well quantify the parametric uncertainties

of complex hydrologic models, no matter whether the multimodal distribution exists.



1. Introduction

Parameter identification is an important aspect in uncertainty quantification of
hydrologic systems. However, a direct measurement of model parameters is usually
difficult or even impossible in many cases. In this situation, to obtain an estimate of the
model parameters, we need to solve an inverse problem with the information provided
by some indirect measurements (hereinafter referred to as measurements). Nowadays,
Bayesian inversion methods are receiving popularity in hydrologic sciences. In the
Bayesian framework, the uncertainties in parameter estimation are represented by the
posterior distribution, from which we can obtain any desired statistics [Stuart, 2010].
According to Bayes’ theorem, the posterior distribution is proportional to the product
of the prior distribution times the likelihood. Except for a few simple cases, the
analytical form of the posterior distribution is non-existent. In this situation, we have to
resort to Monte Carlo simulation methods to sample from the posterior distribution and
obtain a numerical approximation accordingly.

One popular method to sample from the posterior distribution is Markov chain
Monte Carlo (MCMC), which was first introduced by Metropolis et al. [1953] and then
extended to more general situations by Hastings [1970]. Over the last two decades,
many efforts have been devoted to developing efficient MCMC algorithms, including
single-chain and multi-chain methods. One of the most popular single-chain MCMC is
the delayed rejection adaptive metropolis (DRAM) algorithm developed by Haario et
al. [2006] , which combines the strength of delayed rejection [ Tierney and Mira, 1999]
and adaptive Metropolis [Haario et al., 2001] algorithms. However, when the posterior
distribution is multimodal, the performance of the single-chain MCMC would
deteriorate [Vrugt, 2016]. Through running multiple chains in parallel, MCMC can
better explore complex posterior distributions that have multiple modes. One famous
example of multi-chain MCMC is the differential evolution adaptive metropolis
(DREAM) algorithm [Vrugt et al., 2008; Viugt et al., 2009b], which is based on the
differential evolution Markov chain algorithm [Braak, 2006] but uses outlier chain

correction and subspace sampling. Due to its efficiency, DREAM has found widespread



applications in many different fields [ Vrugt, 2016]. To sufficiently explore the posterior
distribution of model parameters, MCMC usually needs a very large number of model
evaluations, especially when the dimension of the parameter space is high. When the
system model is CPU-demanding, the computational cost of MCMC simulation would
be prohibitive. In this situation, a CPU-efficient surrogate is usually used to replace the
original model in MCMC simulation. To eliminate the error introduced by the surrogate,
one has to construct an accurate enough surrogate (at least around the posterior
distribution [Zhang et al., 2013; Zhang et al., 2016]), or use the original model to
correct the surrogate simulation in a two-stage manner [Efendiev et al., 2005; Laloy et
al.,2013; Zeng et al., 2012; Zhang et al., 2015]. For the reason of computational cost,
it is also difficult to construct an accurate surrogate for a high-dimensional model,
except when the nonlinearity of the original model is low enough to allow for a linear
approximation [Li et al., 2016b; Zhang et al., 2017].

For parameter estimation in nonlinear problems, a computationally appealing
alternative is ensemble Kalman filter (EnKF), which is a Monte Carlo variant of the
classical Kalman filter [ Kalman, 1960]. Since its introduction by Evensen [1994], EnKF
has been widely used in uncertainty quantification of nonlinear problems in oceanic
[Bertino et al., 2003; Keppenne and Rienecker, 2003], atmospheric [Houtekamer and
Zhang, 2016; Houtekamer and Mitchell, 2001; Ott et al., 2004], geophysical [Aanonsen
et al., 2009; Gu and Oliver, 2007] and hydrological [Chen and Zhang, 2006;
Moradkhani et al., 2005; Reichle et al., 2002; Schéniger et al., 2012; Xue and Zhang,
2014] modeling, etc. As a sequential data assimilation technique, EnKF needs to modify
restart files and update model parameters and states simultaneously at each assimilation
step, which makes its application inconvenient when the model involves multiple
processes [Emerick and Reynolds, 2013]. In this situation, computing a global update
with all available data is preferred, which leads to the scheme of ensemble smoother
(ES) [Evensen, 2007; Van Leeuwen and Evensen, 1996]. Through only updating model
parameters, ES also avoids the inconsistency between updated parameters and states
encountered in EnKF. It has been shown that, with much lower computational cost, ES

can obtain comparable results as EnKF in some reservoir history matching problems



[Skjervheim and Evensen, 2011]. In hydrologic inverse modeling, ES has also found
widespread applications, e.g., [Bailey and Bau, 2010; Crestani et al., 2013]. However,
for strongly nonlinear problems, both EnKF [Emerick and Reynolds, 2012; Gu and
Oliver, 2007; Lorentzen and Naevdal, 2011] and ES [Chen and Oliver, 2012; Emerick
and Reynolds, 2013] need some forms of iteration to achieve satisfactory data matches.

As both EnKF and ES rely on the first two statistical moments, they are most
suitable for problems with Gaussian distributions. If the distribution of model
parameters has multiple modes, using EnKF or ES directly would be problematic. Over
the past two decades, there have been several approaches trying to address this issue
and extend EnKF or ES to problems with multimodal distributions, most of which are
based on cluster analysis. For example, Elsheikh et al. [2013] used the K-means
algorithm, Bengtsson et al. [2003] and some later researchers [ Dovera and Della Rossa,
2011; Li et al., 2016a; Smith, 2007; Sun et al., 2009] used Gaussian mixture models to
cluster the samples and update each cluster with EnKF or ES separately. Generally, in
these approaches, as we don’t know exactly how many modes there are, it would be
better to use a relatively large number of clusters. For example, if there are 5 modes
(although we don’t know this number in advance), setting the number of clusters as 3
would miss some modes and it would be better to set the number of clusters as 5 or a
larger number. According to Elsheikh et al. [2013], one problem that might be
encountered is the stochastic nature of cluster analysis, i.e., different runs of the same
inverse algorithm based on cluster analysis may identify different numbers of modes.
Moreover, implementing cluster analysis in high-dimensional problems is challenging.
Except for adopting cluster analysis, other ways of dealing with multimodal distribution
include integrating EnKF with another inverse method, such as particle filter (PF)
[Mandel and Beezley, 2009], etc.

In this paper, without resorting to the K-means algorithm, Gaussian mixture
models, or another inverse algorithm (e.g., PF), we propose a very simple and efficient
algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to extend ES
to problems with multimodal distributions. For each sample in ES, we define its local

ensemble based on an integrated measure of distance to this sample and the



measurements. Then we use the scheme of ES to update each local ensemble. In this
way, the multimodal distribution of model parameters can be well explored. To achieve
satisfactory data matches in strongly nonlinear problems, we adopt an iterative form of
ES to assimilate the measurements multiple times.

The remainder of this paper is organized as follows. The detailed formulation of
the ILUES algorithm is given in Section 2. To illustrate its performance, five numerical
case studies are tested in Section 3. Finally, some conclusions and discussions are

provided in Section 4.

2. Iterative local updating ensemble smoother

For simplicity, here we represent an arbitrary hydrologic system in the following
way:

d=f(m) +eg ()

where d isa Ng X 1 vector for the measurements, f(-) is the system model, m isa

N X 1 vector for the uncertain parameters, € isa Ng X 1 vector for the measurement

errors. With the noisy measurements d, we can update our knowledge about the

unknown model parameters m via ES:

m{ = mf + Clhp (Chp + Cp)71[d; — f(mjf)]’ @)

for j=1,..,N,.
In the above equation, M/ = [m{ , ...,mﬁe] is an ensemble of N, parameter

samples randomly drawn from the prior distribution, M® = [m¢, ..., m{ ] is the
e

updated ensemble conditioned on the measurements d, CICID is the N, X Ngq cross-

covariance matrix between M/ and D/ = [f(m)), ..., f(m{,e)], Clp is the Ng x
Ny auto-covariance matrix of D/, Cp is the Ngq X Nq covariance matrix of the
measurement errors, d; = d + €; is the jth realization of the measurements, and €; is
a random realization of the measurement errors.

From equation (2), it is obvious that ES only relies on the first two statistical



moments. If the prior or the posterior distribution of m is multimodal, the direct
implementation of ES would be problematic. Nevertheless, being multimodal implies
that locally the distribution is still unimodal, which enables the application of ES with
a local updating scheme. Based on this idea, we propose a simple and efficient way that

identifies and updates N, local ensembles of M/ to explore possible multimodal
distributions. The local ensemble of the sample mf (G =1,..,Ng) isidentified based

on an integrated measure of distance to the measurements d and the sample mf :

J(m) = J3 (m) /] + Jo (m) /]57%, 3)

where J;(m) = [f(m) — d]"Cp*[f(m) — d] is the distance between the model

responses f(m) and the measurements d, and J,(m) = (m — m]f ) Cym(m — mjf ) is

the distance between the model parameters m and the sample mjf . Here Cyy is the

N X Ny, auto-covariance matrix of the model parameters, J{"®* and J3"®* are the

maximum values of J;(m) and J,(m), respectively. In equation (3), using /" and

2% as the scaling factors can make sure that J;(m)//"® and J,(m)/J3"®* are
within the same range of (0,1], thus neither the J; part nor the J, part will dominate.

Then the local ensemble of mjf is the N} = aNq(a € (0,1]) samples with the

N, smallest | values,i.e., M;’f = [m}i 19 s m}i Nl]' N, should be large enough so that
there are enough samples in the local ensemble to make a reasonable update. Here the
factor a represents the ratio between the local ensemble M}’f and the global ensemble

M/ . Using the scheme of ES, we can update the corresponding local ensemble:

Lf el, _
mj; = ij'c,i + Cyp (Ch + Cp) 72 [d; — f(m}-ii)]a 4)

. Lf . . . 1,
for i =1,...,N;. Here CM];) is the N, X Ng cross-covariance matrix between Mjf

and D]l.'f = [f(mj}.j Drer f (m}i Nl)]’ Cll)'}; is the Ng X Ng auto-covariance matrix of

D]l.’f , d; =d + g; is the ith realization of the measurements. From the updated local



I L
ensemble Mja = [mjy,..,m/y ], we can choose a random sample mja as the

updated sample of mf (j =1,...,N.). Inthis way, we can well explore the multimodal

distribution with the updated global ensemble, M® = [m%?, ..., mf\,‘:]

As stated above, the local ensemble is identified based on an integrated measure
of distance both in the space of the model responses (J; ) and the model parameters (/).
The role of the J; part is to filter out the samples that are far away from the posterior

region according to the model-data fit, while the role of the J, part is to filter out the

samples that are far away from the mode M™ that is closest to m{ . Through updating

the local ensemble of m]f , we can obtain the updated parameter sample m]l-'a that is
expected to be close to the mode M ™. With the N, updated parameter samples in the
updated global ensemble M?, we can identify different modes that may exist in the
posterior distribution. If we only use J; that quantifies the distance between the model
responses and the measurement data, we cannot differentiate among different modes
and thus cannot solve the multimodal problem. On the other hand, if we only use J,
that quantifies the parametric distance, we can find an ensemble that is close to a certain
parameter set. However, it is very likely that the measurement data and the true model
parameters are far beyond the bounds of this local ensemble. Then updating this local
ensemble is similar to extrapolation and we cannot guarantee to find a good solution.
So the J; part and the J, part are equally important. By applying equation (3) that
considers the two parts simultaneously, we can both differentiate among different
modes and make sure that the true state is within or at least not far away from the bounds
of the local ensemble. Then updating the local ensembles can provide more robust
results.

Another thing that should be noted here is that, when a = 1, the local ensemble
of a certain sample is actually the entire ensemble, then the updating scheme formulated
in equation (4) reduces to that in equation (2) (i.e., the original ES). However, setting
a = 1 makes the local updating ES unable to handle problems with multiple modes in

the posterior. When a < 1, the local ensemble of a certain sample is a subset of the



global ensemble. Thus the covariance matrices Clp and CJ, calculated from the
global ensemble will be different from those calculated from the local ensemble (i.e.,
C,l;{D and C,l)";). At this point, the local updating ES isn’t equivalent to the original ES
for the a <1 case. However, the local updating ES is suitable for tackling the
multimodal problems, where the performance of the original ES will significantly
deteriorate.

In the local updating ES, different local ensembles can share some same samples.
At this point, this process is different from the K-means algorithm or Gaussian mixture
models. The advantages of this process are twofold. First, as we implement this process
with N, seeds, it is advantageous in identifying all possible modes when its number is
large. Second, if there does not exist any multimodality, different local ensembles
would share a considerable number of same samples and thus produce the updated
samples that locate in the same mode. In this way, this process can avoid identifying
modes erroneously.

For strongly nonlinear problems, an iterative form of ES is usually needed. In this
paper, we adopt the simplest one that assimilates the measurements multiple times,
which has been integrated into both EnKF [Emerick and Reynolds, 2012] and ES
[Emerick and Reynolds, 2013] for data assimilation in nonlinear problems. At each
iteration, we implement the local updating scheme described above on the updated
ensemble M® obtained from the last iteration. This iterative process is repeated Njier
times. To guarantee that the multiple data assimilation scheme can obtain reasonable
results, we need to inflate the covariance matrix of the measurement errors Cp. Here
we adopt one simple way that Cp is multiplied by the predefined iteration number
Niter, Wwhich has been proven to be able to obtain correct posterior estimates in linear-
Gaussian problems using the multiple data assimilation EnKF or ES [Emerick and
Reynolds, 2012; 2013]. In this scheme, the way to draw realizations of the

measurements in equation (4) should be changed accordingly, ie., d; =d+
Nitercll)/ er o Where 1y ~N(0,Iy,). After Nje, iterations, we can obtain good data

matches and a converged estimation of the uncertain parameters. Complete scheme of



the ILUES algorithm is described in Algorithm 1.

Algorithm 1 Iterative local updating ensemble smoother

1: Set iteration counter i = 0.

2: Generate input ensemble M/ = [m{ ) ) mﬁe] from the prior distribution.

3: Generate output ensemble D/ = [f (mic ) f (mf:,e)] by evaluating the system

model.

4:for j=1,..,N, do

S: Given mjj.r , calculate the N, values of J for all samples in M/ according
to equation (3).

6: Choose the N; = aN, samples with the N; smallest J values as the local
ensemble of mf, ie., M}'f = [mfl, ...,m]].c,Nl].

7: Obtain the updated local ensemble M}'a according to equation (4) with the
inflated covariance matrix of the measurement errors and the accordingly
generated measurement realizations.

8: Draw a random sample mjl-'a from M}’a as the updated sample of m]j.c .

9: end for

10: Let M® = [m%%, ..., mf\',i‘], which is the updated ensemble of M/.

11: Set i =i+ 1.If i = Ny, stop; Otherwise, let M/ = M, go to Step 3.

3. Illustrative examples

In this section, we evaluate the ILUES algorithm in five numerical case studies

involving nonlinearity and multimodality. The first example is simple and low-

dimensional, but it has infinite number of modes in the posterior distribution. This

example is used to illustrate the basic ideas of the proposed method. We then test the

second example with 100 unknown parameters to demonstrate the performance of

ILUES. To show its applicability in complex problems, we further test the ILUES

algorithm with three hydrological examples that have multimodal prior distribution,



multimodal posterior distribution and a large number (N, = 108) of uncertain

parameters, respectively.
3.1. Example 1: A simple case study with infinite number of modes in the posterior

The first example tests the ability of the ILUES algorithm to identify the posterior

distribution that has infinite number of modes, which has the following form:
y =i +x3. &)

In this case, the prior distributions for x; and x, are both uniform distributions,
U(—2,2), the scalar measurement is d = 1 with measurement error e~N'(0,0.012).

It is clear that the posterior distribution of the parameters is close to a round circle with

radius equal to v/d, which means that there are infinite number of distinct parameter

sets that all can well fit the measurement, i.e., there are infinite number of modes.
Although this example is rather simple, it is challenging for the standard ES or the
cluster-analysis-based ES to obtain the posterior with infinite number of modes.
Setting the ensemble size N, = 400 and the factor @ = 0.1 in the ILUES
algorithm, the posterior distribution can be well identified within three iterations. The
blue dots as shown in Figure 1(a-d) are random samples drawn from the prior
distribution and updated samples obtained at the three iterations, respectively. It is clear
that the ILUES algorithm is capable of solving inverse problems with infinite number
of modes in the posterior distribution. Meanwhile, Figure 1 also demonstrates the
necessity of assimilating the measurement multiple times to obtain converged results
for nonlinear problems. Here the associated signal to noise ratio defined as the ratio of
the average prior root-mean-square error (RMSE) to the average posterior RMSE is

180.17, which indicates a significant reduction of uncertainty in the underlying system.

[Figure 1]

To illustrate the concept of local ensemble, we randomly draw a sample (red
diamond) from the prior distribution and plot its local ensemble (black dots) in Figure

1(a). Figure 1(a) indicates that the local ensemble actually locates between the drawn



sample and the posterior region, as it is based on an integrated measure of the distance
between the model parameters and the drawn sample and the distance between the
model response and the measurement. Applying the updating scheme of ES to this local
ensemble, we can obtain an updated sample represented by the red diamond in Figure
1(b), which is much closer to the posterior region. The local ensemble of this updated
sample is plotted with black dots in Figure 1(b). Similar plots are also shown in Figure
1(c-d).

In the above simulation, the factor a is chosen as 0.1. This factor decides the ratio
of the local ensemble over the global ensemble. It is understandable that a smaller «
would be more suitable for problems with a large number of modes in the posterior
distribution. As we have to make sure that there are enough samples in the local
ensemble to make a reasonable update, given a predefined ensemble size N.,
cannot be too small. To illustrate the effect of this factor on the performance of the
ILUES algorithm, we test nine different values of a and show the corresponding
results in Figure 2 (here N, = 400 with three iterations). In this example, as there are
infinite number of modes in the posterior distribution, choosing a large a (e.g., a >
0.4) would significantly deteriorate the inversion results. According to our own
experience, & = 0.1 works well for all our tested examples and thus it is given as the

recommended value.
[Figure 2]

Another setting that affects the performance of the ILUES algorithm is the
ensemble size N,. As shown in Figure 3 (here a = 0.1 with three iterations), when
N, is small (e.g., N, = 50), we will miss a large portion of the posterior region,
which greatly underestimates the uncertainty in the model parameters. When N, is
large (e.g., N = 2000), we can obtain a pretty good result, but it comes with an
increased computational cost. Generally speaking, a large N, is needed for a high-
dimensional problem or a problem that has a large number of modes in the posterior.
There is a trade-off between the performance and the computational cost when choosing

an appropriate No.



[Figure 3]

Moreover, the updated sample of mf , i.e., m¥?, is randomly drawn from the

j s
updated local ensemble M;’a. If not choosing randomly, but selecting the updated

sample that has the smallest / value seems to be an appealing option. As shown in
Figure 4, given different settings of the ensemble size N, and the factor «a, selecting
the “best” sample (solid lines) would always give better data matches than choosing a
random sample (dashed lines). Here the y axis in Figure 4 is for the log-transformed
RMSE (Log RMSE) between the simulated model outputs and the measurement
averaged over the ensemble. However, as we will demonstrate in the following example,
this option may cause biased inversion results in some specific problems. In Figure 4,
it is again shown that smaller values of a can usually give better data matches. As we
should preserve enough samples in each local ensemble to make a reasonable update
via ES, a small a should come with a relatively large ensemble size N, i.e., a

relatively high computational cost.

[Figure 4]

In equation (3), the measure for the local ensemble of mf (=1,..,N,) assigns

equal weights to the normalized distance between the model responses and the
measurements d (i.e., J;(m)/J"®*) and the normalized distance between the model

parameters m and the sample mf (i.e., Jo(m)/J"*). Here we can also assign

different weights to the two normalized distances:

J(m) = J3 (m) /] + b. J, (m) /]3*%%, (6)

where b € (0, 0). In Figure 5, we systematically study the effect of the factors a and
b on the performance of the ILUES algorithm (here N, = 400 with three iterations
and the “random” option). When a < 0.1, smaller values of b (e.g., 0.1 and 0.01) can
obtain better data matches. However, when a = 0.1, it is better to choose a relatively

large value of b (e.g.,b > 0.1). This is because choosing a big value of b would



make the local ensemble relatively close to the sample mf and relatively far away

from the measurements d. If a is very small (e.g., @ = 0.01), the local ensemble
would have a very small size and it may miss the samples that are close to the
measurements d, which could cause dissatisfactory data matches. When a is
relatively large, the local ensemble can keep some samples that are close to the

measurements. In this situation, preserving the local properties of the sample m]f might

matter more. In our experience, b = 1 could provide more robust results than other
values. Moreover, in many papers working on inverse problems, similar objective
functions to equation (3) have been formulated (although the scaling factors J{"®* and
¥ might not be used) [Chen and Oliver, 2012; Zhou et al., 2014], where the
contribution of the parametric distance has the same weight as the distance in the model

responses, i.e., b =1. Thus, b =1 is used as the default value in the following

examples.
[Figure 5]

3.2. Example 2: A 100-dimensional case study with multimodal posterior

To show the performance of the ILUES algorithm in problems with more unknown

model parameters, we test the second example:
y=x%+ x4+ x%,. (7)

Here the prior distributions for x;~xg9 are U(0,1), and for x99 1Iis
U(—10,10). The scalar measurement in this case is d = 87.68, with measurement
error e~V (0,12). Itis expected that the posterior distribution of x;0o is bimodal, i.e.,
using either X159 or —X;o¢ We can obtain the same model response when other model

parameters are the same.
[Figure 6]

As this problem has 100 unknown model parameters, a relatively large ensemble
size is chosen in the ILUES algorithm. In this case, N, = 1000 and a = 0.1 are used.

From Figure 6 we can find that, within five iterations, the bimodality of x;4¢ in the



posterior distribution can be well identified by the ILUES algorithm. As shown in
Figure 7(a), although the simulated model outputs from the prior samples have a large
uncertainty level, they can converge to the measurement within five iterations. In this
case study, the ratio of the average prior RMSE to the average posterior RMSE is 20.84.
Besides, the RMSE between f(my.,.) and the actual measurement d is 1.16, the
mean of the posterior RMSE is 0.91, and the 95% confidence interval of the posterior
RMSEis [0.029 2.69], which is close to the results of MCMC simulation (mean: 0.94,
95% confidence interval:[0.038 2.88]). Here we have to admit that using only 1000
samples is far from enough to fully characterize the 100-dimensional posterior

distribution. However, it is still a good way to make an accurate prediction of the system.
[Figure 7]

In this example, we also test the option that selects the updated sample that has the
smallest / value from the updated local ensemble in the ILUES algorithm. However,
as shown in Figure 7(b), it will cause a biased inversion result that has an abnormally
large variance. From Figure 7(b) we can also find that in the last three iterations, many
samples would stay near where they were at the last iteration. It may be because the
“best” sample in each local ensemble is usually closest to the “true” state, which would
receive the smallest update. Moreover, this update would become even smaller at later
iterations, which could prevent a sufficient update of the model parameters. Thus, this
option is not very robust. In the following examples, we will choose the updated sample

randomly from the updated local ensemble and this setting will not be further specified.
3.3. Example 3: A rainfall-runoff model with multimodal prior

The third example tests the ability of the ILUES algorithm to deal with problems
whose prior distributions have multiple modes. Here we consider a more practical case,
which is based on a widely used rainfall-runoff model, HYMOD, developed by Boyle
[2000]. This model connects a simple rainfall-excess model [Moore, 1985] to a series
of linear slow and quick reservoirs within a watershed. There are five uncertain

parameters in HYMOD, i.e., the maximum water storage capacity of the watershed,



Cmax|L], the degree of spatial variability of soil moisture capacity, bexp,[—], the
distribution factor for the flow between the slow and the quick reservoirs, f[—], the
residence time of the slow reservoirs, Rg[T] and the residence time of the quick
reservoirs, Rg[T], respectively. This example is included in the DREAM software
package developed by Vrugt [2016] and it is modified and used in this case study. Here
the prior distributions for Cpax and bey, are multimodal and represented by
Gaussian mixture models, i.e., p(Cpax) = 1/3M(100,20%) + 1/3N (250, 20%) +

1/3V° (400, 20%) and P(bexp) = 1/3N(0.5,0.1%) + 1/3N'(1,0.12) + 1/
3N (1.5,0.1%), respectively. While the prior distributions for 8, Rs and Ry are

uniform distributions, whose ranges are listed in Table 1. The stream flow
measurements are generated from one set of true model parameters my.,. as listed in

Table 1 with additive measurement errors e~ (0,62), where 6 = 0.1 X f(Mye)-
[Table 1]

Choosing the ensemble size N, = 300 and the factor a = 0.1, the ILUES
algorithm can accurately estimate the model parameters within five iterations, as shown
in Figure 8. Here the ratio of the average prior RMSE to the average posterior RMSE
is 5.30. Besides, the RMSE between f(my.,.) and the actual measurements d is 5.35,
the mean of the posterior RMSE is 5.37, and the 95% confidence interval of the
posterior RMSE is [5.32 5.46], which is close to the results of MCMC simulation
(mean:5.35, 95% confidence interval: [5.30 5.42] ). Compared with example 1,
although there are more parameters in this example, a smaller N, is capable of
quantifying the parametric uncertainties, as the number of modes is not large. However,
there is still a trade-off between the performance and the computational cost. If a very

small N, is chosen, there will be a risk of obtaining biased inversion results.
[Figure 8]

3.4. Example 4: Contaminant source identification with multimodal posterior

In this example, we consider a contaminant source identification problem in



steady-state saturated groundwater flow. As shown in Figure 9, the 20[L] X 10[L]
domain has constant-head conditions at the left (12[L]) and right (11[L]) boundaries,
no-flow conditions at the lower and upper boundaries, respectively. The conductivity
and porosity of the aquifer are homogeneous, whose values are knownas K = 8[LT 1]
and 0 = 0.25[—], respectively. Then we can obtain a uniform background flow
from left to right. In this flow field, some amount of contaminant is released from a
point source. The contaminant source is characterized by five parameters, i.e., m =
[%s) Vs, Ss, tons tofe], Which means that the contaminant is released at (xg, y5)[L] from
time tyy[T] to toe[T] with a constant mass-loading rate S{[MT~!]. The prior
distributions for the five parameters are uniform, whose ranges are listed in Table 2. To
infer these parameters, concentration measurements are collected from a single well
denoted by the blue circle in Figure 9 at t = [6,8,10,12,14][T] with measurement
errors £~N'(0,0.012). The true values of the model parameters my,,. that generate

the measurements are also listed in Table 2.
[Figure 9]
[Table 2]

The governing equations for the steady-state saturated groundwater flow are:

a (K ah) _0 g
axi iaxi o ( )
and
_ K; oh ©)
Vi = 0 8xl-'

where h[L] represents hydraulic head, K;[LT~!] and v;[LT~1] represent hydraulic
conductivity and pore water velocity along the respective coordinate axis x;[L](i =
1,2), respectively.

The advection dispersion equation for the contaminant transport is:

a(60) a( ac) 9
= — —(6v;C) + q<Cs, (10)

ot ax\ Yax) ox



where C[ML™3] represents molar concentration of the dissolved contaminant; ¢[T] is

time; qs[T~!] and C[ML™3] represent flow rate per unit volume of aquifer and
concentration of the contaminant source; D;;j [L2T~1] represents hydrodynamic

dispersion tensor, whose principal components (Dy, and D,,) and cross terms (Dy,,
and D,,) are defined as:

Dyy = (ayvi + arvy)/|vl,

Dy, = (a vy + arvg)/|vl, (11)

Dyy = Dy, = (a, — aT)vxvy/lvlr
where a; and ar represent longitudinal and transverse dispersivities, v, and v,
represent components of the pore water velocity v along x and y directions, |v| is
the magnitude of v, respectively. Here the longitudinal and transverse dispersivities
are known as a; = 0.3[L] and a; = 0.03[L], respectively. The governing equations
for the groundwater flow and solute transport are numerically solved with MODFLOW
[Harbaugh et al., 2000] and MT3DMS [Zheng and Wang, 1999], respectively.

[Figure 10]

To estimate the model parameters, we implement the ILUES algorithm with N, =
400 and a = 0.1. As shown in Figure 10, the posterior distribution of ys is bimodal.
In this case study, the ratio of the average prior RMSE to the average posterior RMSE
is 67.21. Besides, the RMSE between f(my.,.) and the actual measurements d is
0.0069, the mean of the posterior RMSE is 0.0086, and the 95% confidence interval of
the posterior RMSE is [0.0048 0.014], which is close to the results of MCMC
simulation (mean:0.0081, 95% confidence interval:[0.0045 0.014]). To verify that the
inversion result obtained by the ILUES algorithm is reasonable, we also show the
parameter estimation results obtained by the MCMC simulation. In this case, the
DREAM algorithm developed by Vrugt is adopted, whose efficiency has been shown
in inverse problems with multimodal distributions [Vrugt, 2016]. Here we use eight
parallel chains in the DREAM algorithm, each of which has a length of 2000, i.e., the
total number of model evaluations is 16,000. The Gaussian likelihood function is used

to evaluate the goodness-of-fit between the model outputs and the measurements. As



shown in Figure 11, the trace plots of the model parameters obtained by DREAM are

very similar to those obtained by the ILUES algorithm.
[Figure 11]

Here we also implement ES that assimilates the measurements multiple times to
estimate the model parameters. As shown in Figure 12, using the same ensemble size
and the same number of iterations, ES with multiple data assimilation cannot accurately
characterize the bimodal posterior distribution of ys, although it can still reduce the

uncertainties of X, t,, and t,gr Whose posterior distributions are unimodal.
[Figure 12]
3.5. Example 5: Contaminant source identification with 108 unknown parameters

To demonstrate the performance of the ILUES algorithm in inverse problems with
many more unknown model parameters, we further test a more complex contaminant
source identification problem. In this example, instead of considering a source with a
constant strength, we consider a time-varying source strength, which is characterized
by 6 parameters in 6 time segments, i.e., Sg;[MT 1] during i:i+ 1[T], for i =
1, ...,6. Therefore, along with the source location (xg, ys), there are 8 parameters that
characterize the contaminant source. Again, these parameters are assumed to follow

uniform distributions, whose ranges are listed in Table 3.
[Table 3]

In this example, we consider the heterogeneity of the conductivity field whose log-
transformed values Y = log(K) at two arbitrary locations (x;,y;) and (x,,y,) are

assumed to be correlated in the following form:

1= % lyr— J’2|>’ (12)

|x
Cy(xq1,V1; Xo, )=02exp(— -
y\X1, Y1, X2, 2 Y 2, 1,

where of =1 is the variance, A, = 10[L] and A, =5[L] are the correlation

lengths along x and y directions, respectively. Here we use the Karhunen-Lo¢ve (KL)

expansion [Zhang and Lu, 2004] to parameterize the log-transformed conductivity field:



Y(X) = V(%) + 28 Jrisi (&, (13)

where Y(x) =2 is the mean component, 7; and s;(X) are eigenvalues and
eigenfunctions of the correlation function described in equation (12), &;(i = 1, ..., Ng1)
are independent standard Gaussian random variables. In this case, 100 KL terms are
kept, i.e., Nk, = 100, which can preserve about 94.7% of the field variance, i.e.,
it /T2t = 94.7%.

Thus, there are 108 unknown model parameters in this case, i.e., the 8 parameters
for the contaminant source and the 100 KL terms for the log-transformed conductivity
field. To infer these parameters, we collect concentration measurements at t =
[4,5,6,7,8,9,10,11,12][T] and hydraulic head measurements at the fifteen wells
denoted by the blue squares in Figure 9. The measurement errors for the concentration
and hydraulic head are all assumed to be independent and Gaussian with zero means
and standard deviations of 0.005[ML~3] and 0.005[L], respectively. The reference
log-transformed conductivity field and true values of the contaminant source

parameters are shown in Figure 14(a) and Table 3, respectively.
[Figure 13]

In this case with 108 unknown model parameters, a large ensemble size N, =
2000 is chosen in the ILUES algorithm with a = 0.1. As shown in Figure 13, the
contaminant source parameters can be accurately identified within seven iterations.
Meanwhile, three realizations, the mean and variance of the posterior log conductivity
field are presented in Figure 14(b-f), which clearly demonstrate the estimation accuracy
of the log-transformed conductivity field. Here the ratio of the average prior RMSE to
the average posterior RMSE of the concentration data is 586.47, and for the head data
the ratio is 27.44. Besides, the RMSE between f(my.,.) and the measurements d,
the means and 95% confidence intervals of the posterior RMSEs obtained by ILUES
and MCMC are listed in Table 4. It is shown that, the RMSE value between f(mgye)
and the measurements d slightly deviates from the confidence intervals of the

posterior RMSEs obtained by both ILUES and MCMC. Thus, the relatively large



number of unknown model parameters ( Ny, = 108) pose a challenge for both

algorithms in accurate uncertainty quantification.
[Figure 14]
[Table 4]

In this case, there isn’t any parameter whose distribution is obviously multimodal,
but we can still use similar settings as those used in inverse problems with multimodal
distributions. At this point, the ILUES algorithm has an advantage over previous cluster
analysis-based methods, which need to make a subtle choice of the number of clusters
in advance. On the other hand, the ILUES algorithm usually needs much fewer model
evaluations than MCMC. In this example with 108 unknown model parameters, even
the state-of-the-art DREAM algorithm would need hundreds of thousands of model
evaluations.

It should be noted here that for a high-dimensional problem (e.g., Ny, > 100), the
ensemble size of a few thousand might not be enough to fully quantify the parametric
uncertainty. When the input-output relationship of the high-dimensional problem is
complex and nonlinear, we had better set a larger ensemble size and more iterations.
Moreover, in complicated high-dimensional problems, two samples that have close
values of | as defined in equation (3) may not be actually similar. In this situation,
the ability of the ILUES algorithm in identifying multiple posterior modes may

compromise.

4. Conclusions and discussions

In this paper, to extend the ensemble smoother (ES) to inverse problems with
multimodal distributions, we propose a simple and efficient algorithm, i.e., the iterative
local updating ensemble smoother (ILUES). For each sample in ES, we define the local
ensemble based on an integrated measure of the distance between the model responses
and the measurements and the distance between the model parameters and the originally
drawn sample. Then we use the scheme of ES to update each local ensemble. In this

way, the multimodal distribution can be well explored. To achieve satisfactory data



matches in nonlinear problems, a simple iterative form of ES that assimilates the
measurements multiple times is adopted.

Five numerical case studies are tested to show the performance of the proposed
method. The first example demonstrates the ability of the ILUES algorithm to tackle
posterior distribution with infinite number of modes. In this simple case study, we
systematically illustrate the basic ideas of the proposed method. The second example is
similar to the first one, but has many more unknown parameters (N, = 100). The other
three case studies are inverse problems in hydrologic modeling, which consider
possible multiple modes in the prior or posterior distributions. All these case studies
successfully show the performance of the proposed method in adequately quantifying
parametric uncertainties of complex systems, no matter whether the multimodal
distribution exists.

In the above examples, we only consider the measurement error. While in many
situations, the model structural error should also be considered. In that case, one has to
explicitly express € as the measurement error plus the model structural error, i.e.,
€total = €measurement T Emodel- AS the distribution of the structural error is usually
unknown, we can estimate the parameters that describe the error distribution together
with the unknown model parameters in the ILUES algorithm. Similar strategies have
been applied in parameter estimation problems with MCMC, e.g., [ Vrugt et al., 2009a].
In another approach, the model structural error can be quantified with a data-driven
approach (e.g., Gaussian process [ Xu and Valocchi, 2015] ) during the model calibration
period. When multiple model proposals are available, we can adopt the framework of
Bayesian model averaging to rigorously consider the model structural uncertainty
[Rojas et al., 2008; Ye et al., 2004], which has also been applied in the framework of
ensemble Kalman filter, e.g., [Xue and Zhang, 2014].

In this paper, the multimodality stems from the system nonlinearity and scarcity
of measurement data. In reservoir simulation, the multimodality originated from
strongly non-Gaussian parameter field (e.g., multi-facies and channelized permeability
fields) is also drawing people’s attention [Jafarpour and Mclaughlin, 2009]. In this

situation, people have to adopt additional techniques, e.g., the level set method [Chang



et al., 2010] and normal-score transform [Zhou et al., 2011] to handle the discretely

distributed parameter fields. These issues will be addressed in our future works.
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Tables

Table 1 Prior ranges and true values of model parameters in the third example

Parameter CmaxlL] bexp -] pl-] Rg[T] Rq [T]
Range [1500] [0.1 2] [0.10.99] [00.1] [0.1 0.99]
True value 417.416 1.464 0.362 0.0254 0.694

Table 2 Prior ranges and true values of model parameters in the fourth example

Parameter xs[L] ys[L] Ss[MT~1] ton[T] tofflT]
Range 3 5] [37] [10 13] 3 5] [911]
True value 3.854 5.999 11.044 4.897 9.075

Table 3 Prior ranges and true values of contaminant source parameters in the fifth example

Parameter Range True value
xs[L] [3 5] 3.520
¥s[L] [4 6] 4.437

Se1[MT™1] [0 8] 5.692

Ss2[MT™1] [0 8] 7.883

Ss3[MT™1] [0 8] 6.306

Sea[MT™1] [0 8] 1.485

Sss[MT™1] [0 8] 6.872

Sse[MT™1] [0 8] 5.552

Table 4 The RMSE between f(my..e) and the measurements d, the means and 95%

confidence intervals of the posterior RMSEs obtained by ILUES and MCMC

ILUES MCMC
Measurements
mean 95% interval mean 95% interval
Concentrati
OTEE_f]lon 0.0045 0.0069 [0.0057 0.0089] 0.0114 [0.0105 0.0121]

Head [L] 0.0033 0.0044 [0.0034 0.0058] 0.0104 [0.0078 0.0135]




Figures

Figure 1. (a) Random samples drawn from the prior distribution and (b-d) updated samples
obtained at the three iterations. The local ensemble (black dots) of the sample denoted by the

red diamond is shown in each subplot.

Figure 2. With different values of the factor «, the obtained results of parameter estimation.

Here N, =400 with three iterations.

Figure 3. With different values of the ensemble size N, the obtained results of parameter

estimation. Here a = 0.1 with three iterations.

Figure 4. With different values of the ensemble size N, and the factor «, the log-transformed
RMSE between the simulated model outputs and the measurement averaged over the ensemble.
Here the dashed lines are for the scenario that we randomly choose the updated sample from
the updated local ensemble and the solid lines are for the scenario that we select the updated

sample with the smallest | value from the updated local ensemble.

Figure 5. With different values of « and b, the log-transformed RMSE between the simulated
model outputs and the measurement averaged over the ensemble. Here N, = 400 with three

iterations and the “random” option.

Figure 6. Trace plot of x;oo obtained by the ILUES algorithm in the second example. Here

N, = 1000 and a = 0.1.

Figure 7. Simulated model outputs of the ILUES algorithm by (a) choosing the updated sample
randomly from the updated local ensemble, and (b) selecting the updated sample with the

smallest J value from the updated local ensemble.

Figure 8. Trace plots of model parameters obtained by the ILUES algorithm in the third example.

Here N, =300 and a = 0.1.

Figure 9. Flow domain for the fourth and fifth examples. The potential area of the contaminant
source is represented by the red dashed rectangle. The measurement locations for the fourth and

fifth examples are denoted by the blue circle and the blue squares, respectively.



Figure 10. Trace plots of model parameters obtained by the ILUES algorithm in the fourth

example. Here N, =400 and a = 0.1.

Figure 11. Trace plots of model parameters obtained by the DREAM algorithm in the fourth

example.

Figure 12. Trace plots of model parameters obtained by ES with multiple data assimilation in

the fourth example.

Figure 13. Trace plots of contaminant source parameters obtained by the ILUES algorithm in

the fifth example. Here N, = 2000 and a = 0.1.

Figure 14. (a) Reference log-transformed conductivity field, (b-d) three posterior realizations
of the log-transformed conductivity field, (¢) mean estimate of the log-transformed conductivity

field, and (f) estimation variance of the log-transformed conductivity field.
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