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Abstract In decision-making for groundwater management and contamination remediation, it is important
to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis,
a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for
CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is
to construct a computationally inexpensive surrogate model instead. However, using a surrogate approxima-
tion can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is
challenging for high-dimensional models, i.e.,, models containing many uncertain input parameters. To address
these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-
dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation
of the original high-dimensional model is sought with Karhunen-Loéve expansion and sliced inverse regression
jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a
surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are
close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by
the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be
100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.

1. Introduction

Accurate predictions of groundwater flow and solute transport are hampered by many sort of uncertainties
originated from the heterogeneity of the subsurface environment, insufficiency of site characterization, and
limitation of conceptual-mathematical models [Anderson et al., 2015; Bear and Cheng, 2010; Bolster et al.,
2009]. Although these uncertainties can be reduced to some extent from available measurements
[Schoniger et al., 2012; Wagner, 1992; Yeh et al., 2007], they are still ubiquitous due to the limitation of bud-
get, time, and techniques.

Under model structural and parametric uncertainties, the probability of the occurrence of a failure event, also
called the failure probability, is a prerequisite for risk assessment, reliability analysis, and decision-making in
many areas, including contaminant transport, civil engineering, oil and gas transmission [Bolster and Tartakov-
sky, 2008; Der Kiureghian and Liu, 1986; Hamed and Bedient, 1997; Tartakovsky, 2013; Yuhua and Datao, 2005].
In groundwater contaminant transport modeling, it is important to quantify the probability that the contami-
nant concentration or the total discharge exceeds an allowed level [Tartakovsky, 2013], which has been used
to determine remediation goals [Batchelor et al., 1998], to guide reliable groundwater remediation strategies
[Barros et al., 2013; Bolster et al., 2009; Fernandez-Garcia et al., 2012; Troldborg et al., 2012; Wang and McTernan,
2002], to support policy-makings [Massmann and Freeze, 1987a, 1987b] and to construct well-head protection
areas [Enzenhoefer et al., 2015; Rodak and Silliman, 2012]. For a detailed review of the assessment and manage-
ment of risks in subsurface hydrology, one can refer to Tartakovsky [2013].

The most straightforward approach to obtain an estimate of the failure probability is the Monte Carlo (MC)
simulation, which simply evaluates the model at a large number of sample points and counts the number of
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failure samples. A rule of thumb for reliable failure probability estimation is to obtain at least 10 samples in
the failure region [Li and Xiu, 2010]. To achieve a given relative accuracy, the number of samples needed by
the MC simulation is proportional to the inverse of the failure probability. For a system with a small failure
probability (e.g., < 10~3), the total number of model evaluations needed in the MC simulation would be very
large. In complex large-scale problems, the involved groundwater flow and solute transport models are CPU-
demanding [Asher et al., 2015], which makes MC simulation for small failure probability analysis very computa-
tionally intensive. To efficiently explore the failure region, some advanced sampling techniques can be
adopted, e.g., importance sampling [Au and Beck, 1999; Kanj et al., 2006] and subset simulation [Au and Beck,
2001; Elsheikh et al., 2014]. If we adopt importance sampling or subset simulation in failure probability analysis,
we have to design either a proposal distribution or intermediate events to make it easier to sample from the
failure region. In this way, much fewer samples are required. Due to this appealing property, importance sam-
pling and similar methods have been widely used in failure probability analysis [Bucklew, 2004].

To alleviate the computational burden encountered in the MC simulation for small failure probability analysis,
another promising approach is to replace the original model with an inexpensive surrogate (also called a
response surface, an emulator or a metamodel in different literatures). Generally, the techniques of building
surrogates can be grouped into three categories, i.e., data-driven, projection, and hierarchical-based methods
[Smith, 2013]. Among the three methods, the data-driven method, which includes interpolation and regres-
sion approaches, is nonintrusive, i.e., the original model can be treated as a black box. Thus, it has gained pop-
ularity in groundwater modeling. Examples of data-driven surrogates used in groundwater modeling include
polynomial chaos expansion (PCE) [Ciriello et al., 2013; Laloy et al., 2013; Liao and Zhang, 2013, 2014, 2016],
adaptive sparse grid interpolation [L. Zeng et al., 2012; X. Zeng et al., 2016; G. Zhang et al., 2013; J. Zhang et al.,
2015], artificial neural networks [Chen et al.,, 2014; Yan and Minsker, 2006], kriging/Gaussian process emulators
[Marrel et al., 2008; Zhang et al., 2016; Zhao et al.,, 2016], and the autoregressive moving average model [Felisa
et al, 2015]. Some reviews about surrogate construction methods in water resources can be found in Asher
et al. [2015] and Razavi et al. [2012]. As demonstrated by many researchers, using surrogate models in failure
probability analysis is much more efficient than using the original model-based analysis [Li and Xiu, 2010; Paf-
frath and Wever, 2007; Pulch, 2010]. When integrated with sampling methods such as importance sampling or
subset simulation, the surrogate-based approaches can be even more efficient and applicable for rare failure
probability analysis [Balesdent et al., 2013; Dubourg and Sudret, 2014; Dubourg et al., 2011; Dubourg et al., 2013;
Li et al., 2011]. However, for complex systems, when the dimension of parameters is high (e.g., 200 for the
case study tested in the present work), it is almost impossible to design a proper proposal distribution (or
intermediate events) for the event with a small failure probability. To guarantee the estimation accuracy in
high-dimensional problems, importance sampling or similar methods are not adopted in this paper.

As the failure region is usually far away from the mean values of input parameters, the surrogate con-
structed over the prior distribution of input parameters usually cannot provide an accurate estimate of the
small failure probability when it is directly used in the MC simulation. To circumvent this problem, two dif-
ferent strategies can be adopted. In the first strategy, the surrogate model is adaptively refined around the
failure boundary (also called the limit state in different literatures) through a design of computer experi-
ments. For example, Wang et al. [2016] implemented the surrogate construction as a Bayesian inference to
identify the failure boundary through an information-theoretic optimal experimental design. In the second
strategy, one first uses a surrogate constructed over the prior distribution to select a certain number of sam-
ples that are close to the failure boundary and then re-evaluates these samples with the original model. By
doing so, the inaccuracy of the direct surrogate-based MC simulation can be alleviated. Moreover, this
approach is much more efficient than the fully original model-based approach [Li and Xiu, 2010, 2014; Li
et al., 2011]. In this paper, the second strategy is adopted.

However, the surrogate construction suffers from the so-called “curse of dimensionality,” i.e., its computa-
tional cost increases dramatically with the input dimension and system nonlinearity. For example, if a surro-
gate is constructed by interpolation based on the full tensor product scheme, the computational cost will
grow exponentially with the input dimension [Klimke and WohIimuth, 2005]. Although using sparse grids can
greatly reduce the number of original model evaluations in the surrogate construction [Klimke and
WohImuth, 2005], for problems with high-dimensional inputs, the computational cost is still unacceptable.
In large-scale groundwater modeling, the number of unknown parameters is usually huge. In this case, the
surrogate-based MC simulation could be even less efficient than the original model-based MC simulation.

ZHANG ET AL.

FAILURE PROBABILITY 1949



@AG U Water Resources Research 10.1002/2016WR019518

To address this issue, a dimension reduction technique should be implemented on the high-dimensional
input variables to allow for the easy construction of a surrogate.

Dimension reduction seeks to discover a low-dimensional representation of high-dimensional data, where
the low-dimensional subspace can still keep most of the original variability [Bures, 2010; Roweis and Saul,
2000]. This process can be linear, as in the principle component analysis (PCA) [Jolliffe, 1986], or nonlinear,
as in the kernel PCA [Scholkopf et al., 1997] and locally linear embedding method [Roweis and Saul, 2000].
Due to the ease of implementation, the linear dimension reduction by the PCA has been widely used. In the
area of groundwater modeling, the Karhunen-Loeve (KL) expansion (another name of the PCA in signal
processing) has been widely used to represent the heterogeneous log hydraulic conductivity field with a
small number of uncorrelated random variables [Dai et al., 2016; Laloy et al., 2013; Li and Zhang, 2007; Li
et al., 2009; Shi et al., 2009; Vermeulen et al., 2004; Yang et al., 2004; Zhang and Lu, 2004; Zhang et al., 2015].
With the KL expansion, the dimension of parameters for the conductivity field can be reduced from model
grid number to the number of truncated KL terms.

For large-scale problems, however, the dimension of input parameters after the KL expansion is usually still
too high for surrogate construction. However, it is worth noting that the KL expansion is solely based on
the statistical distribution of the input parameters such as the hydraulic conductivity field. On the other
hand, the dependent relationship between the quantity of interest (Qol), such as the contaminant concen-
tration, and the input parameters is not considered, thus leaving some potential opportunity for further
dimension reduction untouched. For example, the variation of a Qol in many situations is caused only by
the model parameters varying in a low-dimensional subspace, known as the central subspace [Bura and
Cook, 2001], which allows for a low-dimensional representation of the model. A simple yet efficient tech-
nique to detect the central subspace is the sliced inverse regression (SIR) [Li, 1991]. In a recent work, the SIR
is used to enhance the computational efficiency of uncertainty quantification algorithms for high-
dimensional problems [Li et al., 2016].

Inspired by the previous works, here, we propose an efficient two-stage MC approach for small failure proba-
bility analysis in high-dimensional groundwater contaminant transport modeling. The detailed formulation of
the methods is given in section 2. lllustrated with a synthetic example in section 3, the efficiency and accuracy
of the proposed methods are well demonstrated. Finally, some conclusions are provided in section 4.

2. Methods

Consider a process where the Qol can be obtained numerically with the following model:
q=f(m), )

where m is a N, X1 vector of uncertain model parameters described by some distribution function with
finite variance. In this study, we consider the case that a failure event occurs when the Qol value exceeds a
predefined threshold Tp, and then the failure probability is defined as:

Pe=P(f(m) > Tp). @

2.1. Monte Carlo Simulation

To calculate the failure probability, the most straightforward method is direct MC simulation. By generating
N random samples of the uncertain parameters, my, ..., my, from the distribution of m, a direct MC estima-
tion of the failure probability is given as:

L
Pyczﬁzé{f(mbﬂa}(mi% @)
i=1
where
1, if meQ,
do(m)= ) 4)
0, if mgQ,
is the indicator function.
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To measure the estimation accuracy of PY'C, we can use the mean square error (MSE) of the direct MC esti-
mator approximated with the sample variance:

_ Var(da(m)) _ P (5Q(mi)_P¢4C)2. )

MSE
N N?

As the failure probability of interest is usually small, it is more reasonable to use the relative error to mea-
sure the estimation accuracy, which is defined as:

VMSE

Err= .
pic

(6)

For small failure probability, i.e., Ps < 1, to obtain a desired estimation accuracy, a very large number of MC
samples are needed, which could pose a very high computational cost if a CPU-demanding groundwater
model is used.

2.2, Polynomial Chaos Expansion

To efficiently estimate the failure probability, a CPU-efficient surrogate can be used to replace the original
CPU-demanding model in the MC simulation. In this study, the surrogate ?(m) is constructed with the PCE
[Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002]:

F(m) ~ F(m)= " G (m), )
=0

where C;(i=0,...,M—1) are deterministic coefficients to be determined, y;(m) are orthogonal polynomials
over the distribution of m, and M is the total number of terms. For the Dth degree PCE, we have
M= (N +D)!/(Ny!D!). Note that M grows rapidly as the dimension Ny, increases.

To approximate the coefficients, one can use the stochastic collocation method:
€ o ke F(m) (i wy
i~ kl
(7 (m))

where my(k=1,...,K) are K collocation points in the parameter space and wy are the corresponding
weights. For more details about the implementation of the PCE, one can refer to Xiu [2010].

8)

2.3. Dimension Reduction

Since the number of terms in a PCE grows fast with N, (the dimension of input parameters), the computa-
tional cost of constructing a surrogate with the PCE would be unaffordable when N, is large. To resolve this
problem, we combine the KL expansion and the SIR to substantially reduce the input dimension.

2.3.1. Karhunen-Loéve Expansion

In this study, a two-dimensional (2-D) subsurface contaminant transport problem is considered. Due to the
nature of the subsurface environment, the conductivity field, which is one key parameter in water flow and
solute transport simulations, is usually unknown and modeled as a random field [Zhang, 2002]. Since it is
necessary to employ a fine discretization to resolve the high spatial variability of the conductivity field, this
makes the parameters very high-dimensional. Considering the spatial correlation, the random field of log-
transformed conductivity Y(x) can be represented with the truncated KL expansion [Marzouk and Najm,
2009; Zhang and Lu, 2004]:

Nie

Y(x) =~ ?(x)+z VTsi(X)m, (9)

where Y (x) is the mean component, 7; and s;(x) are the eigenvalues and eigenfunctions of the covariance
function, respectively. In this work, the log-transformed conductivity field is assumed to be multi-Gaussian,
then by definition m=[m;,...,my,] fit independent standard Gaussian distribution, i.e, m; ~ N(0,1)
(i=1,...,Nk ). Thus the dimension of the conductivity parameters is reduced from the model grid number
to the preserved number of KL terms Ny;. For a detailed formulation and discussion of the KL expansion,
one can refer to Marzouk and Najm [2009] and Zhang and Lu [2004].
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2.3.2. Sliced Inverse Regression

After the dimension reduction via the KL expansion, the input dimension may be still too high for surrogate
construction. Furthermore, the dimension reduction through the KL expansion does not make use of the
dependence between the Qol and uncertain parameters. By considering this dependence, the input dimen-
sion can be further reduced.

In many problems, the change in the Qol is mainly caused by the variation of the uncertain parameters
within a low-dimensional subspace, known as the central subspace. This property can be expressed as:

f(m) ~ f(BB'm), (10)

where B=(f;,...,Bx) is @ Ny XK transformation matrix whose columns consist of a set of orthonormal
basis vectors of the central subspace and thus BB'm represents the projection of m onto the subspace.
Once the central subspace is identified, the original model can be approximated with a low-dimensional
model g = g(i7)=f(By), where y=B"m is the low-dimensional parameter vector.

The SIR is an approach that seeks the central subspace by performing a weighted principle component
analysis on the covariance matrix for the estimated inverse regression curve, E(m|q) [Li, 1991]. With data
(mj, q;) (i=1,...,n), the SIR is implemented as follows:

Step 1: Standardize the input parameters m to have zero means and identity covariance by the following
transformation:

m/=C "2(m;—m) (i=1,...,n), (an

where € and m are the sample covariance matrix and sample mean of m, respectively. In this work, we do
not need to implement this step as m are standard Gaussian random variables for the KL expansion.

Step 2: Divide the range of g into H nonoverlapping slices, J, ..., Jy, and in each slice the number of points,
np(h=1,...,H),is roughly equal to each other.

Step 3: To produce a crude estimate of the inverse regression curve £(m’|q), calculate the sample mean of
m’ within each slice:

rﬁi,=l2m'j(h=17...,H). (12)

Step 4: Conduct a weighted principle component analysis for the data m}(h=1,...,H) by finding the
eigenvalues and eigenvectors of V=3"1_, oo m,m’;.
Step 5: Let the K eigenvectors with the largest eigenvalues be ax(k=1,...,K), then each element in the
transformation matrix B is f, =6,C~"/2(k=1,...,K).

It should be noted here that we could also implement the SIR on the full random field of conductivity (the
dimension of which is model grid number). As the number of data points n needed by the SIR should be at
least larger than the dimension of original parameters [Li and Yin, 2008], this approach is usually not compu-
tationally efficient. Due to spatial correlation, the intrinsic dimensionality of the random field is much
smaller than the model grid number. For the sake of computational efficiency, we first use the KL expansion
to reduce the dimension from the grid number to the number of truncated KL terms, and then implement
the SIR to further reduce the dimension.

An R package for the SIR is available in Weisberg [2002], and a complete derivation of the SIR can be found
in Li [1991]. The convergence of SIR-based uncertainty quantification methods for high-dimensional prob-
lems has been analyzed in Li et al. [2016].

2.4. Two-Stage Monte Carlo Simulation

Then we can build a PCE surrogate over the low-dimensional subspace, g ~ §(i7)=g (B"m), which can make
the MC simulation for small failure probability analysis very efficient. However, as the failure boundary is
usually far away from the mean values of model input parameters, the surrogate may not be accurate
around the failure boundary. Thus, the direct surrogate-based MC simulation may introduce a significant
error in small failure probability analysis. To correct this error, the samples that are around the failure
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boundary (identified by the surrogate evaluations) are re-evaluated with the original model. With this two-
stage MC simulation, the failure probability can be numerically computed as:

N
Zé{gafm, ) Tpty) (M) Z‘S{{\gw’m )= Tel<shnif(m)> T}y (M) (13)

where y is a threshold that represents the surrogate error. The first sum in equation (13) counts all the sam-
ples that lead to a failure event according to the surrogate model, whereas the second sum counts samples
where a failure event cannot be confidently identified by the surrogate but need to be confirmed by evalu-
ating the original model.

Intuitively, a larger y will lead to more original model evaluations but a smaller numerical error, and a
smaller y will lead to fewer original model evaluations but a larger numerical error. If y=0, the two-stage MC
simulation actually reduces to the direct surrogate-based MC simulation. It has been rigorously proven by Li
and Xiu [2010] that, if y is well chosen, the result of the two-stage MC simulation will converge to the result
of original model-based MC simulation. In this study, 7 is chosen as the largest absolute error between the
original model-based Qols and the surrogate-based Qols around the failure boundary, which is updated in
the implementation of the two-stage MC simulation in the following way:

Step 1: For the samples used in the dimension reduction with the SIR, calculate the corresponding
surrogate-based Qols. Then the largest absolute error of the surrogate at these samples is chosen as the ini-
tial value of y.

Step 2: Implement the surrogate-based MC simulation with a large number of samples.

Step 3: With the current value of 7, select the samples that fit |g(B"m)—Tp| < 7. Then calculate the Qols of
these samples with the original model.

Step 4: Let ryax be the largest absolute error of the surrogate at these selected samples. If rax < 7, exist; if
not, let y=rmax-

Step 5: Repeat Steps 3 and 4 until r. < 7. Calculate the failure probability according to equation (13).

The flowchart for the two-stage MC method is shown in Figure 1. Here the original parameters are the trun-
cated KL terms, from which we can obtain the log-transformed conductivity field according to equation (9).

Draw N samples from the original parameter space:
m,i=1,.,N

!

Obtain the low-dimensional parameters:
n,=B"m;,i=1,..,N

ﬁ 1

[ Calculate the surrogate-based Qol : J

qg=gm),i=1.,N
Re-evaluate the samples around the failure boundary

|g(ﬂj) —Tpl<vy,j=1..M
with the original model:

c
g‘ gi=f(my),j=1,.,M
&
<
No
End?
Yes

Obtain an estimate of P,

according to equation (13)

Figure 1. Flowchart for the two-stage MC method.
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o No flow 3. Case Study

3.1. Case Description

In this study, the proposed method is
tested on a 2-D groundwater flow and
® solute transport model.

4
__/“’? In this case, the flow domain is 20[L] in x

direction and 10[L] in y direction (Figure
05 5 ™ 5 20 2). The left and right boundaries have

No flow constant pressure heads of 12[L] and
11[L], respectively, whereas the upper
and lower boundaries are no-flow bound-
aries. The log-transformed conductivity
Y=log (K) at two arbitrary locations (x,y) and (x',y’) in the domain are assumed to have a separable expo-

nential correlation:

€| Contaminant source

1L

h = 12[L]

h

Figure 2. Flow domain for the case study.

! !
Cr(x.y;x.y')=ay exp (— ] M) (14)
x Ay

where ¢=1 is the variance, /x=10[L] and /,=5][L] are the correlation length along x and y directions,
respectively. Due to spatial correlation of hydraulic conductivity, we can parameterize the heterogeneous
conductivity field using the truncated KL expansion as shown in equation (9). In this case, the mean compo-
nent is set as Y (x)=2, and 200 KL terms are kept. The 200 KL terms preserve about 98.8% of the total field
variance, i.e, 37°0 1;/57°, 7 ~ 0.988. The sufficient number of truncated KL terms that should be pre-
served increases with a decreasing ratio of the correlation length to the respective domain length.

In this study, MODFLOW [Harbaugh et al., 2000] is used to numerically solve the governing equation for
steady state saturated groundwater flow:
0 oh
— [ K, =— ) =0, 15
OX; ( 8X,'> ) (15)

and the flow velocity v;[LT '] can be obtained by solving:

K oh

Dox’ (16)

Vi=
where x;[L] is the distance along the respective Cartesian coordinate axis, K;[LT '] is the principal compo-
nent of the conductivity tensor, with the assumption that it is aligned with the respective coordinate direc-
tion, h[L] is the hydraulic head, and 0 is the porosity of the subsurface medium.

Under steady state water flow conditions, some amount of contaminant is released from a known source
(denoted by the red dot in Figure 2) during the time interval between 0 [T] and 6 [T]. In this case, the con-
taminant source is specified as a piecewise-in-time constant concentration cell, whose values are specified
in Figure 3. Then MT3DMS [Zheng and Wang, 1999] is adopted to numerically solve the advection dispersion
equation for the solute transport:

o(0c) 0 o\ _ o
" 0 (13g) o 070 7

where C[ML™3] is the dissolved concentration of contaminant, t[T] is the time, D;[L2T "] is the hydrodynam-
ic dispersion tensor, g;[T '] is the volumetric flow rate per unit volume of aquifer, and Cs[ML ™3] is the con-
centration of the contaminant source. Here the hydrodynamic dispersion tensor is defined as:

D= (ava+aTv§>/|v|,

Dyy=(ava+o<va>/|v|, (18)

Dy =Dyx= (o, —ar)Vyevy /],
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9 . : . . . where v, and v, are the components of

pore water velocity v, |v| is its magnitude,
8 E— 1 o, and or are the longitudinal and trans-
. verse dispersivities, respectively.
In this case, it is assumed that the uncer-
<’.=: 6 1 tainty only stems from the conductivity
= field. Other parameters, such as porosity,
©” 5 1 longitudinal, and transverse dispersivities
are assumed to be known as 0=0.25,
4r 1 =03[2T"], and or=0.03[L2T" "], re-
al | spectively. The Qol for this case is the inte-

gral of the mass flux of the contaminant
2_, ‘ ) ) ) over the injection period and across the
0 1 2 3 4 5 6

0T] entire right boundary.

Here we have to admit that as we only con-
sider the uncertainty originated from the
heterogeneous conductivity field, this case
study is a simplification of reality. As the
total discharge of a certain contaminant to the downstream is an important index in pollution control, we
choose it as the Qol. We think this case study can still describe some real scenarios, i.e., what is the total dis-
charge of a known contaminant source to the downstream given an unknown and heterogeneous conduc-
tivity field? Meanwhile, the random dimensionality is as high as 200 (truncated number of the KL
expansion), which is extremely challenging for existing surrogate-based modeling methods.

Figure 3. The concentration values of the contaminant source at different
times.

3.2. Surrogate Construction

Note that building a surrogate model, say a PCE, for the 200-dimensional model (after the KL expansion) is
still too expensive. To further reduce the input dimension through considering the dependence between
the 200 KL terms m and the Qol, the SIR method is implemented. In this case study, 1000 sample points are
used in the SIR, which requires 1000 original model evaluations (i.e., N3%=1,000). As described in section
2.3.2, a one-dimensional subspace is found as 7=B"m, which enables the easy construction of a PCE surro-
gate, g ~ g(n)=g(B'm).

The low-dimensional parameter 1 obtained by the SIR is a linear combination of the original parameters m,
i.e, 200 terms for the KL expansion. The relationship between 7 and the Qol is usually monotonic (Figure
5a). The scalar parameter 7 itself has no physical meaning, but we can project it back to the original parame-
ter space, i.e., m, =By, which, however, will inevitably lose a lot of information. To illustrate how this single
variable n works, we draw two random samples of the log conductivity field (generated from the 200 KL
terms m) and compare them with those obtained from the corresponding low-dimensional subspace found
by the SIR in Figure 4. It is obvious that the n-based fields have much simpler patterns compared to the m-
based fields, which indicates an information loss during the dimension reduction with the SIR. As the con-
taminant source has a constant concentration (although its value varies at different time segments), the Qol
is mainly determined by the total volumetric water flux through the source, Q;. As shown in Figures 4c-4d,
the log conductivity field obtained from the low-dimensional parameter 1 can locate the source location,
which can produce a similar Q; as the log conductivity field obtained from the high-dimensional parameters
m. As discussed in de Barros and Nowak [2010], local hydraulic conditions near the contaminant source
have great influence on far-field predictions. In this study, the dimension reduction technique used actually
preserves the local hydraulic conditions near the contaminant source, which is most relevant with respect
to the Qol, and discard other information that is not relevant. By plotting the values of 1 against the corre-
sponding Qols for these 1000 samples (Figure 5a), we can further conclude that the variation in the Qol is
largely explained by the single variable #. It is understandable that 7 is in close relationship with the Qol
and the result of the SIR will change if a different Qol is selected.

With only one input variable n and one output variable Qol, the surrogate is easily and accurately con-
structed with 6th degree PCE on only seven collocation points, which requires seven original model evalua-
tions (i.e., NoCE=7). The Qol values obtained from this surrogate at the 1000 samples used in the SIR are also
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y[L

y[L]

y[L

x[L]

27
2.6

25

y[L]

4 2.4
2 23

22

10 15 20 0 5 10 15 20
x[L] x[L]

Figure 4. Two random realizations of the log conductivity field (a and b) before and (c and d) after the dimension reduction by the SIR. The contaminant source is represented with red

dot in each subplot.

shown in Figure 5a (red line), and the residuals between the original model and surrogate-based Qols are
shown in Figure 5b. To further illustrate the performance of the SIR-based surrogate, we compare the Qol
values obtained from the original model and the surrogate at 500 random parameter realizations. Figure 6a
summarizes the results of this comparison, which shows a strong correlation between the original model
and surrogate-based Qols. If the dimension reduction with the SIR is not implemented, and only one KL
term is kept, the resulting Qol predictions will be very inaccurate, even if the original model evaluations are
used (Figure 6b). From Figures 5 and 64, it is also clear that the surrogate is less accurate where the Qol is
larger. Since this is the crucial region for failure probability analysis, the surrogate error cannot be
neglected.

3.3. Failure Probability Analysis
To obtain an accurate estimate of a small failure probability (i.e., with a large value of threshold Tp), the
two-stage MC simulation as shown in Figure 1 is implemented instead of the direct surrogate-based MC

100 25
a) *  Original model (b) , *  Residual
Surrogate 20 Zero line |]

15 .

—_
o
)

Qol [M]
Residual [M]
o (6]

|
a

-10

-15

Figure 5. (a) The relationship between the single variable ; and the Qol obtained from the original model (blue dots) and the surrogate
(red line). (b) The residuals between the original model-based Qols and surrogate-based Qols. The 1000 samples are randomly drawn from
the prior distribution and used in the dimension reduction by the SIR.
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Figure 6. Pairwise comparison of the Qols (a) between the original model (200 KL terms) and the surrogate, (b) between the original
model (200 KL terms) and the original model (1 KL term). The 500 samples are randomly drawn from the prior distribution.

simulation. To provide benchmark results, the original model-based MC simulations are implemented
with 1,000,000 samples. To rule out the uncertainty caused by the sampling process, all the two-stage
MC simulations implemented in this study use the same batch of 1,000,000 parameter samples as in
the original model-based MC simulations. By doing so, the two-stage MC simulations should obtain
exactly the same failure probability estimations as the original model-based approach if y is properly
chosen.

To make a reliable estimate of failure probability, we need to obtain enough samples in the failure region.
To verify that 1,000,000 samples for direct MC simulation are enough, we plot the decay of the relative error
defined in equation (6) with respect to the total number of MC samples (here T,=60[M]). As shown in Figure
7, a reasonable decay is observed. When the total number of MC samples is 1,000,000, the relative error is
about 4.24%, which indicates a reliable failure probability estimate.

To implement the two-stage MC simulation with T,=60[M], the 1,000,000 samples are first evaluated
with the surrogate at a negligible computational cost. Then according to the largest absolute error of
the surrogate at the 1000 samples used in the SIR (Figure 5b), we choose the initial value of y as 20.8[M],
and select the samples within the range of [Tp—7, Tp+7]. Then these samples (3425 in total) are re-
evaluated with the original model. According to the largest absolute error of the surrogate at these 3425
samples, the value of y is updated, and some extra samples are re-evaluated with the original model.
This process is repeated until the stop criterion described in section 2.4 is satisfied. At last, y=27.1[M] is
obtained, which is larger than or equal to all the absolute errors of the surrogate at the 6926 re-

evaluated samples in the second stage,

08 as shown in Figure 8. The failure proba-
0.7F ] bility for Tp=60[M] is estimated as P;=
06! | 5.56x10~* with the two-stage MC simu-

N lation, which is equal to the benchmark
% 0'5: i result of 5.56X107%. Here the two-stage
2 048 1 method requires the model evaluations
§0_3_'. _ at only a small fraction of the points
* sampled, but achieves the same estima-

o2y . i tion accuracy as if model evaluations
01r T ———. 1 were conducted at all points. Thus, the

0 . . _ __TTmonmeees relative error in the failure probability

0 2 Total number of MC gamples iy 10150 estimation of our approach is the same

Figure 7. The relationship between the total number of MC samples and
relative error of failure probability estimate. Here Tp=60[M].

as the MC estimation based on all sam-
ple points, which is well understood and
easily computable.

ZHANG ET AL.

FAILURE PROBABILITY

1957



@AG U Water Resources Research 10.1002/2016WR019518

In this case study, other values of thresh-
old Tp for failure probability analysis are
also tested. The values of y, the total num-

271

20h

— 10 bers of original model evaluations
= (NR'! = NER+NECE+NZS, where N is the
% ° Nt number of samples that are re-evaluated
g Neptageidl  in the second stage with the original

model) in the two-stage MC simula-

tions, the failure probability estimations

from the two-stage MC simulations (P;)
‘ . . MC ;

0 2000 2000 5600 and the benchmark results (P¢') are listed

Number of original model evaluations in Table 1. It shows that the two-stage MC

simulations can obtain exactly the same
Figure 8. The residuals of Qols between the original model and the surrogate fail babili . . h
at the samples around the failure boundary with T, =60[M]. The red lines ailure  probability estimations as the
represent the final value of y=27.1[M]. benchmark results with only about one

percent of computational cost needed by
the latter one. Here N = 1,000,000 can guarantee small relative errors for all the different values of threshold
Tp listed in Table 1. If we want to obtain a more accurate failure probability estimation, more samples (i.e., a
larger N) in the MC simulation should be evaluated.

In the previous simulations, 1000 samples are used in the dimension reduction by the SIR. If more samples
are used in the SIR, the low-dimensional surrogate should be more accurate. With different numbers of sam-
ples for the dimension reduction by the SIR (i.e., with different N3F), we test the accuracy of the resulting
6th degree PCE surrogates (NoE=7) by calculating the RMSE values between the original model and
surrogate-based Qols at 500 random parameter realizations. As shown in Table 2, a larger N&® generally
results in a smaller RMSE value. With these surrogates, we then implement the two-stage MC simulations
for failure probability analysis with To=60[M], respectively. The values of y, the numbers of original model
evaluations in the second stage simulations (N&) and the total numbers of original model evaluations in the
two-stage MC simulations (ND"=N2R+NECE+N5) are also listed in Table 2. Here all the failure probability
estimations are equal to the benchmark result of 5.56X 10~ *. Considering the total number of original mod-
el evaluations, NCT,"“”, it is not wise to construct a very accurate surrogate. We can also conclude that the
two-stage MC simulation for small failure probability analysis does not require a very accurate surrogate.

In this study, both the benchmark simulations and the two-stage simulations adopt the direct MC method.
When the failure probability is small, the benchmark results require a very huge number of original model
evaluations, which is unacceptable in practice and only used to show the accuracy of the two-stage meth-
od. While the computational cost needed by the two-stage MC method is not high, as shown above. How-
ever, when the failure probability is relatively large, there will be a considerably large number of samples
land around the failure boundary, in which case the two-stage MC method may not be very efficient (but it
is still more efficient than the benchmark simulations). In this situation, the direct MC method is usually
acceptable, as it does not require a large number of samples. On the other hand, when the event is very
rare (e.g., Pr < 1077), there will also be a huge number of samples that need to be re-evaluated with the
original model in the second stage, as the error of surrogate evaluation around the failure boundary is rath-
er large. Although to our best knowledge, a failure probability smaller than 107 is not commonly con-
cerned in groundwater contaminant transport modeling, we have to admit that in this situation the two-
stage method is not very efficient for high-

Table 1. Given Different Threshold Settings (Tp [M]), the Obtained dimensional problems. If the input dimension

Values of y[M], the Total Numbers of Original Model Evaluations in is low, one can integrate importance sampling
the Two-Stage MC Simulations (N;??'), the Failure Probability into the two-stage MC method to improve its

Estimations From the Two-Stage MC Simulations (P;), and the . s e . . ~
Original Modek-Based Simulations (P¥€) efﬁC|enc¥. A.S|mllar practice has been imple
mented in Li et al. [2011], where the authors

Tp [M] 60 70 80 90 )

o 71 370 479 479 employed cross-entropy to determine the pro-

NIow 7933 8694 8703 3624 posal distribution in importance sampling, and

P;x10* 5.56 2.74 1.24 0.670 constructed a surrogate-based method for rare

A 236 274 124 0670 failure probability computation. Because both
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Table 2. Given the Threshold as Tp=60[M], With Different Numbers of
Samples for the Dimension Reduction by the SIR (N3), the RMSE Values
of the Resulting Surrogates, the Values of y[M], the Numbers of Original
Model Evaluations in the Second-Stage MC Simulations (N¢y), and the
Total Numbers of Original Model Evaluations in the Two-Stage MC

Simulations (N°@')?

surrogate construction and the implementa-
tion of importance sampling are extremely
difficult in high-dimensional problems, here,
we do not extend the two-stage MC method
to importance sampling. In fact, the first

NS 500 1000 2000 5000 stage of the two-stage method is similar to
RMSE M| 2314 1631 1524 1383 the procedure of constructing a proposal
7[M] 32.8 27.1 27.2 27.0 distribution in importance sampling. In this
SS . .
Ny Vecve P GIE Sy stage, we aim to generate sample points
Nt 14,080 7933 10,112 13,204

that are close to the boundary of the failure

@Here all the failure probability estimations are equal to the bench-

T region according to surrogate simulations.
mark result of 5.56X10™%.

Then we only re-evaluate these samples

with the original model in the second stage
to provide an accurate estimate of the failure probability. In this way, we can save a lot of computational
cost.

In this study, the two-stage MC simulation is used for efficient and accurate small failure probability analysis.
There is another approach that is widely used, i.e., refining the surrogate around the failure boundary
through a design of computer experiments, which has also been tested in this study. However, implement-
ing the dimension reduction by the SIR around the failure boundary is not effective. For example, if we set
the threshold as Tp=50[M] and implement the SIR with 600 samples whose Qol values are within the range
of [40,60][M] (actually these samples are selected from a large number of samples whose Qol values are
evaluated with the original model), the resulting single variable 1 is not highly predictable (Figure 9), which
cannot guarantee an accurate surrogate refinement around the failure boundary. If more variables (e.g., 10)
are left after the dimension reduction by the SIR, we still cannot build an accurate enough surrogate in the
local region near the failure boundary (results not shown here), not to mention the considerable number of
original model evaluations for the 10-dimensional surrogate construction. We think it is because in the
region with higher Qol values, the relationship between the input parameters and the Qol is more nonlinear,
which makes the dimension reduction by the SIR not so effective. Here we should point out that although
the SIR is a powerful dimension reduction method, it does not always perform well in strongly nonlinear
problems as it is based on the first moment. The SIR performs well only when there exist prominent linear
subspaces. For strongly nonlinear problems, one can adopt kernel tricks in the SIR [Yeh et al., 2009]. However,
how to properly choose the kernel function for different problems is still an active research topic.

In this study, the two-stage MC approach is used in the small failure probability analysis, a similar approach
can also be adopted in MCMC simulations for efficient parameter estimation, i.e., one first uses the surro-
gate model to filter the unacceptable pro-

60 ; — S T3 posed samples to avoid unnecessary
58l N . e 4 computational cost and then re-evaluates
Lt Tt 8. the accepted samples with the original

561 . Y . model according to the Metropolis-
541 . ‘“’ ) -.-“ s Hastings algorithm [Efendiev et al., 2005;
5ol . gl Laloy et al, 2013; Ma et al, 2008]. More-
s ke e over, it is commonly recognized that
g sor . SR .:"“,{..:' o :' ] MCMC simulations struggle in high-
48} .. Tt '..'.;.;: "-...- .: - . dimensional parameter estimation prob-
a6t . .-., '-.’:-,-?.:-';:.':'.:. .‘: . i lems. Informed by the Qol (i.e, the log-

L Rt e, : transformed likelihood function), we can

Al e Lt R RN 's PR 1 run MCMC on only a few active variables
2 .7, '::"'0‘5: :‘l:-" s . identified by the SIR, which may greatly
ol % R I IR . accelerate MCMC simulations for high-
-1 -0.5 1? 0.5 dimensional Bayesian inverse problems. A

Figure 9. The result of dimension reduction by the SIR within the region

where Qole (40, 60][M].

detailed study of the SIR-based two-stage
MCMC will be addressed in our future
work.
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4, Conclusions

In groundwater contaminant transport modeling, direct MC simulation for small failure probability analysis
usually needs a large number of model evaluations. Under this condition, it is desirable to replace the origi-
nal model with a surrogate in the MC simulation. However, constructing an accurate surrogate for a model
with high-dimensional inputs is challenging. Moreover, approximation errors of the surrogate are inevitable.
In this paper, for accurate and efficient small failure probability analysis, a two-stage MC simulation is pro-
posed. In the first stage, we combine the KL expansion and the SIR to substantially reduce the input dimen-
sion and construct a PCE-based surrogate over the low-dimensional subspace of the input parameters.
Then the surrogate-based MC simulation is efficiently implemented with a large number of samples. In the
second stage, the samples around the failure boundary are re-evaluated with the original model. In this
way, the bias introduced by the direct surrogate-based MC simulation can be corrected. lllustrated with a
high-dimensional groundwater solute transport problem, without sacrificing the estimation accuracy, the
proposed method achieves about 100 times of speed-up compared with the traditional MC approach.
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