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ABSTRACT

In astrophysics, we often aim to estimate one or more parameters for each member

object in a population and study the distribution of the fitted parameters across the

population. In this paper, we develop novel methods that allow us to take advan-

tage of existing software designed for such case-by-case analyses to simultaneously

fit parameters of both the individual objects and the parameters that quantify their

distribution across the population. Our methods are based on Bayesian hierarchical

modelling which is known to produce parameter estimators for the individual objects

that are on average closer to their true values than estimators based on case-by-case

analyses. We verify this in the context of estimating ages of Galactic halo white dwarfs

(WDs) via a series of simulation studies. Finally, we deploy our new techniques on op-

tical and near-infrared photometry of ten candidate halo WDs to obtain estimates of

their ages along with an estimate of the mean age of Galactic halo WDs of 12.11+0.85
−0.86

Gyr. Although this sample is small, our technique lays the ground work for large-scale

studies using data from the Gaia mission.

Key words: methods: statistical – white dwarfs – Galaxy: halo
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1 INTRODUCTION

1.1 White Dwarfs and The Galactic Halo Age

In the astrophysical hierarchical structure formation model,

the present Galactic stellar halo is the remnant of mergers of

multiple smaller galaxies (e.g. Freeman & Bland-Hawthorn

© 2017 The Authors
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2002; Tumlinson et al. 2010; Scannapieco et al. 2011), most

of which presumably formed some stars prior to merging,

and some of which may have experienced, triggered, or en-

hanced star formation during the merging process. The age

distribution of Galactic halo stars encodes this process. Any

perceptible age spread for the halo thus provides information

on this complex star formation history.

At present, we understand the Galactic stellar halo

largely through the properties of its globular clusters. These

star clusters are typically grouped into a few categories: i)

those with thick disk kinematics and abundances, ii) those

with classical halo kinematics and abundances, iii) the most

distant population that is a few Gyr younger than the clas-

sical halo population, and iv) a few globular clusters such

as M54 that are ascribed to known, merging systems, in

this case the Sagittarius dwarf galaxy (see Forbes & Bridges

2010; Pawlowski et al. 2012; Leaman et al. 2013). Globular

clusters in category two appear consistent with the simple

collapse picture of Eggen et al. (1962), yet those of cate-

gories three and four argue for a more complex precursor

plus merging picture. The newly appreciated complexity of

multiple populations in many or perhaps all globular clus-

ters (Gratton et al. 2004) adds richness to this story, and

may eventually help us better understand the earliest star

formation environments.

Despite the tremendous amount we have learned from

globular clusters, they are unlikely to elucidate the full star

formation history of the Galactic halo because today’s globu-

lar clusters represent a ∼ 1% minority of halo stars. Without

studying the age distribution of halo field stars, we do not

know whether globular cluster ages are representative of the

entire halo population. We do know that globular clusters

span a narrower range in abundances than field halo stars

(see Roederer et al. 2010; Yamada et al. 2013), so there is

every reason to be suspicious that there is more to the story

than globular clusters can themselves provide.

In order to determine the age distribution of the Galac-

tic halo, we need to supplement the globular cluster-based

story with ages for individual halo stars. This is not prac-

tical for the majority of main sequence or red giant stars

because of well-known degeneracies in their observable prop-

erties as a function of age. Gyrochronology (see Barnes 2010;

Soderblom 2010) does hold some hope for determining the

ages of individual stars, but this is unlikely to provide pre-

cise ages for very old stars even after the technique sees

considerably more development. Our best current hope for

deriving the Galactic halo distribution is to determine the

ages of halo field WDs.

WDs have the advantages that they are the evolution-

ary end-state for the vast majority of stars and their physics

is relatively well understood (Fontaine et al. 2001). A WD’s

surface temperature, along with its mass and atmospheric

type, is intimately coupled to its cooling age, i.e., how long

it has been a WD. The mass of a WD, along with an assumed

initial-final mass relation (IFMR), provides the initial main

sequence mass of the star, which along with theoretical mod-

els, provides the lifetime of the precursor star. Pulling all of

this information together provides the total age for the WD.

The weakest link in this chain is typically the IFMR. Yet for-

tunately the uncertainty in the IFMR often has little effect

on the relative ages of WDs, and thus the precision of any de-

rived age distribution. Additionally, among the higher mass

WDs, the uncertainty in the precursor ages can be reduced

to a level where the IFMR uncertainties do not dominate

uncertainties in the absolute WD ages.

While WDs provide all of these advantages for under-

standing stellar ages, the oldest are very faint, and thus few

are known, with fewer still known with the kinematics of

the Galactic halo. The paucity of data for these important

objects will shortly become a bounty when Gaia both finds

currently unknown WDs with halo kinematics and provides

highly accurate and precise trigonometric parallaxes, which

constrain WD surface areas and thus masses. The number of

cool, halo WDs is uncertain by a factor of perhaps five, and

depending on the Galaxy model employed, Carrasco et al.

(2014) calculate that Gaia will derive parallaxes for ∼ 60 or

∼ 350 single halo WDs with Teff 6 5000. Gaia will measure

parallaxes for more than 200,000 WDs with thick disk and

disk kinematics.

We have developed a Bayesian statistical technique to

derive the ages of individual WDs (van Dyk et al. 2009;

O’Malley et al. 2013) and intend to apply this to each WD
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for which Gaia obtains excellent parallaxes. Yet the number

of halo WDs for which we can derive high-quality ages may

still be modest, particularly because we also require accurate

optical and near-IR photometry. Because of the importance

of the age distribution among halo stars, we have developed

a hierarchical modelling technique to pool halo WDs and

derive the posterior distributions of their ages.

1.2 Statistical Analysis of a Population of Objects

In statistics, hierarchical models are viewed as the most ef-

ficient and principled technique to estimate the parameters

of each object in a population (e.g., Gelman 2006). In as-

trophysics, we often aim to estimate a set of parameters

for each of a number of objects in a population, which mo-

tivates the application of hierarchical models. Noticeably,

these models have gained popularity in astronomy mainly

for two reasons. Firstly, they provide an approach to com-

bining multiple sources of information. For instance, Mandel

et al. (2009) employed Bayesian hierarchical models to anal-

yse the properties of Type Ia supernova light curves by using

data from Peters Automated InfraRed Imaging TELescope

and the literature. Secondly, they generally produce esti-

mates with less uncertainty. By combining information from

supernovae Ia lightcurves, March et al. (2014) and Shariff

et al. (2016) illustrate how a hierarchical model can improve

the estimates of cosmological parameters. Similarly, Licquia

& Newman (2015) obtained improved estimates of several

global properties of the Milky Way by using a hierarchical

model to combine previous measurements from the litera-

ture.

However, fully modelling a population of objects within

a hierarchical model requires substantial computational in-

vestment and often specialised computer code, especially for

complicated problems. In this study, we develop novel meth-

ods to conveniently obtain the improved estimates available

under a hierarchical model. While taking advantage of the

existing code for case-by-case analyses, our methods simul-

taneously estimate parameters of the individual objects and

parameters that describe their population distribution. Our

methods are based on Bayesian hierarchical modelling which

are known to produce estimators of parameters of the indi-

vidual objects that are on average closer to their true values

than estimators based on case-by-case analyses.

There are many possible applications of hierarchical

models in astrophysics. In this article we focus on the analy-

sis of a sample of candidate halo WDs. We perform a simu-

lation study to illustrate the advantage of our approach over

the commonly used case-by-case analysis in this setting. We

find that approximately two thirds of the estimatedWD ages

are closer to their true age under the hierarchical model. Us-

ing optical and near-infrared photometry of ten candidates

halo WDs, we simultaneously estimate their individual ages

and the mean age of these halo WDs; the latter which we es-

timate as 12.11+0.85
−0.86

Gyr. Another application to the distance

modulus of the Large Magellanic Cloud (LMC) is included

in Appendix B as a pedagogical illustration of our methods

in a simpler setting.

One of the primary benefits of our approach is that it

takes advantages of the existing code which fits one object

at a time. We only need to write wrapper code that calls the

existing programs, see Si et al. (2017) for more details.

This saves substantial human capital that might oth-

erwise be devoted to developing and coding a complex new

algorithm. The power of this approach can be conceived of

as coming from i) an informative assumption, which is that

all the objects belong to a population with a particular dis-

tribution of the parameters of the objects across the popu-

lation, and ii) that it otherwise is difficult to come up with

a technique that can combine the individual results when

they may have asymmetric posterior density functions.

The remainder of this article is organised into five sec-

tions. We introduce hierarchical modelling and its statistical

inference methods in Section 2. We present methods for case-

by-case and hierarchical analyses of the ages of a group of

WDs in Section 3. In Section 4, we use a simulation study to

verify the advantages of the hierarchical approach. In Sec-

tion 5 we apply both the case-by-case and our hierarchical

model to ten Galactic halo WDs, and then interpret the

Galactic halo age in the context of known Milky Way ages.

Section 6 summarises the proposed methodology and our re-

sults. In Appendix A, we describe the statistical background

of hierarchical models and explain why they tend to provide
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better estimates. We illustrate the application of hierarchi-

cal models and their advantageous statistical properties via

the LMC example in Appendix B. In Appendices C and D

outline the computational algorithms we use to efficiently fit

the hierarchical models.

2 HIERARCHICAL MODELLING

Suppose we observe a sample of objects from a population

of astronomical sources, for example, the photometry of 10

WDs from the Galactic Halo, and we wish to estimate a

particular parameter or a set of parameters for each object.

We refer to these as the object-level parameters. By virtue

of the population, there is a distribution of these parame-

ters across the population of objects. This distribution can

be described by another set of parameters that we refer to

as the population-level parameters. Often we aim to esti-

mate both the object-level parameters and population-level

parameters. As we shall see, however, even if we are only

interested in the object-level parameters, they can be better

estimated if we also consider their population distribution.

Hierarchical models (e.g., Gelman et al. 2014), also

called random effect models, can be used to combine data

from multiple objects in a single coherent statistical analy-

sis. Potentially this can lead to a more comprehensive un-

derstanding of the overall population of objects. Hierarchical

models are widely used in many fields, spanning the med-

ical, biological, social, and physical sciences. Because they

leverage a more comprehensive data set when fitting the

object-level parameters, they tend to result in estimators

that on average exhibit smaller errors (e.g., James & Stein

1961; Efron & Morris 1972; Carlin & Louis 2000; Morris &

Lysy 2012). Because a property of these estimators is that

they are “shrunk” toward a common central value relative

to those derived from the corresponding case-by-case analy-

ses, they are often called shrinkage estimators. More details

about shrinkage estimators appear in Appendix A.

A concise hierarchical model is

Yi |θi ∼ N(θi, σ), i = 1, 2, · · · , n, (1)

θi ∼ N(γ, τ), (2)

where Y = (Y1, · · · ,Yn) are observations, σ is the standard

error of the observations, θ = (θ1, · · · , θn) are objective-level

parameters of interest, γ and τ are the unknown population-

level mean and standard deviation parameters of a Gaussian

distribution1.

Bayesian statistical methods use the conditional prob-

ability distribution of the unknown parameters given the

observed data to represent uncertainty and generate param-

eter estimates and error bars. This conditional probability

distribution is called the posterior distribution and in our

notation written as p(γ, τ, θ |Y ). To derive the posterior dis-

tribution via Bayes theorem requires us to specify a prior

distribution which summarises our knowledge about likely

values of the unknown parameters having seen the data, see

van Dyk et al. (2001) and Park et al. (2008) for applications

of Bayesian methods in the context of astrophysical anal-

yses. Our prior distribution on θ is given in Eq. 2 and we

choose the non-informative prior distribution p(γ, τ) ∝ 1 for

γ and τ, which is a standard choice in this setting (Gelman

et al. 2006). Two commonly used Bayesian methods to fit

the hierarchical model in Eq. 1–2 are the fully Bayesian (FB)

and the empirical Bayes (EB) methods.

FB (e.g., Gelman et al. 2014) fits all of the unknown

parameters via their joint posterior distribution

p(γ, τ, θ |Y ) ∝ p(γ, τ)
n
∏

i=1

p(θi |γ, τ)
n
∏

i=1

p(Yi |θi). (3)

Generally, we employ Markov chain Monte Carlo (MCMC)

algorithms to obtain a sample from the posterior distribu-

tion, p(γ, τ, θ |Y ). The MCMC sample can be used to i) gen-

erate parameter estimates, e.g., by averaging the sampled

parameter values, ii) generate error bars, e.g., by computing

percentiles of the sampled parameter values, and iii) rep-

resent uncertainty, e.g., by plotting histograms or scatter

plots of the sampled values. For intricate hierarchical mod-

els, however it may be computationally challenging to obtain

a reasonable MCMC sample.

EB (e.g. Morris 1983; Casella 1985; Efron 1996) uses the

data to first fit the parameters of the prior distribution in Eq.

1 In this paper we parameterise univariate Gaussian distributions

in terms of their means and standard deviations. Generally, we

write Y |θ ∼ N (µ, σ) to indicate that given θ, Y follows a Gaussian

(or Normal) distribution with mean µ and standard deviation σ.

MNRAS 000, 1–21 (2017)
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2 and then given these fitted parameters infer parameters in

Eq. 1 in the standard Bayesian way. Specifically, γ and τ are

first estimated as γ̂ and then τ̂ and the prior distribution

θi ∼ N(γ̂, τ̂) is used in a Bayesian analysis to estimate the θi .

Thus, EB proceeds in two steps.

Step 1 Find the maximum a posterior (MAP) estimates of

γ and τ by maximising their joint posterior distribution, i.e,

(γ̂, τ̂) = arg max
γ,τ

p(γ, τ |Y ) = arg max
γ,τ

∫

p(γ, τ, θ |Y )dθ . (4)

Step 2 Use N(γ̂, τ̂) as the prior distribution for θi, i =

1, · · · , n and estimate θi in the standard Bayesian way, i.e.,

p(θi |Yi, γ̂, τ̂) ∝ p(Yi |θi)p(θi |γ̂, τ̂). (5)

When applying the EB to fit a hierarchical model, it

is possible that the estimate of the standard deviation τ is

equal to 0, which leads to θ1 = · · · = θn = γ̂. This is generally

not a desirable result. We can avoid τ̂ = 0 by using the

transformations ξ = log τ or δ = 1/τ (e.g., Park et al. 2008;

Gelman et al. 2014). We refer to EB implemented with these

transformations as EB-log and EB-inv, respectively. Step 2

of EB-log and EB-inv remains exactly the same as that of

EB, but Step 1 changes. Specifically, Step 1 of EB-log is

Step 1 Find the MAP estimates of γ and ξ by maximising

their joint posterior distribution, i.e.,

(γ̂, ξ̂) = arg max
γ,ξ

p(γ, exp(ξ)|Y ) exp(ξ)

and setting τ̂ = exp(ξ̂), where p(·|Y ) is the posterior distribu-

tion of γ and τ. Thus,

(γ̂, τ̂) = arg max
γ,τ

p(γ, τ |Y )τ. (6)

Comparing Eq. 6 with Eq. 4, the added τ in Eq. 6 prevents

τ from being zero. The Step 1 of EB-inv proceeds similarly.

3 ANALYSES FOR FIELD HALO WHITE

DWARFS

Our model is based on obtaining photometric magnitudes for

n WDs from the Galactic halo. We denote the l-dimensional

observed photometric magnitudes for the i-th WD by Xi

and the known variance-covariance matrix of its measure-

ment errors by Σi . Our goal is to use Xi to estimate the age,

distance modulus, metallicity, and zero-age main sequence

(ZAMS) mass of the WD. Our WD model is specified in

terms of the log10(age), distance modulus, metallicity, and

ZAMS mass of WDs and we denote these parameters by

Ai,Di, Zi and Mi for i = 1, · · · , n respectively. Because we

are primarily interested in WD ages, we group the other

stellar parameters into Θi = (Di, Zi,Mi). Finally to simplify

notation, we write X = (Xi, · · · , Xn), A = (A1, · · · , An), and

Θ = (Θ1, · · · ,Θn). Here we review a case-by-case analysis

method for WDs and develop convenient approaches to ob-

tain the hierarchical modelling fits with improved statistical

properties.

3.1 Existing Case-by-case Analysis

The public-domain Bayesian software suite, Bayesian Anal-

ysis of Stellar Evolution with 9 parameters (BASE-9), allows

one to precisely estimate cluster parameters based on pho-

tometry (von Hippel et al. 2006; DeGennaro et al. 2009; van

Dyk et al. 2009). We have applied BASE-9 to key open clus-

ters (DeGennaro et al. 2009; Jeffery et al. 2011; Hills et al.

2015), extended BASE-9 to study mass loss from the main

sequence through the white dwarf stage, the so-called Initial

Final Mass Relation (IFMR) (Stein et al. 2013), and have

demonstrated that BASE-9 can derive the complex poste-

rior age distributions for individual field white dwarf stars

(O’Malley et al. 2013).

In this article we focus on the development of BASE-9

for fitting the parameters of individual WD stars. BASE-9

employs a Bayesian approach to fit parameters. The statis-

tical model underlying BASE-9 relates a WD’s photometry

to its parameters,

Xi |Ai,Θi ∼ Nl

(

G(Ai,Θi),Σi
)

, (7)

where, Nl represents a l-variate Gaussian distribution, G(·)

represents the underlying astrophysical models that predicts

a star’s photometric magnitudes as a function of its param-

eters. Specifically G combines models for the main sequence

through red giant branch (e.g. Dotter et al. 2008) and the

subsequent white dwarf evolution (e.g. Bergeron et al. 1995;

Montgomery et al. 1999).

The Bayesian approach employed by BASE-9 requires a

MNRAS 000, 1–21 (2017)



6 Si, van Dyk, von Hippel et al.

joint prior density on (Ai,Θi) for each WD. We assume this

prior can be factored into

p(Ai,Θi) = p(Ai |µAi
, σAi

)p(Di |µDi
, σDi

)×

p(Zi |µZi
, σZi

)p(Mi), (8)

where, the individual prior distributions on age, distance

modulus, and metallicity p(Ai |µAi
, σAi

), p(Di |µDi
, σDi

), and

p(Zi |µZi
, σZi

) are normal densities each with its own prior

mean (i.e., µAi
, µDi

, and µZi
) and standard deviation (i.e.,

σAi
, σDi

, and σZi
). When possible, these prior distributions

are specified using external studies. The prior on the mass

Mi is specified as the initial mass function (IMF) taken from

Miller & Scalo (1979), i.e., log10(Mi) ∼ N(µ = −1.02, σ =

0.67729). BASE-9 deploys a MCMC sampler to separately

obtain a MCMC sample from each of the WD’s joint poste-

rior distributions,

p(Ai,Θi |Xi) ∝ p(Xi |Ai,Θi)p(Ai |µAi
, σAi

)×

p(Di |µDi
, σDi

)p(Zi |µZi
, σZi

)p(Mi). (9)

In this manner, we can obtain case-by-case fits of Ai and Θi

for each WD using BASE-9.

In this paper for both the case-by-case and the hier-

archical analysis, we obtain MCMC samples for most of

the parameters. After we obtain a reasonable MCMC sam-

ple for Ai,Θi, i = 1, · · · , n, we estimate these quantities and

their 1σ error bars using the means and standard deviations

of their MCMC samples, respectively. For example, letting

A
(s)
i
, s = 1, · · · , S be a MCMC sample for Ai of size S, af-

ter suitable burn-in (DeGennaro et al. 2009), the posterior

mean and standard deviation of Ai are approximated by

Âi =

S
∑

s=1

A
(s)
i

/S, (10)

σ̂Ai
=

√

√

√ S
∑

s=1

(A(s)
i

− Âi)2/(S − 1). (11)

When the posterior distribution of the parameter Ai is highly

asymmetric, its posterior mean and 1σ error bar may not be

a good representation of the posterior distribution. In this

case, we might instead compute the 68.3% posterior interval

of Ai as the range between the 15.87% and 84.13% quantiles

of the MCMC sample.

3.2 Hierarchical Modelling of a Group of WDs

In this section, we embed the model in Eq. 7 into a hierar-

chical model for a sample of halo WDs,

Xi |Ai,Θi ∼ Nl

(

G(Ai,Θi),Σi
)

,

Ai ∼ N(γ, τ).
(12)

In this hierarchical model Ai,Di, Zi , and Mi are the object-

level parameters, while γ and τ are population-level param-

eters, the mean and standard deviation of the log10 ages of

WDs in the Galactic halo. The assumption of a common

population incorporating an age constraint is the source of

the statistical shrinkage that we illustrate below. For the

prior distributions of each Θi , we take the same strategy as

in the case-by-case analysis in Eq. 8. For the population-level

parameters γ and τ, we again choose the uninformative prior

distribution, i.e., p(γ, τ) ∝ 1. The joint posterior distribution

for parameters in the hierarchical model is

p(γ, τ, A,Θ|X) ∝ p(γ, τ)
n
∏

i=1

p(Xi |Ai,Θi)p(Ai |γ, τ)×

p(Di |µDi
, σDi

)p(Zi |µZi
, σZi

)p(Mi). (13)

3.2.1 Fully Bayesian Method

The FB approach obtains a MCMC sample from the joint

posterior distribution in Eq. 13. Here we employ a two-stage

algorithm (Si et al. 2017) to obtain the FB results. This

algorithm takes advantage of the case-by-case samples in

Section 3.1 and is easy to implement. A summary of the

computational details of FB appears in Appendix C.

3.2.2 Empirical Bayes Method

We also illustrate how to fit the hierarchical model in Eq.

12 with EB. First the joint posterior distribution for γ and

τ is calculated as

p(γ, τ |X) =
∫

· · ·
∫

p(γ, τ, A,Θ|X)dAdΘ. (14)

The integration in Eq. 14 is 4×n dimensional, which is com-

putationally challenging. To tackle this, we use the Monte

Carlo Expectation-Maximization (MCEM) algorithm (see

e.g., Dempster et al. 1977; Wei & Tanner 1990) to find

the MAP estimates of γ and τ. To avoid estimating τ

as zero when its (profile) posterior distribution is highly

MNRAS 000, 1–21 (2017)
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skewed (e.g., Park et al. 2008), we again implement EB-

log (ξ = log τ) or EB-inv (δ = 1/τ). For EB-log, the joint

posterior distribution of γ and ξ equals

p(γ, exp(ξ)|X) exp(ξ),

where p(·|X) is the joint posterior distribution of γ and τ.

The EB-log method proceeds in two steps.

Step 1: Deploy MCEM to obtain the MAP estimates of γ

and ξ, and transform to γ and τ, i.e.,

(γ̂, τ̂) = arg max
γ,τ

p(γ, τ |X)τ. (15)

For details of MCEM in this setting, see Appendix D.

Step 2: For WD i = 1, · · · , n, we obtain a MCMC sample

from

p(Ai,Θi |Xi, γ̂, τ̂) ∝ p(Xi |Ai,Θi)p(Θi)p(Ai |γ̂, τ̂)

using BASE-9.

EB-inv proceeds in a similar manner, but with Eq. 15 re-

placed with

(γ̂, τ̂) = arg max
γ,τ

p(γ, τ |X)τ2,

where p(·|X) is again the posterior distribution of γ and τ.

4 SIMULATION STUDY

To illustrate the performance of the various estimators of

the object-level WD ages and the population-level parame-

ters γ and τ, we perform a set of simulation studies. Because

the relative advantage of the shrinkage estimates compared

with the case-by-case estimates depends both on the preci-

sion of the case-by-case estimates and the degree of hetero-

geneity of the object-level parameters, we repeat the simu-

lation study under five scenarios, each with different values

of observation error matrix Σ and population standard de-

viation of log10(age), i.e., of τ. We simulate the parameters

{Ai,Di,Ti,Mi, i = 1, 2, · · · , N1} for each group of WDs from

the distributions in Table 1, where γ = 10.09 (12.30 Gyr) is

the population mean and τ varies among the simulation set-

tings given in Table 2. For consistency with the data analyses

in Section 5, we simulate u, g, r, i, z, J,H,K magnitudes for all

WDs. Using BASE-9 for each setting, we simulate N2 = 25

replicate datasets, each composed of N1 = 10 halo WDs. For

each WD in every group, we generate its log10(age), distance

modulus, metallicity and mass from distributions in Table

1, where τ is given in Table 2. The particular values and

truncations in Table 1 and 2 are chosen because they reflect

plausible values for actual halo WDs.

We compute the empirical standard error for each sim-

ulated magnitude by averaging the errors from the observed

halo WDs in Section 5, and we denote by Σ0 the variance

matrix of observed magnitudes, i.e., the square of empir-

ical standard errors for all eight magnitudes. Specifically,

Σ0 is a diagonal matrix with diagonal elements equal to

(0.3042, 0.0922, 0.0272, 0.0262, 0.0682, 0.0622, 0.0862, 0.0832).

For simplicity in each setting all stars share the same

diagonal observation variance, that is each Σi = Σ, i =

1, 2, · · · , N1. The observation error variances for five simu-

lation settings are described in terms of Σ0 in Table 2. In

the entire simulation study, we employ the Dotter et al.

(2008) WD precursor models, Renedo et al. (2010) WD in-

terior models, Bergeron et al. (1995) WD atmospheres and

Williams et al. (2009) IFMR.

Subsequently we recover parameters with multiple ap-

proaches: EB, EB-log, EB-inv, FB, and the case-by-case

analysis. We specify non-informative broad prior distribu-

tions on each Θi , namely Di ∼ N(4.0, 2.42), Zi ∼ N(−1.5, 0.52)

and log10(Mi) ∼ N(−1.02, 0.67729). The case-by-case analyses

requires a prior distribution on each Ai and we use p(Ai) ∝ 1.

The hierarchical model in Eq. 12 requires priors on γ and τ,

and we again use p(γ, τ) ∝ 1. We compare the case-by-case

estimates with shrinkage estimates based on the hierarchical

model. Results from the case-by-case analyses (obtained by

fitting the model in Eq. 7) are indicated with a superscript I

(for “individual”) and those from hierarchical analyses (ob-

tained by fitting to model in Eq. 12) are indicated with an

H.

We denote log10(age) of the i-th simulated WD in the

j-th replicate group by Ai j . Using both the case-by-case and

hierarchical analyses, we obtain MCMC samples of the pa-

rameters Ai j, i = 1, 2, · · · , N1, j = 1, 2, · · · , N2. We estimate Ai j

by taking the MCMC sample mean as in Eq. 10 and denote

the estimates based on case-by-case and hierarchical analy-

ses by ÂI
i j

and ÂH
ij
, respectively. We compute the absolute
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Table 1. Distributions used to simulate the parameter values.

Parameters Distributions

log10(age) N (γ = 10.09, τ) truncated between 9.7 to 10.17

Distance modulus N (4.0, 2.52) truncated to interval (2.7, 5.7), i.e. 34 to 138 pc

Metallicity N (−1.5, 0.02)
Mass log10(Mass) ∼ N (−1.02, 0.67729) truncated to (0.8, 3.0)

Table 2. Comparing the statistical properties of the various shrinkage and case-by-case estimates under five simulated settings.

Simulation Settings
EB EB-log EB-inv FB Case-by-case

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

I: τ = 0.05, Σ = Σ0 0.028 0.038 0.029 0.042 0.033 0.052 0.032 0.047 0.084 0.18

II: τ = 0.03, Σ = 0.82
Σ0 0.024 0.035 0.025 0.038 0.027 0.044 0.025 0.041 0.086 0.19

III: τ = 0.03, Σ = 1.22
Σ0 0.023 0.031 0.024 0.034 0.026 0.037 0.025 0.035 0.099 0.20

IV: τ = 0.06, Σ = 0.82
Σ0 0.038 0.063 0.038 0.070 0.040 0.074 0.034 0.049 0.12 0.26

V: τ = 0.06, Σ = 1.22
Σ0 0.033 0.046 0.032 0.044 0.032 0.045 0.032 0.044 0.10 0.22

value of the error2 of each estimator Âi j as

error(Âi j ) = | Âi j − Ai j |.

In our simulation study, we are mainly concerned with the

difference between absolute errors from shrinkage and case-

by-case estimates

Diff(Ai j ) = error(ÂI
i j ) − error(ÂH

ij )

= | ÂI
i j − Ai j | − | ÂH

ij − Ai j |,

which compares the prediction accuracy of the two methods.

If Diff(Ai j ) > 0, then the absolute deviation of the case-by-

case estimate of star Ai j is greater than that of the shrinkage

estimate.

Fig. 1 compares the performance of shrinkage estimates

under simulated Setting I (τ = 0.05,Σ = Σ0). The corre-

sponding summary plots for the other simulation settings

are similar and appear in Fig.s ??–?? the online supple-

ment. The histograms in Fig. 1 demonstrate that the es-

timates of γ and τ are generally close to their true values

(thick, dashed red lines). Under all 5 settings, however, for

some replicate groups of halo WDs, EB produces estimates

of τ equal to 0, see the first row, middle panel of Fig. 1. (This

phenomenon is fully discussed in Appendix B and Fig. B1.)

In these cases, the shrinkage estimate of the age of each WD

in these are equal, which potentially leads to large errors.

2 We use this term to refer to the absolute value of the error.

As we mentioned in Section 3.2.2, this highlights a difficulty

with EB, and demonstrates the need for the transformed

EB-log or EB-inv. Both of these approaches produce sim-

ilar results to EB, but avoid the possibility of τ̂ = 0. The

third column in Fig. 1 shows the scatter plot of Diff(Ai j )

against Ai j , i = 1, 2, · · · , N1, j = 1, 2, · · · , N2. Because most of

the scatter in these plots is above the solid red zero line, the

estimates of log10(age) from the case-by-case analyses tend

to be further from the true values than the shrinkage esti-

mates. Approximately two thirds of the N1 × N2 simulated

stars in each setting are better estimated with the shrinkage

method than the case-by-case fit. For stars below the red

solid lines, nominally the case-by-case fit is better, but the

advantage is small. In fact, for almost all simulated stars,

Diff(Ai j ) = error(AI
i j
) − error(AH

ij
) > −0.1, so the shrinkage

estimates do not perform much worse than case-by-case es-

timates for any WD and often perform much better. For

some stars, we have Diff(Ai j ) > 0.5. From the point of view

of reliability of the technique, it is comforting that the four

hierarchical fits (EB, EB-log, EB-inv, FB) perform similarly,

at least when τ̂ > 0 for EB.

Table 2 presents a numerical comparisons of the shrink-

age and case-by-case estimates of log10(age). Specifically it

presents the average mean absolute error (MAE) and the

average root of the mean squared error (RMSE) for each

MNRAS 000, 1–21 (2017)
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Figure 1. Results for Simulated Setting I, with τ = 0.05 (standard deviation of log10(age)) and Σ = Σ0 (photometric error variances).
The rows correspond to various fitting methods: EB, EB-log, EB-inv and FB, respectively. Each row includes: i) a histogram of the fitted
values of γ̂ across the N2 = 25 simulation replicates, ii) a histogram of τ̂, and iii) a comparison of the difference in absolute errors in
the fitted WD ages obtained with the case-by-case analysis versus each of the hierarchical methods. The thick dashed red lines in each

histogram indicate the true values of γ or τ. In the right-most column, positive vertical values indicate larger error for the case-by-case
fit and the thin horizontal lines correspond to equal errors for the two methods. Figures ??–?? for Simulated Settings II–V are shown in

the online supplementary material.

method, i.e.,

MAE(A) = 1

N1 · N2

N2
∑

j=1

N1
∑

i=1

| Âi j − Ai j |,

RMSE(A) =

√

√

√

√

1

N1 · N2

N2
∑

j=1

N1
∑

i=1

(Âi j − Ai j )2.

Both MAE and RMSE measure the distance between the

true values and their estimates. Smaller MAE and RMSE

indicates that the estimate is more accurate. Table 2 sum-

marises the performance of different estimators under the

five simulated settings. In terms of MAE and RMSE, all four

shrinkage estimates (EB, EB-log, EB-inv, FB) are signifi-

cantly better than the case-by-case estimates, though there

are slight differences among the four shrinkage estimates.

Table 3 reports the percentage of simulated WDs that are
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Table 3. The percentage of WDs with improved age estimates.

Simulation Settings EB EB-log EB-inv FB

τ = 0.05 Σ = Σ0 65.6% 69.6% 68.8% 66.8%

τ = 0.03
Σ = 0.82

Σ0 74.4% 72.8% 76.4% 73.2%

Σ = 1.22
Σ0 67.6% 69.6% 70.4% 72.8%

τ = 0.06
Σ = 0.82

Σ0 65.6% 67.6% 68.0% 64.4%

Σ = 1.22
Σ0 60.4% 64.0% 66.8% 63.2%

better estimated by shrinkage methods than the case-by-

case fits for each of the four statistical approaches and each

of the five simulation settings. We conclude that 60%–75%

of simulated stars have a more reliable age estimate from the

hierarchical analyses than from the case-by-case analyses.

From Tables 2 and 3, we conclude that shrinkage esti-

mates from both EB-type and FB approaches outperform

the case-by-case analyses in terms of smaller RMSE and

MAE. Under the five simulated settings, all four computa-

tional methods, EB, EB-log, EB-inv and FB, behave sim-

ilarly. Their MAEs and RMSEs are comparable. Also, the

percentages of better estimated WDs from these four ap-

proaches are consistent.

Simulation Setting III (τ = 0.03,Σ = 1.22
Σ0) bene-

fits most from the shrinkage estimates in terms of reduced

RMSE. The RMSE from the case-by-case fits under Simula-

tion Setting III is approximately 0.20, while the RMSE from

the EB is around 0.031, less than one sixth of the former.

Simulation Setting IV (τ = 0.06,Σ = 0.82
Σ0) gains the least

from the shrinkage estimates; the RMSE of EB (0.063) is

about a quarter of the RMSE of case-by-case (0.26). Gener-

ally, when Σ is large and τ is small, the advantage of shrink-

age estimates is the greatest. With small Σ and large τ, the

advantage of shrinkage estimates over case-by-case estimates

decreases. This is consistent to statistical theory (see Gel-

man et al. 2014, Chapter 5). Generally speaking, using EB-

log rather than EB to avoid a fitted variance of zero. In

terms of computational investment, the FB algorithm is less

time-consuming than all of our EB algorithms.

Table 4. Prior distributions for distance moduli and atmosphere
composition for halo WD sample

White Dwarf Dist. Mod. Comp. Reference
(V − MV )

J0301−0044 N(4.35, 0.2)a He Paper IIId

J0346+246 N(2.24, 0.33)a H Paper IIc

J0822+3903 N(5.19, 2.4) H Paper IVe

J1024+4920 N(5.54, 2.4) He Paper IVe

J1102+4113 N(2.64, 0.13)a H Paper IIc

J1107+4855 N(3.41, 0.19)a H Paper IIId

J1205+5502 N(5.04, 2.4) He Paper IVe

J2137+1050 N(4.46, 2.4) H Paper Ib

J2145+1106N N(4.19, 2.4) H Paper Ib

J2145+1106S N(4.23, 2.4) H Paper Ib

a Precise distance moduli are from trigonometric parallax
measurements.
b Paper I is Kilic et al. (2010).
c Paper II is Kilic et al. (2012).
d Paper III is Gianninas et al. (2015).
e Paper IV is Dame et al. (2016).

5 ANALYSIS OF A GROUP OF CANDIDATE

HALO WHITE DWARFS

Now we turn to the hierarchical and case-by-case analysis of

the 10 field WDs from the Galactic halo listed in Table 4. In

the entire analysis, we employ the Dotter et al. (2008) WD

precursor models, Renedo et al. (2010) WD interior models,

Bergeron et al. (1995) WD atmospheres, and Williams et al.

(2009) IFMR.

We acquire prior densities on Mi,Di , and Zi, i = 1, · · · , 10

from the literature (Kilic et al. 2010, 2012; Gianninas et al.

2015; Dame et al. 2016). The atmospheric compositions and

priors on distance moduli for these 10 stars are listed in

Table 4. We use a ZAMS mass prior IMF from Miller &

Scalo (1979) on Mi and a diffuse prior on metallicity Zi ∼

N(−1.50, 0.5). In this article, we do not leave the WD core

composition as a free parameter, but instead, we use the

WD cooling model derived from the work of Renedo et al.

(2010).

For the case-by-case fitting of each WD, we employ a

minimally informative flat prior on Ai , specifically, Ai ∼

Unif(8.4, 10.17609).
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Figure 2. Case-by-case results: projections of the joint posterior distributions onto the two dimensional planes of (from top to bottom)
age–metallicity, age–distance, age–ZAMS mass, and distance–ZAMS mass for five of the Galactic halo WDs (columns).

5.1 Case-by-case Analysis

We derive the joint posterior density for the parameters us-

ing Bayes’ theorem:

p(Ai,Di, Zi,Mi |Xi) ∝

p(Xi |Ai,Di, Zi,Mi)p(Ai)p(Di)p(Zi)p(Mi). (16)

Before specifying a hierarchical modelling for the 10 WDs,

we obtain their case-by-case fits using BASE-9 (as in

O’Malley et al. 2013). By using the priors in Table 4 and

as described above, we fit each of 10 halo WDs individually

with BASE-9. We present results for 5 typical stars in Fig.

2.

Each column in Fig. 2 corresponds to one WD. The

rows provide different two dimensional projections of the

posterior distributions. The asymmetric errors in the fitted

parameters, including age, are evident. The first row illus-

trates that the correlation between the metallicity and age

for these five WDs is weak. In the second row, the distance

and age of WDs have a strong positive correlation for ages

less than 10 Gyrs. However, this pattern generally disap-

pears for ages greater than 10 Gyrs. From the third and

fourth row, the ZAMS mass displays a clear negative corre-

lations with both age and distance.

The plot shows that the range of possible ages for these

five stars is large, from 8 Gyrs to 15 Gyrs. Assuming each of

these ten WDs are bona fide Galactic halo members, we ex-

pect their ages to be similar. However, their masses, distance

moduli and metallicities may vary substantially. In this sit-

uation, it is sensible to deploy hierarchical modelling on the
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ages of these 10 WDs, which provides substantial additional

information.

5.2 Hierarchical Analysis

Here we deploy both EB-log and FB to obtain fits of the

hierarchical model in Eq. 12 based on ten candidate Galac-

tic halo WDs. In Fig. 3, we compare the posterior density

distributions of the age of each WD obtained with the case-

by-case method and with that obtained with both EB-log

and FB.

Fig. 3 demonstrates that the posterior distributions of

the ages under the hierarchical model – both EB-log and FB

– peak near a sensible halo age, whereas the case-by-case es-

timates (solid lines) disperse over a much wider range. Both

EB-log and FB estimates are consistent, which we discuss

further below.

The photometric errors of these ten WDs are close to Σ0

in the simulation study. So the data is similar to Simulation

Setting I (τ = 0.07,Σ = Σ0). Hence, the advantage of the

shrinkage estimates over the case-by-case estimates shown

in Simulation Setting I should be predictive and we expect

that the hierarchical fits (dotted lines) in Fig. 3 are better

estimates of the true ages of these halo WDs.

Table 5 and Fig. 4 summarise the estimated ages. The

68.3% posterior intervals of ages of WDs from EB-log and

FB are generally narrower than those from the case-by-case

analyses, which means that shrinkage estimates (FB and

EB-log) produce more precise estimates. The fits and errors

from EB-log and FB are quite consistent.

In both BASE-9 and the hierarchical model (Eq. 12),

the ages, Ai , of stars are specified on the log10(Year) scale.

Given an MCMC sample from the posterior distribution of

age on the log10(Year) scale, we can obtain a MCMC sample

on the age scale by backwards transforming each value in the

sample via

age = 10(Ai−9), (17)

where the units for age and log10(age) are Gyr and

log10(Year), respectively. For the population-level param-

eters γ and τ, however, the transformation from the

log10(Year) scale to the Gyr scale is more complicated.

Again, starting with the MCMC sample of γ and τ, for each

sampled pair, we (i) generate a Monte Carlo sample of Ai ,

(ii) transform this sample to the Gyr scale as in Eq. 17,

and (iii) compute the mean and standard deviation of the

transformed Monte Carlo sample. Histograms of the result-

ing sample from the posterior distribution of the mean and

standard deviation of the age on the Gyr scale appear in

Fig. 5.

We present estimates of the population distribution of

the age of Galactic halo WDs in Table 6, on both the Gyr and

log10(Year) scales. In the first two rows, we report the 68.3%

posterior intervals for the mean (γ) and standard deviation

(τ) of the distribution of ages of halo WDs, 12.11+0.85
−0.86

Gyr

and 1.18+0.57
−0.62

Gyr, respectively. The point estimates of the

population mean (11.43 Gyr) and standard deviation (1.86

Gyr) from EB-log are quite consistent to results of FB. EB-

log does not directly provide error estimates for the popula-

tion mean and standard deviation, but bootstrap techniques

(Efron 1979) could be used. We do not pursue this here, be-

cause it is computationally expensive and uncertainties are

provided by FB.

In Table 6, we also report the 68.3% predictive inter-

vals of the age distribution from FB and EB-log, which sum-

marises the underlying distribution of halo WDs ages. These

are our estimates of an interval that contains the ages of

68.3% of halo WDs. From FB, the 68.3% predictive interval

for the distribution of halo WD ages is 12.11+1.40
−1.53

Gyr. In

other words, we predict that 68.3% of WDs in the Galac-

tic halo have ages between 10.58 and 13.51 Gyr. The 68.3%

predictive interval from EB-log is 11.43 ± 1.86 Gyr, slightly

broader than that from the FB.

In summary, our hierarchical method finds that the

Galactic halo has a mean age of 12.11+0.85
−0.86

Gyr. Further-

more, the halo appears to have a measurable age spread with

standard deviation 1.18+0.57
−0.62

Gyr. This result is preliminary

as we await Gaia parallaxes to tightly constrain distances,

which constrains both ages and stellar space motions. If one

or a few of these WDs have anomalous atmospheres, are un-

resolved binaries, or are not true halo members, including

them in this hierarchical analysis could artificially increase

the estimated halo age spread.
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Figure 3. Comparison of the posterior distributions of ages of WDs obtained with the hierarchical analyses and with the case-by-case
analysis. The left panel uses the FB approach to fit the hierarchical model, whereas the right panel uses EB-log. Both hierarchical
approaches give age estimates that are more consistent with each other than with the case-by-case estimates.

Table 5. Estimates of the ages (in Gyr) of ten candidate halo WDs.

WD name
FB EB-log Case-by-case

Mean Posterior Interval Mean Posterior Interval Mean Posterior Interval

J0301−0044 11.97 (10.26, 13.65) 11.85 (10.24, 13.5) 11.84 (9.6, 14)

J0346+246 10.68 (9.24, 12.97) 9.92 (9.18, 10.56) 10.23 (9.07, 10.88)
J0822+3903 11.33 (10, 12.91) 11.12 (9.97, 12.43) 11.1 (9.81, 12.74)

J1024+4920 10.65 (8.57, 12.5) 10.55 (8.98, 11.9) 8.94 (7.43, 10.9)
J1102+4113 13.41 (12.74, 14.23) 13.41 (12.74, 14.22) 13.64 (12.84, 14.53)
J1107+4855 10.4 (8.82, 12.48) 10.07 (8.83, 11.51) 9.46 (8.53, 10.35)
J1205+5502 10.89 (8.78, 13.01) 10.67 (8.88, 12.45) 9.77 (8.22, 11.83)
J2137+1050 13.47 (12.93, 14.08) 13.46 (12.91, 14.06) 13.63 (13.03, 14.35)
J2145+1106N 13.25 (12.74, 13.84) 13.24 (12.73, 13.81) 13.4 (12.8, 14.15)
J2145+1106S 11.68 (10.87, 12.71) 11.54 (10.83, 12.37) 11.65 (10.84, 12.64)

Table 6. The 68.3% posterior/predictive intervals for the age of Galactic halo WDs

Items Units FB EB-log

Posterior interval for

the mean age of halo WDs

log10(Year) 10.07+0.03
−0.04

n.a.

Gyr 12.11+0.85
−0.86

n.a.

Posterior interval for the standard
deviation of ages of halo WDs

log10(Year) 0.05 ± 0.03 n.a.

Gyr 1.18+0.57
−0.62

n.a.

Predictive interval for the
age distribution of halo WDsa

log10(Year) 10.08 ± 0.05 10.06 ± 0.07

Gyr 12.11+1.40
−1.53

11.43 ± 1.86

a The 68.3% predictive interval for the ages of WDs in the Galactic is an estimate of
an interval that contains 68.3% of halo WD ages, taking account of uncertainties
of both population-level parameters, γ and τ, and of the variability
in the ages of halo WDs.
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Figure 4. The EB-log, FB, and case-by-case estimates of the ages of the ten candidate halo WDs. The interval estimates are central

68.3% posterior intervals of the posterior distributions. The dashed, solid, and dotted intervals are computed from FB, case-by-case, and
EB-log, respectively. The triangle, circle and cross signs are the posterior means of the ages for each approach. The hierarchical age
estimates of J1205+5502 and J1024+4920 in particular are shrunk towards the age estimates of the other WDs.
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Figure 5. Histograms of MCMC samples from the posterior distribution of the mean and standard deviation of the population of halo

WD ages on the Gyr scale, obtained using FB fit to ten candidate Galactic halo WDs.
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Our mean halo age estimate is consistent with other

WD-based age measurements for the Galactic halo. For halo

field WDs, these estimates are 11.4 ± 0.7 Gyr (Kalirai 2012),

11-11.5 Gyr (Kilic et al. 2012), and 10.5+2.0
−1.5

(Kilic et al.

2017). Although broadly consistent, these studies all use

somewhat different techniques. The study of Kalirai (2012)

relies on spectroscopic determinations of field and globular

cluster WDs. The Kilic et al. (2012) analysis depends on

photometry and trigonometric parallaxes, as does our work,

yet at that point only two halo WDs were available for their

study. The Kilic et al. (2017) study is based on the halo

WD luminosity function isolated by Munn et al. (2017). Al-

though this sample contains 135 likely halo WDs, there are

as yet no trigonometric parallaxes or spectroscopy to inde-

pendently constrain their masses. Thus, all of these samples

suffer some defects, and it is comforting to see that differ-

ent approaches to these different halo WD datasets yield

consistent halo ages.

Another comparison to the field WD halo age is the

WD age of those globular clusters that have halo proper-

ties. Three globular clusters have been observed to sufficient

depth to obtain their WD ages, and two of these (M4 and

NGC 6397) exhibit halo kinematics and abundances. The

WD age of M4 is 11.6±2 Gyr (Bedin et al. 2009) and that age

for NGC 6397 is 11.7 ± 0.3 Gyr (Hansen et al. 2013). These

halo ages for globular cluster stars are almost identical to

those for the halo field. If there is any problem with these

ages, it may only be that they are too young, at ∼ 2 Gyr

younger than the age of the Universe. At this point, we lack

sufficient data to determine whether this is a simple statis-

tical error, with most techniques having uncertainties in the

range of 1 Gyr, or whether there is a systematic error with

the WD models or IFMR for these stars, or whether these

WD studies have simply failed to find the oldest Galactic

stars. Alternatively, as mentioned above, the field halo age

dispersion may really be of order ±2 Gyr, in which case the

halo field is sufficiently old, yet these globular clusters may

not be. We look forward to future results from Gaia and

LSST that should reduce the observational errors in WD

studies substantially while dramatically increasing sample

size. This will allow us to precisely measure the age distri-

bution of the Galactic halo and place the globular cluster

ages into this context.

6 CONCLUSION

We propose the use of hierarchical modelling, fit via EB

and FB to obtain shrinkage estimates of the object-level

parameters of a population of objects. We have developed

novel computational algorithms to fit hierarchical models

even when the likelihood function is complicated. Our new

algorithms are able to take advantage of available case-by-

case code, with substantial savings in software development

effort.

By applying hierarchical modelling to a group of 10

Galactic halo WDs, we estimate that 68.3% of Galactic halo

WDs have ages between 10.58 and 13.51 Gyr. This tight age

constraint from the photometry of only 10 halo WDs demon-

strates the power of our Bayesian hierarchical analysis. In

the near future, we expect not only better calibrated pho-

tometry for many more WDs, but also to incorporate highly

informative priors on distance and population membership

from the Gaia satellite’s exquisite astrometry. We look for-

ward to using theses WDs to fit out hierarchical model in

order to derive an accurate and precise Galactic halo age

distribution.
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APPENDIX A: SHRINKAGE ESTIMATES

In this appendix, we discuss shrinkage estimates and their

advantages. Consider, for example, a Gaussian model,

Yi |θi ∼ N(θi, σ), i = 1, 2, · · · , n, (A1)

where Y = (Y1, . . . ,Yn) is a vector of independent observa-

tions of each of n objects, θ = (θ1, . . . , θn) is the vector

of object-level parameters of interest, and σ is the known

measurement error. A simple technique to fit Eq. A1 is to

estimate each θi individually, θ̂ind
i
= Yi , i.e. θ̂ ind

= Y , us-

ing only its corresponding data. If a population is believed

to be homogeneous, however, we might suppose, in the ex-

treme case, that all of the objects have the same parameter,

θ1 = θ2 = · · · = θn. For example, one might suppose stars in

a cluster all have the same age. Under this assumption, the

pooled estimate, θ̂
pool

i
= Ȳ = 1

n

∑

Yi , i.e. θ̂
pool
= (Ȳ, . . . , Ȳ ), is

appropriate.

The mean squared error (MSE) is a statistical quantity

that can be used to evaluate the quality of an estimator.

As its name implies, it measures the average of the squared

deviation between the estimator and true parameter value.

Thus the MSE of θ̂ ind is

MSE(θ̂ ind) = E

[ n
∑

i=1

(θ̂ind
i − θi)2 |θ

]

= nσ2,

where E(·|θ) is the conditional expectation function that as-

sumes θ is fixed and here that θ̂ ind
= Y varies according

to the model in Eq. A1. It is well known in the statis-

tics literature that the individual estimators θ̂ ind are inad-

missible if n > 3. This means that there is another esti-

mator that has smaller MSE regardless of the true values

of θ or σ2. In particular, the James-Stein estimator of θ,

θ̂JS
= (1 − B̂)θ̂ ind

+ B̂θ̂pool where S2
=

∑(Yi − Ȳ )2/(n − 1) and

B̂ = (n − 3)σ2/(n − 1)S2, is known to have smaller MSE than

θ̂ ind if n > 3 (James & Stein 1961; Efron & Morris 1972;

Morris 1983)3. When n > 3, B̂ > 0 and the James-Stein

estimator of θi is a weighted average of the individual es-

timates, θ̂ind
i
= Yi , and the pooled estimates, θ̂

pool

i
= Ȳ .The

James-Stein estimator is an example of a shrinkage estima-

tors, which are estimates of a set of object-level parameters

that are “shrunk” toward a common central value relative to

those derived from the corresponding case-by-case analyses.

The population-level parameters that describe the dis-

tribution of (θ1, . . . , θn) are often also of interest. Suppose we

model the population by assuming that θi follows a common

normal distribution, i.e., we extend the model in Eq. A1 to

Yi |θi ∼ N(θi, σ), i = 1, 2, · · · , n; (A2)

θi ∼ N(γ, τ2), (A3)

where γ and τ are unknown population-level parameters.

The model in Eqs. A2-A3 is a hierarchical model and can

be fit using Empirical Bayes (EB) (e.g. Morris 1983; Efron

1996). We choose the non-informative, p(γ, τ) ∝ 1, which is

3 It can be shown that the MSE of θ̂JS is

E

[ n
∑

i=1

(θ̂JS
i

− θi )2 |θ
]

= nσ2 − σ2(n − 3)E(B̂)

< nσ2
= E

[ n
∑

i=1

(θ̂ ind
i

− θi )2 |θ
]

,

which shows the advantage of James-Stein estimator in terms of

MSE over the individual estimator when n > 3.

MNRAS 000, 1–21 (2017)



18 Si, van Dyk, von Hippel et al.

a standard choice in this setting (e.g., Gelman et al. 2006).

The EB approach is Bayesian in that it views Eq. A3 as a

prior distribution and is empirical in that the parameters of

this prior are fit to the data. Specifically, EB proceeds by

first deriving the marginal posterior distribution of γ and

τ2,

p(γ, τ2 |Y ) = p(γ, τ2)
n
∏

i=1

∫

p(Yi |θi)p(θi |γ, τ2)dθi, (A4)

and then estimating γ and τ2 with the values that max-

imise Eq. A4. These estimates are γ̂ = Ȳ and τ̂2 =

max

{

∑

n

i=1(Yi−Ȳ)2
n+1

−σ2, 0

}

. (Even with the normal assumptions

in Eq. A2-A3, closed form estimates of γ and τ2 are avail-

able only under the simplifying assumption that the mea-

surement errors for each Yi are the same, i.e., σ2
1
= σ2

2
=

· · · = σ2
n.) Finally, the posterior distribution of θi can be

expressed as

p(θi |Yi, γ̂, τ̂2) ∝ p(Yi |θi)p(θi |γ̂, τ̂2). (A5)

Each θi can be estimated with its posterior mean under Eq.

A5. Under certain conditions, EB is consistent with James-

Stein estimators (e.g. Morris 1983). EB can produce estima-

tors having the same advantages as James-Stein and it is

readily able to handle more complicated problems whereas

James-Stein would require model specific derivation of MSE-

reducing estimators.

APPENDIX B: LARGE MAGELLANIC CLOUD

We illustrate the construction and fitting of hierarchical

models and the advantages of shrinkage estimates through

an illustrative application to data used to estimate the dis-

tance to the LMC. The LMC is a satellite galaxy of the Milky

Way. Numerous estimates based on various data sources

have been made of the distance modulus to the LMC. The

population of stars used affects the estimated distance mod-

ulus: Estimates based on Population I tend to be larger than

those based on Population II stars. We use a set of estimates

based on Population I stars, and formulate a hierarchical

model for these estimates in order to develop a comprehen-

sive estimate. We use the data in Table B1, which was com-

piled by Clementini et al. (2003).

Besides statistical errors, the various distance estimates

may be subject to systematic errors. We aim to estimate the

magnitude of these systematic errors. If we further assume

that the systematic errors tend to average out among the

various estimators, we can obtain a better comprehensive

estimator of the distance modulus. Let µi be the best esti-

mate of the distance modulus that could be obtained with

method i, i.e., with an arbitrarily large dataset. Because of

systematic errors, µi does not equal the true distance mod-

ulus, but is free of statistical error.

Consider the statistical model,

Di ∼ N(µi, σi), i = 1, · · · , 13, (B1)

µi ∼ N(γ, τ), (B2)

where Di is the actual estimated distance modulus based

on the method/dataset i including statistical error, σi is the

known standard deviation of the statistical error, γ is the

true distance modulus of the LMC, and τ is the standard

deviation of the systematic errors of the various estimates.

Eq. B2 specifies our assumption that the systematic errors

tend to average out. We denote D = (D1, · · · ,D13) and µ =

(µ1, · · · , µ13).

We take an EB approach to fitting the hierarchical

model in Eq. B1–B2. This involves first estimating the

population-level parameters γ and τ and then plugging these

estimates in Eq. B2 and using it as the prior distribution for

each µi . Finally the individual µi are estimated with their

posterior expectations, E(µi |D, γ̂, τ̂) and their posterior stan-

dard deviations, SD(µi |D, γ̂, τ̂) are used as 1σ uncertainties.

Our EB approach requires a prior distribution for γ and τ.

We choose the standard non-informative prior, p(γ, τ) ∝ 1 in

this setting.

We estimate γ and τ by maximising their joint posterior

density,

p(γ, τ |D) ∝
∫

p(τ, γ, µ |D)dµ

= p(γ, τ)
13
∏

i=1

∫

p(Di |µi)p(µi |γ, τ)dµi . (B3)

The values of γ and τ that maximise Eq. B3 are known as

maximum a posterior (MAP) estimates. For any τ, Eq. B3

is maximised with respect to γ by

γ̂(τ) =
∑13
i=1

Di/(τ2 + σ2
i
)

∑13
i=1

1/(τ2 + σ2
i
)
, (B4)
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Table B1. Population I Distance Indicators

Method Reported Distance Modulus References

Cepheids: trig. paral. 18.70 ± 0.16 Feast & Catchpole (1997)
Cepheids: MS fitting 18.55 ± 0.06 Laney & Stobie (1994)
Cepheids: B-W 18.55 ± 0.10 Gieren et al. (1998); Di Benedetto (1997)
Cepheids: P/L relation 18.575 ± 0.2 Groenewegen (2000)

Eclipsing binaries 18.4 ± 0.1 Fitzpatrick et al. (2002)
Clump 18.42 ± 0.07 Clementini et al. (2003)

Clump 18.45 ± 0.07 Clementini et al. (2003)
Clump 18.59 ± 0.09 Romaniello et al. (2000)

Clump 18.471 ± 0.12 Pietrzyński & Gieren (2002)
Clump 18.54 ± 0.10 Sarajedini et al. (2002)
Miras 18.54 ± 0.18 van Leeuwen et al. (1997)
Miras 18.54 ± 0.14 Feast (2000)
SN 1987a 18.54 ± 0.05 Panagia (1998)

where γ̂(τ) is a function of τ. The profile posterior density

of τ is obtained by evaluating Eq. B3 at γ̂(τ) and τ, i.e.,

p(γ̂(τ), τ |D). The global maximiser of the profile posterior

distribution is the MAP estimate of τ and must be obtained

numerically.

As shown in the left panel of Fig. B1, the profile poste-

rior density of τ monotonically decreases from its peak at 0,

which means that the MAP estimator of τ is 0, a poor sum-

mary of the profile posterior. This is because 0 is the lower

boundary of the possible values of τ. A better estimate can

be obtained using a transformation of the population stan-

dard deviation, specifically, ξ = ln τ. The joint posterior of γ

and ξ can be expressed as

p(γ, ξ |D) = p(γ, exp(ξ)|D) exp(ξ),

where p(·|D) is the posterior distribution of γ and τ. The pro-

file posterior of ξ is plotted in the right panel of Fig. B1, is

more symmetric, and is better summarised by its mode. Af-

ter having estimated ξ with its MAP estimate, we compute

τ̂ = exp(ξ̂) and γ̂ = γ(τ̂). See Park et al. (2008) for a dis-

cussion of transforming parameters to achieve approximate

symmetry in the case of mode-based estimates.

Plugging γ̂ and τ̂ into the prior for µi given in Eq. B2,

we can compute the posterior distribution of each µi as

p(µ |D, γ̂, τ̂2) ∝
13
∏

i=1

p(Di |µi)p(µi |γ̂, τ̂).

Fig. B2 shows the hierarchical and case-by-case posterior

distributions of the individual estimates, µi . The hierarchi-

cal results (dashed red lines) are shrunk toward the centre

relative to the case-by-case results (blue solid lines). The

case-by-case density functions of µi range from 18.0 to 19.2,

whereas the hierarchical posterior density functions are more

precise, ranging from 18.3 to 18.7. This is an example of the

shrinkage of the case-by-case fits towards their average that

occurs when fitting a hierarchical model. We can also see

this effect in the posterior means,

E(µi |τ,D) =
γ̂(τ)/τ2 + Di/σ2

i

1/τ2 + 1/σ2
i

, (B5)

which are weighted averages of the case-by-case estimates,

Di , and the combined (MAP) estimate of the distance mod-

ulus, given in Eq. B4. The MAP estimate of the distance

modulus is γ̂ = 18.525 and the standard deviation of the

systematic errors is τ̂ = 0.045 and the distance modulus is

γ̂ = γ(τ̂) = 18.525. We compute τ̂ via the MAP estimate of

ξ as described above. It measures the extent of heterogene-

ity between 13 different published results. To compute the

uncertainty of γ̂, we generate 200 bootstrap samples (Efron

1979) of D and for each we compute the MAP estimate for γ,

resulting in 200 bootstrap estimates of γ with standard de-

viation 0.024. Thus our estimate of γ, the distance modulus

of LMC, is 18.53 ± 0.024, that is, 50.72 ± 0.56 kpc.

For illustration, in Fig. B3 we plot the posterior expec-

tation E(µi |τ,D) of each of the best estimates of the distance

moduli from each method as a function of τ as 13 coloured

lines. The black solid line is the MAP estimate γ̂(τ) plot-

ted as a function of τ. When τ is close to zero, the condi-

tional posterior means of each µi shrink toward the overall

weighted mean γ̂(0) =
∑

Di/σ2
i

1/σ2
i

. The τ = 0 case corresponds

to no systematic error and relatively large statistical error.

As τ becomes larger, the conditional posterior means ap-
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Figure B1. The profile posterior distribution of τ (left panel) and of ξ = lnτ (right panel). The modal estimate of τ is zero and is less
representative of the distribution than is the modal estimate of ξ .

18.0 18.2 18.4 18.6 18.8 19.0 19.2

0
2

4
6

8
1

0
1

2
D

e
n

s
it
y

Hierarchical

Case−by−case

Figure B2. Posterior density distributions of the LMC distance
modulus based on hierarchical fitting (red dashed lines) and based
on the case-by-case analysis (blue solid lines). Those based on hi-
erarchical fitting shrink towards the centre relative to those based
on the case-by-case analysis.

proach the case-by-case estimators of the distance moduli

marked by plus signs at the far right in Fig. B3. The red

dashed vertical line indicates our estimate of τ and intersects

the coloured curves at the hierarchical estimates of each µi .

Fig. B3 shows how the hierarchical fit reduces to the case-by-

case analyses as the variance of the systematic errors goes to

infinity. We include Fig. B3 to illustrate the “shrinkage” of

the estimates produced with hierarchical models, but such

a plot is not needed to obtain the final fit.

APPENDIX C: THE TWO-STAGE

ALGORITHM FOR FB

In this section, we illustrate how to fit the hierarchical model

(in Eq. 12) via our two-stage algorithm. For more details

about this algorithm, see Si et al. (2017).

Step 0a: For each WD run BASE-9 to obtain a MCMC

sample of p(Ai,Θi |Xi) under the case-by-case analysis. Thin

each chain to obtain an essentially independent MCMC sam-

ple and label it {A
(t)
1
,Θ

(t)
1
, · · · , A(t)

n ,Θ
(t)
n , t = 1, 2, · · · , tMC }.

Step 0b: Initialise eachWD age at Ã
(1)
i
= A

(1)
i

and the other

parameters at Θ̃
(1)
i = Θ

(1)
i

.

For s = 1, 2, · · · , we run Step 1 and Step 2.

Step 1: Sample γ̃(s) and τ̃(s) from p(γ, τ | Ã(s)
1
, · · · , Ã(s)

n ).

Step 2: Randomly generate n integers between 1 and tMC ,

and denote them r1, · · · , rn. For each i, set A∗
i
= A

(ri )
i
,Θ∗

i
=

Θ
(ri )
i

as the new proposal and set Ã(s+1)
= A∗

i
,Θ(s+1)

= Θ
∗
i

with probability α = min{1, p(A∗
i
|γ̃(s),τ̃(s))/p(A∗

i
|µAi

,σAi
)

p(Ã(s)
i

|γ̃(s),τ̃(s))/p(Ã(s)
i

|µAi
,σAi

)
}.

Otherwise, set Ã(s+1)
= Ã(s), Θ̃(s+1)

i = Θ̃
(s)
i .

Steps 1 and 2 are iterated until a sufficiently large MCMC

sample is obtained. If a good sample from the case-by-case

analysis is available, this two-stage sampler only takes a few

minutes to obtain a MCMC sample from the FB posterior

distribution for the hierarchical model in Eq. 12.
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Figure B3. Conditional posterior means of distance modulus E(µi |τ, D), as a function of the standard deviation of the systematic errors

τ. The red dashed line indicates our estimate τ̂ = 0.045. The 13 solid round dots of different colours show the hierarchical estimates of the
distance modulus to the LMC using various methods, whereas the plus signs are estimates from the case-by-case analyses. (Plus signs

and round dots of the same colour correspond to the same published result; see Table B1.)

APPENDIX D: MCEM-TYPE ALGORITHM

In this section, we present our algorithm to optimise

population-level parameters in Step 1 of EB-type meth-

ods (EB, EB-log and EB-inv). We employ a Monte Carlo

Expectation Maximisation (MCEM) algorithm with impor-

tance sampling for our EB-type methods. MCEM is a Monte

Carlo implementation of Expectation Maximisation (EM)

algorithm. See van Dyk & Meng (2010) for more details on

EM and MCEM, and an illustration of their application in

astrophysics. To apply EM, we treat the object-level pa-

rameters, namely, A1,M1,D1,T1, · · · , An,Mn,Dn,Tn as latent

variables. Due to the complex structure of this astrophysical

model, it is impossible to obtain the expectation step (E-

step) of the ordinary EM algorithm in closed form. MCEM

avoids this via a Monte Carlo approximation to the E-step.

We employ two algorithms to compute the MAP estimate

of (γ, τ): Approach 1 is MCEM and Approach 2 uses impor-

tance sampling to evaluate the integral in the expectation

step instead of drawing samples from the conditional density

of the latent variables.

Using Approach 1 to update γ and ξ = ln τ requires

invoking BASE-9 once for each WD at each iteration of

MCEM. This is computationally expensive and motivates

Approach 2. We suggest interleaving Approach 1 and 2 to

construct a more efficient algorithm for computing the MAP

estimates of γ and τ.

Approach 1: MCEM

Step 0: Initialise γ = γ(1), ξ = ξ(1), d1 = 1 and τ = exp(ξ(1));

Repeat for t = 1, 2, · · · , until an appropriate convergence

criterion is satisfied.

Step 1: For star i = 1, · · · , n, sample A
[s,t]
i
,Θ

[s,t]
i
, s = 1, · · · , St

from their joint posterior distribution

p(Ai,Θi |Xi, γ
(t), τ(t)) ∝ p(Xi |Ai,Θi)p(Ai |γ(t), τ(t))p(Θi),

where St is the MCMC sample size at the t-th iteration and
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should be an increasing function of t (we take St = 1000 +

500t).

Step 2: Set

γ(t+1)
=

1

St · n

I
∑

i=1

St
∑

s=1

A
[s,t]
i
,

ξ(t+1)
= log

(

1

St · (I − 1)

n
∑

i=1

St
∑

s=1

(A[s,t]
i

− γ(t+1))2
)

/2;

τ(t+1)
= exp(ξ(t+1));

Approach 2: EM with importance sampling

Suppose we have a sample at the ∗-th iteration,

(A[∗,s]
i
,Θ

[∗,s]
i

), i = 1, · · · , n, s = 1, · · · , S∗ from the joint pos-

terior distribution p(Ai,Θi |Xi, γ
∗, τ∗) given γ = γ∗, τ = τ∗.

Set

w
[t,s]
i
=

φ(A[∗,s]
i

|γ(t ),τ(t ))
φ(A[∗,s]

i
|γ∗,τ∗)

∑St
s=1

φ(A[∗,s]
i

|γ(t ),τ(t ))
φ(A[∗,s]

i
|γ∗,τ∗)

;

γ(t+1)
=

1

n

n
∑

i=1

St
∑

s=1

A
[∗,s]
i

w
[t,s]
i

;

ξ(t+1)
= log

(

1

(n − 1)

n
∑

i=1

St
∑

s=1

[A[∗,s]
i

− γ(t+1)]2
)

/2;

τ(t+1)
= exp(ξ(t+1));

where φ(x |µ, σ) = 1√
2πσ2

exp(− (x−µ)2
2σ2 ).

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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