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Abstract 16 

Despite being pervasive, the control of programmed grooming is poorly understood. We 17 

addressed this gap by developing a high-throughput platform that allows long-term detection of 18 

grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm 19 

automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse 20 

genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by 21 

two major internal programs. One of these programs regulates the timing of grooming and 22 

involves the core circadian clock components cycle, clock, and period. The second program 23 

regulates the duration of grooming and, while dependent on cycle and clock, appears to be 24 

independent of period. This emerging dual control model in which one program controls timing 25 

and another controls duration, resembles the two-process regulatory model of sleep. Together, 26 

our quantitative approach presents the opportunity for further dissection of mechanisms 27 

controlling long-term grooming in Drosophila.  28 
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Introduction 29 

Grooming is broadly defined as a class of behaviors directed at the external surface of the body. 30 

Most animals spend considerable time grooming (Mooring et al., 2004; Sachs, 1988) and this 31 

near universality suggests that grooming likely fulfills an essential role for animals (Spruijt et al., 32 

1992). Grooming assumes a variety of forms in different species—for instance, birds preen the 33 

oily substance produced by the preening gland from their feathers and skin, cats and dogs lick 34 

their fur, and flies sweep their body parts with their legs. Though in most cases the primary 35 

function of grooming is to maintain a clean body surface, different species-specific forms of 36 

grooming have roles in diverse functions such as thermoregulation, communication and social 37 

relationships (Dawkins and Dawkins, 1976; Ferkin et al., 2001; Geist, Valerius. Walther, 1974; 38 

McKenna, 1978; Patenaude and Bovet, 1984; Schino, 2001; Schino et al., 1988; Seyfarth, 1977; 39 

Spruijt et al., 1992; Thiessen et al., 1977; Walther, 1984). 40 

Many animal behaviors, such as locomotion, have been shown to be controlled by both external 41 

stimuli (stimulated behavior) and by internal programs (programmed behavior). An example of 42 

stimulated locomotor activity is the abrupt evasive response triggered by the sudden appearance 43 

of a predator. In contrast, programmed locomotor activities, such as daily foraging for food, are 44 

essential to maintain vital functions of the organism (Bergman et al., 2000). Similar to locomotion, 45 

limited data from mammals suggest that grooming may be controlled by both external stimuli and 46 

internal programs (Hart et al., 1992; Hawlena et al., 2008; Mooring and Samuel, 1998). For 47 

example, stimulated grooming might be performed when the animal is excessively dirty or itchy, 48 

and programmed grooming might be performed as a social ritual. Though grooming is a widely 49 

observed behavior, the basic mechanisms regulating grooming are still not well understood. 50 

The fruit fly Drosophila melanogaster is an ideal model organism with which to dissect the 51 

fundamental mechanisms of grooming and its relationship to other behaviors. The fly is known to 52 
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be a frequent groomer with a rich repertoire of behaviors and a sophisticated genetic toolkit 53 

developed to study them (Connolly, 1968; Owald et al., 2015). The study of Drosophila grooming 54 

can be traced back to the 1960’s (Connolly, 1968; Szebenyi, 1969) and notable progress has 55 

since been made in studying grooming stimulated by the application of dust particles to the insect 56 

exterior (Hampel et al., 2015; Seeds et al., 2014). While most grooming studies thus far have 57 

focused on stimulated grooming, understanding the mechanisms responsible for programmed 58 

grooming will not only identify components distinct to each type of grooming but also inform us 59 

about how programmed grooming is prioritized with regards to other programmed behaviors such 60 

as locomotion, feeding, and sleep in the same organism. 61 

A major hurdle in detecting programmed grooming in Drosophila is the lack of practical 62 

methodology. In many cases, fly grooming events are extracted by eye (King et al., 2016; Phillis 63 

et al., 1993; Yanagawa et al., 2014). Consequently, these data report only conspicuous behaviors 64 

within relatively short durations of observation. To improve resolution and accuracy, a number of 65 

sophisticated video-tracking methods have been recently developed for fly behavior (Kain et al., 66 

2013; Mendes et al., 2013). These designs are not amenable to easy scale-up for tracking multiple 67 

individuals simultaneously. Moreover, while several of these methods are sufficient for short-term 68 

monitoring (Branson et al., 2009; Kabra et al., 2013), continuous multi-hour measurements and 69 

rapid, automated quantification methods are required to dissect long-term, unstimulated fly 70 

grooming relative to other daily behaviors like locomotion and sleep. 71 

To overcome limitations of currently available methods, we developed a new platform for long-72 

term video-tracking and automated analysis of fly grooming. The layout of our hardware takes 73 

advantage of a basic design for housing individual flies that is widely used in locomotion and sleep 74 

studies (Gilestro, 2012; Pfeiffenberger et al., 2010; Zimmerman et al., 2008). Here we incorporate 75 

this standardized hardware into studies of grooming. Our algorithm maps fly activity onto a three-76 

dimensional behavioral space and utilizes k-nearest neighbors (kNN) method, a machine learning 77 
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technique, to classify each video frame as grooming, locomotion or rest. Results from multi-day 78 

recordings reveal that Drosophila spend approximately 13% of their waking time grooming, and 79 

the temporal pattern of grooming behavior is tightly regulated by the fly’s internal circadian 80 

pacemaker. These findings suggest that grooming, similar to feeding and rest, likely serves one 81 

or more critical functions in Drosophila. Additionally, genetic perturbations reveal that the 82 

transcription factors CYCLE and CLOCK are critical parts of an internal program that controls the 83 

amount of Drosophila grooming. These grooming data, the easily implementable hardware, and 84 

the automated analysis package together permit the construction of high-resolution ethograms of 85 

stereotypical fly behavior over the circadian time-scale. 86 

87 
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Results 88 

Automatic grooming detecting system 89 

We used a custom-designed video set-up to monitor fly behavior.  Within the set-up, insects were 90 

placed individually in cylindrical glass tubes 6 cm long and 5 mm wide with food and cotton at 91 

opposite ends (Figure 1A). Tubes were placed in a chamber where temperature and humidity are 92 

monitored and controlled. Flies were illuminated from the sides by white light-emitting diodes 93 

(LED) to simulate day-night conditions and by infrared LED from below for video imaging. Videos 94 

were captured by a digital camera above the chambers (see Materials and methods). A sample 95 

raw video clip is shown in Video 1. Because the tubes (commonly used with Drosophila Activity 96 

Monitors or DAMs) are commercially available for studying circadian and sleep behavior, this set-97 

up can be easily replicated by other labs.  98 

We then developed an automated video image analysis package that classifies fly behavior into 99 

grooming, locomotion, or rest. “Grooming” in our algorithm is defined as fly legs rubbing against 100 

each other or sweeping over the surface of the body and wings (Szebenyi, 1969) (Video 2, 3), 101 

“locomotion” as translation of the whole body, and “rest” as the absence of either grooming or 102 

locomotion. Figure 1B shows images of grooming behaviors frequently observed in our videos 103 

involving the head, legs and wings. Since we are primarily interested in detecting grooming events 104 

rather than performing a detailed classification of all types of behavior (Branson et al., 2009), 105 

other behaviors involving body centroid movements, such as feeding, were initially classified as 106 

locomotion. This three-tier classification allowed our algorithm to efficiently and rapidly interpret 107 

grooming events in the recordings without incurring any significant errors in reporting locomotion 108 

and rest. 109 

Behavior classification algorithm 110 
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To classify behavior, raw videos were processed through four major automated steps: fly 111 

identification, feature extraction, classifier training (optional), and subset behavior classification 112 

(Figure 1C). First, fly identification was accomplished with the following analysis. Fly shape was 113 

extracted from a video frame by computing the difference between the current frame and a 114 

reference frame. The reference or background frame was created by comparing eight randomly 115 

selected frames and erasing all moving objects from one of them (see Materials and methods). 116 

The background frame was updated every 1000 seconds to account for changes in the fly’s 117 

surroundings, such as decrease in the level of food and accumulation of debris within the tube, 118 

over the course of multiple hours (Figure 2-figure supplement 1B). A preliminary image of flies in 119 

the current frame was determined by comparing the frame to background and setting all pixels 120 

greater than a threshold 𝐶0 (Figure 2A) equal to 10. Despite the use of 𝐶0, some artifacts in the 121 

form of small objects still remained in the extracted image. A 𝐶0 = 10 rejects artifacts larger than 122 

20 pixels (Figure 2B). Based on this, to further eliminate remaining small objects, we erased all 123 

closed objects with areas less than a second threshold 𝐶1  = 25 pixels, retaining only the fly 124 

silhouette (Figure 2-figure supplement 1C, right). Thus, each individual fly and its movements 125 

were distinguished from background structures. 126 

Second, we performed feature extraction to distinguish three specific types of behaviors, which 127 

are grooming, locomotion, and rest, performed by the individual fly. The features we used were: 128 

(1) periphery movement (PM), which characterizes movements of the legs, head and wings; (2) 129 

core movement (CM), which quantifies movements of the thorax and abdomen; and (3) centroid 130 

displacement (CD), which quantifies whole body displacement. Extracting these three features 131 

allowed us to identify patterns corresponding to different types of behavior. 132 

To extract PM and CM, we split each fly’s body into a core and a periphery. Based on the 133 

grayscale distributions of the two parts (Figure 2C), we set the median of pixel grayscale values 134 

as the criterion to split a fly body into core (darker) and periphery (lighter). This criterion made the 135 
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core and periphery areas roughly equal, giving PM and CM equal weight in the feature space. 136 

Slight variations in light condition across the arena can cause differing grayscale distribution for 137 

each individual. We therefore calculated the median value separately for each fly. After splitting 138 

the fly’s body into two parts, PM and CM were extracted by computing the number of non-139 

overlapping periphery and core pixels, respectively, in two consecutive frames. 140 

To extract CD, we calculated the average position of all pixels from the individual fly and defined 141 

changes in that quantity between every two consecutive frames as CD. Since the fly moves in 142 

essentially one dimension through the narrow tube, we ignored movements perpendicular to the 143 

long axis of the tube when calculating centroid movement. In subsequent analysis, fly location 144 

was represented by its centroid position. Noise in the apparatus may slightly change the centroid 145 

position even when a fly is stationary. Figure 2D shows the distribution of such centroid 146 

displacements caused by noise. Based on this distribution, we set 0.5 pixel length as the minimum 147 

actual CD -- that is, displacements smaller than 0.5 pixel were ignored. Application of this 148 

threshold eliminated 99.99% of such false displacements and accurately identified fly centroid 149 

displacement. 150 

By extracting these three features (PM, CM, and CD), we were able to distinguish between 151 

locomotion, rest, and grooming. As shown in Figure 2E, relative metrics of PM and CM were 152 

different depending on the type of behavior. Specifically, during locomotion, both parts moved 153 

significantly (Figure 2E, bottom-right) together with substantial changes in CD. During rest, no 154 

significant movement was seen either in the periphery or the core (Figure 2E, bottom-left). During 155 

grooming, the periphery moved more than the core (Figure 2E, top-left, top-right). Importantly, 156 

since differences in fly size can affect values of PM, CM and CD, we normalized these features 157 

to individual fly size before proceeding with further analysis (see Materials and methods). The 158 

behavior-dependent changes of these features suggest that PM, CM and CD are appropriate 159 

metrics for behavior classification.  160 
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Third, to produce a rapid, objective and automated quantification of grooming behavior, we 161 

performed classifier training to teach the algorithm to automatically recognize these features. We 162 

classified fly behavior by applying the k-nearest neighbors (kNN) technique to the normalized 163 

features (Bishop, 2007; Dankert et al., 2009; Kain et al., 2013). Briefly, kNN works by placing an 164 

unlabeled sample into a feature space with pre-labeled samples serving as a training set for the 165 

algorithm. The label or class of the unlabeled sample is then decided by the label that is most 166 

common among its k-nearest training samples. In our case, the nearest neighbors were searched 167 

through a k-d tree algorithm (Sproull, 1991). To construct the kNN classifier, we prepared a 168 

training set by visually labeling fly behavior from 25000 frames (9322 frames of grooming, 9930 169 

frames of locomotion and 5748 frames of resting from 20 w1118 flies) and mapping them onto a 170 

three-dimensional feature space where the axes correspond to normalized PM, CM and CD 171 

(Figure 2F, color symbols). With these training samples, we applied 10-fold cross-validation 172 

(Bishop, 2007; McLachlan et al., 2005) to the kNN classifier with k ranging from 1 to 50 and settled 173 

on k=10 to achieve balance between computing time and accuracy (Figure 2-figure supplement 174 

1D).  175 

Finally, to specifically distinguish between grooming behavior and other types of peripheral 176 

movement, we pruned output labels from the kNN classifier (Figure 3A). The algorithm calculates 177 

features from every two consecutive frames, resulting in some classifications being confounded 178 

by short-term fly activity. For example, features extracted from only two frames often cannot 179 

distinguish a fly stretching its body parts from one that is grooming (Video 4). Based on our 180 

observations during creation of the training set, a typical bout of grooming lasts >3 seconds or for 181 

15 frames at our normal frame rate, longer than an average stretching event, which lasts for ~1 182 

second. Accordingly, we devised a strategy in which a ~15-frame-long temporal filter slid one 183 

frame at a time to eliminate false grooming labels caused by short, grooming-like behavior. 184 

Grooming designations were retained only if at least a minimum number of grooming frames were 185 
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found within the filter (Figure 3A). To determine the size of the filter and the minimum number of 186 

grooming frames within, we assessed the accuracy of our classifier with the ‘minimum number of 187 

grooming frames/size of filter’ at 4/5, 8/10, 8/15, 10/15, 10/20, 12/15, 14/15, and 15/20. These 188 

tests were conducted with a 10-minute video (N=20 Canton S flies). As expected, comparison 189 

between 8/15, 10/15, 12/15 and 14/15 shows (Figure 3B) that for fixed filter sizes, a larger number 190 

of grooming frames led to fewer false positive (higher accuracy) but more frequent false negative 191 

identification of grooming (lower sensitivity). On the other hand, <12 minimum number increased 192 

risk of misidentifying other short-term grooming-like behaviors as grooming. Based on these 193 

findings, we set the pruning filter to be 12/15, simultaneously minimizing false positive and false 194 

negative errors. Because of this pruning process, if fewer than 12 grooming frames were found 195 

within a 15-frame sliding window, then all grooming frames were re-labeled as locomotion once 196 

the left edge of the window reached the fifteenth frame (Figure 3A). Thus, these pruned labels 197 

were the final output of our grooming classification algorithm, consisting of fly identification, 198 

feature extraction, classifier training. 199 

The accuracy of our algorithm was evaluated by comparing the computer-identified grooming with 200 

manually-labeled grooming identified by visual inspection. We tested a total of 450 minutes of 201 

videos from a different set of w1118 flies (N=15) than the one used in training the classifier. The 202 

comparisons showed that, of the grooming events picked out by our algorithm, 92.1% were 203 

manually verified as true grooming events (Figure 3C, top panel). Furthermore, among all 204 

manually scored grooming events, 95.5% were successfully identified by our computational 205 

method (Figure 3C, bottom panel). Since size and pigmentation differences between genotypes 206 

can potentially affect behavioral classification, we investigated robustness of our w1118-trained 207 

classifier with manually-labeled data from Canton S, iso31, and yw strains (10-minute videos with 208 

N=20 of each type). As shown in Figure 3C, error rates in each tested strain less than 10%. 209 

Together, these results suggest that our method identifies grooming with high fidelity in several 210 
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different Drosophila melanogaster strains.  211 

Flies spend a significant portion of their awake time grooming 212 

The solitary flies in our experiments also spent portions of their time feeding (Ja et al., 2007) and 213 

sleeping (Hendricks et al., 2000; Shaw et al., 2000), behaviors that our classifier did not initially 214 

label but that can nevertheless be identified by our algorithm. Prolonged proximity (> 3 seconds, 215 

< body length) with food was accepted as a proxy for feeding. Rest periods lasting ≥ 5 minutes 216 

(Dubowy and Sehgal, 2017) were classified as sleep, following the currently accepted definition 217 

of the behavior. Together, these additional classifications led to the identification of five major 218 

behaviors in our data: grooming, locomotion, feeding, short rest (< 5 minutes of quiescence), and 219 

sleep (Figure 4). The first four behaviors are mutually exclusive at the level of single events, 220 

together defining the wake state of the fly, and collectively complementary to the sleep state 221 

(Figure 4A). We found that a typical iso31+ fly under 12 hours light:12 hours dark (LD) conditions 222 

spent approximately 6% of its daily time grooming, ~24% time locomoting, ~3% time feeding, 223 

~16% resting, and the remaining ~51% sleeping (Figure 4B). That is, the average iso31+ fly spent 224 

~13% of its awake time grooming. It is worth noting here that such behavioral statistics can vary 225 

even between wild-type laboratory strains (Colomb and Brembs, 2015; Zalucki et al., 2015). For 226 

instance, similar analysis of a Canton-S strain showed that these flies groomed ~19% of their 227 

awake time (Figure 4-figure supplement 1A). These analyses demonstrate that our platform for 228 

long-term video-tracking and automated analysis can provide a quantitative ethological structure 229 

for daily basal fly behavior. 230 

Since sleep and wake are complementary states, we expected fractional time spent in sleep to 231 

negatively correlate with that of the four wake behaviors our method tracks. Pair-wise 232 

comparisons (Pearson’s correlation coefficient, r, see Materials and Methods) of individual fly 233 

sleep with grooming, locomotion, short rest, or feeding, showed the expected negative 234 
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relationships (Figure 4C and Figure 4-figure supplement 1B). Interestingly, the strength of 235 

negative correlation with sleep (Figure 4C) increased with the average fractional time spent in a 236 

wake behavior (Figure 4B). We reasoned that similar analysis among the wake behaviors, in 237 

contrast, should show positive correlations. Pair-wise comparisons among grooming, locomotion, 238 

short rest and feeding showed the predicted positive correlations, though to varying degrees 239 

(Figure 4D and Figure 4-figure supplement 1C). The analyses further revealed that the fraction of 240 

time a fly spent in short rest was the best predictor of its grooming time (r = 0.42 in iso31+ and 241 

0.26 in Canton-S) while locomotion (r =0.26 and -0.13) and feeding (r = 0.27 and 0.06) were both 242 

less reliable in predicting grooming. 243 

The weaker grooming-locomotion and grooming-feeding correlations were unexpected for two 244 

reasons. First, daily variations in grooming levels had appeared to closely follow those in 245 

locomotion (Figure 4-figure supplement 2A), suggesting the possibility that grooming is a by-246 

product of the more robustly driven locomotor activity. Second, feeding activity has been 247 

postulated to act as a trigger for grooming with food debris serving as an external stimulus 248 

(Hampel et al., 2015; Seeds et al., 2014). To further dissect the lack of predictive relationship 249 

between grooming and locomotion, we first examined temporal parameters that describe 250 

grooming and locomotion over short timescales (Figure 4-figure supplement 2A-E). Basal 251 

locomotor events during mid-day and night (Figure 4-figure supplement 2A, rectangles) were 252 

relatively sparse compared to grooming episodes during the same times. This difference in inter-253 

event time interval between grooming and locomotion persisted to different degrees throughout 254 

the day-night cycle, such that the average longest pause between two subsequent grooming 255 

events was ~88 minutes while that between two locomotor events was ~132 minutes (Figure 4-256 

figure supplement 2C). Examination of the duration of individual events showed grooming events 257 

on average lasted for ~0.23 minutes compared to ~0.44 for locomotor events (Figure 4-figure 258 

supplement 2D). These analyses revealed significant differences between the two behaviors over 259 
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short timescales and do not support locomotor activity as a driver of grooming. 260 

To focus on temporal dynamics at longer timescales, we binned multi-day data in 30 minutes 261 

(Figure 4-figure supplement 2F, G) and applied least square fit to a previously developed 262 

mathematical model that describes long timescale variations in fly activity in terms of exponential 263 

functions (Lazopulo and Syed, 2016, 2017). The functions were defined by four rate parameters 264 

𝑏𝑀𝑅, 𝑏𝑀𝐷, 𝑏𝐸𝑅 and 𝑏𝐸𝐷, where subscripts denote morning rise (MR), morning decay (MD), evening 265 

rise (ER) and evening decay (ED), and two duration parameters that describe the relative 266 

durations of morning (TM) and evening (TE) peaks in activity (Figure 4-figure supplement 2H and 267 

Figure 4-figure supplement 3). Results from this analysis showed that the rate parameter 𝑏𝑀𝑅 of 268 

grooming was smaller than that of locomotion (Figure 4-figure supplement 2I), indicating a slower 269 

increase in night-time grooming activity. Additionally, the evening duration parameter (TE) for 270 

grooming was greater than that for locomotion (Figure 4-figure supplement 2J), indicating that the 271 

evening peak in grooming lasted longer. These differences in long timescale kinetics were again 272 

inconsistent with locomotor activity as a driver of grooming. Finally, comparison with large 273 

timescale variations in feeding patterns showed that peak time in contacting food was offset by 274 

2-4 hours from nearby peaks in grooming (Figure 4-figure supplement 2O-P). The large temporal 275 

offset suggests contact with food is also not likely to drive the majority of grooming events 276 

observed in our experiments. Thus, according to our analyses of the kinetics of Drosophila 277 

ethograms in our system, neither locomotor activity nor feeding is likely to be a primary driver of 278 

basal grooming. 279 

To identify major drivers of basal grooming, we noted that multi-day time series of the behaviors 280 

showed time-of-day dependent changes in each behavior (Figure 4E). The appearance of 281 

repeating patterns raised the possibility that external light-dark (LD) cycles alone or in combination 282 

with internal programs could be exerting temporal control over several of these behavioral 283 

outputs, including grooming. Indeed, environmental light-dark cycles through influence on the 284 
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circadian clock are known to drive rhythmic changes in fly sleep and wake durations and within 285 

the awake state, feeding, and locomotor activities (Chatterjee and Rouyer, 2016; Pfeiffenberger 286 

et al., 2010). That these rhythms persisted in the absence of LD cycles is generally considered to 287 

be strong support for clock control of these behaviors.  288 

We set out to determine whether the circadian clock drives rhythmic modulations in fly daily 289 

grooming independent of other circadian-regulated behaviors--that is, to test whether grooming 290 

exhibits circadian oscillations simply because individual grooming events are mutually exclusive 291 

of other individual wake activities. We recognized that the mutual exclusivity of the behaviors seen 292 

at the level of individual events (Figure 4A) did not persist at the level of fractional time in each 293 

behavior where the long timescale modulations are visible (Figure 4E). This is because fractional 294 

time data are binned and the only constraint on these data was that the sum of the time spent in 295 

each wake behavior (grooming, locomotion, feeding and short rest) and sleep equaled 1 for each 296 

time bin (Figure 4-figure supplement 1F). In this representation, therefore, rhythmicity of one 297 

behavior (i.e., grooming) did not dictate rhythmic status of another (i.e., locomotion).  298 

To test the independence of rhythms, we performed a series of “shuffling experiments” using well 299 

established (Allada and Chung, 2010; Chatterjee and Rouyer, 2016) rhythmicities of wakefulness 300 

and locomotion as metrics (Figure 4F and supplemental figures). In brief, we took data from Figure 301 

4E in which grooming, locomotion and wakefulness have LD-driven ~24 hour rhythms (Figure 4F, 302 

left and power spectra) and computationally randomized the grooming time-series such that it lost 303 

rhythmicity (Figure 4F, right). To account for the randomized grooming, we also adjusted either 304 

locomotion (Figure 4F, upper panel) or wakefulness (Figure 4F, bottom panel), in both cases 305 

ensuring that wakefulness was between 0 and 1 at all times (see Materials and methods). In either 306 

case, we found that rhythmicity in locomotion and wakefulness were intact regardless of the 307 

rhythmic status of grooming. The simulation result suggested that circadian control of fly 308 

locomotion and wakefulness does not guarantee circadian control of underlying basal grooming, 309 
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at least as measured from changes in the duration of the behaviors. Therefore, demonstration of 310 

robust ~24 hour rhythms in grooming in the absence of any external cues should be strong 311 

evidence in favor of circadian control of the behavior. 312 

Temporal pattern of grooming is controlled by the circadian clock 313 

To test whether basal grooming is also under circadian control, we first entrained iso31+ flies to 314 

two days of alternating light-dark cycles and then monitored their behavior over multiple days in 315 

constant darkness (DD). In the absence of light cues, locomotor, feeding and sleep showed the 316 

familiar clock-driven rhythms in their daily timing (Figure 5A, B). Though short rest appeared to 317 

undergo rhythmic changes (Figure 5A), spectral analysis indicated these changes did not result 318 

in statistically significant rhythms at the p=0.05 level (Figure 5B). Lack of rhythms in short rest is 319 

consistent with our earlier reasoning that rhythmic wakefulness and locomotion does not 320 

necessarily imply rhythmicity of each behavior in the awake state.  321 

Grooming data also showed periodic changes in constant darkness (Figure 5C). Power spectra 322 

of individual time-series (‘WT’ in Figure 5D and Figure 5-figure supplement 1A) indicated these 323 

periodic changes to be statistically rhythmic by revealing peaks significant at p=0.01 in 100% of 324 

flies (29 out of 29 individuals, Figure 5E). The average period of oscillations was 23.72 hours, 325 

with a standard deviation of 0.72 hours (Figure 5-figure supplement 1B). The presence of these 326 

robust circadian rhythms in the absence of external cues further support the hypothesis that fly 327 

basal grooming is under control of the internal timekeeper. Consistent with our prediction that 328 

grooming rhythms in DD do not necessarily follow from rhythms in locomotion or wakefulness, we 329 

found that knowing locomotion or wakefulness is rhythmic did not inform about the rhythmic status 330 

of grooming (Figure 5-figure supplement 3). This finding further underscored the importance of 331 

the DD studies in establishing rhythmicity in basal grooming. It should be noted here that our 332 

simulation results do not demonstrate bidirectional independence of rhythmicity in wakefulness 333 
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and grooming but, only that rhythmicity of wakefulness does not depend on that of grooming. 334 

Demonstration of fully independent rhythms in the two behaviors is beyond the scope of the 335 

present study. 336 

We next took advantage of several circadian mutants to examine further the control of grooming 337 

by the circadian clock. The Drosophila clock is composed of two interlocked genetic feedback 338 

loops in which period (per) is one of the core components and whose transcription is controlled 339 

by the primary transcription factors Clock (clk) and Cycle (cyc) (Allada and Chung, 2010). The per 340 

gene has several well-characterized mutant alleles, two of which---perS and perL---produce short 341 

and long circadian rhythms, respectively, while a third, per0, results in arrhythmic behavior 342 

(Konopka and Benzer, 1971). Population-averaged grooming of perS and perL showed altered 343 

oscillations in LD and DD (Figure 5C, second and third row), with average DD periods of 19.23 344 

± 0.57 hours and 28.84 ± 1.13 hours, respectively (Figure 5D, E and Figure 5-figure supplement 345 

1A). The periods of oscillation in grooming were well within published values of circadian rhythms 346 

of these mutants (Konopka and Benzer, 1971) and in agreement with alterations in locomotor 347 

rhythms of the flies (Figure 5-figure supplement 2A). Consistent with these results, grooming in 348 

per0 flies was arrhythmic (Figure 5C, bottom row) and, when analyzed at the individual fly level, 349 

the power spectra unveiled the absence of statistically significant rhythms in 19 out of 20 flies at 350 

p=0.01 level (Figure 5D, E and Figure 5-figure supplement 1A). Moreover, analysis of grooming 351 

patterns in cyc01 (Rutila et al., 1998) and clkJrk (Allada et al., 1998), arrhythmic mutants of cyc and 352 

clk, also showed loss of circadian rhythms (Figure 5E and Figure 5-figure supplement 2B-D). 353 

Together, these results support the hypothesis that the circadian clock temporally modulates fly 354 

grooming.  355 

 356 

Grooming duration is controlled by cycle and clock 357 
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To test whether, in addition to regulating the timing of grooming, the circadian clock also regulates 358 

grooming duration, we examined the average duration of grooming in circadian mutants. Despite 359 

causing major changes in temporal patterns of grooming, the per0 mutation did not significantly 360 

change the average duration of grooming in these flies (Figure 6A). In contrast, cyc01 and clkJrk 361 

mutants both exhibited increased daily average grooming relative to their respective genetic 362 

controls (Figure 6B, C). While both mutants exhibited increased grooming duration, this change 363 

was accompanied by opposing changes in their locomotion: cyc01 flies spent less time and clkJrk 364 

flies spent almost twice as much time in locomotion (Figure 6B, C, pie plots). Thus, the increase 365 

in cyc01 grooming came almost entirely from loss of locomotor activity while the increase in clkJrk 366 

grooming came from loss of sleep. These results support the hypothesis that locomotion and 367 

grooming are partly independent behaviors and further suggests that the cyc01 and clkJrk mutations 368 

alter the insect’s internal homeostasis in distinct ways, similar to phenotypic differences reported 369 

previously in sleep studies involving cyc01 and clkJrk (Hendricks et al., 2003; Shaw et al., 2002). 370 

Importantly, together with per0 data, the results raise the possibility of non-circadian roles for cyc 371 

and clk in setting the duration of internally driven grooming in Drosophila.  372 

cycle and clock have also been implicated in stress response, particularly in regulating level of 373 

sleep in response to sleep deprivation and adjusting locomotor output in response to nutrient 374 

unavailability (Hendricks et al., 2003; Keene et al., 2010; Shaw et al., 2002). Because grooming 375 

and sleep have both been previously linked to stress, we asked whether reduction in sleep is 376 

always accompanied by an increase in grooming as seen in our clkJrk data. To address this 377 

question, we examined relationship between grooming and sleep in standard LD cycles in two 378 

short-sleeping mutants--fumin and sleepless (sss). Consistent with the original studies (Koh et 379 

al., 2008; Kume et al., 2005), our method found both strains to have extremely low levels of sleep 380 

(Figure 6D, E, pie plots). But, while loss of sleep in fumin was accompanied by an upregulation in 381 

grooming (Figure 6D), loss of sleep in sss was accompanied by a dramatic downregulation in 382 
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grooming, compared to control flies (Figure 6E). These divergent relationships between sleep and 383 

grooming (e.g. sss vs. fumin) and between locomotion and grooming (e.g. clkJrk vs. cyc01) became 384 

more evident when individuals of different genotypes were compared together (Figure 6-figure 385 

supplement 1F, G). To better visualize the effects of disparate mutations, data of each genotype 386 

in these plots were normalized to the population-mean of its genetic control. These results 387 

suggest that resetting of the level of internally-driven grooming can occur via a number of ways 388 

with complex compensatory changes in sleep and locomotor behavior. 389 

Accumulated data from our experiments suggest that grooming is an innate fly behavior controlled 390 

by two major regulators. One of these regulators controls temporal patterns in grooming and the 391 

other controls amount of time spent in grooming. Circadian genes per, cyc and clk are involved in 392 

controlling the timing of peaks/troughs in grooming rhythms while cyc and clk are also involved in 393 

setting how much time is spent grooming. The apparent absence of per from the second 394 

regulatory mechanism is consistent with the possibility that the two control mechanisms operate 395 

independently.  396 

Nearly all animals tested exhibit daily basal grooming behavior, suggesting that grooming is not 397 

only fundamental to health but also reflects a generally healthy state. Consistent  with this, loss 398 

of grooming is indicative of sickness behavior (Hart, 1988) associated with infection or old age, 399 

and, in the case of humans, mental illness. A greater understanding of the molecular mechanisms 400 

regulating grooming would provide insight into the principles and neural circuits underlying other 401 

complex programmed behaviors, as well as potentially identify biomarkers of pathological disease 402 

states. Critical to the dissection of these molecular mechanisms is a system for rapid, automated 403 

interpretation of grooming in a genetically tractable model organism. The development of our 404 

platform will facilitate high-throughput and unbiased analysis of the genetic regulators and neural 405 

circuits that control grooming, as well as those responsible for loss of grooming in the context of 406 

disease.  407 
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Discussion  408 

Grooming continues to be one of the least understood Drosophila behaviors, possibly due to the 409 

technical challenges of detecting grooming events in this small insect. Early work describing fly 410 

grooming relied on manual scoring (Connolly, 1968; Szebenyi, 1969; Tinbergen, 1965), which 411 

imposes significant limitations on the length of events that can be detected, fidelity and objectivity 412 

of detection, and the level of detail that can be extracted from the data. Despite such limitations, 413 

these initial studies made a number of noteworthy observations. Szebenyi delineated all the major 414 

modes of fly grooming and suggested that repetitive grooming actions may closely follow a preset 415 

sequence (Szebenyi, 1969). A subsequent study in the blowfly offered a more refined mechanistic 416 

picture of insect grooming by proposing that the sequential actions form a hierarchical structure 417 

(Dawkins and Dawkins, 1976). Combining modern computational and genetic tools, an elegant 418 

study in Drosophila recently confirmed these previous hypotheses (Seeds et al., 2014). That fruit 419 

flies may groom spontaneously in the absence of any apparent stimulus has also been previously 420 

suggested (Connolly, 1968; Tinbergen, 1965). Consistent with this, our work provides evidence 421 

that fruit flies groom as part of their daily repertoire of internally programmed behaviors and often 422 

without any obvious external stimulus. Our analysis revealed that over a period of hours, grooming 423 

is temporally structured by the fly circadian clock, with peak activity around dawn and dusk. The 424 

study also identifies transcription factors CLOCK and CYCLE as critical molecular components 425 

that control the amplitude of programmed Drosophila grooming. 426 

Machine-learning is increasingly gaining popularity due to its applicability to virtually any problem 427 

involving pattern classification, including in studies aimed at deconstructing stereotyped behavior 428 

in the fruit fly (Branson et al., 2009; Kabra et al., 2013; Kain et al., 2013; Mendes et al., 2013; 429 

Valletta et al., 2017). Similar to these recent efforts, we constructed a computational pipeline 430 

incorporating elements of machine learning to automatically identify grooming events in video 431 
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recordings of behaving flies. Our approach relies, in particular, on a supervised k-nearest 432 

neighbors algorithm to broadly classify behavior into grooming, locomotion and rest (Figure 2). 433 

Application of additional optional filters yielded approximate data on feeding and sleep (Figure 4). 434 

While previous methods offer important details on different modes of grooming (Berman et al., 435 

2014; Seeds et al., 2014), leg movements (Kain et al., 2013; Mendes et al., 2013), and fly-fly 436 

interactions (Branson et al., 2009; Kabra et al., 2013) from short videos, the methods have limited 437 

capability for interpreting multi-day and multi-fly recordings. The method presented here offers 438 

less detail on modes of grooming, but can instead readily dissect circadian time-scale recordings 439 

into three to five behavioral classes on a typical personal computer. 440 

The apparatus used in this method (Figure 1) also offers a number of advantages over current 441 

ones. First, most items used in the apparatus, including the ~6 cm tubes in which flies are 442 

visualized, are standard in a typical circadian experiment studying fly locomotion or sleep 443 

(Lazopulo et al., 2015; Pfeiffenberger et al., 2010) using the Drosophila Activity Monitor (DAM). 444 

The retention of this basic feature should lower the technical hurdle for the interested investigator 445 

who is likely to be one already engaged in locomotion and sleep studies in Drosophila. The use 446 

of a shared design to house flies also means that both experimental subjects and certain 447 

conclusions drawn from one platform may be readily transferred to the other. Most current 448 

grooming methods require specialized equipment for fly stimulation and detection (Seeds et al., 449 

2014), elaborate optics (Kain et al., 2013), or a specific form of fluorescence microscopy (Mendes 450 

et al., 2013). Second, our apparatus can simultaneously monitor up to ~20 flies, while the existing 451 

approaches, though offering higher-resolution data, monitor only one animal at a time. The 452 

scalability and high-throughput nature of our platform should appeal to investigators interested in, 453 

for example, large-scale genetic studies to identify mechanisms that differentially affect grooming, 454 

locomotion and rest (King et al., 2016). Finally, the flies in our apparatus are allowed to move 455 

freely over a distance roughly 10 times their body length and still remain in the camera’s field of 456 
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view while technical constraints in other studies limit visualization to short distances (Mendes et 457 

al., 2013) . The relative freedom of mobility, access to food, and long time-scales of observation 458 

offered by our apparatus thus facilitate analysis of basal, internally programmed behavior. 459 

These properties make our platform amenable to addressing questions of biological relevance, 460 

such as the importance of grooming behavior, its temporal regulation with regards to other fly 461 

behaviors, and its dependence on the circadian timekeeping system. First, we found that flies 462 

consistently devote a significant fraction of time to grooming behavior during periods of 463 

wakefulness (13%), and surprisingly, that grooming behavior is observed even during periods of 464 

reduced locomotor activity (Figure 4-figure supplement 2A). This suggests that the benefits of 465 

grooming outweigh the caloric resources expended and the resulting interruption of rest, 466 

underscoring the hypothesis that daily grooming is a fundamental behavior of Drosophila.  467 

A few recent studies (Hampel et al., 2015; Phillis et al., 1993; Seeds et al., 2014) have shown that 468 

fly grooming can be directly induced by peripheral stimuli, and there has been considerable 469 

progress toward identifying the behavioral and neural aspects of such stimulus-induced grooming. 470 

However, programmed grooming, or grooming in the absence of a macroscopic stimulus, remains 471 

relatively understudied in Drosophila. To our knowledge, the existence of programmed grooming, 472 

first proposed in the mid 60’s, still remains unreported.  473 

Data from this study suggest that a significant portion of daily fly grooming is driven by internal 474 

programs. Flies in our experiments are active for ~34% of the time within a 24-hour period, during 475 

which they mostly engage in grooming, locomotion and feeding. Behavioral analysis showed that, 476 

like sleep, locomotion and feeding, fly grooming behavior is modulated by oscillations of the 477 

circadian clock (Figure 5). This finding raised the possibility that the observed grooming was 478 

stimulated by rhythms in contact with food or locomotor activity. However, closer examination 479 

revealed that kinetics in feeding and locomotion were distinct from those of grooming (Figure 4-480 
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figure supplement 2). Additionally, genetic modifications resulted in contrasting changes in these 481 

behaviors (Figure 6). These results together suggest that the majority of grooming events 482 

detected in our experiments are not triggered by external stimuli such as light, food, and locomotor 483 

movements. Rather, internal regulatory mechanisms, independent of external stimuli, likely drive 484 

this programmed behavior.  485 

Multi-day recordings of wild-type flies in constant darkness showed 24-hour rhythms in daily 486 

grooming patterns (Figure 5, Figure 5-figure supplement 1). Furthermore, these rhythms were 487 

shifted appropriately in the canonical period mutants perL and perS and abolished in arrhythmic 488 

per0 flies (Figure 5). These data support a regulatory model in which timing of programmed 489 

grooming behavior is orchestrated by the circadian clock. Notably, since loss of rhythmicity did 490 

not significantly affect the amount of grooming (Figure 6A), our results suggest that the primary 491 

role of the clock is to organize the behavior in time without influencing the total time flies dedicate 492 

to grooming. 493 

Intriguingly, two other circadian mutations, cyc01 and clkJrk, increased the proportion of daily time 494 

flies spend grooming (Figure 6B, C), implying that the changes in grooming level may not be due 495 

to circadian defects. These data are consistent with the hypothesis that clock-independent but 496 

cyc- and clk- dependent pathways regulate the amount of programmed grooming behavior.  497 

Finally, why are flies innately programmed to groom? The present study does not directly address 498 

this important question, but given that microscopic pathogens can sporulate on the fly cuticle and 499 

eventually infect the insect (Leger et al., 2011), persistent grooming may serve as a first line of 500 

defense against such attack. Thus, the immune system may constitute another internal program, 501 

similar to the cyc and clk-controlled mechanisms, that drives fly grooming; if so, we hypothesized 502 

that mutants with defective immune response may exhibit altered grooming behavior (Lemaitre et 503 

al., 1995; Michel et al., 2001). Consistent with this, we found that grooming was reduced in the 504 
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immune deficient imd mutant (Figure 6-figure supplement 1H), though a second immune deficient 505 

strain lacking a member of the Toll pathway (PGRP-SAseml) did not show a significant change. 506 

Further studies are required to clarify these initial results and elucidate the biological function of 507 

programmed grooming in Drosophila. 508 

Together, our data provide strong supporting evidence for programmed grooming in Drosophila 509 

and suggest that this innate behavior is driven by two possibly distinct sets of regulatory systems. 510 

The circadian system temporally segregates time-dependent variations in grooming from those 511 

of other essential behavioral outputs like feeding and sleep. Circadian coordination of grooming 512 

underscores a previously under-appreciated importance of this behavior in the daily routine of the 513 

fruit fly. The second regulatory system adjusts the level of grooming relative to other behaviors. 514 

This set of regulation likely confers adaptability on the animal by allowing it to up- or downregulate 515 

grooming as necessitated by internal and external conditions. The dual control mechanism of 516 

grooming proposed here is highly reminiscent of the two-process framework--- circadian and 517 

homeostatic--- that is widely used in understanding sleep regulation (Borbély, 1982). Although 518 

this work has not demonstrated grooming is under homeostatic control, future studies could be 519 

aimed at better characterizing the nature of the non-circadian regulatory system of fly grooming. 520 

In summary, we present here a new platform to detect innate grooming behavior simultaneously 521 

and for days at a time in multiple individual fruit flies. The apparatus can be assembled easily, 522 

and the accompanying analytics are available publicly. Utilizing this platform, we report several 523 

mechanisms that are possibly responsible for driving the timing and level of programmed 524 

grooming in Drosophila. We also suggest future experiments that through use of this platform can 525 

lead to deeper understanding of the underlying biology of grooming and its relation to other 526 

essential fly behaviors. 527 

Materials and methods 528 
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Key resources table  529 

 530 

Fly strains 531 

Clock mutants perS, per L, and per0 were backcrossed for five-six generations to an iso31 with 532 

mini-white insertion strain (iso31+). cyc01 flies, gifts from William Ja (The Scripps Research 533 

Institute), have the Canton S background. ClkJrk flies were backcrossed for five generations to 534 

iso31. sssP1 mutant flies, gifts from Amita Sehgal (Perelman School of Medicine at the University 535 

of Pennsylvania), have the iso31 background. fumin mutants, gifts from F. Rob Jackson (Tufts 536 

Reagent type (species) 
or resource 

Designation Source or reference Identif
iers 

Additional 
information 

strain, strain 
background (Drosophila 
melanogaster, male) 

sssp1 DOI: 
10.1126/science.1155942 

  on iso31 
background 

strain, strain 
background (Drosophila 
melanogaster, male) 

iso31 DOI: 
10.1126/science.1155942 

    

strain, strain 
background (Drosophila 
melanogaster, male) 

fumin DOI: 
https://doi.org/10.1523/JN
EUROSCI.2048-05.2005 

  on w1118 
background 

strain, strain 
background (Drosophila 
melanogaster, male) 

w1118 Bloomington Drosophila 
Stock Center 

BDSC: 
3605 

  

strain, strain 
background (Drosophila 
melanogaster, male) 

Canton S Bloomington Drosophila 
Stock Center 

BDSC: 
64349 

  

strain, strain 
background (Drosophila 
melanogaster, male) 

clkJRK this paper   backcrossed for 
five generations to 
iso31 

strain, strain 
background (Drosophila 
melanogaster, male) 

per0 this paper   backcrossed for 
five generations to  
iso31+ 

strain, strain 
background (Drosophila 
melanogaster, male) 

perS this paper   backcrossed for six 
generations to  
iso31+ 

strain, strain 
background (Drosophila 
melanogaster, male) 

perL this paper   backcrossed for six 
generations to  
iso31+ 

strain, strain 
background (Drosophila 
melanogaster, male) 

cyc01 other   on Canton S 
background, gifts 
from William Ja  

strain, strain 
background (Drosophila 
melanogaster, male) 

iso31+ other   gifts from Michael 
Young 
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University School of Medicine), have the w1118 background. Flies were bred and raised at 23℃ 537 

and 40% relative humidity on standard cornmeal and molasses food. All experiments were done 538 

with 5-8 days old males at 260C and 70-80% relative humidity in a custom-built behavior tracking 539 

chamber (Figure 1 and Figure 2-figure supplement 1A). For each experiment, control strain refers 540 

to the genetic background of a mutant. WT flies in Figures 4, 5 refer to the iso31+ line.  541 

Behavior tracking apparatus 542 

Chamber. Flies were placed individually in glass tubes (Trikinetics Inc., Waltham, MA, PGT5x65) 543 

with food and a cotton plug at opposite ends. Twenty tubes were placed on a custom-designed 544 

acrylic plate inside a transparent acrylic cuboid box for simultaneous imaging. Temperature and 545 

humidity were monitored every 5 mins with a digital thermometer (Dallas Semiconductor, Dallas, 546 

TX, DS18B20) and a humidity sensor (Honeywell, Morris Plains, NJ, HIH-4010), respectively, 547 

while a wet sponge inside the chamber kept the relative humidity around 70%-80% (Figure 1-548 

figure supplement 1A). 549 

Illumination. The chamber was illuminated by two sets of light-emitting diode (LED) strips. White 550 

LEDs (LEDwholesalers, Hayward, CA, 2026) producing ~700 lux were used to simulate daytime 551 

conditions and infrared LEDs (LEDLIGHTSWORLD, Bellevue, WA, SMD5050-300-IR 850nm) 552 

were used to visualize the flies at all times. 553 

Camera. A CCD monochrome camera (The Imaging Source, Charlotte, NC, DMK-23U445) fitted 554 

with a varifocal lens (Computar, Cary, NC, T2Z-3514-CS) was used for video imaging. To 555 

minimize influence of chamber’s light/dark conditions on video quality, we put a 780 nm long pass 556 

filter (Midopt, Palatine, IL, LP780-30.5) in front of the lens. Videos were saved as 8-bit images in 557 

.avi format with 1280 x 960 resolution at 10 Hz and down-sampled as needed. 558 

 559 
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 Analytic hardware and runtime 560 

Using a desktop computer with Intel Core i7-4770 3.4 GHz processer and 4 × 4 G DDR3 1600 561 

MHz RAM, it takes ~7 hours to extract grooming, locomotion and rest data from an 8-hour video 562 

of 20 flies recorded in 10 Hz (in total 288000 frames) at 1280 pixel × 960 pixel resolution. Videos 563 

are analyzed every 2 frames (5 Hz), which is sufficient to capture grooming events. 564 

 565 

Algorithm for automatic detection of grooming 566 

All computational analyses were done with custom-written Matlab scripts that will be available at 567 

https://github.com/sbadvance/Drosophila-Grooming-Tracking.git (Qiao, 2017) 568 

Fly shape extraction. Fly shape was extracted by applying a background subtraction algorithm. 569 

The background or reference frame is constructed randomly picking two frames, a template and 570 

a contrast, and comparing their pixel grayscale values and erasing all moving objects from the 571 

template frame. To remove the fly from the template frame, we replace the pixels belonging to 572 

the fly with corresponding pixels from contrast frames, relying on the fact that a fly is always darker 573 

than the surrounding objects. The template frame with no fly present then becomes the 574 

background frame. Additionally, because a fly’s surroundings, including food debris, change 575 

substantially during the course of an experiment (Figure 2-figure supplement 1B), the background 576 

frame is regenerated every 1000 seconds. Lastly, if a fly occupies the same area in the template 577 

and contrast frames, the overlapping region cannot be erased on the template. To circumvent this 578 

problem, every time a background frame is generated, we randomly choose seven, instead of 579 

one, frames as contrast frames and compare all of them with the template. When a fly does not 580 

move for more than 1000 seconds, the fly will not be removed from the background and cannot 581 

be detected in other frames during this 1000 seconds. Thus, when a fly is not detected, we 582 

https://github.com/sbadvance/Drosophila-Grooming-Tracking.git
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consider the fly to be stationary at the position where it was last detected.  583 

To reduce effects of charge coupled device (CCD) image noise and fluctuations in the system, 584 

we set a minimum change 𝐶0 as the threshold to accept grayscale changes from fly movements. 585 

We denote the grayscale value of a pixel located at (x, y) (in units of pixel, in our case, x ∊ [1:1280], 586 

y ∊ [1:960]) in the template as 𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑥,𝑦) and in the contrast frame 𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑥,𝑦) . Only if  587 

𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑥,𝑦) − 𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑥,𝑦) > 𝐶0 588 

then 589 

𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑥,𝑦) = 𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑥,𝑦) 590 

While increasing threshold 𝐶0 reduces noise, it can also lead to rejection of real movements of 591 

the fly. To optimize 𝐶0, we tested noise levels in our images by analyzing a three-hour video with 592 

dead flies. In the test, 30 pairs of consecutive frames were randomly chosen from the video and 593 

the differences between their corresponding grayscale pixel values were calculated. The 594 

distribution of the differences, stemming from noise, is shown in Figure 2A. Based on this 595 

distribution, we set 𝐶0=10, which excludes 99.99% of noise-related changes in grayscale values.  596 

Feature normalization. Since PM and CM both represent areas (number of pixels in area), while 597 

CD represents distance, we take the square root of PM and CM to make the dimensions of the 598 

features homogeneous. In addition, fly size varies between individuals and across experimental 599 

settings. To facilitate comparison of data in feature space, we therefore normalize PM, CM and 600 

CD of each fly with a scale parameter SP equal to the square root of the area of that fly. Thus, 601 

the final form of normalized features are  602 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑀 = √𝑃𝑀/𝑆𝑃 603 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑀 = √𝐶𝑀/𝑆𝑃 604 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐷 = 𝐶𝐷/𝑆𝑃 605 

 606 

Spectral analysis 607 

Figure 4, 5 and Figure 5-figure supplement 1, 2, 3: To measure periodicity in locomotion and 608 

grooming recordings, we applied the Lomb-Scargle periodogram (Lazopulo et al., 2015; Scargle, 609 

1982) to time-series that were binned into 30-minute periods. Power at indicated p values shown 610 

in power spectra were calculated according to  611 

Power = −ln (1 − (1 − 𝑝)1/𝑁) 612 

where p is the p-value and N is the number of frequencies computed in Lomb-Scargle 613 

periodogram. 614 

To test the effect of binning on rhythmicity, we binned grooming activity of individual flies in 30-615 

minutes, 5-minutes, and 1-minute bin sizes and ran Lomb-Scargle periodogram analysis on these 616 

binned data, as well as raw data without any additional binning. Examples of 5 individual spectra 617 

of each bin size are shown in Figure 5-figure supplement 1C. As shown in the figure, the 618 

separation between statistical cut-off power (at certain p value, horizontal lines) and peak power 619 

increases with smaller bin size or equivalently, larger number of data points (N). This is because 620 

in Lomb-Scargle periodogram, cut-off power grows as log (N) while peak power grows as N.  621 

Time series randomization 622 

In Figure 4F and Figure 5-figure supplement 3 randomized grooming was generated by randomly 623 

shuffling time in raw grooming data. The corresponding modified locomotion and wake were 624 

calculated according to 625 

Modified locomotion = original locomotion + original grooming – randomized grooming 626 
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Modified wake = original wakefulness + original grooming – randomized grooming 627 

These manipulations modified either locomotion or wake while keeping the other unchanged.  628 

 629 

Statistics 630 

No sample size estimation was performed when the study was being designed. Unless otherwise 631 

specified, quantitative experiments with statistical analysis were repeated at least three times 632 

independently. Exclusion of data applies to flies which were physically damaged (for example, 633 

broken wings or legs), physically confined (for example, trapped by condensation inside tubes), 634 

or dead during experiments. For testing statistical significance of differences between groups, we 635 

first tested the normality of data by one-sample Kolmogorov-Smirnov test. Two-sample F-test was 636 

applied for equal variances test. Samples with equal variances were compared using two-tailed 637 

t-test. Satterthwaite's approximation for the effective degrees of freedom was applied for samples 638 

with unequal variances. Results were expressed as mean ± s.d., unless otherwise specified. 639 

*p<0.05, **p<0.01, ***p<0.001 were considered statistically significant. 640 

In Figure 4C, D and Figure 4-figure supplement 1B, C, the Pearson correlation coefficient r for 641 

each pair of data was calculated according to the standard definition  642 

r𝑋,𝑌 =
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 643 

where X and Y are time spent in two behaviors X and Y, r𝑋,𝑌 is the Pearson correlation coefficient 644 

between two behaviors, 𝐸[ ] is the expectation value, 𝜇 and 𝜎 are, respectively, mean value and 645 

standard deviation of a behavior. The statistical significance of r was estimated through 646 

bootstrapping. For each two behaviors, we randomly paired data from n flies (n=84 for iso31+ and 647 

n=76 for Canton S) and calculated a correlation coefficient r. This process was repeated 100000 648 
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times and the empirical distribution of the randomly paired r values were used for a two-tailed test 649 

(Figure 4-figure supplement 1D). p-values for all Pearson correlation coefficients are presented 650 

in Figure 4-figure supplement 1E. 651 
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Table 1: Parameter values and fitting errors from fitting grooming time-series 663 

 664 

Table 2: Parameter values and fitting errors from fitting locomotion time-series 665 

  666 

Fly 
# 

bMD bMR bER bED T0 TM TE HM HE Error 

1 0.000  0.007  -0.024  0.010  23.9 6.0  3.0  294  442  0.0115 
 

2 0.008  0.008  -0.055  0.014  23.9 3.0  5.0  280  344  0.0894 
 

3 -0.008  0.005  -0.070  0.027  24 4.0  3.0  295  811  0.0674 

4 -0.019  0.003  -0.035  0.046  24 4.0  3.0  204  540  0.0674 

5 0.002  0.007  -0.042  0.019  24 4.0  2.0  262  1155  0.0541 

6 -0.013  0.005  0.009  0.026  24 3.0  3.0  171  317  0.0115 
 

7 0.026  0.003  -0.018  0.006  24.3 4.0  3.0  210  436  0.076 

8 0.110  0.008  -0.012  0.015  23.9 2.0  5.0  158  344  0.0057 

9 -0.015  0.003  -0.001  0.098  23.9 3.0  4.0  267  475  0.0175 

Fly 
# 

bMD bMR bER bED T0 TM TE HM HE Error 

1 -0.001  0.004  0.004  0.033  24.0  6.0  2.0  1631  1675  0.01 
 

2 -0.005 0.073  -0.069  0.028  24.1 2.0  2.0  825  1434  0.0037 

3 -0.013  0.063  0.020  0.002  23.9 2.9  1.9  4162  1208  0.0469 

4 -0.010  0.020  0.022  0.001  23.7 3.0  2.0  3355  1388  0.001 

5 0.055  0.060  -0.338  0.007  24 3.0  3.0  741  1948  0.0056 

6 0.009 0.015  -0.054  0.028  23.6 3.0  3.0  1509  1369  0.1029 

7 0.001  0.028  -0.022  0.023  24 2.0  3.0  1535  1010  0.0072 

8 -0.015  0.008  -0.007  0.032  23.9 3.0  2.0  1504  2308  0.007 

9 0.014  0.020  -0.028  0.016  23.9 3.0  3.0  1519  2004  0.0007 
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Figures and figure legends 834 

Figure 1 Overview of approach for detecting Drosophila grooming 835 

(A) Apparatus used in recording behavior. Flies constrained to individual tubes are continuously 836 

illuminated by infrared light from below and recorded by a digital camera from above. LED 837 

lights on sides of chamber simulate day-night light conditions. Temperature and humidity 838 

probes placed in the chamber are monitored by a computer. Inset: Camera photo of fly tubes 839 

in chamber. 840 

(B) Examples of the most commonly observed types of grooming in our experiments. The top row 841 

displays postures of a fly in inactive state. The three rows below show how the limbs and body 842 

of a fly coordinate to perform specific grooming movements. Arrows point to the moving part 843 

during grooming. 844 

(C) Flowchart of our algorithm used to classify fly behavior. After generating a suitable background 845 

image, the algorithm characterizes movements of fly center (CD), core (CM) and periphery 846 

(PM) to fully classify behavior in each frame. 847 

  848 
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Figure 2 Feature extraction and behavior classification 849 

(A) The distribution of grayscale fluctuations in the absence of mobile flies. A cutoff of grayscale 850 

value change 𝐶0 = 10 rules out > 99.99% of fluctuations. Shown here are only positive values of 851 

fluctuations, which are symmetric about zero. 852 

(B) Maximum area (pixels) of a closed object generated by noise when different threshold 𝐶0 are 853 

applied. A 𝐶0 = 10 rejects objects larger than 20 pixels. Based on this, we set a threshold 𝐶1 = 25 854 

to remove objects smaller than 25 pixels without affecting identification of flies which have a typical 855 

area of ~300 pixels in our studies. 856 

(C) Grayscale value distribution of pixels belonging to 20 individual flies. Two regions are clearly 857 

seen: the left region with peak around 40 represents the core of the flies and the right region with 858 

peak around 90 represents their periphery. 859 

(D) Variations in the center position of a stationary fly. The minimum displacement that represents 860 

a true fly center movement is 0.5-pixel length in our experiment, a requirement that excludes 861 

>99.99% of false displacements.  862 

(E) Examples of original and processed images of a fly displaying different behaviors: Top, left: 863 

front leg grooming; top, right: wing grooming; bottom, left: resting; bottom, right: locomoting. In 864 

each panel, original images from two consecutive frames are shown on left, periphery in the 865 

middle and core on the right. Changes of periphery and core are shown in the bottom row. PM 866 

and CM denote differences in the number of pixels representing the fly periphery and core, 867 

respectively, in two frames. Features PM and CM are different for different behaviors. Rubbing of 868 

front legs manifests through PM (top, left) while sweeping wings affects PM and CM (top, right).  869 

(F) k-nearest neighbors (kNN) algorithm works by placing an unclassified sample (black circle) 870 

representing a frame into a feature space with pre-labeled samples (green/gray/purple circles, the 871 
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training set). The label of the unclassified point is decided by the most frequent label among its k-872 

nearest neighbors. The three axes of the feature space are normalized periphery movement (PM), 873 

core movement (CM), and center displacement (CD). Fly activity in the feature space is separated 874 

into three regions: grooming (green), locomotion (gray) and resting (purple). Training samples 875 

(N=9322 grooming, 9930 locomotion, 5748 rest) and 9 unlabeled samples in PM-CM-CD space 876 

are shown.  877 

  878 
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Figure 3 Data pruning and performance evaluation  879 

(A) Grooming data are pruned after identification by the kNN classifier. A frame is finally labeled 880 

as grooming only if this frame is in a group of 15 frames in which 12 or more were labeled as 881 

grooming by the classifier (see B below). Frame previously labeled as grooming by the classifier 882 

but that did not pass the pruning procedure is relabeled as locomotion.  883 

(B) Performance of the classifier with pruning filter sizes of 4/5, 8/10, 8/15, 10/15, 10/20, 12/15, 884 

14/15 and 15/20. Accuracy (closed circles) is equal to the ratio of correct grooming labels to all 885 

output grooming labels. Sensitivity (open circles) is equal to the ratio of grooming identified by the 886 

classifier to all visually labeled grooming events. We set the pruning filter to be 12/15 to attain > 887 

90% accuracy and sensitivity.  888 

(C) Fly genotypes vary by size and pigmentation, which can potentially affect performance of our 889 

classifier. To verify the generality and robustness of our method to different genotypes, accuracy 890 

(top) and sensitivity (bottom) of classifier on w1118, Canton S, iso31, and yw were tested. Error 891 

rates in all tested strains were less than 10%.  892 
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Figure 4 How grooming fits into the daily routine of a fly. 893 

(A) Ethogram of grooming (green), locomotion (gray), feeding (blue), short rest (purple), and sleep 894 

(dark gray) performed by an iso31+ fly in 60 seconds (300 frames). Individual events of these four 895 

behaviors are mutually exclusive and together constitute wake (yellow-orange), which is 896 

complementary to sleep (dark gray). 897 

(B) Average fraction of time flies spent in each behavior. N=83 iso31+ flies. 898 

(C)(D) Correlation between pairs of behaviors. There is strong negative correlation between sleep 899 

and locomotion (r=-0.93) and between sleep and short rest (r=-0.63). Interestingly, time spent in 900 

grooming does not show strong correlation with any of the other four behaviors. N=83 iso31+ flies. 901 

r is the Pearson product-moment correlation coefficient. 902 

(E) Temporal patterns of behaviors of a single iso31+ fly during four days in LD cycles. Behaviors 903 

shown here are, grooming (G), locomotion (L), feeding (F), short rest (R), wake (W), and sleep 904 

(S). Level of activity is shown in terms of fraction of time spent in each behavior. Fraction is 905 

calculated every 30 minutes. White/black horizontal bars indicate light/dark environmental 906 

conditions, respectively. 907 

(F) Rhythmicity in grooming, locomotion, and wake in an example fly. In LD condition, fraction of 908 

time spent in these behaviors are plotted on left. In power spectra on right of time series of 909 

behaviors (horizontal dash line denotes threshold power for p=0.05), temporal patterns of the 910 

three behaviors all show significant circadian rhythmicity. In right top, spectra of randomized 911 

grooming show no rhythmicity, while modified locomotion is still rhythmic. Similarly, in time series 912 

on right bottom, with the same randomized grooming, wake remains rhythmic while grooming, as 913 

one component from it, is arrhythmic. In time series of behaviors, activity is binned every 30 914 

minutes. 915 
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Figure 5 Grooming is under control of the circadian clock 916 

(A) Average temporal patterns (fraction of time spent in 30 minutes bins) of locomotion, feeding, 917 

short rest, and sleep of eight representative iso31+ flies during three days in constant darkness 918 

(DD). Black horizontal bar represents lights-off condition. 919 

(B) Power spectra of behaviors in panel (A). Except for short rest, temporal patterns of the other 920 

three behaviors show significant circadian rhythmicity. Horizontal dash line and dash dot line 921 

denote threshold powers for p=0.05 and p=0.01, respectively. 922 

(C) Grooming activity (in 30-minute bins) of wild-type and clock mutants during two days in LD 923 

cycle followed by four days in DD cycle. Grooming traces are population averages. In DD, wild-924 

type (WT, iso31+) grooming continues to show 24 hr rhythms. In comparison, grooming in 𝑝𝑒𝑟𝑆or 925 

𝑝𝑒𝑟𝐿 flies show shorter or longer rhythms, respectively. For 𝑝𝑒𝑟0 flies, grooming is arrhythmic in 926 

DD. N=8 WT, 8 𝑝𝑒𝑟𝑆, 8 𝑝𝑒𝑟𝐿, and 8 𝑝𝑒𝑟0 representative flies.  927 

(D) Example power spectra showing circadian rhythmicity in grooming patterns of three individual 928 

wild-type, 𝑝𝑒𝑟𝑆 , 𝑝𝑒𝑟𝐿  and 𝑝𝑒𝑟0 flies. Spectra are normalized to variance of activity (in 30 min 929 

bins). Dash lines and dash dot lines represent threshold power at p=0.05 and p=0.01, 930 

respectively. More examples of individual power spectra are provided in Figure 5-figure 931 

supplement 1.  932 

(E) Spectral powers of circadian peaks of individual wild-type and circadian mutants. N= 29 933 

control, 20 𝑝𝑒𝑟𝑆, 29 𝑝𝑒𝑟𝐿, 20 𝑝𝑒𝑟0, 13 𝑐𝑦𝑐01 and 11 𝑐𝑙𝑘𝐽𝑅𝐾. 934 

935 
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Figure 6 Control of grooming duration is independent of circadian rhythmicity 936 

In each panel, bar plots on left show average fractional time spent in grooming in mutant and 937 

control flies. Pie charts on right present average fractional time spent in grooming (green), 938 

locomotion (gray), sleep (dark gray), short rest (purple) and feeding (blue). Here, numerical values 939 

for fractional time spent in behavior are indicated only for grooming, locomotion and sleep with 940 

additional details in Figure 6-figure supplement 1A. 941 

Though loss of a functional clock does not affect grooming amount (A), mutations in clock (B) and 942 

cycle (C) genes lead to robust increases in the time flies spend grooming. Additional time for 943 

grooming can come from reduction in sleep (B) or reduction in locomotion (C). Reduction in sleep, 944 

however, does not always entail similar changes in grooming since sleep mutants fumin (D) and 945 

sleepless (E) show divergent alterations in grooming durations.  946 

N=83 control, 53 𝑝𝑒𝑟0, p=0.28. N=76 control, 18 𝑐𝑦𝑐01, p=2.7×10-4. N= 28 control, 25 𝑐𝑙𝑘𝐽𝑅𝐾, 947 

p=7.8×10-9. N=17 control, 23 fumin, p=0.003. N=28 control, 17 sss, p=1.3×10-10. 948 

  949 
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Figure 2-figure supplement 1 950 

(A) Locomotion (fraction of time spent), relative humidity (RH), and temperature (T) for 3 days 951 

during an experiment in constant darkness (DD) conditions. Data are binned in five minutes. 952 

(B) Binary images after background subtraction. If the background frame is not updated frequently 953 

(typically every 1000 seconds), both food debris (red boxes) and flies (blue boxes) may be 954 

identified as moving objects in a background-subtracted image (top, left and expanded view). The 955 

problem is rectified (bottom, left) when the background frame used is closer in time (<1000 956 

seconds apart) to the image of interest. 957 

(C) An example 8-bit frame (on left) and its corresponding background-subtracted binary image 958 

showing identified flies.  959 

(D) The cross-validation loss of kNN classifier at different k values. Loss decreases with 960 

increasing k values, slowing down for k≈10. The loss function shown here is the averaged error 961 

of 10-fold cross validation in behavioral classification. The validation was performed on 25000 962 

frames from video of 20 flies.  963 

  964 
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Figure 4-figure supplement 1:  965 

 (A) Average fraction of time flies spent in grooming (green), locomotion (gray), feeding (blue), 966 

short rest (purple), and sleep (dark gray). N=76 Canton S flies. 967 

(B)(C) Correlation between behaviors. Sleep shows different levels of negative correlation to 968 

locomotion (r=-0.849), short rest (r=-0.833) and feeding (-0.597). In addition, there is positive 969 

correlation between locomotion and short rest (r=0.627). Interestingly, time spent in grooming 970 

does not show strong correlation with any of the other four behaviors. This suggests independent 971 

regulation of grooming behavior. N=76 Canton S flies. 972 

(D) Example empirical probability distributions of random paired r values between grooming and 973 

short rest (top) and between locomotion and feeding (bottom) in iso31+ flies. p-values of Pearson 974 

coefficient r were calculated based on two-tailed test of such distributions.  975 

(E) p-values of all Pearson correlation coefficients r in Figure 4C, D (top table) and Figure 4-figure 976 

supplement 1B, C (bottom table). p-values in red are from examples in (D).  p<10-5 is displayed 977 

as 0 in these tables.  978 

(F) Example of binned data (reproduced from Figure 4E) showing fraction of time in different 979 

behaviors. In this representation, behaviors are not mutually exclusive and each behavior is free 980 

to assume any value between 0 and 1 (inclusive) such that wake time + sleep time =1 for every 981 

bin. Grooming: G, Locomotion: L, Feeding: F, Short rest: R, Wake; W, Sleep: S 982 

  983 
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Figure 4-figure supplement 2 984 

(A) Position within the tube (top row), locomotion (middle) and grooming (bottom) of a single 985 

iso31+ fly during one day in LD. Locomotion and grooming are shown in terms of fraction of time 986 

spent in 5-minute bins. White/black bars indicate light/dark environmental conditions, 987 

respectively. 988 

(B) Probability density of the intervals between grooming events (green) and between locomotion 989 

events (gray). Probability distributions were constructed from ~33000 intervals between grooming 990 

events and ~73000 intervals between locomotion events detected in 83 iso31+ flies. 991 

(C) Longest intervals between grooming events (green) and between locomotion events (gray). 992 

Each point represents an individual fly recorded for a day. N= 83 iso31+ flies, p=1.2×10-19 993 

(D) Probability density of the duration of grooming events (green) and locomotion events (gray). 994 

Probability distributions were constructed from ~33000 grooming events and ~73000 locomotion 995 

events detected in 83 iso31+ flies.  996 

(E) Longest duration of grooming (green) and locomotion events (gray). Each point represents an 997 

individual fly recorded for a day. N= 83 iso31+ flies, p=3.6×10-8 998 

 (F)(G) Example fits (red) of temporal patterns of grooming activity (green) and locomotion activity 999 

(gray) of an individual fly during 3 days in LD environment. Horizontal white/black bars represent 1000 

alternating light/dark conditions. 1001 

(H) Sketch of the mathematical model that uses four exponential terms to describe temporal 1002 

patterns of a fly activity. Parameters 𝑏𝑀𝐷 , 𝑏𝐸𝑅 , 𝑏𝐸𝐷 , 𝑏𝑀𝑅 , TM and TE (see Figure 4-figure 1003 

supplement 3) are marked in the plot. 1004 

 (I)(J)(K)(L)(M)(N) Comparison of parameter values yielded by fits to locomotion and grooming 1005 
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data. Each circle represents an individual fly (N = 9). Data from same fly are connected by a solid 1006 

line.  1007 

(O) Average amount time spent in grooming (green), visiting food (blue) and locomotion (gray) 1008 

during two days in LD. Each behavior time series is normalized by its maximum to allow for easy 1009 

comparison of their relative phases. In wild-type flies (top panel), burst in visiting food happens 1010 

~1 hours after the morning peak in locomotion. Onset of evening peaks in grooming usually occurs 1011 

earlier than the peak in locomotion. Time difference between peak in feeding and grooming is 1012 

considered as the time delay of grooming peak after feeding, as indicated by red arrows. N = 50 1013 

iso31+ flies. 1014 

(P) The time difference in onset of bursts in grooming and locomotion (gray), grooming and 1015 

feeding (blue), in LD conditions. Discreteness in time differences is a consequence of binning the 1016 

time-series in 30 minutes. N=50 iso31+ flies.  1017 
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Figure 4-figure supplement 3:  1018 

 (A) Sketch of the mathematical model that uses four exponential terms to describe temporal 1019 

patterns of a fly activity. Horizontal white/black bars represent alternating light/dark conditions. 1020 

(B)(C) Example fits (red) of (B) temporal pattern and (C) power spectrum of grooming activity 1021 

(green) of an individual fly during 3 days in LD environment. The activity data are binned in 1 hour 1022 

for visual clarity. 1023 

(D)(E) Example fits (red) of (D) temporal pattern and (E) power spectrum of locomotion activity 1024 

(gray) of an individual fly during 3 days in LD environment. The activity data are binned in 1 hour 1025 

for visual clarity. 1026 

To quantitatively compare the temporal patterns of grooming and locomotion (Figure 4-figure 1027 

supplement 2), we applied a previously developed mathematical method that allows quantification 1028 

of the main features in fly locomotion pattern. (A. Lazopulo & Syed, 2016). The quantification is 1029 

achieved by fitting activity data with a model that consists of four exponential terms: 1030 

𝐹(𝑡) =

{
 
 
 
 
 

 
 
 
 
 𝐻𝑀
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 1031 

The model has nine independent parameters that describe activity pattern. Parameters 𝑏𝑀𝐷, 𝑏𝑀𝑅, 1032 

𝑏𝐸𝐷, 𝑏𝐸𝑅 define rates of morning decay (MD), morning rise (MR), evening decay (ED) and evening 1033 

rise (ER), respectively. Parameter T0 defines circadian period, 𝑇𝑀 and 𝑇𝐸 define widths of M and 1034 
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E peaks, and 𝐻𝑀 and 𝐻𝐸 define heights of M and E peaks, as shown in sketch in panel (A). The 1035 

white and black horizontal bars represent lights-on and off phases of the external light-dark cycle. 1036 

Values of the parameters are obtained from the activity data in a few steps. First, the circadian 1037 

period is estimated from the power spectrum of activity data. Then, preliminary parameter values 1038 

are estimated by fitting the locomotion recording with the function 𝐹(𝑡). These values serve as 1039 

initial guess for fitting the data power spectrum with an analytical expression derived by 1040 

calculating the Fourier transform of 𝐹(𝑡): 1041 

𝐹̃(𝑇𝑛) =
1

𝑇0
∫ 𝐹(𝑡)𝑒

𝑖2𝜋𝑛
𝑇0 𝑑𝑡

𝑇0

0

, 1042 

where 𝑇n  = 𝑇0/𝑛, with 𝑛 = 1, 2, 3… and 𝑇0 is the circadian period. By using the spectral fit, we 1043 

extract model parameters without filtering or binning. Fitting of the power spectrum produces final 1044 

values for the model parameters, which are then used to construct the final form of 𝐹(𝑡), our 1045 

model of fly activity rhythms. 1046 

Examples of fits of grooming and locomotion activities and their respective power spectra are 1047 

provided in panels (B)(C)(D)(E). Parameter values and least squares fitting errors of fitting 1048 

locomotion and grooming spectrum of 9 representative individual flies are shown in Table 1 and 1049 

Table 2. Here the fitting error is calculated from 1050 

Error =
∑ (𝑃𝑓𝑖𝑡

𝑖 − 𝑃𝑎𝑐𝑡𝑢𝑎𝑙
𝑖 )𝑖

∑ (𝑃𝑓𝑖𝑡
𝑖 − 𝑃𝑟𝑎𝑛𝑑𝑜𝑚

𝑖 )𝑖

 1051 

where 𝑃𝑎𝑐𝑡𝑢𝑎𝑙
𝑖  and 𝑃𝑓𝑖𝑡

𝑖  are the actual spectral power and fitted spectral power at the 𝑖th spectral 1052 

frequency, respectively. 𝑃𝑟𝑎𝑛𝑑𝑜𝑚
𝑖  is the averaged spectral power from randomly shuffled data at 1053 

the 𝑖th frequency. To get 𝑃𝑟𝑎𝑛𝑑𝑜𝑚
𝑖 , we first randomly shuffle activity data 100 times and compute 1054 

power spectrum for each of them. Then 𝑃𝑟𝑎𝑛𝑑𝑜𝑚
𝑖  is the average of 100 individual spectral power 1055 

at the ith frequency. 1056 
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Figure 5-figure supplement 1:  1057 

(A) Example Lomb-Scargle periodograms of grooming activity of individual per mutants and their 1058 

background control (WT). Spectra are normalized by dividing by variance of individual grooming 1059 

activity binned in 30 minutes. Dash lines and dash dot lines represent threshold power at p=0.05 1060 

and p=0.01 respectively. Spectra of perS, perL, and wt grooming show significant rhythmicities in 1061 

accordance with their known effects on the pace of the clock. Grooming of per0 flies (fourth column 1062 

from left) are arrhythmic according to the individual spectral analyses. 1063 

(B) Periods of significant rhythmicity (at p=0.01 level) in grooming of individual wt, perS and perL 1064 

flies. Different bin sizes of periods is a result of evenly sampled frequencies in spectral analysis. 1065 

N= 29 wt, 19 𝑝𝑒𝑟𝑆, and 29 𝑝𝑒𝑟𝐿. 1066 

(C) To test the effect of binning on rhythmicity, we took grooming data of individual flies recorded 1067 

at 5 Hz, binned them in 30-minutes, 5-minutes, and 1-minute and ran Lomb-Scargle periodogram 1068 

analysis on these time-series. Examples of 5 individual spectra of each bin size are shown here. 1069 

In general, smaller bin size increases the separation between statistical cut-off power (p value, 1070 

horizontal lines) and peak power because of their differential dependence on the number of data 1071 

points in a time-series (see Materials and methods). 1072 

  1073 
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Figure 5-figure supplement 2:  1074 

(A) Locomotion (in 30-minute bins) of wild-type (iso31+) and clock mutants during two days in LD 1075 

cycle followed by four days in DD cycle. Locomotion traces are population averages. In DD, wt 1076 

locomotor activity continues to show 24 hr rhythms. In comparison, locomotion in 𝑝𝑒𝑟𝑆or 𝑝𝑒𝑟𝐿 1077 

flies show shorter or longer rhythms, respectively. For 𝑝𝑒𝑟0 flies, locomotion appears arrhythmic 1078 

in DD. N=8 WT, 8 𝑝𝑒𝑟𝑆, 8 𝑝𝑒𝑟𝐿, 8 𝑝𝑒𝑟0 flies.  1079 

(B) Temporal patterns of population averaged grooming of two additional arrhythmic strains during 1080 

3 days in DD conditions. Top panel shows cyc01 (N=13) and bottom shows clkJRK (N=11). Data 1081 

are binned in 30 minutes. 1082 

(C) (D) Average of spectra of individual cyc01 (panel C left, N=13) and clkJRK (panel D, left, 1083 

N=11) grooming. Dash lines and dash dot lines represent threshold power at p=0.05 and p=0.01 1084 

respectively. Example spectra of individual cyc01 (C) and clkJRK (D) flies show power over the 1085 

circadian range are well below the p=0.05 level.   1086 
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Figure 5-figure supplement 3 1087 

Rhythmicity in grooming patterns need not be a direct result of rhythmicity in locomotion or sleep-1088 

wake cycles. For each of the four example flies, raw data of the fraction of time spent in locomotion, 1089 

grooming and wake behaviors are plotted on left column. Their power spectra (adjacent plots) 1090 

show significant circadian rhythmicity at p=0.05 level (horizontal dashed line). If raw grooming 1091 

data are randomly shuffled and locomotion is modified accordingly so that wake is unchanged 1092 

(middle column), power spectrum of randomized grooming shows no rhythmicity, while modified 1093 

locomotion is still rhythmic. If instead wake data are modified when grooming are randomized 1094 

(right column) so that locomotion is unchanged, then grooming again loses rhythmicity while wake 1095 

remains rhythmic. Time series in the four examples were taken in constant darkness (DD) and 1096 

binned in 30 minutes and Lomb-Scargle periodogram were calculated from the binned data.   1097 



- 56 - 

 

Figure 6-figure supplement 1: 1098 

(A)-(E) Average fraction of time flies spent in grooming (green), locomotion (gray), sleep (dark 1099 

gray), short rest (purple) and feeding (blue). N=53 𝑝𝑒𝑟0 and 83 control, 18 𝑐𝑦𝑐01 and 76 control, 1100 

25 𝑐𝑙𝑘𝐽𝑅𝐾 and 28 control, 23 fumin and 17 control, 17 sss and 28 control. 1101 

(F) Correlation between normalized sleep and grooming in sss, fumin, cyc01, and clkJRK flies.  1102 

(G) Correlation between normalized locomotion and grooming in sss, fumin, cyc01, and clkJRK flies. 1103 

(F)-(G) For the mutants, the fraction of time spent in behaviors are normalized by dividing by the 1104 

average fraction of time in that behavior by their respective control flies. N=17 sss, 23 fumin, 18 1105 

cyc01, 25 clkJRK, and 53 𝑝𝑒𝑟0. 1106 

(H) Population-averaged fractional time spent in grooming. Grooming in imd flies are significantly 1107 

less than control flies (p<0.001), while PGRP-SAseml does not significantly affect the time spent in 1108 

grooming. This suggests that Drosophila grooming relies on a working immune system. The 1109 

decrease in imd flies further suggests that this impact may be independent of the Toll pathway. 1110 

N=56 OR, 47 PGRP-SAseml, 45 imd.  1111 
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Rich Media Files 1112 

Video 1: Sample raw experimental video 1113 

Video 2: Sample video of grooming on head and front legs 1114 

Video 3: Sample video of grooming on wings and hind legs 1115 

Video 4: Sample video of grooming-like behavior (stretching body) 1116 

Source Data Files 1117 

Figure 2-Source data 1: Source data for Figure 2 1118 

Figure 2-Source data 2: Source data for Figure 2-figure supplement 1 1119 

Figure 3-Source data 1: Source data for Figure 3 1120 

Figure 4-Source data 1: Source data for Figure 4 1121 

Figure 4-Source data 2: Source data for Figure 4-figure supplement 1 1122 

Figure 4-Source data 3: Source data for Figure 4-figure supplement 2 1123 

Figure 5-Source data 1: Source data for Figure 5 1124 

Figure 5-Source data 2: Source data for Figure 5-figure supplement 1 1125 

Figure 5-Source data 3: Source data for Figure 5-figure supplement 2 1126 

Figure 5-Source data 4: Source data for Figure 5-figure supplement 3 1127 

Figure 6-Source data 1: Source data for Figure 6 1128 

Figure 6-Source data 2: Source data for Figure 6-figure supplement 1 1129 


