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Abstract

Despite being pervasive, the control of programmed grooming is poorly understood. We
addressed this gap by developing a high-throughput platform that allows long-term detection of
grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm
automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse
genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by
two major internal programs. One of these programs regulates the timing of grooming and
involves the core circadian clock components cycle, clock, and period. The second program
regulates the duration of grooming and, while dependent on cycle and clock, appears to be
independent of period. This emerging dual control model in which one program controls timing
and another controls duration, resembles the two-process regulatory model of sleep. Together,
our quantitative approach presents the opportunity for further dissection of mechanisms

controlling long-term grooming in Drosophila.
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Introduction

Grooming is broadly defined as a class of behaviors directed at the external surface of the body.
Most animals spend considerable time grooming (Mooring et al., 2004; Sachs, 1988) and this
near universality suggests that grooming likely fulfills an essential role for animals (Spruijt et al.,
1992). Grooming assumes a variety of forms in different species—for instance, birds preen the
oily substance produced by the preening gland from their feathers and skin, cats and dogs lick
their fur, and flies sweep their body parts with their legs. Though in most cases the primary
function of grooming is to maintain a clean body surface, different species-specific forms of
grooming have roles in diverse functions such as thermoregulation, communication and social
relationships (Dawkins and Dawkins, 1976; Ferkin et al., 2001; Geist, Valerius. Walther, 1974;
McKenna, 1978; Patenaude and Bovet, 1984; Schino, 2001; Schino et al., 1988; Seyfarth, 1977;

Spruijt et al., 1992; Thiessen et al., 1977; Walther, 1984).

Many animal behaviors, such as locomotion, have been shown to be controlled by both external
stimuli (stimulated behavior) and by internal programs (programmed behavior). An example of
stimulated locomotor activity is the abrupt evasive response triggered by the sudden appearance
of a predator. In contrast, programmed locomotor activities, such as daily foraging for food, are
essential to maintain vital functions of the organism (Bergman et al., 2000). Similar to locomotion,
limited data from mammals suggest that grooming may be controlled by both external stimuli and
internal programs (Hart et al., 1992; Hawlena et al., 2008; Mooring and Samuel, 1998). For
example, stimulated grooming might be performed when the animal is excessively dirty or itchy,
and programmed grooming might be performed as a social ritual. Though grooming is a widely

observed behavior, the basic mechanisms regulating grooming are still not well understood.

The fruit fly Drosophila melanogaster is an ideal model organism with which to dissect the
fundamental mechanisms of grooming and its relationship to other behaviors. The fly is known to
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be a frequent groomer with a rich repertoire of behaviors and a sophisticated genetic toolkit
developed to study them (Connolly, 1968; Owald et al., 2015). The study of Drosophila grooming
can be traced back to the 1960’s (Connolly, 1968; Szebenyi, 1969) and notable progress has
since been made in studying grooming stimulated by the application of dust particles to the insect
exterior (Hampel et al., 2015; Seeds et al., 2014). While most grooming studies thus far have
focused on stimulated grooming, understanding the mechanisms responsible for programmed
grooming will not only identify components distinct to each type of grooming but also inform us
about how programmed grooming is prioritized with regards to other programmed behaviors such

as locomotion, feeding, and sleep in the same organism.

A major hurdle in detecting programmed grooming in Drosophila is the lack of practical
methodology. In many cases, fly grooming events are extracted by eye (King et al., 2016; Phillis
et al., 1993; Yanagawa et al., 2014). Consequently, these data report only conspicuous behaviors
within relatively short durations of observation. To improve resolution and accuracy, a number of
sophisticated video-tracking methods have been recently developed for fly behavior (Kain et al.,
2013; Mendes et al., 2013). These designs are not amenable to easy scale-up for tracking multiple
individuals simultaneously. Moreover, while several of these methods are sufficient for short-term
monitoring (Branson et al., 2009; Kabra et al., 2013), continuous multi-hour measurements and
rapid, automated quantification methods are required to dissect long-term, unstimulated fly

grooming relative to other daily behaviors like locomotion and sleep.

To overcome limitations of currently available methods, we developed a new platform for long-
term video-tracking and automated analysis of fly grooming. The layout of our hardware takes
advantage of a basic design for housing individual flies that is widely used in locomotion and sleep
studies (Gilestro, 2012; Pfeiffenberger et al., 2010; Zimmerman et al., 2008). Here we incorporate
this standardized hardware into studies of grooming. Our algorithm maps fly activity onto a three-

dimensional behavioral space and utilizes k-nearest neighbors (kNN) method, a machine learning
-4 -
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technique, to classify each video frame as grooming, locomotion or rest. Results from multi-day
recordings reveal that Drosophila spend approximately 13% of their waking time grooming, and
the temporal pattern of grooming behavior is tightly regulated by the fly’s internal circadian
pacemaker. These findings suggest that grooming, similar to feeding and rest, likely serves one
or more critical functions in Drosophila. Additionally, genetic perturbations reveal that the
transcription factors CYCLE and CLOCK are critical parts of an internal program that controls the
amount of Drosophila grooming. These grooming data, the easily implementable hardware, and
the automated analysis package together permit the construction of high-resolution ethograms of

stereotypical fly behavior over the circadian time-scale.
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Results

Automatic grooming detecting system

We used a custom-designed video set-up to monitor fly behavior. Within the set-up, insects were
placed individually in cylindrical glass tubes 6 cm long and 5 mm wide with food and cotton at
opposite ends (Figure 1A). Tubes were placed in a chamber where temperature and humidity are
monitored and controlled. Flies were illuminated from the sides by white light-emitting diodes
(LED) to simulate day-night conditions and by infrared LED from below for video imaging. Videos
were captured by a digital camera above the chambers (see Materials and methods). A sample
raw video clip is shown in Video 1. Because the tubes (commonly used with Drosophila Activity
Monitors or DAMs) are commercially available for studying circadian and sleep behavior, this set-

up can be easily replicated by other labs.

We then developed an automated video image analysis package that classifies fly behavior into
grooming, locomotion, or rest. “Grooming” in our algorithm is defined as fly legs rubbing against
each other or sweeping over the surface of the body and wings (Szebenyi, 1969) (Video 2, 3),
“locomotion” as translation of the whole body, and “rest” as the absence of either grooming or
locomotion. Figure 1B shows images of grooming behaviors frequently observed in our videos
involving the head, legs and wings. Since we are primarily interested in detecting grooming events
rather than performing a detailed classification of all types of behavior (Branson et al., 2009),
other behaviors involving body centroid movements, such as feeding, were initially classified as
locomotion. This three-tier classification allowed our algorithm to efficiently and rapidly interpret
grooming events in the recordings without incurring any significant errors in reporting locomotion

and rest.

Behavior classification algorithm
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To classify behavior, raw videos were processed through four major automated steps: fly
identification, feature extraction, classifier training (optional), and subset behavior classification
(Figure 1C). First, fly identification was accomplished with the following analysis. Fly shape was
extracted from a video frame by computing the difference between the current frame and a
reference frame. The reference or background frame was created by comparing eight randomly
selected frames and erasing all moving objects from one of them (see Materials and methods).
The background frame was updated every 1000 seconds to account for changes in the fly’s
surroundings, such as decrease in the level of food and accumulation of debris within the tube,
over the course of multiple hours (Figure 2-figure supplement 1B). A preliminary image of flies in
the current frame was determined by comparing the frame to background and setting all pixels
greater than a threshold C, (Figure 2A) equal to 10. Despite the use of C,, some artifacts in the
form of small objects still remained in the extracted image. A C, = 10 rejects artifacts larger than
20 pixels (Figure 2B). Based on this, to further eliminate remaining small objects, we erased all
closed objects with areas less than a second threshold C; = 25 pixels, retaining only the fly
silhouette (Figure 2-figure supplement 1C, right). Thus, each individual fly and its movements

were distinguished from background structures.

Second, we performed feature extraction to distinguish three specific types of behaviors, which
are grooming, locomotion, and rest, performed by the individual fly. The features we used were:
(1) periphery movement (PM), which characterizes movements of the legs, head and wings; (2)
core movement (CM), which quantifies movements of the thorax and abdomen; and (3) centroid
displacement (CD), which quantifies whole body displacement. Extracting these three features

allowed us to identify patterns corresponding to different types of behavior.

To extract PM and CM, we split each fly’s body into a core and a periphery. Based on the
grayscale distributions of the two parts (Figure 2C), we set the median of pixel grayscale values

as the criterion to split a fly body into core (darker) and periphery (lighter). This criterion made the
-7-
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core and periphery areas roughly equal, giving PM and CM equal weight in the feature space.
Slight variations in light condition across the arena can cause differing grayscale distribution for
each individual. We therefore calculated the median value separately for each fly. After splitting
the fly’s body into two parts, PM and CM were extracted by computing the number of non-

overlapping periphery and core pixels, respectively, in two consecutive frames.

To extract CD, we calculated the average position of all pixels from the individual fly and defined
changes in that quantity between every two consecutive frames as CD. Since the fly moves in
essentially one dimension through the narrow tube, we ignored movements perpendicular to the
long axis of the tube when calculating centroid movement. In subsequent analysis, fly location
was represented by its centroid position. Noise in the apparatus may slightly change the centroid
position even when a fly is stationary. Figure 2D shows the distribution of such centroid
displacements caused by noise. Based on this distribution, we set 0.5 pixel length as the minimum
actual CD -- that is, displacements smaller than 0.5 pixel were ignored. Application of this
threshold eliminated 99.99% of such false displacements and accurately identified fly centroid

displacement.

By extracting these three features (PM, CM, and CD), we were able to distinguish between
locomotion, rest, and grooming. As shown in Figure 2E, relative metrics of PM and CM were
different depending on the type of behavior. Specifically, during locomotion, both parts moved
significantly (Figure 2E, bottom-right) together with substantial changes in CD. During rest, no
significant movement was seen either in the periphery or the core (Figure 2E, bottom-left). During
grooming, the periphery moved more than the core (Figure 2E, top-left, top-right). Importantly,
since differences in fly size can affect values of PM, CM and CD, we normalized these features
to individual fly size before proceeding with further analysis (see Materials and methods). The
behavior-dependent changes of these features suggest that PM, CM and CD are appropriate

metrics for behavior classification.
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Third, to produce a rapid, objective and automated quantification of grooming behavior, we
performed classifier training to teach the algorithm to automatically recognize these features. We
classified fly behavior by applying the k-nearest neighbors (kNN) technique to the normalized
features (Bishop, 2007; Dankert et al., 2009; Kain et al., 2013). Briefly, kNN works by placing an
unlabeled sample into a feature space with pre-labeled samples serving as a training set for the
algorithm. The label or class of the unlabeled sample is then decided by the label that is most
common among its k-nearest training samples. In our case, the nearest neighbors were searched
through a k-d tree algorithm (Sproull, 1991). To construct the kNN classifier, we prepared a
training set by visually labeling fly behavior from 25000 frames (9322 frames of grooming, 9930
frames of locomotion and 5748 frames of resting from 20 w'’"® flies) and mapping them onto a
three-dimensional feature space where the axes correspond to normalized PM, CM and CD
(Figure 2F, color symbols). With these training samples, we applied 10-fold cross-validation
(Bishop, 2007; McLachlan et al., 2005) to the kNN classifier with k ranging from 1 to 50 and settled
on k=10 to achieve balance between computing time and accuracy (Figure 2-figure supplement

1D).

Finally, to specifically distinguish between grooming behavior and other types of peripheral
movement, we pruned output labels from the kNN classifier (Figure 3A). The algorithm calculates
features from every two consecutive frames, resulting in some classifications being confounded
by short-term fly activity. For example, features extracted from only two frames often cannot
distinguish a fly stretching its body parts from one that is grooming (Video 4). Based on our
observations during creation of the training set, a typical bout of grooming lasts >3 seconds or for
15 frames at our normal frame rate, longer than an average stretching event, which lasts for ~1
second. Accordingly, we devised a strategy in which a ~15-frame-long temporal filter slid one
frame at a time to eliminate false grooming labels caused by short, grooming-like behavior.

Grooming designations were retained only if at least a minimum number of grooming frames were
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found within the filter (Figure 3A). To determine the size of the filter and the minimum number of
grooming frames within, we assessed the accuracy of our classifier with the ‘minimum number of
grooming frames/size of filter’ at 4/5, 8/10, 8/15, 10/15, 10/20, 12/15, 14/15, and 15/20. These
tests were conducted with a 10-minute video (N=20 Canton S flies). As expected, comparison
between 8/15, 10/15, 12/15 and 14/15 shows (Figure 3B) that for fixed filter sizes, a larger number
of grooming frames led to fewer false positive (higher accuracy) but more frequent false negative
identification of grooming (lower sensitivity). On the other hand, <12 minimum number increased
risk of misidentifying other short-term grooming-like behaviors as grooming. Based on these
findings, we set the pruning filter to be 12/15, simultaneously minimizing false positive and false
negative errors. Because of this pruning process, if fewer than 12 grooming frames were found
within a 15-frame sliding window, then all grooming frames were re-labeled as locomotion once
the left edge of the window reached the fifteenth frame (Figure 3A). Thus, these pruned labels
were the final output of our grooming classification algorithm, consisting of fly identification,

feature extraction, classifier training.

The accuracy of our algorithm was evaluated by comparing the computer-identified grooming with
manually-labeled grooming identified by visual inspection. We tested a total of 450 minutes of
videos from a different set of w'’’® flies (N=15) than the one used in training the classifier. The
comparisons showed that, of the grooming events picked out by our algorithm, 92.1% were
manually verified as true grooming events (Figure 3C, top panel). Furthermore, among all
manually scored grooming events, 95.5% were successfully identified by our computational
method (Figure 3C, bottom panel). Since size and pigmentation differences between genotypes
can potentially affect behavioral classification, we investigated robustness of our w'’"-trained
classifier with manually-labeled data from Canton S, iso31, and yw strains (10-minute videos with
N=20 of each type). As shown in Figure 3C, error rates in each tested strain less than 10%.

Together, these results suggest that our method identifies grooming with high fidelity in several
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different Drosophila melanogaster strains.

Flies spend a significant portion of their awake time grooming

The solitary flies in our experiments also spent portions of their time feeding (Ja et al., 2007) and
sleeping (Hendricks et al., 2000; Shaw et al., 2000), behaviors that our classifier did not initially
label but that can nevertheless be identified by our algorithm. Prolonged proximity (> 3 seconds,
< body length) with food was accepted as a proxy for feeding. Rest periods lasting = 5 minutes
(Dubowy and Sehgal, 2017) were classified as sleep, following the currently accepted definition
of the behavior. Together, these additional classifications led to the identification of five major
behaviors in our data: grooming, locomotion, feeding, short rest (< 5 minutes of quiescence), and
sleep (Figure 4). The first four behaviors are mutually exclusive at the level of single events,
together defining the wake state of the fly, and collectively complementary to the sleep state
(Figure 4A). We found that a typical iso37" fly under 12 hours light:12 hours dark (LD) conditions
spent approximately 6% of its daily time grooming, ~24% time locomoting, ~3% time feeding,
~16% resting, and the remaining ~51% sleeping (Figure 4B). That is, the average iso37* fly spent
~13% of its awake time grooming. It is worth noting here that such behavioral statistics can vary
even between wild-type laboratory strains (Colomb and Brembs, 2015; Zalucki et al., 2015). For
instance, similar analysis of a Canton-S strain showed that these flies groomed ~19% of their
awake time (Figure 4-figure supplement 1A). These analyses demonstrate that our platform for
long-term video-tracking and automated analysis can provide a quantitative ethological structure

for daily basal fly behavior.

Since sleep and wake are complementary states, we expected fractional time spent in sleep to
negatively correlate with that of the four wake behaviors our method tracks. Pair-wise
comparisons (Pearson’s correlation coefficient, r, see Materials and Methods) of individual fly

sleep with grooming, locomotion, short rest, or feeding, showed the expected negative
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relationships (Figure 4C and Figure 4-figure supplement 1B). Interestingly, the strength of
negative correlation with sleep (Figure 4C) increased with the average fractional time spent in a
wake behavior (Figure 4B). We reasoned that similar analysis among the wake behaviors, in
contrast, should show positive correlations. Pair-wise comparisons among grooming, locomotion,
short rest and feeding showed the predicted positive correlations, though to varying degrees
(Figure 4D and Figure 4-figure supplement 1C). The analyses further revealed that the fraction of
time a fly spent in short rest was the best predictor of its grooming time (r = 0.42 in iso371* and
0.26 in Canton-S) while locomotion (r =0.26 and -0.13) and feeding (r = 0.27 and 0.06) were both

less reliable in predicting grooming.

The weaker grooming-locomotion and grooming-feeding correlations were unexpected for two
reasons. First, daily variations in grooming levels had appeared to closely follow those in
locomotion (Figure 4-figure supplement 2A), suggesting the possibility that grooming is a by-
product of the more robustly driven locomotor activity. Second, feeding activity has been
postulated to act as a trigger for grooming with food debris serving as an external stimulus
(Hampel et al., 2015; Seeds et al., 2014). To further dissect the lack of predictive relationship
between grooming and locomotion, we first examined temporal parameters that describe
grooming and locomotion over short timescales (Figure 4-figure supplement 2A-E). Basal
locomotor events during mid-day and night (Figure 4-figure supplement 2A, rectangles) were
relatively sparse compared to grooming episodes during the same times. This difference in inter-
event time interval between grooming and locomotion persisted to different degrees throughout
the day-night cycle, such that the average longest pause between two subsequent grooming
events was ~88 minutes while that between two locomotor events was ~132 minutes (Figure 4-
figure supplement 2C). Examination of the duration of individual events showed grooming events
on average lasted for ~0.23 minutes compared to ~0.44 for locomotor events (Figure 4-figure

supplement 2D). These analyses revealed significant differences between the two behaviors over
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short timescales and do not support locomotor activity as a driver of grooming.

To focus on temporal dynamics at longer timescales, we binned multi-day data in 30 minutes
(Figure 4-figure supplement 2F, G) and applied least square fit to a previously developed
mathematical model that describes long timescale variations in fly activity in terms of exponential
functions (Lazopulo and Syed, 2016, 2017). The functions were defined by four rate parameters
byr, bup, bgr and bgp, where subscripts denote morning rise (MR), morning decay (MD), evening
rise (ER) and evening decay (ED), and two duration parameters that describe the relative
durations of morning (TM) and evening (TE) peaks in activity (Figure 4-figure supplement 2H and
Figure 4-figure supplement 3). Results from this analysis showed that the rate parameter b, of
grooming was smaller than that of locomotion (Figure 4-figure supplement 2I), indicating a slower
increase in night-time grooming activity. Additionally, the evening duration parameter (TE) for
grooming was greater than that for locomotion (Figure 4-figure supplement 2J), indicating that the
evening peak in grooming lasted longer. These differences in long timescale kinetics were again
inconsistent with locomotor activity as a driver of grooming. Finally, comparison with large
timescale variations in feeding patterns showed that peak time in contacting food was offset by
2-4 hours from nearby peaks in grooming (Figure 4-figure supplement 20-P). The large temporal
offset suggests contact with food is also not likely to drive the majority of grooming events
observed in our experiments. Thus, according to our analyses of the kinetics of Drosophila
ethograms in our system, neither locomotor activity nor feeding is likely to be a primary driver of

basal grooming.

To identify major drivers of basal grooming, we noted that multi-day time series of the behaviors
showed time-of-day dependent changes in each behavior (Figure 4E). The appearance of
repeating patterns raised the possibility that external light-dark (LD) cycles alone or in combination
with internal programs could be exerting temporal control over several of these behavioral

outputs, including grooming. Indeed, environmental light-dark cycles through influence on the
-13-
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circadian clock are known to drive rhythmic changes in fly sleep and wake durations and within
the awake state, feeding, and locomotor activities (Chatterjee and Rouyer, 2016; Pfeiffenberger
et al., 2010). That these rhythms persisted in the absence of LD cycles is generally considered to

be strong support for clock control of these behaviors.

We set out to determine whether the circadian clock drives rhythmic modulations in fly daily
grooming independent of other circadian-regulated behaviors--that is, to test whether grooming
exhibits circadian oscillations simply because individual grooming events are mutually exclusive
of other individual wake activities. We recognized that the mutual exclusivity of the behaviors seen
at the level of individual events (Figure 4A) did not persist at the level of fractional time in each
behavior where the long timescale modulations are visible (Figure 4E). This is because fractional
time data are binned and the only constraint on these data was that the sum of the time spent in
each wake behavior (grooming, locomotion, feeding and short rest) and sleep equaled 1 for each
time bin (Figure 4-figure supplement 1F). In this representation, therefore, rhythmicity of one

behavior (i.e., grooming) did not dictate rhythmic status of another (i.e., locomotion).

To test the independence of rhythms, we performed a series of “shuffling experiments” using well
established (Allada and Chung, 2010; Chatterjee and Rouyer, 2016) rhythmicities of wakefulness
and locomotion as metrics (Figure 4F and supplemental figures). In brief, we took data from Figure
4E in which grooming, locomotion and wakefulness have LD-driven ~24 hour rhythms (Figure 4F,
left and power spectra) and computationally randomized the grooming time-series such that it lost
rhythmicity (Figure 4F, right). To account for the randomized grooming, we also adjusted either
locomotion (Figure 4F, upper panel) or wakefulness (Figure 4F, bottom panel), in both cases
ensuring that wakefulness was between 0 and 1 at all times (see Materials and methods). In either
case, we found that rhythmicity in locomotion and wakefulness were intact regardless of the
rhythmic status of grooming. The simulation result suggested that circadian control of fly

locomotion and wakefulness does not guarantee circadian control of underlying basal grooming,
-14 -
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at least as measured from changes in the duration of the behaviors. Therefore, demonstration of
robust ~24 hour rhythms in grooming in the absence of any external cues should be strong

evidence in favor of circadian control of the behavior.

Temporal pattern of grooming is controlled by the circadian clock

To test whether basal grooming is also under circadian control, we first entrained iso37" flies to
two days of alternating light-dark cycles and then monitored their behavior over multiple days in
constant darkness (DD). In the absence of light cues, locomotor, feeding and sleep showed the
familiar clock-driven rhythms in their daily timing (Figure 5A, B). Though short rest appeared to
undergo rhythmic changes (Figure 5A), spectral analysis indicated these changes did not result
in statistically significant rhythms at the p=0.05 level (Figure 5B). Lack of rhythms in short rest is
consistent with our earlier reasoning that rhythmic wakefulness and locomotion does not

necessarily imply rhythmicity of each behavior in the awake state.

Grooming data also showed periodic changes in constant darkness (Figure 5C). Power spectra
of individual time-series (‘WT’ in Figure 5D and Figure 5-figure supplement 1A) indicated these
periodic changes to be statistically rhythmic by revealing peaks significant at p=0.01 in 100% of
flies (29 out of 29 individuals, Figure 5E). The average period of oscillations was 23.72 hours,
with a standard deviation of 0.72 hours (Figure 5-figure supplement 1B). The presence of these
robust circadian rhythms in the absence of external cues further support the hypothesis that fly
basal grooming is under control of the internal timekeeper. Consistent with our prediction that
grooming rhythms in DD do not necessarily follow from rhythms in locomotion or wakefulness, we
found that knowing locomotion or wakefulness is rhythmic did not inform about the rhythmic status
of grooming (Figure 5-figure supplement 3). This finding further underscored the importance of
the DD studies in establishing rhythmicity in basal grooming. It should be noted here that our

simulation results do not demonstrate bidirectional independence of rhythmicity in wakefulness
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and grooming but, only that rhythmicity of wakefulness does not depend on that of grooming.
Demonstration of fully independent rhythms in the two behaviors is beyond the scope of the

present study.

We next took advantage of several circadian mutants to examine further the control of grooming
by the circadian clock. The Drosophila clock is composed of two interlocked genetic feedback
loops in which period (per) is one of the core components and whose transcription is controlled
by the primary transcription factors Clock (clk) and Cycle (cyc) (Allada and Chung, 2010). The per
gene has several well-characterized mutant alleles, two of which---per® and per‘---produce short
and long circadian rhythms, respectively, while a third, per’, results in arrhythmic behavior
(Konopka and Benzer, 1971). Population-averaged grooming of per® and per- showed altered
oscillations in LD and DD (Figure 5C, second and third row), with average DD periods of 19.23
+ 0.57 hours and 28.84 + 1.13 hours, respectively (Figure 5D, E and Figure 5-figure supplement
1A). The periods of oscillation in grooming were well within published values of circadian rhythms
of these mutants (Konopka and Benzer, 1971) and in agreement with alterations in locomotor
rhythms of the flies (Figure 5-figure supplement 2A). Consistent with these results, grooming in
per® flies was arrhythmic (Figure 5C, bottom row) and, when analyzed at the individual fly level,
the power spectra unveiled the absence of statistically significant rhythms in 19 out of 20 flies at
p=0.01 level (Figure 5D, E and Figure 5-figure supplement 1A). Moreover, analysis of grooming
patterns in cyc’’ (Rutila et al., 1998) and c/k’™ (Allada et al., 1998), arrhythmic mutants of cyc and
clk, also showed loss of circadian rhythms (Figure 5E and Figure 5-figure supplement 2B-D).
Together, these results support the hypothesis that the circadian clock temporally modulates fly

grooming.

Grooming duration is controlled by cycle and clock
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To test whether, in addition to regulating the timing of grooming, the circadian clock also regulates
grooming duration, we examined the average duration of grooming in circadian mutants. Despite
causing major changes in temporal patterns of grooming, the per’ mutation did not significantly
change the average duration of grooming in these flies (Figure 6A). In contrast, cyc®’ and clk’®
mutants both exhibited increased daily average grooming relative to their respective genetic
controls (Figure 6B, C). While both mutants exhibited increased grooming duration, this change
was accompanied by opposing changes in their locomotion: cyc? flies spent less time and clk’™
flies spent almost twice as much time in locomotion (Figure 6B, C, pie plots). Thus, the increase
in cyc® grooming came almost entirely from loss of locomotor activity while the increase in clk’®
grooming came from loss of sleep. These results support the hypothesis that locomotion and
grooming are partly independent behaviors and further suggests that the cyc® and c/k’* mutations
alter the insect’s internal homeostasis in distinct ways, similar to phenotypic differences reported
previously in sleep studies involving cyc’’ and clk’ (Hendricks et al., 2003; Shaw et al., 2002).

Importantly, together with per® data, the results raise the possibility of non-circadian roles for cyc

and clk in setting the duration of internally driven grooming in Drosophila.

cycle and clock have also been implicated in stress response, particularly in regulating level of
sleep in response to sleep deprivation and adjusting locomotor output in response to nutrient
unavailability (Hendricks et al., 2003; Keene et al., 2010; Shaw et al., 2002). Because grooming
and sleep have both been previously linked to stress, we asked whether reduction in sleep is
always accompanied by an increase in grooming as seen in our clk’ data. To address this
question, we examined relationship between grooming and sleep in standard LD cycles in two
short-sleeping mutants--fumin and sleepless (sss). Consistent with the original studies (Koh et
al., 2008; Kume et al., 2005), our method found both strains to have extremely low levels of sleep
(Figure 6D, E, pie plots). But, while loss of sleep in fumin was accompanied by an upregulation in

grooming (Figure 6D), loss of sleep in sss was accompanied by a dramatic downregulation in
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grooming, compared to control flies (Figure 6E). These divergent relationships between sleep and
grooming (e.g. sss vs. fumin) and between locomotion and grooming (e.g. clk” vs. cyc®’) became
more evident when individuals of different genotypes were compared together (Figure 6-figure
supplement 1F, G). To better visualize the effects of disparate mutations, data of each genotype
in these plots were normalized to the population-mean of its genetic control. These results
suggest that resetting of the level of internally-driven grooming can occur via a number of ways

with complex compensatory changes in sleep and locomotor behavior.

Accumulated data from our experiments suggest that grooming is an innate fly behavior controlled
by two major regulators. One of these regulators controls temporal patterns in grooming and the
other controls amount of time spent in grooming. Circadian genes per, cyc and clk are involved in
controlling the timing of peaks/troughs in grooming rhythms while cyc and clk are also involved in
setting how much time is spent grooming. The apparent absence of per from the second
regulatory mechanism is consistent with the possibility that the two control mechanisms operate

independently.

Nearly all animals tested exhibit daily basal grooming behavior, suggesting that grooming is not
only fundamental to health but also reflects a generally healthy state. Consistent with this, loss
of grooming is indicative of sickness behavior (Hart, 1988) associated with infection or old age,
and, in the case of humans, mental iliness. A greater understanding of the molecular mechanisms
regulating grooming would provide insight into the principles and neural circuits underlying other
complex programmed behaviors, as well as potentially identify biomarkers of pathological disease
states. Critical to the dissection of these molecular mechanisms is a system for rapid, automated
interpretation of grooming in a genetically tractable model organism. The development of our
platform will facilitate high-throughput and unbiased analysis of the genetic regulators and neural
circuits that control grooming, as well as those responsible for loss of grooming in the context of

disease.
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Discussion

Grooming continues to be one of the least understood Drosophila behaviors, possibly due to the
technical challenges of detecting grooming events in this small insect. Early work describing fly
grooming relied on manual scoring (Connolly, 1968; Szebenyi, 1969; Tinbergen, 1965), which
imposes significant limitations on the length of events that can be detected, fidelity and objectivity
of detection, and the level of detail that can be extracted from the data. Despite such limitations,
these initial studies made a number of noteworthy observations. Szebenyi delineated all the major
modes of fly grooming and suggested that repetitive grooming actions may closely follow a preset
sequence (Szebenyi, 1969). A subsequent study in the blowfly offered a more refined mechanistic
picture of insect grooming by proposing that the sequential actions form a hierarchical structure
(Dawkins and Dawkins, 1976). Combining modern computational and genetic tools, an elegant
study in Drosophila recently confirmed these previous hypotheses (Seeds et al., 2014). That fruit
flies may groom spontaneously in the absence of any apparent stimulus has also been previously
suggested (Connolly, 1968; Tinbergen, 1965). Consistent with this, our work provides evidence
that fruit flies groom as part of their daily repertoire of internally programmed behaviors and often
without any obvious external stimulus. Our analysis revealed that over a period of hours, grooming
is temporally structured by the fly circadian clock, with peak activity around dawn and dusk. The
study also identifies transcription factors CLOCK and CYCLE as critical molecular components

that control the amplitude of programmed Drosophila grooming.

Machine-learning is increasingly gaining popularity due to its applicability to virtually any problem
involving pattern classification, including in studies aimed at deconstructing stereotyped behavior
in the fruit fly (Branson et al., 2009; Kabra et al., 2013; Kain et al., 2013; Mendes et al., 2013;
Valletta et al., 2017). Similar to these recent efforts, we constructed a computational pipeline

incorporating elements of machine learning to automatically identify grooming events in video
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recordings of behaving flies. Our approach relies, in particular, on a supervised k-nearest
neighbors algorithm to broadly classify behavior into grooming, locomotion and rest (Figure 2).
Application of additional optional filters yielded approximate data on feeding and sleep (Figure 4).
While previous methods offer important details on different modes of grooming (Berman et al.,
2014; Seeds et al., 2014), leg movements (Kain et al., 2013; Mendes et al., 2013), and fly-fly
interactions (Branson et al., 2009; Kabra et al., 2013) from short videos, the methods have limited
capability for interpreting multi-day and multi-fly recordings. The method presented here offers
less detail on modes of grooming, but can instead readily dissect circadian time-scale recordings

into three to five behavioral classes on a typical personal computer.

The apparatus used in this method (Figure 1) also offers a number of advantages over current
ones. First, most items used in the apparatus, including the ~6 cm tubes in which flies are
visualized, are standard in a typical circadian experiment studying fly locomotion or sleep
(Lazopulo et al., 2015; Pfeiffenberger et al., 2010) using the Drosophila Activity Monitor (DAM).
The retention of this basic feature should lower the technical hurdle for the interested investigator
who is likely to be one already engaged in locomotion and sleep studies in Drosophila. The use
of a shared design to house flies also means that both experimental subjects and certain
conclusions drawn from one platform may be readily transferred to the other. Most current
grooming methods require specialized equipment for fly stimulation and detection (Seeds et al.,
2014), elaborate optics (Kain et al., 2013), or a specific form of fluorescence microscopy (Mendes
et al., 2013). Second, our apparatus can simultaneously monitor up to ~20 flies, while the existing
approaches, though offering higher-resolution data, monitor only one animal at a time. The
scalability and high-throughput nature of our platform should appeal to investigators interested in,
for example, large-scale genetic studies to identify mechanisms that differentially affect grooming,
locomotion and rest (King et al., 2016). Finally, the flies in our apparatus are allowed to move

freely over a distance roughly 10 times their body length and still remain in the camera’s field of
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view while technical constraints in other studies limit visualization to short distances (Mendes et
al., 2013) . The relative freedom of mobility, access to food, and long time-scales of observation

offered by our apparatus thus facilitate analysis of basal, internally programmed behavior.

These properties make our platform amenable to addressing questions of biological relevance,
such as the importance of grooming behavior, its temporal regulation with regards to other fly
behaviors, and its dependence on the circadian timekeeping system. First, we found that flies
consistently devote a significant fraction of time to grooming behavior during periods of
wakefulness (13%), and surprisingly, that grooming behavior is observed even during periods of
reduced locomotor activity (Figure 4-figure supplement 2A). This suggests that the benefits of
grooming outweigh the caloric resources expended and the resulting interruption of rest,

underscoring the hypothesis that daily grooming is a fundamental behavior of Drosophila.

A few recent studies (Hampel et al., 2015; Phillis et al., 1993; Seeds et al., 2014) have shown that
fly grooming can be directly induced by peripheral stimuli, and there has been considerable
progress toward identifying the behavioral and neural aspects of such stimulus-induced grooming.
However, programmed grooming, or grooming in the absence of a macroscopic stimulus, remains
relatively understudied in Drosophila. To our knowledge, the existence of programmed grooming,

first proposed in the mid 60’s, still remains unreported.

Data from this study suggest that a significant portion of daily fly grooming is driven by internal
programs. Flies in our experiments are active for ~34% of the time within a 24-hour period, during
which they mostly engage in grooming, locomotion and feeding. Behavioral analysis showed that,
like sleep, locomotion and feeding, fly grooming behavior is modulated by oscillations of the
circadian clock (Figure 5). This finding raised the possibility that the observed grooming was
stimulated by rhythms in contact with food or locomotor activity. However, closer examination

revealed that kinetics in feeding and locomotion were distinct from those of grooming (Figure 4-
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figure supplement 2). Additionally, genetic modifications resulted in contrasting changes in these
behaviors (Figure 6). These results together suggest that the majority of grooming events
detected in our experiments are not triggered by external stimuli such as light, food, and locomotor
movements. Rather, internal regulatory mechanisms, independent of external stimuli, likely drive

this programmed behavior.

Multi-day recordings of wild-type flies in constant darkness showed 24-hour rhythms in daily
grooming patterns (Figure 5, Figure 5-figure supplement 1). Furthermore, these rhythms were
shifted appropriately in the canonical period mutants per- and per® and abolished in arrhythmic
per’ flies (Figure 5). These data support a regulatory model in which timing of programmed
grooming behavior is orchestrated by the circadian clock. Notably, since loss of rhythmicity did
not significantly affect the amount of grooming (Figure 6A), our results suggest that the primary
role of the clock is to organize the behavior in time without influencing the total time flies dedicate

to grooming.

Intriguingly, two other circadian mutations, cyc® and clk’, increased the proportion of daily time
flies spend grooming (Figure 6B, C), implying that the changes in grooming level may not be due
to circadian defects. These data are consistent with the hypothesis that clock-independent but

cyc- and clk- dependent pathways regulate the amount of programmed grooming behavior.

Finally, why are flies innately programmed to groom? The present study does not directly address
this important question, but given that microscopic pathogens can sporulate on the fly cuticle and
eventually infect the insect (Leger et al., 2011), persistent grooming may serve as a first line of
defense against such attack. Thus, the immune system may constitute another internal program,
similar to the cyc and clk-controlled mechanisms, that drives fly grooming; if so, we hypothesized
that mutants with defective immune response may exhibit altered grooming behavior (Lemaitre et

al., 1995; Michel et al., 2001). Consistent with this, we found that grooming was reduced in the
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immune deficient imd mutant (Figure 6-figure supplement 1H), though a second immune deficient
strain lacking a member of the Toll pathway (PGRP-SA*™) did not show a significant change.
Further studies are required to clarify these initial results and elucidate the biological function of

programmed grooming in Drosophila.

Together, our data provide strong supporting evidence for programmed grooming in Drosophila
and suggest that this innate behavior is driven by two possibly distinct sets of regulatory systems.
The circadian system temporally segregates time-dependent variations in grooming from those
of other essential behavioral outputs like feeding and sleep. Circadian coordination of grooming
underscores a previously under-appreciated importance of this behavior in the daily routine of the
fruit fly. The second regulatory system adjusts the level of grooming relative to other behaviors.
This set of regulation likely confers adaptability on the animal by allowing it to up- or downregulate
grooming as necessitated by internal and external conditions. The dual control mechanism of
grooming proposed here is highly reminiscent of the two-process framework--- circadian and
homeostatic--- that is widely used in understanding sleep regulation (Borbély, 1982). Although
this work has not demonstrated grooming is under homeostatic control, future studies could be

aimed at better characterizing the nature of the non-circadian regulatory system of fly grooming.

In summary, we present here a new platform to detect innate grooming behavior simultaneously
and for days at a time in multiple individual fruit flies. The apparatus can be assembled easily,
and the accompanying analytics are available publicly. Utilizing this platform, we report several
mechanisms that are possibly responsible for driving the timing and level of programmed
grooming in Drosophila. We also suggest future experiments that through use of this platform can
lead to deeper understanding of the underlying biology of grooming and its relation to other

essential fly behaviors.

Materials and methods
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Key resources table

Reagent type (species) | Designation Source or reference Identif Additional
or resource iers information

strain, strain sssP! DOI: on iso31

background (Drosophila 10.1126/science.1155942 background

melanogaster, male)

strain, strain iso31 DOl:

background (Drosophila 10.1126/science.1155942

melanogaster, male)

strain, strain fumin DOI: on w718

background (Drosophila https://doi.org/10.1523/JN background

melanogaster, male) EUROSCI.2048-05.2005

strain, strain w18 Bloomington Drosophila BDSC:

background (Drosophila Stock Center 3605

melanogaster, male)

strain, strain Canton S Bloomington Drosophila BDSC:

background (Drosophila Stock Center 64349

melanogaster, male)

strain, strain clkIRK this paper backcrossed for

background (Drosophila five generations to

melanogaster, male) iso31

strain, strain per? this paper backcrossed for

background (Drosophila five generations to

melanogaster, male) iso31*

strain, strain pers this paper backcrossed for six

background (Drosophila generations to

melanogaster, male) iso31*

strain, strain per- this paper backcrossed for six

background (Drosophila generations to

melanogaster, male) is031*

strain, strain cycd! other on Canton S

background (Drosophila background, gifts

melanogaster, male) from William Ja

strain, strain is031* other gifts from Michael

background (Drosophila Young

melanogaster, male)

Fly strains

Clock mutants per®, per -, and per’ were backcrossed for five-six generations to an iso317 with
mini-white insertion strain (iso31*). cyc?’ flies, gifts from William Ja (The Scripps Research
Institute), have the Canton S background. CIk’ flies were backcrossed for five generations to
is031. sss”" mutant flies, gifts from Amita Sehgal (Perelman School of Medicine at the University

of Pennsylvania), have the iso31 background. fumin mutants, gifts from F. Rob Jackson (Tufts
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University School of Medicine), have the w’’"® background. Flies were bred and raised at 23°C
and 40% relative humidity on standard cornmeal and molasses food. All experiments were done
with 5-8 days old males at 26°C and 70-80% relative humidity in a custom-built behavior tracking
chamber (Figure 1 and Figure 2-figure supplement 1A). For each experiment, control strain refers

to the genetic background of a mutant. WT flies in Figures 4, 5 refer to the iso37* line.
Behavior tracking apparatus

Chamber. Flies were placed individually in glass tubes (Trikinetics Inc., Waltham, MA, PGT5x65)
with food and a cotton plug at opposite ends. Twenty tubes were placed on a custom-designed
acrylic plate inside a transparent acrylic cuboid box for simultaneous imaging. Temperature and
humidity were monitored every 5 mins with a digital thermometer (Dallas Semiconductor, Dallas,
TX, DS18B20) and a humidity sensor (Honeywell, Morris Plains, NJ, HIH-4010), respectively,
while a wet sponge inside the chamber kept the relative humidity around 70%-80% (Figure 1-

figure supplement 1A).

lllumination. The chamber was illuminated by two sets of light-emitting diode (LED) strips. White
LEDs (LEDwholesalers, Hayward, CA, 2026) producing ~700 lux were used to simulate daytime
conditions and infrared LEDs (LEDLIGHTSWORLD, Bellevue, WA, SMD5050-300-IR 850nm)

were used to visualize the flies at all times.

Camera. A CCD monochrome camera (The Imaging Source, Charlotte, NC, DMK-23U445) fitted
with a varifocal lens (Computar, Cary, NC, T2Z-3514-CS) was used for video imaging. To
minimize influence of chamber’s light/dark conditions on video quality, we put a 780 nm long pass
filter (Midopt, Palatine, IL, LP780-30.5) in front of the lens. Videos were saved as 8-bit images in

.avi format with 1280 x 960 resolution at 10 Hz and down-sampled as needed.
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Analytic hardware and runtime

Using a desktop computer with Intel Core i7-4770 3.4 GHz processer and 4 x 4 G DDR3 1600
MHz RAM, it takes ~7 hours to extract grooming, locomotion and rest data from an 8-hour video
of 20 flies recorded in 10 Hz (in total 288000 frames) at 1280 pixel x 960 pixel resolution. Videos

are analyzed every 2 frames (5 Hz), which is sufficient to capture grooming events.

Algorithm for automatic detection of grooming

All computational analyses were done with custom-written Matlab scripts that will be available at

https://github.com/sbadvance/Drosophila-Grooming-Tracking.qgit (Qiao, 2017)

Fly shape extraction. Fly shape was extracted by applying a background subtraction algorithm.
The background or reference frame is constructed randomly picking two frames, a template and
a contrast, and comparing their pixel grayscale values and erasing all moving objects from the
template frame. To remove the fly from the template frame, we replace the pixels belonging to
the fly with corresponding pixels from contrast frames, relying on the fact that a fly is always darker
than the surrounding objects. The template frame with no fly present then becomes the
background frame. Additionally, because a fly’s surroundings, including food debris, change
substantially during the course of an experiment (Figure 2-figure supplement 1B), the background
frame is regenerated every 1000 seconds. Lastly, if a fly occupies the same area in the template
and contrast frames, the overlapping region cannot be erased on the template. To circumvent this
problem, every time a background frame is generated, we randomly choose seven, instead of
one, frames as contrast frames and compare all of them with the template. When a fly does not
move for more than 1000 seconds, the fly will not be removed from the background and cannot

be detected in other frames during this 1000 seconds. Thus, when a fly is not detected, we
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consider the fly to be stationary at the position where it was last detected.

To reduce effects of charge coupled device (CCD) image noise and fluctuations in the system,
we set a minimum change C, as the threshold to accept grayscale changes from fly movements.
We denote the grayscale value of a pixel located at (x, y) (in units of pixel, in our case, x € [1:1280],

y € [1:960]) in the template as Iiempiate(x,y) @nd in the contrast frame Iconerase(x,yy - ONly if

Itemplate(x,y) - Icontrast(x,y) > CO

then

Itemplate(x,y) = Icontrast(x,y)

While increasing threshold C, reduces noise, it can also lead to rejection of real movements of
the fly. To optimize C,, we tested noise levels in our images by analyzing a three-hour video with
dead flies. In the test, 30 pairs of consecutive frames were randomly chosen from the video and
the differences between their corresponding grayscale pixel values were calculated. The
distribution of the differences, stemming from noise, is shown in Figure 2A. Based on this

distribution, we set €,=10, which excludes 99.99% of noise-related changes in grayscale values.

Feature normalization. Since PM and CM both represent areas (number of pixels in area), while
CD represents distance, we take the square root of PM and CM to make the dimensions of the
features homogeneous. In addition, fly size varies between individuals and across experimental
settings. To facilitate comparison of data in feature space, we therefore normalize PM, CM and
CD of each fly with a scale parameter SP equal to the square root of the area of that fly. Thus,

the final form of normalized features are
Normalized PM = vPM/SP

Normalized CM = ~CM/SP
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Normalized CD = CD/SP

Spectral analysis

Figure 4, 5 and Figure 5-figure supplement 1, 2, 3: To measure periodicity in locomotion and
grooming recordings, we applied the Lomb-Scargle periodogram (Lazopulo et al., 2015; Scargle,
1982) to time-series that were binned into 30-minute periods. Power at indicated p values shown

in power spectra were calculated according to
Power = —In(1 — (1 — p)/M)

where p is the p-value and N is the number of frequencies computed in Lomb-Scargle

periodogram.

To test the effect of binning on rhythmicity, we binned grooming activity of individual flies in 30-
minutes, 5-minutes, and 1-minute bin sizes and ran Lomb-Scargle periodogram analysis on these
binned data, as well as raw data without any additional binning. Examples of 5 individual spectra
of each bin size are shown in Figure 5-figure supplement 1C. As shown in the figure, the
separation between statistical cut-off power (at certain p value, horizontal lines) and peak power
increases with smaller bin size or equivalently, larger number of data points (N). This is because

in Lomb-Scargle periodogram, cut-off power grows as log (N) while peak power grows as N.
Time series randomization

In Figure 4F and Figure 5-figure supplement 3 randomized grooming was generated by randomly
shuffling time in raw grooming data. The corresponding modified locomotion and wake were

calculated according to

Modified locomotion = original locomotion + original grooming — randomized grooming
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Modified wake = original wakefulness + original grooming — randomized grooming

These manipulations modified either locomotion or wake while keeping the other unchanged.

Statistics

No sample size estimation was performed when the study was being designed. Unless otherwise
specified, quantitative experiments with statistical analysis were repeated at least three times
independently. Exclusion of data applies to flies which were physically damaged (for example,
broken wings or legs), physically confined (for example, trapped by condensation inside tubes),
or dead during experiments. For testing statistical significance of differences between groups, we
first tested the normality of data by one-sample Kolmogorov-Smirnov test. Two-sample F-test was
applied for equal variances test. Samples with equal variances were compared using two-tailed
t-test. Satterthwaite's approximation for the effective degrees of freedom was applied for samples
with unequal variances. Results were expressed as mean * s.d., unless otherwise specified.

*p<0.05, **p<0.01, ***p<0.001 were considered statistically significant.

In Figure 4C, D and Figure 4-figure supplement 1B, C, the Pearson correlation coefficient r for

each pair of data was calculated according to the standard definition

S E[(X — pux)(Y — py)]
Xy = 050y

where X and Y are time spent in two behaviors X and Y, ry y is the Pearson correlation coefficient
between two behaviors, E| ] is the expectation value, 4 and o are, respectively, mean value and
standard deviation of a behavior. The statistical significance of r was estimated through
bootstrapping. For each two behaviors, we randomly paired data from n flies (n=84 for iso31+ and
n=76 for Canton S) and calculated a correlation coefficient r. This process was repeated 100000
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times and the empirical distribution of the randomly paired r values were used for a two-tailed test
(Figure 4-figure supplement 1D). p-values for all Pearson correlation coefficients are presented

in Figure 4-figure supplement 1E.
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Table 1: Parameter values and fitting errors from fitting grooming time-series

Fly | bwo bur ber bep To Tu Te Hu He Error
f 0.000 | 0.007 | -0.024| 0.010| 239| 60| 30| 294| 442| 0.0115
2 | 0.008| 0.008| -0.055| 0.014| 239| 30| 50| 280| 344 | 0.0894
3 |-0.008| 0.005| -0.070| 0.027 24| 40| 30| 295| 811| 0.0674
4 |.0.019| 0.003| -0.035| 0.046 24| 40| 30| 204| 540| 0.0674
5 | 0.002| 0.007| -0.042| 0.019 24| 40| 20| 262|1155| 0.0541
6 |.0013| 0.005| 0.009| 0.026 24| 30| 30| 71| 317| 00115
7 | 0.026| 0.003| -0.018| 0.006| 243| 40| 3.0| 210| 436 0.076
8 | 0110| 0.008| -0.012| 0.015| 239| 20| 50| 158| 344 | 0.0057
9 |-0.015| 0.003| -0.001| 0.098| 239| 30| 40| 267| 475| 0.0175

Table 2: Parameter values and fitting errors from fitting locomotion time-series

Fly bmp bur ber bep To Tu Te Hym He Error
? -0.001 | 0.004| 0.004| 0.033| 240| 60| 20| 16311675 0.01
2 | 0005| 0.073| -0.069| 0.028| 241| 20| 20| 825|1434| 0.0037
3 |-0013| 0.063| 0.020| 0.002| 23.9| 29| 19| 4162|1208 | 0.0469
4 |.0010| 0.020| 0.022| 0.001| 237| 30| 20| 3355|1388 0.001
5 | 0.055| 0.060| -0.338| 0.007 24| 30| 30| 741|1948| 0.0056
6 | 0.009| 0.015| -0.054| 0.028| 236| 3.0| 3.0| 1509|1369 | 0.1029
7 | 0.001| 0.028| -0.022| 0.023 24| 20| 30| 1535[1010| 0.0072
8 |-.0.015| 0.008| -0.007| 0.032| 239| 30| 20| 1504 2308 0.007
9 | 0.014| 0.020| -0.028| 0.016| 239| 30| 3.0| 1519|2004 | 0.0007
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Figures and figure legends

Figure 1 Overview of approach for detecting Drosophila grooming

(A) Apparatus used in recording behavior. Flies constrained to individual tubes are continuously
illuminated by infrared light from below and recorded by a digital camera from above. LED
lights on sides of chamber simulate day-night light conditions. Temperature and humidity
probes placed in the chamber are monitored by a computer. Inset: Camera photo of fly tubes

in chamber.

(B) Examples of the most commonly observed types of grooming in our experiments. The top row
displays postures of a fly in inactive state. The three rows below show how the limbs and body
of a fly coordinate to perform specific grooming movements. Arrows point to the moving part

during grooming.

(C) Flowchart of our algorithm used to classify fly behavior. After generating a suitable background
image, the algorithm characterizes movements of fly center (CD), core (CM) and periphery

(PM) to fully classify behavior in each frame.
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Figure 2 Feature extraction and behavior classification

(A) The distribution of grayscale fluctuations in the absence of mobile flies. A cutoff of grayscale
value change C, = 10 rules out > 99.99% of fluctuations. Shown here are only positive values of

fluctuations, which are symmetric about zero.

(B) Maximum area (pixels) of a closed object generated by noise when different threshold C, are
applied. A C, = 10 rejects objects larger than 20 pixels. Based on this, we set a threshold ¢, = 25
to remove objects smaller than 25 pixels without affecting identification of flies which have a typical

area of ~300 pixels in our studies.

(C) Grayscale value distribution of pixels belonging to 20 individual flies. Two regions are clearly
seen: the left region with peak around 40 represents the core of the flies and the right region with

peak around 90 represents their periphery.

(D) Variations in the center position of a stationary fly. The minimum displacement that represents
a true fly center movement is 0.5-pixel length in our experiment, a requirement that excludes

>99.99% of false displacements.

(E) Examples of original and processed images of a fly displaying different behaviors: Top, left:
front leg grooming; top, right: wing grooming; bottom, left: resting; bottom, right: locomoting. In
each panel, original images from two consecutive frames are shown on left, periphery in the
middle and core on the right. Changes of periphery and core are shown in the bottom row. PM
and CM denote differences in the number of pixels representing the fly periphery and core,
respectively, in two frames. Features PM and CM are different for different behaviors. Rubbing of

front legs manifests through PM (top, left) while sweeping wings affects PM and CM (top, right).

(F) k-nearest neighbors (kNN) algorithm works by placing an unclassified sample (black circle)
representing a frame into a feature space with pre-labeled samples (green/gray/purple circles, the
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training set). The label of the unclassified point is decided by the most frequent label among its k-
nearest neighbors. The three axes of the feature space are normalized periphery movement (PM),
core movement (CM), and center displacement (CD). Fly activity in the feature space is separated
into three regions: grooming (green), locomotion (gray) and resting (purple). Training samples
(N=9322 grooming, 9930 locomotion, 5748 rest) and 9 unlabeled samples in PM-CM-CD space

are shown.

-42-



879

880

881

882

883

884

885

886

887

888

889

890

891

892

Figure 3 Data pruning and performance evaluation

(A) Grooming data are pruned after identification by the kNN classifier. A frame is finally labeled
as grooming only if this frame is in a group of 15 frames in which 12 or more were labeled as
grooming by the classifier (see B below). Frame previously labeled as grooming by the classifier

but that did not pass the pruning procedure is relabeled as locomotion.

(B) Performance of the classifier with pruning filter sizes of 4/5, 8/10, 8/15, 10/15, 10/20, 12/15,
14/15 and 15/20. Accuracy (closed circles) is equal to the ratio of correct grooming labels to all
output grooming labels. Sensitivity (open circles) is equal to the ratio of grooming identified by the
classifier to all visually labeled grooming events. We set the pruning filter to be 12/15 to attain >

90% accuracy and sensitivity.

(C) Fly genotypes vary by size and pigmentation, which can potentially affect performance of our
classifier. To verify the generality and robustness of our method to different genotypes, accuracy
(top) and sensitivity (bottom) of classifier on w''’®, Canton S, iso31, and yw were tested. Error

rates in all tested strains were less than 10%.
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Figure 4 How grooming fits into the daily routine of a fly.

(A) Ethogram of grooming (green), locomotion (gray), feeding (blue), short rest (purple), and sleep
(dark gray) performed by an iso37+ fly in 60 seconds (300 frames). Individual events of these four
behaviors are mutually exclusive and together constitute wake (yellow-orange), which is

complementary to sleep (dark gray).

(B) Average fraction of time flies spent in each behavior. N=83 iso37+ flies.

(C)(D) Correlation between pairs of behaviors. There is strong negative correlation between sleep
and locomotion (r=-0.93) and between sleep and short rest (r=-0.63). Interestingly, time spent in
grooming does not show strong correlation with any of the other four behaviors. N=83 iso37+ flies.

r is the Pearson product-moment correlation coefficient.

(E) Temporal patterns of behaviors of a single iso37+ fly during four days in LD cycles. Behaviors
shown here are, grooming (G), locomotion (L), feeding (F), short rest (R), wake (W), and sleep
(S). Level of activity is shown in terms of fraction of time spent in each behavior. Fraction is
calculated every 30 minutes. White/black horizontal bars indicate light/dark environmental

conditions, respectively.

(F) Rhythmicity in grooming, locomotion, and wake in an example fly. In LD condition, fraction of
time spent in these behaviors are plotted on left. In power spectra on right of time series of
behaviors (horizontal dash line denotes threshold power for p=0.05), temporal patterns of the
three behaviors all show significant circadian rhythmicity. In right top, spectra of randomized
grooming show no rhythmicity, while modified locomotion is still rhythmic. Similarly, in time series
on right bottom, with the same randomized grooming, wake remains rhythmic while grooming, as
one component from it, is arrhythmic. In time series of behaviors, activity is binned every 30

minutes.
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Figure 5 Grooming is under control of the circadian clock

(A) Average temporal patterns (fraction of time spent in 30 minutes bins) of locomotion, feeding,
short rest, and sleep of eight representative iso37+ flies during three days in constant darkness

(DD). Black horizontal bar represents lights-off condition.

(B) Power spectra of behaviors in panel (A). Except for short rest, temporal patterns of the other
three behaviors show significant circadian rhythmicity. Horizontal dash line and dash dot line

denote threshold powers for p=0.05 and p=0.01, respectively.

(C) Grooming activity (in 30-minute bins) of wild-type and clock mutants during two days in LD
cycle followed by four days in DD cycle. Grooming traces are population averages. In DD, wild-
type (WT, iso37+) grooming continues to show 24 hr rhythms. In comparison, grooming in perSor
per’ flies show shorter or longer rhythms, respectively. For per? flies, grooming is arrhythmic in

DD. N=8 WT, 8 per’, 8 perk, and 8 per? representative flies.

(D) Example power spectra showing circadian rhythmicity in grooming patterns of three individual
wild-type, perS, per® and per? flies. Spectra are normalized to variance of activity (in 30 min
bins). Dash lines and dash dot lines represent threshold power at p=0.05 and p=0.01,
respectively. More examples of individual power spectra are provided in Figure 5-figure

supplement 1.

(E) Spectral powers of circadian peaks of individual wild-type and circadian mutants. N= 29

control, 20 pers, 29 per®, 20 per®, 13 cyc®! and 11 clk/RX.
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Figure 6 Control of grooming duration is independent of circadian rhythmicity

In each panel, bar plots on left show average fractional time spent in grooming in mutant and
control flies. Pie charts on right present average fractional time spent in grooming (green),
locomotion (gray), sleep (dark gray), short rest (purple) and feeding (blue). Here, numerical values
for fractional time spent in behavior are indicated only for grooming, locomotion and sleep with

additional details in Figure 6-figure supplement 1A.

Though loss of a functional clock does not affect grooming amount (A), mutations in clock (B) and
cycle (C) genes lead to robust increases in the time flies spend grooming. Additional time for
grooming can come from reduction in sleep (B) or reduction in locomotion (C). Reduction in sleep,
however, does not always entail similar changes in grooming since sleep mutants fumin (D) and

sleepless (E) show divergent alterations in grooming durations.

N=83 control, 53 per?, p=0.28. N=76 control, 18 cyc®!, p=2.7x10*. N= 28 control, 25 clk/RX,

p=7.8x10%. N=17 control, 23 fumin, p=0.003. N=28 control, 17 sss, p=1.3x107°,
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Figure 2-figure supplement 1

(A) Locomotion (fraction of time spent), relative humidity (RH), and temperature (T) for 3 days

during an experiment in constant darkness (DD) conditions. Data are binned in five minutes.

(B) Binary images after background subtraction. If the background frame is not updated frequently
(typically every 1000 seconds), both food debris (red boxes) and flies (blue boxes) may be
identified as moving objects in a background-subtracted image (top, left and expanded view). The
problem is rectified (bottom, left) when the background frame used is closer in time (<1000

seconds apart) to the image of interest.

(C) An example 8-bit frame (on left) and its corresponding background-subtracted binary image

showing identified flies.

(D) The cross-validation loss of KNN classifier at different k values. Loss decreases with
increasing k values, slowing down for k~10. The loss function shown here is the averaged error
of 10-fold cross validation in behavioral classification. The validation was performed on 25000

frames from video of 20 flies.
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Figure 4-figure supplement 1:

(A) Average fraction of time flies spent in grooming (green), locomotion (gray), feeding (blue),

short rest (purple), and sleep (dark gray). N=76 Canton S flies.

(B)(C) Correlation between behaviors. Sleep shows different levels of negative correlation to
locomotion (r=-0.849), short rest (r=-0.833) and feeding (-0.597). In addition, there is positive
correlation between locomotion and short rest (r=0.627). Interestingly, time spent in grooming
does not show strong correlation with any of the other four behaviors. This suggests independent

regulation of grooming behavior. N=76 Canton S flies.

(D) Example empirical probability distributions of random paired r values between grooming and
short rest (top) and between locomotion and feeding (bottom) in is031+ flies. p-values of Pearson

coefficient r were calculated based on two-tailed test of such distributions.

(E) p-values of all Pearson correlation coefficients r in Figure 4C, D (top table) and Figure 4-figure
supplement 1B, C (bottom table). p-values in red are from examples in (D). p<10° is displayed

as 0 in these tables.

(F) Example of binned data (reproduced from Figure 4E) showing fraction of time in different
behaviors. In this representation, behaviors are not mutually exclusive and each behavior is free
to assume any value between 0 and 1 (inclusive) such that wake time + sleep time =1 for every

bin. Grooming: G, Locomotion: L, Feeding: F, Short rest: R, Wake; W, Sleep: S

-48 -



984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

Figure 4-figure supplement 2

(A) Position within the tube (top row), locomotion (middle) and grooming (bottom) of a single
iso31+ fly during one day in LD. Locomotion and grooming are shown in terms of fraction of time
spent in 5-minute bins. White/black bars indicate light/dark environmental conditions,

respectively.

(B) Probability density of the intervals between grooming events (green) and between locomotion
events (gray). Probability distributions were constructed from ~33000 intervals between grooming

events and ~73000 intervals between locomotion events detected in 83 iso37+ flies.

(C) Longest intervals between grooming events (green) and between locomotion events (gray).

Each point represents an individual fly recorded for a day. N= 83 iso37+ flies, p=1.2x10"®

(D) Probability density of the duration of grooming events (green) and locomotion events (gray).
Probability distributions were constructed from ~33000 grooming events and ~73000 locomotion

events detected in 83 iso37+ flies.

(E) Longest duration of grooming (green) and locomotion events (gray). Each point represents an

individual fly recorded for a day. N= 83 iso37+ flies, p=3.6x10®

(F)(G) Example fits (red) of temporal patterns of grooming activity (green) and locomotion activity
(gray) of an individual fly during 3 days in LD environment. Horizontal white/black bars represent

alternating light/dark conditions.

(H) Sketch of the mathematical model that uses four exponential terms to describe temporal
patterns of a fly activity. Parameters by, bgr, bgp, byr, TM and TE (see Figure 4-figure
supplement 3) are marked in the plot.

(NI)(K)L)M)(N) Comparison of parameter values yielded by fits to locomotion and grooming
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data. Each circle represents an individual fly (N = 9). Data from same fly are connected by a solid

line.

(O) Average amount time spent in grooming (green), visiting food (blue) and locomotion (gray)
during two days in LD. Each behavior time series is normalized by its maximum to allow for easy
comparison of their relative phases. In wild-type flies (top panel), burst in visiting food happens
~1 hours after the morning peak in locomotion. Onset of evening peaks in grooming usually occurs
earlier than the peak in locomotion. Time difference between peak in feeding and grooming is
considered as the time delay of grooming peak after feeding, as indicated by red arrows. N = 50

iso31+ flies.

(P) The time difference in onset of bursts in grooming and locomotion (gray), grooming and
feeding (blue), in LD conditions. Discreteness in time differences is a consequence of binning the

time-series in 30 minutes. N=50 iso31+ flies.
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Figure 4-figure supplement 3:

(A) Sketch of the mathematical model that uses four exponential terms to describe temporal

patterns of a fly activity. Horizontal white/black bars represent alternating light/dark conditions.

(B)(C) Example fits (red) of (B) temporal pattern and (C) power spectrum of grooming activity
(green) of an individual fly during 3 days in LD environment. The activity data are binned in 1 hour

for visual clarity.

(D)(E) Example fits (red) of (D) temporal pattern and (E) power spectrum of locomotion activity
(gray) of an individual fly during 3 days in LD environment. The activity data are binned in 1 hour

for visual clarity.

To quantitatively compare the temporal patterns of grooming and locomotion (Figure 4-figure
supplement 2), we applied a previously developed mathematical method that allows quantification
of the main features in fly locomotion pattern. (A. Lazopulo & Syed, 2016). The quantification is

achieved by fitting activity data with a model that consists of four exponential terms:

ebmpTm _ obmpt

Hu— o =7 0<t<Tu
ebMr(t=TMm) _ 1
M=oy » Tm <t<To
F(t) =« .

1—eter(3Te) To

Hg 1 — o-berTs , ?—TE<t<?
N T,

\ Hee tw(t2)  Dopo,

2
The model has nine independent parameters that describe activity pattern. Parameters byp, byg,
bgp, bgr define rates of morning decay (MD), morning rise (MR), evening decay (ED) and evening

rise (ER), respectively. Parameter Ty defines circadian period, Ty, and Ty define widths of M and
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E peaks, and Hy, and Hy define heights of M and E peaks, as shown in sketch in panel (A). The

white and black horizontal bars represent lights-on and off phases of the external light-dark cycle.

Values of the parameters are obtained from the activity data in a few steps. First, the circadian
period is estimated from the power spectrum of activity data. Then, preliminary parameter values
are estimated by fitting the locomotion recording with the function F(t). These values serve as
initial guess for fitting the data power spectrum with an analytical expression derived by

calculating the Fourier transform of F(t):

~ 1 To i2mn
F(T) =+ f F(t)e To dt,
0J0

where T,, = Ty /n, withn =1,2,3 ... and T, is the circadian period. By using the spectral fit, we
extract model parameters without filtering or binning. Fitting of the power spectrum produces final
values for the model parameters, which are then used to construct the final form of F(t), our

model of fly activity rhythms.

Examples of fits of grooming and locomotion activities and their respective power spectra are
provided in panels (B)(C)(D)(E). Parameter values and least squares fitting errors of fitting
locomotion and grooming spectrum of 9 representative individual flies are shown in Table 1 and
Table 2. Here the fitting error is calculated from

Zi(P;it - Pcllctual)
Zi(P;it - P;andom)

Error =

where P._.,,; and Pfiit are the actual spectral power and fitted spectral power at the ith spectral

frequency, respectively. Pl,,4.m iS the averaged spectral power from randomly shuffled data at
the ith frequency. To get Ply,.40m» We first randomly shuffle activity data 100 times and compute

power spectrum for each of them. Then P!, 4, is the average of 100 individual spectral power

at the ith frequency.
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Figure 5-figure supplement 1:

(A) Example Lomb-Scargle periodograms of grooming activity of individual per mutants and their
background control (WT). Spectra are normalized by dividing by variance of individual grooming
activity binned in 30 minutes. Dash lines and dash dot lines represent threshold power at p=0.05
and p=0.01 respectively. Spectra of per®, per*, and wt grooming show significant rhythmicities in
accordance with their known effects on the pace of the clock. Grooming of per® flies (fourth column

from left) are arrhythmic according to the individual spectral analyses.

(B) Periods of significant rhythmicity (at p=0.01 level) in grooming of individual wt, per® and per-
flies. Different bin sizes of periods is a result of evenly sampled frequencies in spectral analysis.

N= 29 wt, 19 perS, and 29 per™.

(C) To test the effect of binning on rhythmicity, we took grooming data of individual flies recorded
at 5 Hz, binned them in 30-minutes, 5-minutes, and 1-minute and ran Lomb-Scargle periodogram
analysis on these time-series. Examples of 5 individual spectra of each bin size are shown here.
In general, smaller bin size increases the separation between statistical cut-off power (p value,
horizontal lines) and peak power because of their differential dependence on the number of data

points in a time-series (see Materials and methods).
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Figure 5-figure supplement 2:

(A) Locomotion (in 30-minute bins) of wild-type (iso37+) and clock mutants during two days in LD
cycle followed by four days in DD cycle. Locomotion traces are population averages. In DD, wt
locomotor activity continues to show 24 hr rhythms. In comparison, locomotion in perSor per’
flies show shorter or longer rhythms, respectively. For per? flies, locomotion appears arrhythmic

in DD. N=8 WT, 8 per~, 8 per’, 8 per? flies.

(B) Temporal patterns of population averaged grooming of two additional arrhythmic strains during
3 days in DD conditions. Top panel shows cyc’’ (N=13) and bottom shows clk’* (N=11). Data

are binned in 30 minutes.

(C) (D) Average of spectra of individual cyc® (panel C left, N=13) and clk’? (panel D, left,
N=11) grooming. Dash lines and dash dot lines represent threshold power at p=0.05 and p=0.01
respectively. Example spectra of individual cyc® (C) and clk’™¢ (D) flies show power over the

circadian range are well below the p=0.05 level.
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Figure 5-figure supplement 3

Rhythmicity in grooming patterns need not be a direct result of rhythmicity in locomotion or sleep-
wake cycles. For each of the four example flies, raw data of the fraction of time spent in locomotion,
grooming and wake behaviors are plotted on left column. Their power spectra (adjacent plots)
show significant circadian rhythmicity at p=0.05 level (horizontal dashed line). If raw grooming
data are randomly shuffled and locomotion is modified accordingly so that wake is unchanged
(middle column), power spectrum of randomized grooming shows no rhythmicity, while modified
locomotion is still rhythmic. If instead wake data are modified when grooming are randomized
(right column) so that locomotion is unchanged, then grooming again loses rhythmicity while wake
remains rhythmic. Time series in the four examples were taken in constant darkness (DD) and

binned in 30 minutes and Lomb-Scargle periodogram were calculated from the binned data.
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Figure 6-figure supplement 1:

(A)-(E) Average fraction of time flies spent in grooming (green), locomotion (gray), sleep (dark
gray), short rest (purple) and feeding (blue). N=53 per® and 83 control, 18 cyc®! and 76 control,

25 clik/RX and 28 control, 23 fumin and 17 control, 17 sss and 28 control.
(F) Correlation between normalized sleep and grooming in sss, fumin, cyc®, and clk’* flies.

(G) Correlation between normalized locomotion and grooming in sss, fumin, cyc®’, and clk’* flies.
(F)-(G) For the mutants, the fraction of time spent in behaviors are normalized by dividing by the
average fraction of time in that behavior by their respective control flies. N=17 sss, 23 fumin, 18

cyc?!, 25 clk’RX and 53 per®.

(H) Population-averaged fractional time spent in grooming. Grooming in imd flies are significantly
less than control flies (p<0.001), while PGRP-SA*™ does not significantly affect the time spent in
grooming. This suggests that Drosophila grooming relies on a working immune system. The
decrease in imd flies further suggests that this impact may be independent of the Toll pathway.

N=56 OR, 47 PGRP-SA%*™, 45 jmd.
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Rich Media Files

Video 1: Sample raw experimental video

Video 2: Sample video of grooming on head and front legs

Video 3: Sample video of grooming on wings and hind legs

Video 4: Sample video of grooming-like behavior (stretching body)

Source Data Files

Figure 2-Source data 1:

Figure 2-Source data 2:

Figure 3-Source data 1:

Figure 4-Source data 1:

Figure 4-Source data 2:

Figure 4-Source data 3:

Figure 5-Source data 1:

Figure 5-Source data 2:

Figure 5-Source data 3:

Figure 5-Source data 4:

Figure 6-Source data 1:

Figure 6-Source data 2:

Source data for Figure 2

Source data for Figure 2-figure supplement 1

Source data for Figure 3

Source data for Figure 4

Source data for Figure 4-figure supplement 1

Source data for Figure 4-figure supplement 2

Source data for Figure 5

Source data for Figure 5-figure supplement 1

Source data for Figure 5-figure supplement 2

Source data for Figure 5-figure supplement 3

Source data for Figure 6

Source data for Figure 6-figure supplement 1
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