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1 | INTRODUCTION

Abstract

Simulation of blood flows in the pulmonary artery provides some insight into
certain diseases by examining the relationship between some continuum met-
rics, eg, the wall shear stress acting on the vascular endothelium, which responds
to flow-induced mechanical forces by releasing vasodilators/constrictors. V.
Kheyfets, in his previous work, studies numerically a patient-specific pulmonary
circulation to show that decreasing wall shear stress is correlated with increas-
ing pulmonary vascular impedance. In this paper, we develop a scalable parallel
algorithm based on domain decomposition methods to investigate an unsteady
model with patient-specific pulsatile waveforms as the inlet boundary condition.
The unsteady model offers tremendously more information about the dynamic
behavior of the flow field, but computationally speaking, the simulation is a lot
more expensive since a problem which is similar to the steady-state problem
has to be solved many times, and therefore, the traditional sequential approach
is not suitable anymore. We show computationally that simulations using the
proposed parallel approach with up to 10000 processor cores can be obtained
with much reduced compute time. This makes the technology potentially usable
for the routine study of the dynamic behavior of blood flows in the pulmonary
artery, in particular, the changes of the blood flows and the wall shear stress in
the spatial and temporal dimensions.
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unsteady blood flows

Numerical simulation of blood flows in human arteries is a powerful tool for understanding certain cardiovascular dis-
eases and for treatment planning.!* In some situations, modeling and simulations provide essential metrics of blood flows
that are otherwise immeasurable.** For example, the dynamic value of wall shear stress is difficult to measure directly
but can be obtained via numerical computation using patient-specific arterial geometry and parameters. On the other
hand, the computational approach faces its own challenges, and one of them is the high cost of solving a large system
(hundreds of millions of degrees of freedom) of nonlinear equations arising from the discretization of the incompressible
Navier-Stokes equations. One such system needs to be solved in the steady-state simulation, and many such systems need
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to be solved if an unsteady model is considered for the blood flow. With the proposed parallel approach, such a calcula-
tion can be accomplished in a few hours, instead of days when using a sequential approach. This makes the application
of the technology clinically feasible. Over the past few years, several computationally inexpensive methods have been
developed, for example, the three-dimensional Navier-Stokes equations was simplified to certain one-dimensional mod-
els in literature®® to reduce the computational effort. A two-dimensional model was proposed in Cani¢ et al® and Casulli
et al'® to fill the gap between the expensive three-dimensional model*** and the one-dimensional model. However, when
certain features of the blood flow are desired, such as the wall shear stress, which is known to be highly correlated to
some arterial diseases,* the full three-dimensional model has to be considered. To resolve the full three-dimensional,
time-dependent flow in a complete pulmonary artery, in this paper, we develop a parallel finite element method on
large-scale supercomputers with tens of thousands of processor cores.

In the following, we briefly review some recent progresses of numerical simulation of blood flows in the pulmonary
artery. In Spilker et al,’* the blood flow was computed by using a one-dimensional model discretized with finite element
method, and the corresponding system of nonlinear equations is solved via a quasi Newton method. In Tang et al,'® a
three-dimensional simulation of unsteady blood flows of a patient-specific pulmonary artery is obtained using a stabilized
finite element method for the incompressible Navier-Stokes equations, and the sequential simulation takes a couple of
days of computing time for a problem with a million elements. In Qureshi et al,> a multiscale mathematical and compu-
tational model of some one-dimensional pulmonary networks are presented and used to analyze both arterial and venous
pressure and flow. Some publications also considered the interaction of the blood flow with the elastic arterial wall, for
example, in Su et al' and Hunter et al,'” the CFD-ACE multiphysics package'® is used for a two-dimensional unsteady
blood flow problem. In the simulation, a finite volume method is used for the fluid equations and a finite element method
is used for the arterial wall, the resulting systems of equations are solved with an algebraic multigrid for the fluid and
a direct method for the structural equations. A numerical method is developed to solve the steady fluid-structure inter-
action problems in three-dimensional pulmonary arterial bifurcation with collapsible tubes in Yang et al,’® where an
in-house FEM code is used to calculate the nonlinear deformation of the thin-walled structure and a commercial CFD
solver, ANSYS,? is used to resolve the fluid equations.

Most of the published works are based on commercial software which is easy to use but offers limited parallelism. For
example, ANSYS? is scalable with only a few hundred processor cores. This is acceptable for the study of steady-state
problems or problems defined on a small portion of an artery tree but not acceptable for the study of unsteady flows in a
full pulmonary artery as each study will take days of run time. To take advantages of modern supercomputers with a large
number of processor cores, in this paper, we focus on the development of new algorithms and software that have close to
linear scalability in the sense that if the number of processor cores is doubled, the compute time is halved. In our previous
works,**2! we successfully simulated a small portion of a pulmonary artery using the Newton-Krylov-Schwarz (NKS)
methods. But the general NKS algorithm becomes much harder to use when the geometry of the computational domain
is complex, such as the complete pulmonary artery, because the optimal choices of some of the parameters of the Schwarz
preconditioner are geometry-dependent and are not well understood. In this work, to overcome these difficulties, several
important Schwarz parameters including the ordering of the unknowns in submeshes, the restriction/prolongation opera-
tors, and the level of fill-ins of submesh solver (incomplete LU factorization) are comprehensively studied and optimized.
Precisely speaking, we introduce a fully implicit, parallel domain decomposition algorithm that partitions the pulmonary
artery tree into a large number of sub-trees that are mapped onto different processor cores of the parallel computer. The
algorithmic framework consists of several ingredients. First, an inexact Newton method? is used to solve the system of
nonlinear equations that has high nonlinearities due to the complexity and irregularity of the computational domain. Dur-
ing each Newton iteration, the solution of the Jacobian system is obtained using a Krylov subspace method* together with
a scalable Schwarz preconditioner. We show numerically that the proposed version of the parallel algorithm is scalable
to thousands of processor cores for large-scale problems with hundreds of millions of unknowns. We also mention that
the NKS method has been successfully applied to several classes of problems including the Bidomain reaction-diffusion
system in Munteanu et al,** some elasticity problems in Kong and Cai,* and fluid-structure interaction problems in other
WOI‘kS.lZ'M’Zl

The remainder of this paper is organized as follows. In Section 2, we first introduce a partitioning strategy to subdivide
the large artery tree into a large number of small artery trees that will be handled by different processor cores in parallel,
and then the discretization of the incompressible Navier-Stokes equations in time and space. A fully implicit, scalable
Newton-Krylov-Schwarz method is described in Section 3. In Section 4, some numerical experiments and observations
are presented. We also show the parallel performance of the proposed approach. Lastly, some concluding remarks are
given in Section 5.
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2 | PROBLEM DEFINITION

We first describe a patient-specific pulmonary artery, the mesh we use to discretize the artery and a strategy we use to
partition the mesh into a large number of submeshes for parallel processing. We then discuss the governing equations for
the blood flow and the spatial and temporal discretization.

2.1 | Complete pulmonary artery tree

Pulmonary circulation is the portion of the cardiovascular system which carries deoxygenated blood away from the heart,
to the lungs, and returns oxygenated blood back to the heart. We consider a complete pulmonary artery tree here, denoted
as Q, consisting of one inlet and 274 outlets, as shown in Figure 1. The pulmonary arterial geometry was derived in the
previous study* based on the CT (computed tomography) image of a patient. Interested readers are referred to Kheyfets
et al* for more details. For convenience, let I'; be the inlet, I'o, the outlets, i = 1,2,.., M (M is the number of outlets, 274
here) and I'y, the wall. We first cover Q with an unstructured tetrahedral mesh, denoted as Q;, shown in Figure 1. The
mesh is generated using ANSYS.?° To simulate the blood flow in parallel, we need to partition € into np submeshes
Qni,i=1,2,---,np(npisthe number of processor cores to be used in the computation, around 10 000 in our simulations).
The partitioning of the complex mesh is nontrivial, especially when the number of processor cores is large. At the first
step, the mesh is converted into an undirected graph whose vertices correspond to the nodes of the mesh, and 2 vertices are
connected if the nodes are connected by an edge. There are several algorithms for graph partitioning. We apply a hierarchal
partitioning strategy developed in our previous work'*>'*? which uses the standard method, ParMETIS/METIS,** twice
as shown in Algorithm 1. This strategy offers better results than simply applying METIS or ParMETIS only once to obtain
a large number of submeshes. Precisely speaking, we apply ParMETIS or METIS to divide €, into np,; submeshes (np,
is the number of compute nodes), and then apply METIS to further partition each submesh into np, smaller submeshes
(np, is the number of processor cores per compute node). The total number submeshes is then np = np; X np,. This
idea is simple but very effective especially when the number of processor cores is large because the commutation cost
among submeshes are significantly reduced. A sample partitioning is shown in Figure 2, where the mesh is partitioned
into 4 submeshes using ParMETIS, then each submesh is further cut into 2 smaller submeshes using METIS, and then we
have 8 submeshes in total. The mesh is denser at the inlet, outlets, and sharp-curved regions, and is more or less uniform
elsewhere. Since the partition is based on a pure graph algorithm, each partition may contain either/both fluid elements
or/and solid elements and each subdomain may consist of disconnected smaller subdomains.

Remark 2.1. With this partitioning strategy, the quality of partition is quite good. The number of elements per pro-
cessor is roughly the same. The interface between 2 adjacent submeshes is short, which is important for minimizing
the communication cost.

FIGURE1 Pulmonary artery and its finite element mesh
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FIGURE 2 Hierarchical partitioning. Mesh is partitioned into 4 submeshes using ParMETIS, shown in the left figure, then each submesh
is further cut into 2 smaller submeshes using METIS, and then we have 8 submeshes in total, shown in the right figure

Algorithm 1 Hierarchical Partitioning of Q

1: Partition €, into np; submeshs Q j (G = 1,2, ,npy) using ParMETIS, METIS or other partitioners, where np, is
usually the number of compute nodes

2: Partition Qh j into np, smaller submeshs using METIS or other partitioners on the jth MPI rank, where np; is often
the number of cores per compute node, and order the smaller submeshs appropriately

3: Output {Qp;} (i =1,2,---,np, where np = np; X np;)

Remark 2.2. Once a partition is obtained, we map each submesh Q;,;(i = 1,2, ... , np) to a processor core. All variables
associated with this submesh are allocated on this processor core, and all computations related to €;,; are conducted
by this core.

2.2 | Governing equations and discretization

It is reasonable to assume that the blood flow in large arteries is incompressible and Newtonian. Let u and p denote the
velocity and pressure, respectively, and the incompressible Navier-Stokes equations take the form

PR +p-V)yu—-V-o=pf inQ

V.-u=0 in Q,

u=v onTI7y, 1
u=20 onI'y,

on=0 onlp,i=12,..,M,

where p is the blood density, fis a given body force per unit mass, vy is a velocity profile derived from a flow rate, n is the
unit outward normal to the outlet surface, and o is the Cauchy stress tensor defined as follows,

o = —pl +2ve), e(w) =1/2 (Vu+ Vu').

Here, v is the viscosity coefficient and I is a 3 X 3 identity matrix. The traction-free boundary condition is applied to all
outlets.

To discretize (1) in space, we consider a P; — P; finite element space for the velocity and the pressure. Because the
P; — P; pair does not satisfy the LBB condition, additional stabilization terms are considered as described in Taylor et al
and Whiting and Jansen.?®*® Following the standard notations, the weak form reads as Find u € Vand p € P such that
V¢ € Vyand Vg € P,

Bf({u’p}7{¢7q})=07 (2)
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with
Bf({u,p},{flhq})Ep/%—l;‘¢d9—/p(V~¢)dQ
Q Q
+p/(u-V)u~¢dQ
Q
+2v/£(u) : e(¢)dQ + / (V-u)qdQ
Q Q
—p/f-qbdsz,
Q
and

V={ue[H1(Q)]3 : u=vlonFIandu=OonFW},

Vo = {¢e [H' @] : ¢=00nr,urw},
P=1*Q).
Here, H! (Q) and L? (Q) are the standard Sobolev spaces. Denote the finite element subspaces Vh,Vg‘, and P" as the coun-

terparts of their infinite dimensional subspaces. The semi-discretized system of the Navier-Stokes equations with the
stabilization is described as: Find u" € V" and p" € P", such that V¢" € V! and Vg" € P",

B({u", p"}, (¢, ¢"}) =0, 3)
with
B({u", p"}, (9", ¢")) = B,({uh, p"), (9", "))
+ ) (Voul V¢,

KeQh

+ Z rm u" - v¢" +Vvq ))
KeQh
=h h gk
+ Z (u -vu", ¢") X
KeQh
+ ) (@ vu' - veh)
KeQh
where Q" = {K]} is the given unstructured tetrahedral mesh of the computational domain, £" is computed as follows:
ou"
[:h —pw+pfu Vu +Vp fh,
a" = —7,£" and 7, 7. and 7, are the stabilization parameters to be defined later. (-, -)x represents an integral over
element K. For more details of the spatial discretization scheme, we refer to Kong'? and Wu and Cai.*® After the spatial
discretization, (3) is rewritten as a time-dependent nonlinear system:
[240)
ot
where F is the right-hand side, N (y(¢)) is a nonlinear function, and y(¢) is a time-dependent vector of coefficients of
the velocity and pressure values defined at the nodal points of the finite element mesh at time ¢. Equation 4 is further
discretized in time using an implicit backward Euler formula as

+ N () = )

My, + 5tN(yn) = 6tF + My yp_1. (5)

where y, is the approximation of y(¢) at the nth time step, M,, is the mass matrix at the nth time step, and 6t is the time
step size. With the time step size 6t, the stabilization parameters z,,, 7. and r, are defined as follow:

T = ! )
V4768 + (- Gult) + 3612/p2G : G
_ 1
" 8rptrace(G)’
Tp = 1
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Here (G);; = Zle % %(i, Jj =1,2,3)isthe covariant metric tensor, % represents the Jacobian of the mapping between the
i

reference and the physical elements, &; are components of reference coordinates, x; are components of current physical

coordinates, and u” and @ are the counterparts of u" and @" at the nth time step. For convenience, let us rewrite (5) at

the nth time step as a system of nonlinear equations:

F(y» =0, (6)

where y (we drop the subscript n here for simplicity) is the vector of coefficients of the velocity and pressure values at the
nth time step. Other time discretization schemes, such as Crank-Nicolson method, are also possible for (4). We use implicit
backward Euler in this work because it is unconditionally stable and does not suffer with numerical oscillations for large
time step sizes and a fine spatial resolution. Solving (6) is very challenging, especially when the number of processor cores
is large. For a patient-specific problem, we usually do not know the initial field of velocity and pressure. Therefore, we
often start with zero as the initial guess and conduct the simulation for some time steps and then use the simulation at
that point as the true initial state of (1). Once we figure out the initial state, the main cost of the simulation is to solve (4)
over and over again using the solution of the previous time step as the initial solution. In the next section, we describe a
scalable and robust NKS method, which has been successfully studied for a transonic full potential equation in Cai et al,*
elasticity problems,” and fluid-structure interactions.'*"* The standard setup of NKS used in previous studies'*'** does
not work well for the case of pulmonary artery because of the complexity of the geometry. Several modifications will be
discussed in the next section.

3 | AN EFFICIENT PARALLEL SOLVER

We first describe the parallel algorithm framework consisting of an inexact Newton method for the system of nonlinear
equations, a Krylov subspace method for the Jacobian equations, and a Schwarz preconditioner for accelerating the con-
vergence of the Jacobian solver. And then a reordering algorithm for the submesh solver is introduced which significantly
improves the performance of the submesh solver.

3.1 | Parallel algorithm framework

An inexact Newton method? is used to solve (6), where a Krylov subspace method is used for approximately solving
the Jacobian system. More precisely, the computation starts with an initial guess y© and updates the solution along the
Newton direction 6y, that is,

y(kH) = y(k) + a(k>5y(k), k=0,1, ...,
where a(¥ is the step length calculated by the backtracking linesearch,*> and y¥) is the approximate solution at the kth
Newton step. 5y is obtained by forming and solving the following linear system of equations using a Krylov subspace
method; eg, GMRES,* together with a scalable Schwarz preconditioner,

BTy = —B T (). (7)

Here, J(y®) is the Jacobian matrix at y®, 7(y0) is the nonlinear function residual evaluated at the kth Newton step,
and Blzl is a scalable Schwarz preconditioner to be introduced shortly. .J (y*) is computed analytically. Comparing with
the approximate Jacobian calculated with a finite difference method, the analytic form reduces the overall computational
cost in terms of the compute time and the number of Newton iterations.

To simplify the description of Schwarz preconditioner, we drop the subscript k in (7)

B 'J8y=-B'F. ©))

As discussed earlier, the mesh Q is partitioned into np (np is the number of processor cores) submeshes Q,;,i =
1,2, - -, np. For each submesh Q ;, we extend it by 6 layers to overlap with its neighbors, and we denote these overlapping
submeshes as Qf” Note that extending the nonoverlapping submeshes to the overlapping submeshes is accomplished
according to the connectivity of the graph constructed based on the nonzero pattern of 7. Let r be a global vector defined
on Q. The submatrices and the subvectors associated with €j,; and Qf”. are denoted as J;, r; and Ji‘s, rf, respectively.

p=rir=(r0) ("t
i i i V\V? ’

We define a restriction operator Rf as



KONG ETAL. Wl LEY 7 of 22

where I f is an identity matrix which has the same dimension as rf. Rf is used to restrict a global vector to the local overlap-
ping submesh. r\rlfS is a subvector consisting of all components that are in 7 but not in rf . The transpose of the restriction,
(Rf)T, serves as a prolongation operator that maps a local vector defined on €,; to a vector defined on the whole domain
Qy, by padding zeros in appropriate locations. Similarly, R? extracts 7; from the global vector r to the nonoverlapping
submesh. The submesh Jacobian matrix Ji‘S is formed using the restriction and prolongation operators, that is,

JP=RIR)". ©)

A basic additive Schwarz (AS) preconditioner®*-** for Qy, is defined as
np
Bl = Z(Rf)T(Jf)—lRf. (10)
i=1

Here, (jl.‘S )~! is an approximation of (Ji‘S )~!, usually, an incomplete LU (ILU) factorization.? In (10), different variants of
preconditioner can be formed by replacing (R?)” or R? with (R?)” or R?. The replacements sometime significantly improve
the performance. There are 2 important variants: restricted additive Schwarz (RAS) and additive Schwarz with harmonic
extension (ASH),

np
Bis = X R)(JF)H'R], an
i=1
and
np
Bisn = 2, R)(IN'RY. (12)

i=1

Both B;,lqs and B;éH are not symmetric even when .J is symmetric, but they can be symmetrized as

np
Bisu = D, R)T(T))'R). (13)
i=1

Here “RASH” represents restricted additive Schwarz with harmonic extension. The performance of these 4 variants of
preconditioner will be studied in the next section. As mentioned earlier, the system corresponding to (jl.‘s )~! is obtained
using ILU. To further improve the performance, the rows and columns of the sparse submesh matrix Ji‘s isreordered using
an appropriate reordering approach before factorization. We will discuss the reordering schemes in the next subsection.
The overall algorithm is summarized in Algorithm 2.

Algorithm 2 Unsteady Newton-Krylov-Schwarz
Set the initial condition as yy = 0
Set convergence tolerance stol, rtol, maxme and maXyewton

for n =1 to maxjm. do > Time stepper
Use the soltuion at the previous time step as the initial guess for Newton, y© =y, ,
for k = 0 to maxyewton dO > Newton solver

Evaluate the Jacobian matrix .J (y®)
Evaluate the nonlinear residual F(y®)
Construct the submesh preconditioner and compute the ILU factorizations
Approximately solve B, J (y?)sy® = —B.'F(y¥)) for a Newton direction 5y
Find a step size «® using a cubic linesearch
Update solution y*+D = y® 4 g® gy
if |6y < stol|ly® | or [FG )| < reol| FG™)|| then
break
end if
end for
Store the solution at the last Newton step as the current time step solution, y, = y*+V
end for
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Remark 2.3. In Algorithm 2, stol is a prechosen small positive value that tells Newton to stop if ||§y®|| is small enough
compared with ||y**+1||. rtol is the relative stopping tolerance. B, " is a Schwarz preconditioner which can be B, , By

5° PRAS?
B;;H or B&SH. Note that we can also apply a right preconditioner, that is,

TGB! Besy® = —F ().

The Newton method is stopped when the linesearch iteration fails or the linear solver fails to converge. maxime is the
maximum number of time steps, and maxyewton i the maximum number of Newton iterations.

3.2 | Matrix ordering for tree-like meshes

Computationally, the most expensive step of Algorithm 2 is the solving of the preconditioning system associated with By
in which all the submesh matrices have to be constructed and solved. Because of the size of the problem, we do not solve
these submesh problems exactly, instead, only an ILU factorization of Ji‘s is computed. Here, “incomplete” refers to the
fact that during the factorization process, lots of nonzeros are treated as zeros to save memory and arithmetic operations.
Which nonzero entry is treated as a zero depends on how the matrix entries are ordered. A good ordering should resultin a
relatively small bandwidth. However, the initial ordering of the matrix, which comes from the mesh generation program,
is often bad because of the tree-like structure of the pulmonary artery. Below, we discuss the impact of different orderings
on the nonzero pattern and bandwidth of the matrix and then describe an effective ordering algorithm for the submesh
matrices in (9).

The nonzero pattern and bandwidth of the matrix are very different if the matrix is ordered using different approaches.
For example, in Figure 3, applying 2 ordering approaches, “alternating branch ordering“ and “one branch at a time
ordering,” to a one-dimensional two-branch artery mesh leads to 2 matrix orderings, and the corresponding nonzero pat-
terns and bandwidths are very different from each other. The nonzero patterns of the matrices for the alternating branch
ordering and the one branch at a time ordering are shown in the top and the bottom matrices of (14), respectively.

k sk
k ok ok
®* koK ok

- = (14)
E 3
k ok ok

k* ok ok *

*
*
*

The bandwidth of the top matrix of (14) is 5, and that for the bottom matrix of (14) is n + 2 (n is the number of vertices
on the right branch). When the number of branches increases, the bandwidth of the top matrix of (14) becomes larger,
and the bandwidth of the bottom matrix of (14) is determined by the number of nodes on each individual branch. When
an LU factorization is performed, the L and U matrices corresponding to the bottom matrix of (14) are much denser than
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FIGURE 3 Two ordering approaches for one-dimensional two-branch artery. Left: alternating branch ordering; right: one branch at a time
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FIGURE 4 Different orderings for a small subtree

that for the top matrix in (14). Similarly, ILU(k), an incomplete LU factorization with k levels of fill-ins, for the bottom
matrix in (14) is less accurate than that of the above matrix in (14). Even with the same bandwidth, the ordering also plays
a key role on the final nonzero pattern of the factored matrix.

* N IEEEE:
T AEE:
. 15)
N | IE
® % ok % || % *

For example, if the mesh points are ordered as in Figure 4, the matrices would have the nonzero patterns as in (15),
and the LU factorization of the left matrix in (15) does not change the sparsity pattern, and its L and U matrices have
the same nonzero structure as the lower and upper triangular parts of the original matrix whose ILU(0) is the same as
the LU factorization, on the other hand, the LU factorization of the right matrix in (15) involves extra fill-ins, and the
corresponding ILU(0) is an approximation to LU. Therefore, ILU(0) of the left matrix is better than that of the right matrix.
From the examples above, we see that a good ordering often leads to a more accurate factorization. Unfortunately, the
original ordering, shown in Figure 5, for a pulmonary artery mesh is created randomly, and the bad property is transferred
to the submeshes when the global mesh is partitioned. A reordering is required to make the submesh solver efficient and
save memory.

For a simple geometry such as a rectangular domain, the original (Natural) ordering is usually good, but for a more
complex geometry, the ordering of the mesh generated using standard techniques based on a commercial package may
be far from ideal. There are several reordering algorithms, namely, nested dissection (ND),*” one-way dissection (1IWD),*
quotient minimum degree (QMD),* and reverse Cuthill-McKee (RCM) algorithm.* The basic idea of the reordering
algorithm is to relabel the vertices of the underneath graph of a matrix in such a way that all entries in the matrix are
aligned as close to the diagonal as possible and an LU factorization based on the permuted matrix costs as little memory
as possible. After many numerical experiments, we find that RCM often works better than other choices. In the RCM
ordering, a peripheral point (the point with the lowest degree) is chosen as the initial point and it is marked as a visited
point, and then its immediate unvisited neighboring points are marked as candidates for the next visit. For each unvisited
neighboring point, the same idea is recursively used. The neighboring points are visited from the lowest to the highest
degree. The points are ordered according to the visiting sequence. Finally, this sequence is reversed. The detailed idea are
shown in Algorithm 3, where nv is the number of vertices in the submesh, N(v) represents the neighboring vertices of the
current point v, and the stack S serves to reverse the ordering in the queue Q.
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FIGURE 5 Top left: original (natural) ordering for the entire domain; top right: the entire domain is divided into 8 submeshes; bottom: the
original ordering of the first submesh. This particular mesh has 199 721 vertices, and we label them using integer 1,2, ... , (199, 721). Since
there are too many numbers to be clearly shown in the figure, we represent them by colors as indicated by the legend in the top left figure.
Similarly, in the top right figure, color is used to label the subdomain number. In the bottom figure, one can see that the color of some points
is very different from its neighbors', which indicates that the corresponding matrix has a large bandwidth

Algorithm 3 Reverse Cuthill-McKee (RCM)*
1: Find a peripheral vertex as the initial point v;

2: Initialize a queue Q = {v;},andi=1
3. for |Q| < nvdo
4: Retrieve the ith element of Q as v
5 Find all neighboring points, N(v), of v
6: Increaseibyl,i=i+1
7: Order N(v) from the lowest to the highest degree
8: for each unmarked point ¥ in N(v) do
9: Append ¥ to Q

10: Mark ¥ as visited

11: end for

12: end for

13: Create an empty stack S = ¢

14: fori=1tonvdo

15: Retrieve the ith element of Q as v
16: Pushvinto S

17: end for

18: Return S

4 | NUMERICAL EXPERIMENTS AND OBSERVATIONS

In this section, we report the results of some numerical experiments and also the parallel performance of the algorithm
with respect to the number of processor cores when using different versions of Schwarz with various parameter settings,
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FIGURE 6 Left: the inlet blood flow rate for 2 heartbeats; right: spatially averaged wall shear stress varying with time for two heartbeats
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FIGURE 7 The velocity magnitude and the pressure at L1, L2, and L3

FIGURE 8 The locations of observation. We observe the velocity and the pressure varying with time at 3 different locations marked as L1,
L2,and L3

and the robustness with respect to the viscosity of the fluid flows. The algorithm is implemented based on PETSc,* and all
numerical simulations are performed on an IBM iDataPlex cluster consisting of Intel Sandy Bridge processor cores inter-
connected by an Infiniband network. For the rest of the section, “NI” denotes the average number of Newton iterations
per time step, “LI” denotes the average number of GMRES iterations per Newton step, “EFF” is the parallel efficiency
and “MEM” is the memory usage per processor core in megabytes, and “T" is the total compute time for 10 time steps
in second. The restart value of GMRES is fixed at 500, the maximum number of GMRES iterations is set as 500, and the
relative stopping condition for GMRES is set to be 107*. The relative stopping condition used for Newton is 10~° and the
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maximum number of Newton iterations is fixed as 10. We set the overlapping size as 1, the submesh solver as ILU(1),
the submatrix reordering as RCM by default, unless otherwise specified. BI‘J‘S is used as the default preconditioner. “np”
denotes the number of processor cores.

The simulation is conducted for the patient-specific pulmonary, shown in Figure 1, for 2 heartbeats (1.2 seconds) with
the time step size 6t = 1073. A blood flow rate profile, shown in the left picture of Figure 6, is applied as the inlet boundary
condition and the traction-free boundary condition is applied to all outlets. The wall sheer stress (WSS) is an important
metric, and it is calculated by the following formula

WSS =on - (on - n)n,

and the spatially averaged WSS (SAWSS) is obtained by integrating the WSS on the entire domain surface and then
normalized over the area, that is,

SAWSS = ~ / WSSdA,
AJoa

where A is total surface area of the pulmonary artery. In Figure 6, we observe that the SAWSS is highly correlated with
the input flow rate. The SAWSS increases when the input flow rate increases with time, and it decreases when the input
flow rate decreases. In Figure 7, the pressure and the velocity magnitude at three locations, L1, L2, and L3, as shown in
Figure 8, are plotted against time. It is easy to see that the pressure and the velocity magnitude at the proximal portion of
the artery, such as L1, are highly correlated with the input flow rate, while those at the distal become flat over 2 heartbeats.
The velocity, the pressure, and the WSS at different time are shown in Figures A1, A2, and A3, respectively. Similarly,
all values become larger when the input flow rate increases, and the WSS at nonsmooth points are usually higher than
other points where the geometry is smooth. From Figures A2 and A3, it is easy to see that the pressure decreases in space
from the inlet to the distal outlets, but the WSS is determined by the geometry; larger arteries have larger WSS values
more often. In Figure A1, to observe the detailed features of the velocity, the pictures are zoomed in at the main branch
marked in the first picture of Figure A1l. The flow is turbulent at the right branch of the artery, and the speed of the flow
becomes much larger at 0.75 second. The pattern of the turbulent flow at the start and the end of the heart cycle are the
same, indicating the flow is periodic in time.

Next, we investigate how different parameters impact the numerical performance of the algorithm. The nonlinear sys-
tem is solved using Algorithm 2, and the performance of the algorithm in terms of the compute time and the number of
iterations with respect to the number of processor cores are reported below using different Schwarz parameters.

4.1 | Impact of submatrix reordering

Algorithm 2 does not work well and sometimes diverges, if the submesh matrices are ordered using the original ordering
provided by the mesh generation program. To fix this issue, we need to effectively reorder the submatrices. In this test,
several ordering schemes such as Natural, ND, 1WD, QMD, and RCM are studied. “Natural” represents the original order-
ing. The mesh used in this test has 10499 044 elements, 2 155 399 vertices and the corresponding system has 6 966 955
unknowns, and the same mesh will also be used in the following tests, unless otherwise specified. The simulation is con-
ducted for 10 time steps using 128, 256, 512, and 1024 processor cores, respectively. The results are summarized in Table 1
and the left of Figure 9.

In Table 1, the number of Newton iterations stays as a constant, 2.5, for all reordering schemes when we increase the
number of processor cores. The number of GMRES iterations for different reordering schemes is different, sometimes
significantly different. For example, when using 128 processor cores, the number of GMRES iterations is 625 with Natural
ordering, while it is 327 when we use RCM. The number of GMRES iterations is similar for IWD and RCM, and the 2
schemes result in the similar performance in terms of the compute time and the memory usage. The compute time is
332 seconds for IWD and 327 seconds for RCM when we use 128 processor cores, and the corresponding memory usage is
395 and 365 megabytes, respectively. It is easy to observe that the performance of IWD is very similar to RCM, and RCM is
a little better than TWD. Reverse Cuthill-McKee is the best in most cases except when we use 512 processor cores, where
RCM is slightly slower than 1WD in the compute time and also a little more expensive in the memory usage. Natural
ordering is the worst, ND is the second worst in the GMRES iteration and the compute time, and ND does not improve the
performance much because it is originally designed for linear systems arising from regular meshes.*” Quotient minimum
degree is a popular approach for minimizing fill-ins in a factorization,? but it does not perform well for the case of complex
geometry, such as the pulmonary artery. The algorithm is scalable with respect to the number of processor cores in terms
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of the compute time and the number of iterations (GMRES iterations and Newton iterations) for all cases. Because RCM
performs quite well in this test, we will use it as the submatrix reordering in the following tests by default.

4.2 | Different variants of Schwarz preconditioner

As discussed before, the overlap for either the prolongation or the restriction operator or both can be dropped to reduce
the communication cost and improve the algorithm. Here, we test the performance of these algorithms. The same test
problem as before is reused here. We report the results in Table 2 and the right of Figure 9.

It is easy to see that, in Table 2, AS is the worst in terms of the compute time, the number of iterations, and the memory
usage. Restricted additive Schwarz and ASH have a similar performance in terms of the 4 metrics (the number of linear
and nonlinear iterations, the compute time and the memory usage), except when the number of processor cores is 1024,
the memory usage per core for ASH is a little more than that for RAS. RASH is cheaper because its matrix is smaller, but
unfortunately, it is not scalable when the number of processor cores is large. For example, the parallel efficiency drops to
55% at np = 1024 while other 3 preconditioners still have more than 70% parallel efficiency. In all, both RAS and ASH are
scalable for np = 128,256, 512, and 1024 in terms of all metrics. We use RAS as the default Schwarz preconditioner in the
following tests.

TABLE 1 Impact of submatrix reordering with different
number of processor cores

np Ordering NI LI T MEM EFF, %
128 Natural 2.5 243 625 545 100

128 ND 2.5 205 520 567 100
128 1WD 2.5 131 332 395 100
128 QMD 2.5 168 440 517 100
128 RCM 2.5 128 327 365 100
256 Natural 2.5 214 290 339 108
256 ND 2.5 204 275 332 95
256 1WD 2.5 133 177 221 94
256 QMD 25 151 211 264 100
256 RCM 2.5 129 172 234 95
512 Natural 2.5 181 136 199 115
512 ND 25 194 144 242 90
512 1WD 2.5 136 96 190 87
512 QMD 25 163 124 194 89
512 RCM 2.5 107 102 229 80
1,024 Natural 2.50 2138 1928 R 175 85
1,024 ND 25 189 84 177 77
1,024 1WD 2.5 138 56 136 74
1,024 QMD 25 153 65 147 85
1,024 RCM 25 137 55 115 74

Abbreviations: ND, nested dissection; QMD, quotient minimum
degree; RCM, reverse Cuthill-McKee. A nonlinear system with
6966955 unknowns is solved by NKS with different reordering
schemes for submesh solvers. np is the number of processor cores,
“NI” denotes the average number of Newton iterations per time
step, “LI” denotes the average number of GMRES iterations per
Newton step, “EFF” is the parallel efficiency and “MEM” is the
memory usage per processor core in megabytes, and “T” is the total
compute time in second for 10 time steps. “Ordering” represents a
subdomain matrix reordering scheme.
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TABLE 2 Different variants of Schwarz preconditioner

np Type NI LI T MEM EFF, %
128 AS 3 329 893 515 100
128 RAS 2:5) 128 327 403 100
128 ASH 2.5 128 328 403 100
128 RASH 2.5 205 470 508 100
256 AS 2.8 345 460 296 97
256 RAS ) 129 173 272 95
256 ASH 2.5 129 173 270 95
256 RASH 2.5 193 233 269 100
512 AS 2.9 467 356 240 63
512 RAS 2.5 132 95 171 86
512 ASH 2.5 133 95 169 86
512 RASH 2.5 210 136 177 86
1,024  AS 2.8 360 154 170 72
1,024 RAS 2.5 137 56 152 73
1,024  ASH 2.5 137 56 179 73
1,024 RASH 2.5 285 107 168 55

Abbreviations: AS, additive Schwarz; ASH, additive Schwarz with har-
monic extension; RAS, restricted additive Schwarz. Nonlinear equations
with 6 966 955 unknowns is solved by an inexact Newton-Krylov method
preconditioned by different variants of Schwarz preconditioner. np is the
number of processor cores, “NI” denotes the average number of Newton
iterations per time step, “LI” denotes the average number of GMRES iter-
ations per Newton step, “EFFE” is the parallel efficiency and “MEM” is the
memory usage per processor core in megabytes, and “T” is the total com-
pute time in second for 10 time steps. “type” represents a Schwarz variant.
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FIGURE 9 Compute time for different submatrix reordering schemes and different Schwarz variants. Left: submatrix reordering; right:

variant of Schwarz preconditioner. AS, additive Schwarz; ASH, additive Schwarz with harmonic extension; ND, nested dissection; RCM,

reverse Cuthill-McKee

4.3 | The level of fill-ins for ILU

Incomplete LU with [ level of fill-ins is denoted as ILU(I), and ILU(0), ILU(1), and ILU(2) are tested. The results with
np = 128,256,512, and 1024 are summarized in Table 3 and the left of Figure 10.

As shown in Table 3, when the number of processor cores increases from 128 to 1024, the number of Newton iterations
stays as a constant for ILU(1) and ILU(2) but slightly varies for ILU(0). ILU(0) is worse than ILU(1) and ILU(2) for any core
counts even though its compute time is superlinearly reduced. The number of GMRES stays near a constant for ILU(1)
with different number of processor cores. ILU(2) further decreases the number of GMRES iterations about by 30, when
compared with ILU(1). However, ILU(2) does not decrease the compute time, because its cost per iteration is higher than
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TABLE 3 Impact of submesh solver
np Subsolver NI LI T MEM EFF, %

128 ILU(0) 2.8 450 1053 475 100
128 ILUQ1) 25 128 327 365 100
128  ILU(2) 25 100 339 453 100
256 ILU(0) 2.8 361 433 276 121
256  ILU(1) 25 129 172 234 95
256 ILU(2) 25 103 184 240 92
512 ILU(0) 2.7 327 210 196 125
512 ILUQ1) 25 132 95 158 86
512 ILU(2) 2.5 107 102 229 80
1,024 ILU(0) 25 270 93 159 141
1,024 ILU(1) 25 137 55 115 74
1,024 ILU(2) 25 113 57 170 74

Abbreviation: ILU, incomplete LU. Nonlinear system with 6 966 955
unknowns is solved an inexact NKS with an incomplete LU fac-
torization with different levels of fill-ins as a submesh solver. np
is the number of processor cores, “NI” denotes the average num-
ber of Newton iterations per time step, “LI” denotes the average
number of GMRES iterations per Newton step, “EFF” is the paral-
lel efficiency and “MEM” is the memory usage per processor core in
megabytes, and “T” is the total compute time in second for 10 time
steps. “subsolver” represents a subdomain solver.

TABLE 4 Impact of overlap

np 6 NI LI T MEM EFF, %
128 0 25 167 384 456 100
128 1 25 128 327 365 100
128 2 25 125 335 419 100
256 0 27 215 267 282 72
256 1 25 129 172 234 95
256 2 | 23 125 181 227 93
512 0 25 183 110 168 87
512 1 25 132 95 158 86
512 2 25 125 102 213 82
1,024 0 28 431 158 189 30
1,024 1 2.5 137 55 115 74
1,024 2 25 125 66 159 63

Nonlinear system with 6966955 unknowns is solved by a
Schwarz preconditioned inexact Newton-Krylov method. np is
the number of processor cores, “NI” denotes the average num-
ber of Newton iterations per time step, “LI” denotes the average
number of GMRES iterations per Newton step, “EFF” is the par-
allel efficiency and “MEM” is the memory usage per processor
core in megabytes, and “T” is the total compute time in second
for 10 time steps. & represents the subdomain overlapping size.

ILU(1) and the reduction of the number of GMRES iterations can not compensate for the extra cost. ILU(1) is the best in
this case in terms of the compute time and the memory usage.

4.4 | The overlapping size

The overlap plays a critical role in a Schwarz-type preconditioner, and we study the impact of overlapping size in this test. A
larger overlapping size often results in fewer number of GMRES iterations, but the communication and the computational

cost per iteration increase.
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From the results in Table 4 and the right of Figure 10, we see that the number of Newton iterations stays as a constant for
all cases when we increase the number of processor cores. When 6 = 0, the number of GMRES iterations increases with
the increase of the number of processor cores, especially at np = 1024, where the number of GMRES iterations is doubled.
As a result, the parallel efficiency is deteriorated to 30%, which is an indication that a larger overlapping size is required.
The performance improves a lot when we increase the overlapping size from 0 to 1. It is easy to see that the number
of GMRES iterations and the compute time for 6 = 1 are reduced significantly, when compared with § = 0. Further
increasing the overlapping size from 1 to 2 decreases the number of GMRES iterations slightly, but increases the compute
time because the cost per iteration increases. It is interesting to note that 6 = 2 keeps the number of GMRES iteration
as a constant for all processor counts, which implies that increasing the overlapping makes the algorithm arithmetically

scalable, but quite scalable in terms of the compute time. We will use § = 1 in the following tests because it has the best
performance in terms of the compute time.

4.5 | The robustness of algorithms with respect to different viscosity

The viscosity is an important physics parameter for incompressible flows, and smaller viscosity value often corresponds
to a more complicated flow pattern, and at the same time, the corresponding nonlinear/linear systems become harder to
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FIGURE 10 Compute time for different levels of fill-ins of incomplete LU (ILU) and different overlapping sizes. Left: level of fill-ins of
ILU; right: overlapping size

TABLE 5 Robustness of the algorithms with respect to
different viscosity and different number of processor cores

np v NI LI T MEM EFF, %
128 0.05 2.4 101 330 453 100
128 0.01 2.8 96 371 428 100
128 0.001 3.6 89 463 458 100
256 0.05 24 105 178 212 93
256 0.01 2.8 101 201 242 92
256 0.001 3.6 93 253 243 92
512 0.05 2.4 109 100 231 83
512 0.01 2.8 104 112 231 83
512 0.001 3.6 95 137 202 84
1,024 0.05 2.4 115 56 208 74
1,024 0.01 2.8 110 64 203 72
1,024 0.001 3.6 99 77 182 75

A nonlinear system with 6966 955 unknowns is solved by an inexact
Newton-Krylov-Schwarz method. np is the number of processor cores,
“NI” denotes the average number of Newton iterations per time step,
“LI” denotes the average number of GMRES iterations per Newton
step, “EFF” is the parallel efficiency and “MEM” is the memory usage
per processor core in megabytes, and “T” is the total compute time in
second for 10 time steps. v represents the viscosity in g/(cms).
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TABLE 6 Scalability with a large number of processor cores

np subsolver NI LI T MEM EFF, %
1,024 ILU(4) 25 163 1016 1120 100
1,024 ILU(5) 2.5 154 1394 1383 100
1,024  ILU(6) - - - - -
1,024 LU - - - - —
2,048 ILU(4) 2.5 183 561 579 91
2,048  ILU(5) 25 176 788 664 88
2,048 ILU(6) 2.5 172 1015 744 100
2,048 lu - = - - —
4,096 ILU(4) 25 205 326 336 78
4,096 ILU(5) 2.5 198 421 382 83
4,096 ILU(6) 2.5 195 548 430 93
4,096 LU 2.5 197 2572 866 100
8,192 ILU(4) 2.5 366 289 272 44
8,192 ILU(5) 2.5 298 305 332 57
8,192 ILU(6) 25 291 373 328 68
8,192 LU 2.5 264 942 459 137
10,240 ILU(®4) 2.5 404 258 251 39
10,240 ILU(5) 2.5 345 277 238 50
10,240 ILU(6) 25 305 305 256 67
10,240 LU 2.5 308 690 359 149

A system with 55575035 unknowns is solved by a Schwarz precondi-
tioned inexact Newton-Krylov method. np is the number of processor cores,
“NI” denotes the average number of Newton iterations per time step, “LI”
denotes the average number of GMRES iterations per Newton step, “EFF”
is the parallel efficiency and “MEM” is the memory usage per processor
core in megabytes, and “T” is the total compute time in second for 10 time

steps. “subsolver” represents the subdomain solver.

solve. We examine a few values of viscosity in this test to verify the robustness of the algorithm. The results are summarized
in Table 5 and the left of Figure 11.

From Table 5, we observe that the number of Newton iterations increases for smaller viscosities because the problem
becomes nonlinearly more difficult. The averaged number of GMRES iterations per Newton step decreases slightly when
we reduce the viscosity. The compute time also increases because of the increase of Newton iterations since the Newton
steps are expensive in the sense that the Jacobian and preconditioner have to be recomputed during each Newton step.
The memory usage for v = 0.05,0.01, and 0.001 is similar. All cases have good scalability, which implies that the algorithm
is robust with respect to different values of viscosity.
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4.6 | Scalability with respect to a large number of processor cores

To test the parallel scalability of the proposed algorithm, a mesh with 83 992 352 elements, 15 531 731 nodes, and 55 575035
unknowns is used. The strong scalability with the number of processor cores ranging from 1024 to 10240 is studied.
The problem is more difficult to solve when the mesh is larger. Therefore, if ILU(k < 4) were used as a submesh solver,
the overall algorithm does not converge well. The smallest level of fill-ins is 4 in this particular case. Fortunately, the
algorithm framework is flexible so that there are different choices of the individual component that make the algorithm
work for a given problem. The numerical results are summarized in Table 6 and the right of Figure 11, from which we
see that the memory usage per core is halved when we double the number of processor cores, which indicates that the
additive Schwarz method with the RCM reordering is scalable in terms of the memory. For example, the memory usage
per core is 1120 MB with ILU(4) on 1024 cores, and it is reduced to 579 MB (that is almost half of 1129 MB) when using
2048 cores. The algorithm is scalable in terms of the nonlinear iterations because the number of Newton iterations stays
as a constant for all cases when we increase the number of processor cores. The number of linear iterations increases
gradually with the number of processor cores, especially from 4096 to 8192, where the number of linear iterations is
increased by more than 100. We hence see a parallel efficiency drop when go from 4096 to 8192, but we still have a
reasonably good efficiency more than 40%. ILU(4) offers the best performance in terms of the compute time compared with
other submesh solvers. We conclude that the overall algorithm is scalable in terms of Newton iterations and the memory
usage for all processor counts, and it is also scalable in terms of the compute time and the number of linear iterations
especially when the number of processor cores is less than or equal to 4096. The parallel scalability using more than 8192
processor cores will be further improved in the future by exploring a way to use a multilevel version of the proposed
approach.

5 | CONCLUDING REMARKS

A highly scalable parallel unsteady fluid solver was proposed for patient-specific pulmonary artery trees with up to the
7th generation. A hierarchal partitioning is used to divide the pulmonary artery mesh to a large number of submeshes,
each submesh is assigned to a processor core, and the computation is equally distributed over a large number of processor
cores. The system of incompressible Naiver-Stokes equations is used to model the blood flow, and it is discretized using a
stabilized finite element method in space and an implicit scheme in time. The resulting system of nonlinear equations is
solved using an inexact Newton method, where the Jacobian system is solved using a Krylov subspace method together
with a Schwarz preconditioner with reordered submesh matrices. The traditional Schwarz precondtioner without a careful
reordering does not work well, and the RCM reordering method significantly improves the overall algorithm performance.
We numerically show that the reorganized NKS approach is scalable on a machine with more than 10 000 processor cores
for a complex unsteady flow problem in an extremely complex geometry, with hundreds of outlets and secondary flows,
such as the pulmonary arterial tree.
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APPENDIX

FIGURE A1 Streamlines of the velocity field at t = 0.6,0.75,0.9, 1.05, and 1.2 seconds. The pictures are ordered from left to right and from
top to bottom
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FIGURE A2 Pressure distribution at t = 0.6,0.7,0.75,0.9, 1.05, and 1.2 seconds. The pictures are ordered from left to right and from top to
bottom
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FIGURE A3 Wall shear stress distribution at t = 0.6,0.75,0.8, 0.9, 1.05, and 1.2 seconds. The pictures are ordered from left to right and
from top to bottom
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