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Abstract

This paper provides a complementary study to two previous papers by Virgin (2017a,b) [1, 2]. In

those papers, 3D printing was used to provide hands-on experience for students studying structural

analysis and structural dynamics, respectively. In this paper, the application of 3D printing is

extended to investigate advanced seismic design strategies, namely seismic isolation. This paper

describes the use of 3D printing to fabricate pendulum-type isolation bearings under parametric

variation. Both sliding and rolling mechanisms are modeled, designed, fabricated and tested, and

the influence of bearing geometry (radius) and damping (friction versus rolling resistance) on

dynamic characteristics and isolation performance is explored.
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1. Introduction

Seismic isolation is a practical strategy for earthquake-resistant design whereby a flexible inter-

face is introduced between the structure and its foundation [3, 4]. This has the result of lengthening

the fundamental period of the structure, thus reducing the sustained accelerations in this mode and

the earthquake-induced forces in the structure. Additive manufacturing (or 3D printing) offers

compelling pedagogical opportunities in the context of learning seismic isolation. Pendulum-type

isolators of simple geometry enable students to easily design, print, and test the isolation systems

to verify isolation principles. The capabilities of 3D printing will allow for varied designs at a

∗Corresponding author. Address: School of Civil Engineering and Environmental Science, University of Okla-
homa, 202 W. Boyd St., Norman, OK 73019-1024, USA. Tel.: +1 405 325 3836

Email address: harvey@ou.edu (P. S. Harvey Jr.)

Preprint submitted to Engineering Structures March 23, 2018



m

(a) Fixed-base structure (b) Isolated structure

k, c

m

mb

k, c

kb, cb

Base slab
Isolation
system

Figure 1: Conceptual idealization of fixed-base (a) and isolated (b) structures.

lower cost compared to full-scale modeling. Varying the component geometries (e.g., curvature of

the isolator) would allow for comparative studies that can be easily repeated, therefore allowing

the student the opportunity to observe and compare theoretical calculations to empirical data. This

paper provides a complementary study to previous papers by Virgin addressing structural analysis

[1] and structural dynamics [2].

1.1. Basic theory of seismic isolation

In active seismic areas, buildings and their contents are susceptible to harmful vibrations from

earthquake ground motions, posing a threat to the structural integrity of buildings and damage to

sensitive equipment. Consider the fixed-base building shown in Fig. 1(a), which has lumped mass

m, damping coefficient c, and lateral stiffness k. The natural period of the fixed-base structure is

given by

Tf =
2π
ωf

where ωf =

√
k
m

(1)

The natural period calculated from this equation, together with the damping ratio ζf = c/(2
√

km),

is used to determine the pseudo-acceleration and hence earthquake-induced forces in the structure

from elastic design spectra (Fig. 2). The fundamental period of low- to medium-rise buildings

is commonly in the range of periods where earthquake energy is strongest, giving rise to large

spectral accelerations. These accelerations can be reduced if the structure is designed to be more

flexible (longer period), but this approach may be neither feasible nor practical [5]. The necessary

flexibility can be achieved by base isolation. Base isolation provides an alternative to the standard,

fixed-base design of structures and may be cost efficient for new buildings in highly active seismic

locations [6].
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Figure 2: Elastic design spectra.

Consider the same m-c-k structure from before but now mounted on a base slab of mass mb

supported by isolation bearings [Fig. 1(b)]. The isolation system has lateral stiffness kb and damp-

ing coefficient cb. The period of the isolation system, assuming the building to be rigid, is given

by

Tb =
2π
ωb

where ωb =

√
kb

m + mb
(2)

The base isolation period Tb must be much longer than the fixed-base period Tf in order to be

effective in reducing the spectral accelerations and as a result the forces in the building. The two-

degree-of-freedom system that defines the isolated structure [Fig. 1(b)] has two natural periods

(T1, T2) that are close to, but do not exactly match, the fixed-base period Tf and isolation period

Tb. The periods of the coupled system are given by

T1 =
2π
ω1

and T2 =
2π
ω2

(3)

where the natural frequencies are found from the following equation [7]:

ω2
1,2 =

1
2(1 − γ)

[
ω2

b + ω2
f ∓

√
(ω2

b − ω
2
f )2 + 4γω2

bω
2
f

]
(4)

in which the mass ratio γ is defined as

γ =
m

m + mb
(5)

Fig. 3 shows the influence of γ and the period ratio on the coupled system’s modal periods.

The first mode is called the isolation mode because the isolation system undergoes deforma-

tions but the structure behaves as essentially rigid. The second mode is called the structural mode
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Figure 3: Effect of mass ratio γ and uncoupled period ratio Tb/Tf on the coupled system’s natural periods T1 and T2.

because the it involves deformation of the structure as well as the isolation system. While the struc-

tural mode’s pseudo-acceleration may be large (Fig. 2), this mode is essentially not excited [6] and

contributes little to the earthquake-induced forces in the structure. The earthquake-induced forces

are dominated by the fundamental (isolation) mode, which has low pseudo-accelerations (Fig. 2).

Further, these forces are carried by the isolation bearings because the isolation mode involves de-

formations primarily in the isolation system. Hence the primary benefit of base isolation is the

lengthening of the fundamental period, reducing earthquake-induced forces in the building. A

secondary benefit of base isolation is the reduction in structural response through the damping in

the isolation system [7].

1.2. Seismic isolation in practice

In practice, two types of isolation systems are commonly used. The first type involves the

use of a flexible layer between the base of the structure and its foundation. The most common

system of this type is laminated rubber bearings (LRB). These are short, cylindrical bearings

with alternating layers of steel plates and hard rubber to remain vertically stiff yet horizontally

flexible [8]. The addition of damping is readily incorporated through mechanical dampers such as

hydraulic dampers, steel dampers, or a lead core [9].

The second type entails placing a pendulum mechanism between the foundation and the base of

the structure. The most common system of this type is the friction pendulum bearing that operates

through a sliding mechanism [10, 11]. The sliding interface provides enough friction to withstand

strong winds and small earthquakes, while having a low coefficient of friction to dissipate shear

forces created from large earthquakes. The sliding displacement is limited by curved sliding sur-
4



faces that provide a restoring force to return the bearing to its equilibrium position. In particular,

the friction pendulum sliding bearing employs spherical sliding surfaces that slide relative to each

other when the ground motion overcomes the static friction. When sliding occurs along the spher-

ical surfaces, the building raises slightly resulting in gravitational restoring forces. Another type

of pendulum bearing is the rolling pendulum bearing, which operates under the same gravitational

restoring action [12]. These systems tend to have much less damping then their sliding counter-

parts due to the rolling resistance being much less than friction in sliding bearings [13]. For the

purpose of this study, the isolation systems of interest are limited to rolling and sliding systems.

2. 3D Printing of Seismic Isolation Bearings

3D printing has increasingly been used as a teaching and research tool in mechanical engineer-

ing [14], revolutionizing the prototyping of mechanical components such as gears. More recently,

3D printing has been used to teach linear structural analysis [1] and structural dynamics [2] in the

context of civil engineering. Thus, 3D printing has the capabilities of being used to teach base

isolation, merging efforts from across mechanical and civil engineering disciplines. We shall fo-

cus attention on planar, pendulum-type isolation bearings supporting a single-degree-of-freedom

planar frame structure. Two mechanisms are considered for the isolation bearings: sliding and

rolling. These mechanisms were chosen partly to facilitate 3D printing, but also due to their ubiq-

uity in practice. We shall focus attention on relatively simple geometries, as discussed in the

following section, to obtain linear force-displacement relationships, but more complex geometries

are discussed later.

2.1. Isolation Bearing Design and Fabrication

In this study, we consider two typical pendulum-type isolation bearings: friction pendulum

(FP) bearings and rolling pendulum (RP) bearings. Fig. 4 shows the design for the FP bearing,

which was modeled after a common design in practice [15]. The bearing is comprised of a bottom

plate with circular sliding surface of radius R that is attached to the ground, an upper plate that

supports the structure, and an articulated slider that transfers the load between the sliding surface

and the upper plate. Fig. 5 shows the design for the RP bearing, which is comprised of lower
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Figure 4: Friction pendulum bearing schematic.
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Figure 5: Rolling pendulum bearing schematic.

and upper rolling surfaces (both of radius R) and a steel ball interposed therebetween. Both of

these bearings function under a pendulum-like mechanism, whereby horizontal translations result

in vertical motion generating a gravitational restoring force. More details on modeling of these

bearings will be given later.

In addition to varying the isolation mechanism, the bearing radius R provided parametric vari-

ation. Two radii were fabricated and tested: R = 254 and 508 mm. More specific details will

be given on the selection of these two values in Section 3. The sliding and rolling surfaces were

designed to be interchangeable to reduce the number of surfaces that needed to be printed. De-

tails of the sliding/rolling surfaces are shown in Fig. 6. The surfaces had a center line groove that

accommodated the articulated slider (that had a matching tongue; Fig. 7) and the 19.1-mm steel

ball (not shown), which provided resistance transverse to the bearing’s intended motion. The radii

of the articulated slider were selected so as to avoid binding both laterally and longitudinally. A

matching groove in the upper mount of the FP bearing (Fig. 8) was designed to allow the slider

to articulate. To keep the bearing profile as thin as possible, the bearings were designed with re-

cessed bolt holes leaving enough clearance to avoid contact at zero displacement. For the bearing

component designs, the nominal displacement capacities of the FP and RP bearings are 44 and 89

mm, respectively.

The bearing components were fabricated using a relatively inexpensive 3D printer (Taz 6,

LulzBot, Loveland, CO). Polylactic acid (PLA) thermoplastic was used because it tends to be more
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Figure 6: Details of sliding/rolling surfaces used in FP/RP bearings with R = (a) 508 mm and (b) 254 mm.
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Figure 7: Details of articulated slider used in FB bearings.

forgiving and show less warping from differential cooling than acrylonitrile butadiene styrene

(ABS) thermoplastics. The 3D printer has a heated print surface to further reduce the warping.

Warping was of particular concern because it would lead to misalignment in the bearings.

7



�������

�5�����

�5�����

������
�������

$

$

8QLWV��PP

������� ������� ������� ������� �������

������ ������� ������ �����

������
������
������

������
�������

��������������

6(&7,21�$�$

$ $

% %

�

�

�

�

'2�127�6&$/(�'5$:,1*

)3,B7RSB����������
6+((7���2)��

81/(66�27+(5:,6(�63(&,),('�

6&$/(����� :(,*+7��

5(9':*���12�

$
6,=(

7,7/(�

1$0( '$7(

&200(176�

4�$�

0)*�$335�

(1*�$335�

&+(&.('

'5$:1

),1,6+

0$7(5,$/

,17(535(7�*(20(75,&
72/(5$1&,1*�3(5�

',0(16,216�$5(�,1�,1&+(6
72/(5$1&(6�
)5$&7,21$/
$1*8/$5��0$&+ �����%(1'�
7:2�3/$&(�'(&,0$/����
7+5((�3/$&(�'(&,0$/��

$33/,&$7,21

86('�211(;7�$66<

35235,(7$5<�$1'�&21),'(17,$/
7+(�,1)250$7,21�&217$,1('�,1�7+,6
'5$:,1*�,6�7+(�62/(�3523(57<�2)
�,16(57�&203$1<�1$0(�+(5(!���$1<�
5(352'8&7,21�,1�3$57�25�$6�$�:+2/(
:,7+287�7+(�:5,77(1�3(50,66,21�2)
�,16(57�&203$1<�1$0(�+(5(!�,6�
352+,%,7('�

Figure 8: Details of upper mount for FB bearing.

(a)

(b)

(c)

Figure 9: (a) Printed friction pendulum (top) and rolling pendulum (bottom) bearings. Assembled isolation bearings:

(b) friction pendulum bearing; (c) rolling pendulum bearing.

2.2. System Assembly and Setup

For the experimental system, a single-story shear-type building model was isolated using the

3D printed bearings. The fabricated bearing components are shown in Fig. 9(a), and the assembled

isolation bearings are shown in Figs. 9(b) and 9(c). The isolation layer was assembled from two

152.4 mm × 304.8 mm polycarbonate plates to which four bearings were attached at the corners.

The bottom plate was bolted to a single-axis shake table, and the top plate was bolted to the base

of the building model. The base slab mass mb is approximately 1.24 kg, which includes the upper

bearing elements, the top plate, the base of the building model, one accelerometer, half the column

masses, and mounting hardware. The structure mass m is approximately 0.677 kg, which includes

the roof of the building model, an accelerometer, and half the column masses.

To reduce friction and wear in the FP bearings, a wet lubricant (petrolatum) was applied to

the sliding surfaces. Quasi-static inclination tests were conducted to determine the static coeffi-
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Figure 10: The experimental test setup. Isolated structure in foreground, with the fixed-base structure in the back-

ground. Both are attached to the shake table. Accelerometers are attached to the shake table, above the the isolation

layer, and to the roofs of both structures.

cient of friction. Motion was initiated at an incline of approximately 15◦, which corresponds to

a static coefficient of friction of 0.27. While this is substantially higher than traditional ranges

for friction coefficient in self-lubricating bearing surfaces (0.05 – 0.15) [16, 17], other researchers

have recently explored low-cost, high-friction (0.15 – 0.25) FP bearings as an approach to signif-

icantly decrease required design displacements [18, 19]. These 3D fabricated bearings, therefore,

are more representative of the latter. It is worth noting that such a high coefficient of friction will

affect the sliding isolation performance, as shown later.

Fig. 10 shows the experimental setup. A second structure was attached directly to the shake

table to serve as a point of comparison between base isolated and fixed-base buildings subject to

an earthquake.

Experiments were conducted on a Quanser Shake Table II (Markham, Ontario, Canada). The

Quanser table was acquired through the University Consortium on Instructional Shake Tables [20],

which was was developed to enhance undergraduate and graduate education in earthquake engi-

neering. The table can achieve a peak acceleration of 2.5 g and has a stroke of ±75 mm. The table

was controlled in Simulink through QUARC real-time control software.

An array of accelerometers was installed on the experimental system. Four accelerometers
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(ADXL210E, Alldata, Elk Grove, California) were installed to measure acceleration in the x di-

rection (horizontal): one mounted underneath the stage to measure the acceleration of the shake

table, one mounted immediately above the isolation layer to measure the acceleration across the

isolation system, and one mounted to to roof of each structure to measure the roof acceleration.

Accelerations were acquired at 1 kHz.

The rest of this paper seeks to establish natural periods of the pendulum bearings and their ge-

ometric parameter dependence, as well as their seismic isolation performance. The goal here is to

exploit the versatility of 3D printing for deepening an appreciate for seismic isolation. This practi-

cal component can be used to enhance the understanding of linear structural dynamics, earthquake

engineering, and vibrations in general.

3. Basic Modeling

A basic model for the isolation systems can be developed via Lagrange’s equation. Assuming

that the building is rigid relative to the isolation system, the kinetic energy, in terms of the total

mass M = m + mb, is T = 1
2 M(u̇g + u̇)2 where ug(t) is the horizontal ground displacement, u(t)

is the horizontal displacement across the isolation bearings, and the overdot means differentiation

with respect to time, i.e., u̇ ≡ du/dt. We have assumed that the vertical kinetic energy is negligible

due to the shallow sliding/rolling surface profiles. Further, we have neglected the kinetic energy

associated with the rolling balls.

The potential energy in the system is given entirely by the gravitational potential energy V =

Mgh(u), i.e., assuming the building to be rigid and neglecting strain energy stored in the building

columns. The height h(u) is dictated by the sliding/rolling surface profile, with the functional form

for h(u) depending on the specific isolation bearing type. For the friction pendulum bearing, the

height is given by the surface profile elevation at the articulated slider which displaces the same

amount as the mass (Fig. 4). For the rolling pendulum bearing, the height is given by two times

the surface profile elevation at the ball which is half the displacement across the bearing (Fig. 5).

Assuming a circular profile, the elevation is given by

y(x) = R −
√

R2 − x2 (6)
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Hence, the height is given by

h(u) =


y(u), friction pendulum bearing

2y(u/2), rolling pendulum bearing
(7)

The equation of motion is given, via Lagrange’s equation, by the second-order differential

equation

Mü + cu̇ + f + Mgh′(u) = −Müg (8)

where c is the linear viscous damping coefficient and f is the friction force. The friction may be

modeled as the Coulomb friction [21], and f is taken to be f = µMg sgn(u̇) where µ is the coeffi-

cient of friction. The gravitational restoring force Mgh′(u) depends on the gradient of the assumed

profile [Eq. (6)] through the height function [Eq. (7)]. The derivative y′(x) can be simplified by

retaining the linear term in its Taylor series expansion:

y′(x) =
x

√
R2 − x2

≈
x
R

(9)

Upon substituting this expression into the height function [Eq. (7)], the (linearized) gravitational

restoring force is recovered:

Mgh′(u) =


Mg

u
R
, friction pendulum bearing

Mg
u

2R
, rolling pendulum bearing

(10)

It is immediately apparent that the stiffness is mass proportional, and the natural frequency, there-

fore, is independent of the mass, as it is in the case of a pendulum. Furthermore, the stiffness

is inversely proportional to the radius of curvature, R. The linearized natural periods of the two

bearing mechanisms are given by

Tb =


2π

√
R/g, friction pendulum bearing

2π
√

2R/g, rolling pendulum bearing
(11)

Table 1 gives the theoretical natural periods for the two radii considered. Note that for the two

different mechanisms (sliding and rolling), the natural periods are different for the same radius R.
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Table 1: Isolation bearing geometries and results from free response system identification. Fixed-base structure period

Tf = 0.182 s.

Theoretical1 Experimental

Type R [mm] Tb [s] T1 [s] T2 [s] Tb [s] T1 [s] T2 [s]

Sliding 508 1.43 1.43 0.146 – – –

254 1.01 1.02 0.146 – – –

Rolling 508 2.02 2.03 0.146 1.97 2.00 0.154

254 1.43 1.43 0.146 1.41 1.42 0.156

1For mass ratio γ = 0.353.

This is due to the factor of 2 in the denominator of the restoring force [Eq. (10)] for the rolling

pendulum bearing, which is present because of the kinematics of the rolling ball that moves half

the total displacement across the bearing.

Assuming a natural period of the fixed-base structure alone of 0.182 s (the experimentally

determined Tf described later), Eq. (4) can be used in conjunction with Eq. (3) to determine the

natural periods of the coupled system. Table 1 gives the theoretical values for T1 and T2 for a mass

ratio γ = 0.353 (the value determined for the experimental setup described before). The isolation

period T1 lengthens very little from the isolation system period Tb, while the structural period is

shortened by about 25%.

4. Results

For this study the main emphasis is on the effect of the isolation bearing mechanism (slid-

ing/rolling) and of geometric changes (radius) on the isolation system’s behavior and ultimately

performance. Free vibration tests were first conducted to identify the experimental system prop-

erties, and then the systems were subjected to earthquake ground motions to evaluate the seismic

isolation performance.
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Figure 11: Free responses of the (a) fixed-base structure and the isolated building—(b) 508-mm RPS and (c) 254-mm

RPS—and the corresponding frequency content (FFT). A is in arbitrary units.

4.1. Free Vibration Tests

Free vibration tests were conducted to extract the natural periods of the fixed-base structure and

isolated system. Motion for the free response tests was initiated by applying an initial deflection

and then releasing, and the subsequent time series was recorded by the accelerometers. Gathered

data was then subject to a spectral analysis and the natural periods extracted. In particular, the

natural frequency was extracted using the fast Fourier transform (FFT) within Matlab. Fig. 11

shows the measured free decay time series and corresponding FFT spectra for (a) the fixed-base

structure and (b,c) the structure isolated with the rolling pendulum system (RPS) with radius R =

(b) 508 and (c) 254 mm. Note that the friction pendulum system (FPS) was not tested because the

friction prevented any free vibration in the bearings.

For the fixed-base structure [Fig. 11(a)], the FFT gives a natural frequency of 5.497 Hz, cor-

responding to a period of 0.182 s (the value reported in Table 1 for the fixed-base structure). The
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natural period can alternatively be determined by picking peaks over j cycles of motion and av-

eraging the time to complete a cycle. Doing so confirms the period of oscillation of 0.182 s.

Additionally, the damping ratio ζf can be determined from the decrease in acceleration amplitude

from üi to üi+ j over j cycles of motion [6]:

ζ ≈
1

2π j
ln

(
üi

üi+ j

)
(12)

Using the logarithmic decrement approach, the damping ratio for the fixed-base structure was

found to be 0.82%, confirming that the structure is very lightly damped.

For the isolated structures [Figs. 11(b) and 11(c)], two distinct frequencies can be observed

in the time series and FFT, which correspond to the isolation and structural modes. For the RPS

with radius R = 508 mm [Fig. 11(b)], the FFT gives natural frequencies of 0.5012 and 6.516

Hz, or natural periods of 2.00 and 0.154 s. The former is the fundamental period of the system,

the isolation mode, where the structure remains effectively rigid. This value closely matches

the theoretical value (Table 1). The latter is the structural mode, which involves deformation of

the structure as well as the isolation system. The value is sightly shorter than that of the fixed-

base structure due to the frequency splitting phenomena caused by coupling the building to the

isolation system. Good agreement is observed between the theoretical and experimental isolation

and structural periods.

A similar behavior appears for the the 254 mm rolling isolation system. Fig. 11(c) shows the

response of the 254-mm RPS and the isolated and structural frequencies 0.7055 and 6.428 Hz,

respectively. The isolated frequency is close to the theoretical value of 0.707 Hz. It appears to be

a decrease in the structural frequency value. Table 1 summarizes the theoretical and experimental

free responses described above.

In addition to the free vibration tests of the isolated system (i.e., the isolated SDOF structure),

free vibration tests were conducted on the isolation system alone by replacing the structure with

rigid blocks. The free responses (not shows) gave base isolation periods Tb of 1.97 and 1.41 s for

the RPSs with radius R = 508 and 254 mm, respectively. These values are also reported in Table

1. As predicted theoretically, the base isolation period is shorter than the isolation period in the

coupled system.
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4.2. Earthquake Tests

Next, the earthquake response of the fixed-base building and isolated building with FP and RP

bearings was examined to assess the seismic isolation performance. For the dynamic earthquake

testing, we consider three earthquake records, which are listed in Table 2. The earthquake records

were scaled in length and time to meet the limitations of the shake table. The time and length scale

factors, peak ground acceleration (PGA), and peak ground displacement (PGD) of each record

(at the 100% amplitude) are listed in Table 2. Additional length scales are considered in the

incremental dynamic analysis (Section 4.2.1).

The ground-motion time-histories are shown in Fig. 12 for the three earthquake records (at

the 100% amplitude). Additionally, acceleration response spectra are shown for damping ratios of

ζ = 0.5, 1 and 5 %. The vertical lines indicate the periods of interest for the experimental system:

fixed-base period, Tf = 0.18 s; base isolation periods, Tb = 2 and 1.4 s; and structural-mode period

of the isolated system, T2 = 0.15 s. Note that Tf and T2 fall within the portion of the spectrum

where the energy is strongest, whereas Tb is in the lower energy region (by design).

Figs. 13 and 14 show the response time histories for Kobe and Mendocino at the 100% am-

plitude. From these figures, it is immediately apparent that the roof acceleration is considerably

reduced in the isolated cases when compared to the fixed-base building. For Kobe (Fig. 13), re-

ductions on the order of 60% and 90% are observed for the FP and RP bearings, respectively.

The damping in the FP bearing increases the coupling and decreases the isolation performance,

whereas the RP bearing is very lightly damped leading to the dramatic reduction in accelerations.

In fact, the RP bearing consistently isolates throughout the entire test, while there is a portion at

Table 2: Records used for earthquake tests.

Time Length

Event Year Station Record scale scale PGA [g] PGD [mm]

Kobe 1995 HIK HIK000 1/4 1/3.3 0.68 10

Northridge 1994 Sylmar - Hospital SYL090 1/2 1/11 0.80 15

Cape Mendocino 1992 Cape Mendocino CPM000 1/4 1/7.0 0.81 50
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Figure 12: Time history of earthquakes used for evaluating the fixed base and isolation systems—(a) Kobe, (b)

Northridge (c) Mendocino—and their corresponding frequency content (response spectra).

the beginning of the FP test in which the fixed-based and isolated buildings respond identically

[e.g., time 0–7 s in Fig. 13(a)]. This corresponds to base shear insufficient to overcome the static

friction in the sliding bearing, with the bearing acting as rigid; it is not until the ground acceler-

ations become sufficiently large to overcome friction that bearing displacements are realized and

isolation is achieved. Similar response behaviors and isolation performance were observed in the

case of Northridge (not shown).

For Mendocino (Fig. 14), the FP bearings (a,c) exhibited similar performance as the Kobe
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Figure 13: Roof acceleration response of fixed-base building and isolated buildings—(a) 254-mm FPS, (b) 508-mm

RPS, (c) 508-mm FPS, and (d) 254-mm RPS—subjected to Kobe ground motion.
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Figure 14: Roof acceleration response of fixed-base building and isolated buildings—(a) 254-mm FPS, (b) 508-mm

RPS, (c) 508-mm FPS, and (d) 254-mm RPS—subjected to Mendocino ground motion.

event, but the RP bearing (b,d) exhibited much larger responses, with a distinct long-period com-

ponent of the response at the isolation period (2.0 and 1.4 s, respectively). The reason for this

large isolation response can be explained from the response spectra in Fig. 12. Above a period

of 1 s, Kobe (a) and Northridge (b) have nearly zero pseudo-spectral acceleration, while Mendo-

cino exhibits a long period component in the 1–2 s range where the isolation period is located.
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The spectral acceleration at the isolation period is roughly 0.15 g, which matches the measured

acceleration response for the 254-mm RPS indicated by the dashed line in Fig. 14(d); the 508-mm

RPS [Fig. 14(d)] exhibited larger accelerations due to vibrations in the isolated building (i.e., with

6.5-Hz content). It is clear that the effectiveness of base isolation is diminished under long-period

ground motions [22].

4.2.1. Incremental Dynamic Analysis

Finally, the behavior of the systems is assessed at multiple ground-motion amplitudes. In this

incremental dynamic analysis [23], five to six ground-motion amplitudes are considered for each

earthquake, and peak responses are recorded for the fixed-base building and isolated building with

each bearing. By making incremental changes to the earthquake intensity, it is then possible to

gain an appreciation for nonlinearities and their effect on the systems’ behavior.

Fig. 15 show the peak roof accelerations versus PGA for (a) Kobe, (b) Northridge, and (c)

Mendocino. These figures contain a wealth of information. First, the fixed-base structure behaves

linearly as expected. With increasing PGA, the peak roof acceleration increases proportionately.

This behavior is seen to be repeatable as well, as indicated by the four coincident markers at each

PGA—one for each isolation configuration.

Second, the peak roof acceleration for the friction pendulum systems (FPSs) are identical to

those of the fixed-base building for low PGAs. This is due to the base shear being insufficient to

overcome static friction in the bearings, not allowing deflection across the bearing, resulting in an

effectively fixed-base building. The critical PGA at which static friction is overcome and sliding

in the bearing is initiated, is in the range (a) 0.136 – 0.272 g, (b) 0.268 – 0.401 g, and (c) 0.325 –

0.487 g. Neglecting any dynamic effects, the coefficient of static friction can be approximated by

this critical PGA. Doing so, gives a value of about µs = 0.27, which is consistent with the value

determined through the quasi-static inclination tests. While this relatively high friction coefficient

degrades the isolation performance, reductions in the peak roof acceleration of nearly 50% are

observed at high PGAs. Even better isolation performance would be expected if a lower friction

coefficient was achieved in the FP bearings (see Section 5).

Third, the rolling pendulum system (RPS) isolated effectively for all PGAs. This is due to
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Figure 15: Incremental dynamic analysis. Peak roof acceleration versus peak ground acceleration for the fixed-base

building and the building isolated using a friction pendulum system (FPS) or a rolling pendulum system (RPS) with

varying radius R: (a) Kobe, (b) Northridge, and (c) Mendocino.

the very low rolling resistance in these systems. The worst performance for the RPS was for

Mendocino [Fig. 15(c)], which is attributed to the long-period content as previously discussed.

Fourth, the radius had a slight influence on the isolation performance. For example, the accel-

eration response of the FPS with R = 254 mm under Kobe [Fig. 15(a)] is consistently larger than

with R = 508 mm, which is suggested by Eq. (11) (i.e., smaller R means a shorter period closer to

the portion of the response spectrum where the energy is strongest). Similar trends are observed

for the RPS under Northridge [Fig. 15(b)].

5. Discussion and Other Practical Considerations

As demonstrated here, 3D printing has a potentially useful role to play in the teaching of earth-

quake engineering and seismic isolation. By making isolated but consistent parametric changes,

which is easily accomplished in 3D printing, it is then possible to gain an appreciation for how
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seismic isolation performance depends on the geometry of the isolation bearing, as well as the

isolation mechanism. Considerations concerning failure limit states such as insufficient bearing

capacity could also be addressed [24, 25], but were not considered here. Other extensions to this

work can easily be envisioned, for example:

• Vary the surface geometry for nonlinear gravitational restoring forces, such as constant slope

[26] and polynomial [27];

• Incorporate supplemental damping in the RP bearings, such as rubber balls or elastomeric

liners [26];

• Explore means of reducing the friction coefficient in the FP bearings, such as using other

wet lubricants (or a dry lubricant) or printing the sliding surfaces with a self-lubricating

synthetic polymers (e.g., polytetrafloroethylene (PTFE) [28]);

• Consider more complex mechanisms, such as triple friction pendulum [29].

In addition to the benefits to teaching seismic isolation, 3D printing of isolation bearings has the

potential to greatly enhance the testing of novel isolation bearing designs in research and practice.

6. Concluding Remarks

The teaching of advanced seismic design strategies, such as base isolation, typically relies on

empirical techniques, analytic expressions and numerical simulation. Experimental demonstra-

tions can provide a beneficial practical appreciation of these theoretical concepts, and 3D print-

ing in particular can easily facilitate the construction and testing of isolation bearings. Making

mechanical and geometric changes to bearing designs enables a direct comparative study to be

conducted. Furthermore, students are given the opportunity to design, fabricate, and test their

own bearings, permitting hands-on learning and a deeper appreciation for the concepts taught in

the classroom. These concepts could easily be incorporated into inductive learning approaches in

interactive classrooms [30].
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