Toward Predicting Architectural Significance
of Implementation Issues

Arman Shahbazian, Daye Nam, Nenad Medvidovic

University of Southern California, Los Angeles, CA, USA
{armansha, dayenam, neno} @usc.edu

ABSTRACT

In a software system’s development lifecycle, engineers make numer-
ous design decisions that subsequently cause architectural change
in the system. Previous studies have shown that, more often than
not, these architectural changes are unintentional by-products of
continual software maintenance tasks. The result of inadvertent
architectural changes is accumulation of technical debt and deteri-
oration of software quality. Despite their important implications,
there is a relative shortage of techniques, tools, and empirical studies
pertaining to architectural design decisions. In this paper, we take
a step toward addressing that scarcity by using the information in
the issue and code repositories of open-source software systems
to investigate the cause and frequency of such architectural design
decisions. Furthermore, building on these results, we develop a
predictive model that is able to identify the architectural significance
of newly submitted issues, thereby helping engineers to prevent the
adverse effects of architectural decay. The results of this study are
based on the analysis of 21,062 issues affecting 301 versions of 5
large open-source systems for which the code changes and issues
were publicly accessible.

ACM Reference Format:

Arman Shahbazian, Daye Nam, Nenad Medvidovic . 2018. Toward Predict-
ing Architectural Significance of Implementation Issues. In MSR ’18: MSR
*18: 15th International Conference on Mining Software Repositories , May
28-29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, Article 4,
5 pages. https://doi.org/10.1145/3196398.3196440

1 INTRODUCTION

In a software development project, numerous design decisions are
made that change the architecture of the system and directly affect
the system’s quality [33]. Prior work has shown that these architec-
tural changes are frequently unintentional by-products of continual
software maintenance tasks [40]. The result of inadvertent architec-
tural changes is accumulation of technical debt and deterioration
of software quality [16, 41]. A large body of work has focused on
reducing the amount of technical debt and ameliorating the down-
sides of this phenomenon [24]. However, architectural decay is
still evident during the evolution of many, if not most, software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
o the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @ acm.org.

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05... $15.00
https://doi.org/10.1145/3196398.3196440

systems [5, 17]. In some situations, engineers deliberately decide
to use solutions that are suboptimal to meet certain objectives, such
as shorter time to market or other business requirements [7]. While
the reasons for intentional accumulation of technical debt and ar-
chitectural decay are still open for investigation, our focus in this
work is developing techniques that identify and predict architectural
changes, thus reducing the adverse effects of architectural decay.

In this paper, we aim (1) to automatically identify the issues lead-
ing to architectural design decisions in existing systems and (2) to
predict the probable impact of implementation-level issues and re-
sulting system changes on those decisions. Despite their far-reaching
implications [33], there is a relative shortage of techniques, tools,
and empirical studies pertaining to the role that architectural de-
sign decisions play in long-lived systems. Our work takes a step
toward addressing that scarcity. We present an approach that uses
the readily available information in the issue and code repositories
of software systems and enables engineers to investigate the causes
and frequencies of making new and modifying existing architectural
design decisions.

To that end, we mine the issue and code repositories of five large
open-source software systems to extract their issues and pertinent
code changes. In order to detect the architectural changes in a
system, we use a state-of-the-art software architecture analysis work-
bench [6]. For each issue, we recover the architecture of the system
before and after its resolution. We use a2a [6], a metric specifically
designed for measuring architectural change, to identify the issues
causing architectural changes. We call these issues architecturally
significant. We have shown previously that, a2a can be used to
accurately recover architectural design decisions [30]. Unlike ex-
isting techniques that typically focus on undoing the side-effects
of architectural decay ex post facto (e.g., [31, 37]), building on our
results, we develop a predictive model that is able to identify the ar-
chitectural significance of newly submitted issues. Doing so enables
engineers to prevent architectural decay before the offending code
changes are committed and merged with the system’s code-base.

The main contributions of this paper are as follows:

¢ A technique for automatically detecting existing issues that are
architecturally significant.

¢ A reusable dataset of 21,062 issues identified across five large
open-source software systems that are labeled by their architec-
tural significance.

o A classifier for predicting the architectural significance of newly
submitted issues.

To support researchers in evaluating related approaches and replicat-
ing our experiments, we make our dataset available online.!

I'The supplementary website can be reached at: hitps://softarch.usc.edu/predictar

MSR 18, May 28-29, 2018, Gothenburg, Sweden

The remainder of this paper is organized as follows. Section 2
overviews the foundational work enabling this research. Section 3
describes our experimental setup and results for identifying and
predicting architecturally significant issues. Sections 4 and 5 discuss
the related work and conclude the paper.

2 BACKGROUND

In our study, we rely on a software system’s architecture and the
means to recover it, as well as tracking of implementation issues.
We overview each of these topics briefly.

2.1 Software Architecture

The structure of a software system’s architecture is a graph whose
vertices represent system components, while the edges denote their
interconnections (e.g., call dependencies and logical couplings).
Each component encompasses implementation entities such as classes,
interfaces, methods, libraries, etc. The architecture of a software
system is rarely accurately documented or kept up-to-date during the
system’s lifecycle. We use recovery techniques to obtain a system’s
architecture from its implementation.

Researchers have developed a range of architecture recovery tech-
niques. In this work, we use Algorithm for Comprehension-Driven
Clustering (ACDC) [35] and Architecture Recovery using Concerns
(ARC) [14], as they have been shown to exhibit better scalability
and accuracy than competing techniques [13]. Our study could be
repeated using other recovery techniques. ACDC is oriented toward
program comprehension and is based on subsystem patterns. ARC,
on the other hand, produces components that are semantically re-
lated and share similar system level concerns (e.g., a component
whose main concern is handling network communications). In or-
der to detect architectural differences across different points in the
development history of a software system, we use a2a, a similarity
metric calculated based on the cost of transforming one architecture
to another (e.g., by adding or removing components) [6].

2.2 Issue Tracking

All of our subject systems in this study use Jira [2] as their issue
repository. A similar approach can be applied to systems using differ-
ent repositories. When reporting implementation issues, engineers
typically categorize them into different types: bug, new feature, fea-
ture improvement, task 1o be performed, etc. Engineers also assign a
priority value to an issue, to denotes their perception of the issue’s
importance (e.g., critical or minor). Each issue has a status that
indicates the position of the issue in its lifecycle [3]: issues start as
“open”, progress to “resolved”, and finally to “closed”.

In our study, we focus on issues that have been “resolved” or
“closed”. Issues can be resolved in different ways. We ignore the
issues that fall under the “won’t fix”, or “cannot reproduce” cate-
gories and only focus on issues that have been “fixed”. The reason
is that these issues have been verified and addressed by developers,
so that any effects caused by them would presumably appear in
certain system versions and disappear once the issue is addressed.
Additionally, a fixed issue contains information that is useful for our
study: (1) description, (2) affected versions in which the issue has
been found, (3) rype of issue, (4) priority, and (5) fixing commits,
i.e., the changes applied to the system to resolve the issue. Finding

Arman Shahbazian, Daye Nam, Nenad Medvidovic

System Domain Versions | Issues | Avg. LOC
Hadoop Data Proc. Framework 68 7374 1.96M
Nutch Web Crawler 21 1524 118K
Wicket Web App Framework 72 4637 332K
CXF Service Framework 120 5852 915K
OpenJPA | Java Persistence API 20 1675 511K

Table 1: Subject systems analyzed in our study.

fixing commits is not always easy since there is no standard method
for engineers to keep track of this information in issues trackers.
In Jira, we found three popular methods: (1) directly mapping to
fixing commits, (2) using pull requests, and (3) using patch files.
Our approach supports all three methods.

3 STUDY SETUP

The goal of this work is to detect the implementation issues that
lead to—possibly unintentional—design decisions and subsequently
change the system’s architecture. Furthermore, we want to expand
these results by predicting whether resolving a submitted issue would
require architecturally significant changes. This information could
prove valuable to engineers and help them deliver higher quality
code [25]. In the remainder of this section, we will summarize our
subject systems (Section 3.1), and describe the devised workflow
for determining the architectural significance of issues followed by
a discussion of the results (Section 3.2). In Section 3.3, we will
introduce a machine learning approach for predicting architectural
significance of issues. Finally, Section 3.4 will overview the threats
to the validity of our results.

3.1 Subject Systems

We report the empirical results involving five Apache [1] open-
source projects. Apache was chosen because it is one of the largest
open-source organizations in the world and has produced a number
of impactful systems. Furthermore, Apache systems have well-
maintained code repositories, release notes, and issue trackers. Table
1 lists our subject systems. We analyzed the largest available Apache
systems that rely on Jira [2] for tracking issues and satisfy the fol-
lowing criteria:

(1) The systems belong to different software domains, to ensure
broad applicability of our results.

(2) The issues and their fixing commits are tracked. Specifically,
we analyze “resolved” and “closed” issues because they have
complete sets of fixing commits.

(3) The systems have large numbers of resolved and closed issues
to give us sufficient data points for our analysis and machine
learning models.

3.2 Recovering Significant Issues

Figure 1 depicts our framework for identifying a system’s architec-
turally significant issues. The process begins by mining the set of
issues from our subject systems’ issue repositories and filtering the
ones not conforming to our criteria (recall Section 2.2). On aver-
age, about 35% of the issues are discarded at this stage. For each
issue, our framework automatically extracts its pertinent commit
information. The commit information is used to identify the system
version at which the issue has been merged with the code base and

Toward Predicting Architectural Significance of Implementation Issues

For each issue:

MSR 18, May 28-29, 2018, Gothenburg, Sweden

System Architectures Significant Legend
Issues prTTemmee : T ! Issues
| Before i | o’% i CTTY
Commit L | Architecture o I sl Change I:l ' i
Analysis T i Recovery e i Detection Component -Xr{i;‘a-l(-:r‘ Data Flow
1 After T : O"Q%'O !
Figure 1: Framework for the identification of architecturally significant issues in a software project.
Overall ARC ACDC
System | | # |B% | F1% | 0% |C% | Mj% Mn% | # |B%|F1% | O%]C% | Mj% | Mn%| # |B% | F1% | 0% |C% | Mj%]| Mn%
Hadoop | 7374 | 56.6 | 32.2 | 112 | 152 | 614 | 234 | 1066 | 61.5 | 366 | 1.9 | 266 | 602 | 13.2 | 633 | 589 | 386 | 2.5 | 27.8 | 39.1 | 13.1
Nutch 1524 | 457 | 438 | 106 | 7.0 | 522 | 408 | 89 |427| 573 | 00 | 45 | 640 | 315 | 60 |383| 617 | 0.0 | 1.7 | 667 | 3L7
Wicket | 4637 | 59.7 | 335 | 68 | 24 | 595 | 381 | 1362|579 | 370 | 51 | 1.5 | 591 | 394 | 930 | 603 | 358 | 3.9 | 2.0 | 628 | 352
Cxf 5852 | 623 | 260 | 117 | 34 | 77.7 | 189 | 2441|640 | 317 | 43 | 37 | 765 | 198 | 1403 | 57.0| 371 | 59 | 34 | 777 | 19.0
OpenJPA | 1675 | 622 | 216 | 162 | 53 | 71.1 | 236 | 580 | 586 | 255 | 159 | 47 | 778 | 176 | 453 | 563 | 263 | 174] 42 | 797 | 161

Table 2: Overview of the results of our architectural significance analysis. Column Overall shows the issues’ general distribution.
ARC and ADCD columns depict the distribution of architecturally significant issues under each recovery technique. Issue types are
bug (B), feature/improvement (F/I), or other (0). Issue priority is critical (C), major (Mj), or minor (Mn)

the version immediately preceding it. We then extract the system’s
source-code at these two snapshots. By applying the two selected
architecture recovery techniques (ACDC [35] and ARC [14]), we re-
cover two architectural views of the system at each snapshot. Finally,
the a2a [6] similarity metric is used, with the highest sensitivity,
to identify any architectural discrepancies stemming from the is-
sue and its extracted commits. Issues whose resolution has caused
architectural change, as indicated by a2a, are labeled as significant.

Table 2 displays the results of running the above analysis on our sub-
ject systems. The Overall column contains the general distribution
of issues in each system. The other top level columns contain in-
formation about the architecturally significant issues detected using
ACDC and ARC. The data is further subdivided based on the issue
type and priority. Issue type can be bug (B), feature or improvement
(F/I), or other types such as test and task (O). Issue priority is either
critical (C), major (Mj), or minor (Mn).

The data shows that, in general, there are more bugs submitted to
issue repositories than features or improvements. Interestingly, al-
though the number of architecturally significant issues is only a small
fraction of all submitted issues, their distribution in terms of priority
is not very different from the original issue distribution. While this
finding deserves a closer inspection, it appears that engineers are
typically unable to isolate architecturally significant issues, and con-
sequently do not consider them any more (or less) important than
“regular” issues. The distribution of bugs, features, and improve-
ments does not show drastic change between significant and regular
issues either. This is a finding we have not seen in literature previ-
ously. Overall, our results suggest that architectural significance is
an overlooked facet of implementation issues, and cannot be easily
inferred from the existing tags applied to issues.

3.3 Predicting Significant Issues

The main objective of our work is to enable classifying issues
based on their architectural significance. Recent studies have shown
that developers who explicitly consider the impact of their code-
level changes on their system’s architecture deliver higher quality
code [25]. This suggests that notifying engineers of the likely archi-
tectural importance of issues at the time they are submitted can result

in better-informed implementation decisions. To enable such noti-
fication, we use the information that is readily available for newly
submitted issues: title, description, priority, and type.

Figure 2 displays the overview of our classification-model building
process. Most of the information in issues is textual. Therefore,
to construct the automatic classification model, first, we need to
parse and pre-process the textual sections of the retrieved issues, i.e.,
title and description. This step has a big impact on optimizing the
classification step and data-noise removal [36]. For each issue, we
remove the English stop-words [27], code snippets, and stack traces
that are sometimes submitted alongside issues descriptions. We then
use the Porter stemmer to reduce the inflected (or sometimes derived)
words to their word stems [26]. This helps to group the words with
similar basic meanings together.

To perform machine learning on text documents, we must transform
the textual content into numerical feature vectors. The most intuitive
way to do so is to use the bags-of-words representation. In this
approach, we create a dictionary of all the words in the corpora.
Then, for each issue we count the occurrences of the words in the
dictionary. Using this approach, issues with longer descriptions
will have higher average count values than shorter documents, even
though they may pertain to the same topic. To address this problem,
we use Term Frequencies (TF) [20], which normalizes the number
of occurrences with respect the total number of words in the issue
description and title. Finally, we append the one-hot-encoded [21]
representation of issue type and priority to this feature vector.

Previous studies have shown that when training models on primarily
textual data with on the order of several thousand data points, a

. Feature
Pl Pre-Processing Extraction
navzed J T 1 Training
b Feature F Classifier
................. Processed Vectors -
Issues [To[3[2[0[1 2]

Figure 2: Workflow for building our automatic architectural
significance classifier.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

ARC ACDC
System | Precision | Recall Precision | Recall
Hadoop 0.793 0.637 0.883 0.547
Nutch 0.941 0.276 0.951 0.217
Wicket 0.843 0.657 0.678 0.417
Cxf 0.801 0.698 0.928 0.468
Openlpa 0.965 0.503 0.903 0.399
Cross-Project 0.816 0.592 0.806 0.573

Table 3: Precision and recall of our classifier for each sys-
tem. The Cross-Project row shows the result of applying the
classifier on the combined issues of all systems.

classifier with high bias performs well. Theoretical and empirical
results suggest that Naive Bayes [12] does well in such circum-
stances [11, 22], and we adopt it for our classification.

‘We use precision and recall as the performance evaluation metrics.
Precision shows the ratio of correctly predicted architecturally sig-
nificant issues over all predicted significant issues. Recall denotes
the ratio of correctly predicted architecturally significant issues over
all of the actually significant issues. Table 3 shows the evaluation
results obtained using the 10-fold-cross-validation setup, where each
dataset is randomly partitioned into 10 equal-sized subsets. Nine of
the subsets are used as training data, while the last subset is retained
as testing data. The process is then repeated 10 times.

The numbers reported in Table 3 are the average values across the
10 repetitions. The top five rows show the results of training and
running our classifier on the individual systems; the Cross-Project
row is the result of applying the classifier on our entire corpus of
issues across all systems. The precision of our classifier is very good,
surpassing 90% in certain cases under both ARC and ACDC. The
overall precision across the five systems is above 80% under both
recovery techniques. The recall values for our classifier are lower
than the precision values. In the case of ARC, with the exception
of Nutch, they are all above 50% for the individual systems, and
around 60% across all systems. In the case of ACDC, the recall
values are lower: only the Hadoop and Cross-Project values are
above 50%. The reason may lie in ACDC’s dependency analysis-
based architecture recovery algorithm, a hypothesis we will have to
evaluate further. Nutch is again a notable outlier. OpenJpa yields the
second-lowest recall values under both ARC and ACDC. These two
systems have much smaller datasets of issues compared to the rest
of our corpus. Moreover, Nutch has about an order of magnitude
fewer architecturally significant issues than other systems, which
further hampers the efficacy of our classification model.

3.4 Threats to Validity

Threats to Construct Validity: The dataset containing architec-
turally significant issues depends on the recovery techniques em-
ployed. To mitigate this problem, we selected two techniques that
exhibit higher accuracy than their competitors [13]. Furthermore,
any technique can be easily incorporated in our framework.

Threats to External Validity: Due to practical limitations, we only
used open-source projects. Furthermore, all the issues in our study
belong to systems implemented in Java and use the Jira issue tracker.

Arman Shahbazian, Daye Nam, Nenad Medvidovic

To help mitigate this issue, we selected systems from different do-
mains, thus expanding our study’s scope (recall Section 3.1).

4 RELATED WORK

Understanding architectural decisions is important for software main-
tenance and comprehension. A number of studies have been con-
ducted to justify its necessity and show its concrete benefits. Falessi
et al. argued for the value of capturing and explicitly document-
ing design decisions [10]. Burge et al. showed that understanding
architectural decision helps make better decisions [8]. Tang et al.
empirically showed that knowing the architectural decisions can
improve the quality of software systems [32].

Some researchers focused on the importance of having architectural
awareness, i.e., an ability to understand and assess varied aspects
of the software architecture and architectural decisions. Tyree et al.
argued that architectural decisions are usually not documented, and
this impedes software architects to understand and make architec-
tural decisions [34]. Nowak et al. also suggested that architectural
awareness can enhance the efficiency and quality of the architec-
ture design process, and they proposed a methodology to manually
capture the architectural knowledge in the design process [23].

Applying machine learning and natural language processing tech-
niques for software comprehension and maintenance has been receiv-
ing increasing attention from the research community. Especially,
issue data extracted from software repositories is widely used in
that it contains important information related to bug and software
quality [9]. Antoniol et al. built a classifier using machine learning
techniques to classify issues into two classes: bugs and non bugs [4].
Wiese et al. used issues as contextual data to improve the co-change
prediction model, i.e., a model to help developers aware of artifacts
that will change together with the artifact they are working on, of
software systems [39]. Weiss et al. employed a nearest neighbors
technique to automatically predict the fixing efforts of issues to
facilitate issue assignment and maintenance scheduling [38].

5 CONCLUSION AND FUTURE WORK

In this paper, we described a method for automatically detecting
architecturally significant issues, and classifying them based on the
textual and non-textual information contained in each issue. Our
technique aims to raise architectural awareness thus helping engi-
neers deliver higher quality code based on well-informed decisions.
Our study was conducted on five large open-source software projects.
Using our automated detection technique, we analyzed 21,062 issues
and identified their architectural significance. Our results suggest
that current categorizations of issues (type and priority) do not ef-
fectively encompass architectural significance. Expanding on these
resulting, we built a classification model to predict the architectural
significance of newly submitted issues.

For our future work, we plan to expand our study to more systems by
adding the support for other issue trackers. We also plan to improve
the performance of our classification model by adapting recent ad-
vances in the field of generative adversarial nets, which in theory can
enable us to artificially augment the size of our dataset [42]. Finally,
we aim to explore the feasibility of a similar technique to predict the
non-functional effects of implementation issues (e.g., security and
reliability) in existing software systems [15, 18, 19, 28, 29].

Toward Predicting Architectural Significance of Implementation Issues

REFERENCES

2017. Apache Software Foundation, http://apache.org. (2017). http://apache.org/
2017. IJira, https://www.atlassian.com/software/jira. (2017). https://www.
atlassian.com/software/jira

2017. What is an issue. (2017). https://confluence.atlassian.com/jira064/
what-is- an-issue- 720416138 html/

Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and
Yann-Ga'“el Guéhéneuc. 2008. Is It a Bug or an Enhancement?: A Text-based
Approach to Classify Change Requests. In Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collaborative Research: Meeting of
Minds. ACM, 23:304-23:318.

P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm. 2017. Towards Better
Understanding of Software Quality Evolution through Commit-Impact Analysis.
In 2017 IEEE International Conference on Software Quality, Reliability and
Security (QRS). 251-262.

Pooyan Behnamghader, Duc Minh Le, Joshua Garcia, Daniel Link, Arman
Shahbazian, and Nenad Medvidovic. 2016. A large-scale study of architectural
evolution in open-source software systems. Empirical Software Engineering
(2016), 1-48.

Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim,
Philippe Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya,
et al. 2010. Managing technical debt in software-reliant systems. In Proceedings
of the FSE/SDP workshop on Future of software engineering research. ACM,
47-52.

Janet E Burge. 2008. Design rationale: Researching under uncertainty. Arrificial
Intelligence for Engineering Design, Analysis and Manufacturing 22,04 (2008),
311-324.

Y guaratd Cerqueira Cavalcanti, Paulo Anselmo Mota Silveira Neto, Ivan

do Carmo Machado, Tassio Ferreira Vale, Eduardo Santana Almeida, and Silvio
Romero de Lemos Meira. 2014. Challenges and opportunities for software
change request repositories: a systematic mapping study. Journal of Software:
Evolution and Process 26, 7 (2014), 620-653.

Davide Falessi, Lionel C Briand, Giovanni Cantone, Rafael Capilla, and
Philippe Kruchten. 2013. The value of design rationale information. ACM
Transactions on Software Engineering and Methodology (TOSEM) 22, 3 (2013),
21

George Forman and Ira Cohen. 2004. Learning from little: Comparison of
classifiers given little training. In European Conference on Principles of Data
Mining and Knowledge Discovery. Springer, 161-172.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian Network
Classifiers. Mach. Learn. 29, 2-3 (1997), 131-163.

Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. 2013. A comparative
analysis of software architecture recovery techniques. In Auromared Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE,
486-496.

Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuan-
fang Cai. 2011. Enhancing architectural recovery using concerns. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, 552-555.

Michael Langhammer, Arman Shahbazian, Nenad Medvidovic, and Ralf H
Reussner. 2016. Automated Extraction of Rich Software Models from Limited
System Information. In 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA). 99-108. https://doi.org/10.1109/WICSA.2016.35

Duc Le, Daniel Link, Arman Shahbazian, and Nenad Medvidovic. 2018. An
Empirical Study of Architectural Decay in Open-Source Software. In [EFE
International Conference on Software Architecture (ICSA). IEEE.

Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman
Shahbazian, and Nenad Medvidovic. 2015. An Empirical Study of Architectural
Change in Open-Source Software Systems. In 2:h IEEE Working Conference
on Mining Software Repositories. 235-245.

Youn Kyu Lee, Jae Young Bang, Gholamreza Safi, Arman Shahbazian, Yixue
Zhao, and Nenad Medvidovic. 2017. A SEALANT for Inter-App Security Holes
in Android. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 312-323. https://doi.org/10.1109/ICSE.2017.36

Youn Kyu Lee, Peera Yoodee, Arman Shahbazian, Daye Nam, and Nenad
Medvidovic. 2017. SEALANT: A Detection and Visualization Tool for Inter-app
Security Vulnerabilities in Android. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017).

[20

21

22

23

[24]

126

[27

[28]

[30]

[31

[32]

133

[34

135

(37

138

[39

[40]

[41]

[42]

MSR 18, May 28-29, 2018, Gothenburg, Sweden

IEEE Press, Piscataway, NJ, USA, 883-888. http://dl.acm.org/citation.cfm?id=
3155562.3155672

H. P. Luhn. 1957. A Statistical Approach to Mechanized Encoding and Searching
of Literary Information. IBM Journal of Research and Development 1,4 (Oct
1957), 309-317.

Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. The
MIT Press.

Andrew Y Ng and Michael I Jordan. 2002. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes. In Advances in
neural information processing systems. 841-848.

Marcin Nowak and Cesare Pautasso. 2013. Team Situational Awareness and
Architectural Decision Making with the Software Architecture Warehouse. In
Software Architecture. Springer Berlin Heidelberg, 146-161.

Matheus Paixao, Mark Harman, Yuanyuan Zhang, and Yijun Yu. 2017. An em-
pirical study of cohesion and coupling: Balancing optimisation and disruption.
IEEE Transactions on Evolutionary Computation (2017).

Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and
Mark Harman. 2017. Are developers aware of the architectural impact of their
changes?. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 95-105.

M. F. Porter. 1997. Readings in Information Retrieval. Morgan Kaufmann
Publishers Inc., Chapter An Algorithm for Suffix Stripping, 313-316.

C.I. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-
Heinemann.

Gholamreza Safi, Arman Shahbazian, William G. J. Halfond, and Nenad
Medvidovic. 2015. Detecting Event Anomalies in Event-based Systems.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-

ware Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 25-37.
https://doi.org/10.1145/2786805.2786836

Arman Shahbazian, George Edwards, and Nenad Medvidovic. 2016. An End-
to-end Domain Specific Modeling and Analysis Platform. In Proceedings of the
8th International Workshop on Modeling in Software Engineering (MiSE '16).
ACM, New York, NY, USA, 8-12. https://doi.org/10.1145/2896982.2896994
Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvi-
dovic. 2018. Recovering Architectural Design Decisions. In IEEE International
Conference on Software Architecture (ICSA). IEEE.

L. Tahvildari, R. Gregory, and K. Kontogiannis. 1999. An approach for mea-
suring software evolution using source code features. In Software Engineering
Conference, 1999. (APSEC '99) Proceedings. Sixth Asia Pacific. 10-17.

Antony Tang, Minh H Tran, Jun Han, and Hans Van Vliet. 2008. Design
reasoning improves software design quality. In International Conference on the
Quality of Software Architectures. Springer, 2842,

Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. 2009. Software
architecture: foundations, theory, and practice. (2009).

Jeff Tyree and Art Akerman. 2005. Architecture decisions: Demystifying
architecture. IEEE software 22, 2 (2005), 19-27.

Vassilios Tzerpos and Richard C Holt. 2000. ACDC: An Algorithm for
Comprehension-Driven Clustering.. In were. 258-267.

Alper Kursat Uysal and Serkan Gunal. 2014. The Impact of Preprocessing on
Text Classification. Inf. Process. Manage. 50, 1 (2014), 104-112.

Christopher Van der Westhuizen and André Van Der Hoek. 2002. Understanding
and propagating architectural changes. In Software Architecture. Springer,
95-109.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller.
2007. How Long Will It Take to Fix This Bug?. In Proceedings of the Fourth
International Workshop on Mining Software Repositories. IEEE Computer
Society, 1-1.

Igor Scaliante Wiese, Reginaldo R, Igor Steinmacher, Rodrigo Takashi Kuroda,
Gustavo Ansaldi Oliva, Christoph Treude, and Marco Aurlio Gerosa. 2017. Using
Contextual Information to Predict Co-changes. J. Syst. Softw. 128, C (2017),
220-235,

Byron I Williams and Jeffrey C Carver. 2010. Characterizing software architec-
ture changes: A systematic review. Information and Software Technology (2010),
31-51.

Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng. 2016. Identi-
fying and quantifying architectural debt. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on. IEEE, 488-498.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient.. In AAAL 2852-2858.

	MSR2018_Page_1
	MSR2018_Page_2
	MSR2018_Page_3
	MSR2018_Page_4
	MSR2018_Page_5

