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ABSTRACT

In a software system’s development lifecycle, engineers make numer-
ous design decisions that subsequently cause architectural change
in the system. Previous studies have shown that, more often than
not, these architectural changes are unintentional by-products of
continual software maintenance tasks. The result of inadvertent
architectural changes is accumulation of technical debt and deteri-
oration of software quality. Despite their important implications,
there is a relative shortage of techniques, tools, and empirical studies
pertaining to architectural design decisions. In this paper, we take
a step toward addressing that scarcity by using the information in
the issue and code repositories of open-source software systems
to investigate the cause and frequency of such architectural design
decisions. Furthermore, building on these results, we develop a
predictive model that is able to identify the architectural significance
of newly submitted issues, thereby helping engineers to prevent the
adverse effects of architectural decay. The results of this study are
based on the analysis of 21,062 issues affecting 301 versions of 5
large open-source systems for which the code changes and issues
were publicly accessible.
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1 INTRODUCTION

In a software development project, numerous design decisions are
made that change the architecture of the system and directly affect
the system’s quality [33]. Prior work has shown that these architec-
tural changes are frequently unintentional by-products of continual
software maintenance tasks [40]. The result of inadvertent architec-
tural changes is accumulation of technical debt and deterioration
of software quality [16, 41]. A large body of work has focused on
reducing the amount of technical debt and ameliorating the down-
sides of this phenomenon [24]. However, architectural decay is
still evident during the evolution of many, if not most, software
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systems [5, 17]. In some situations, engineers deliberately decide
to use solutions that are suboptimal to meet certain objectives, such
as shorter time to market or other business requirements [7]. While
the reasons for intentional accumulation of technical debt and ar-
chitectural decay are still open for investigation, our focus in this
work is developing techniques that identify and predict architectural
changes, thus reducing the adverse effects of architectural decay.

In this paper, we aim (1) to automatically identify the issues lead-
ing to architectural design decisions in existing systems and (2) to
predict the probable impact of implementation-level issues and re-
sulting system changes on those decisions. Despite their far-reaching
implications [33], there is a relative shortage of techniques, tools,
and empirical studies pertaining to the role that architectural de-
sign decisions play in long-lived systems. Our work takes a step
toward addressing that scarcity. We present an approach that uses
the readily available information in the issue and code repositories
of software systems and enables engineers to investigate the causes
and frequencies of making new and modifying existing architectural
design decisions.

To that end, we mine the issue and code repositories of five large
open-source software systems to extract their issues and pertinent
code changes. In order to detect the architectural changes in a
system, we use a state-of-the-art software architecture analysis work-
bench [6]. For each issue, we recover the architecture of the system
before and after its resolution. We use a2a [6], a metric specifically
designed for measuring architectural change, to identify the issues
causing architectural changes. We call these issues architecturally
significant. We have shown previously that, a2a can be used to
accurately recover architectural design decisions [30]. Unlike ex-
isting techniques that typically focus on undoing the side-effects
of architectural decay ex post facto (e.g., [31, 37]), building on our
results, we develop a predictive model that is able to identify the ar-
chitectural significance of newly submitted issues. Doing so enables
engineers to prevent architectural decay before the offending code
changes are committed and merged with the system’s code-base.

The main contributions of this paper are as follows:

¢ A technique for automatically detecting existing issues that are
architecturally significant.

¢ A reusable dataset of 21,062 issues identified across five large
open-source software systems that are labeled by their architec-
tural significance.

o A classifier for predicting the architectural significance of newly
submitted issues.

To support researchers in evaluating related approaches and replicat-
ing our experiments, we make our dataset available online.!

I'The supplementary website can be reached at: hitps://softarch.usc.edu/predictar
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The remainder of this paper is organized as follows. Section 2
overviews the foundational work enabling this research. Section 3
describes our experimental setup and results for identifying and
predicting architecturally significant issues. Sections 4 and 5 discuss
the related work and conclude the paper.

2 BACKGROUND

In our study, we rely on a software system’s architecture and the
means to recover it, as well as tracking of implementation issues.
We overview each of these topics briefly.

2.1 Software Architecture

The structure of a software system’s architecture is a graph whose
vertices represent system components, while the edges denote their
interconnections (e.g., call dependencies and logical couplings).
Each component encompasses implementation entities such as classes,
interfaces, methods, libraries, etc. The architecture of a software
system is rarely accurately documented or kept up-to-date during the
system’s lifecycle. We use recovery techniques to obtain a system’s
architecture from its implementation.

Researchers have developed a range of architecture recovery tech-
niques. In this work, we use Algorithm for Comprehension-Driven
Clustering (ACDC) [35] and Architecture Recovery using Concerns
(ARC) [14], as they have been shown to exhibit better scalability
and accuracy than competing techniques [13]. Our study could be
repeated using other recovery techniques. ACDC is oriented toward
program comprehension and is based on subsystem patterns. ARC,
on the other hand, produces components that are semantically re-
lated and share similar system level concerns (e.g., a component
whose main concern is handling network communications). In or-
der to detect architectural differences across different points in the
development history of a software system, we use a2a, a similarity
metric calculated based on the cost of transforming one architecture
to another (e.g., by adding or removing components) [6].

2.2 Issue Tracking

All of our subject systems in this study use Jira [2] as their issue
repository. A similar approach can be applied to systems using differ-
ent repositories. When reporting implementation issues, engineers
typically categorize them into different types: bug, new feature, fea-
ture improvement, task 1o be performed, etc. Engineers also assign a
priority value to an issue, to denotes their perception of the issue’s
importance (e.g., critical or minor). Each issue has a status that
indicates the position of the issue in its lifecycle [3]: issues start as
“open”, progress to “resolved”, and finally to “closed”.

In our study, we focus on issues that have been “resolved” or
“closed”. Issues can be resolved in different ways. We ignore the
issues that fall under the “won’t fix”, or “cannot reproduce” cate-
gories and only focus on issues that have been “fixed”. The reason
is that these issues have been verified and addressed by developers,
so that any effects caused by them would presumably appear in
certain system versions and disappear once the issue is addressed.
Additionally, a fixed issue contains information that is useful for our
study: (1) description, (2) affected versions in which the issue has
been found, (3) rype of issue, (4) priority, and (5) fixing commits,
i.e., the changes applied to the system to resolve the issue. Finding
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System Domain Versions | Issues | Avg. LOC
Hadoop Data Proc. Framework 68 7374 1.96M
Nutch Web Crawler 21 1524 118K
Wicket Web App Framework 72 4637 332K
CXF Service Framework 120 5852 915K
OpenJPA | Java Persistence API 20 1675 511K

Table 1: Subject systems analyzed in our study.

fixing commits is not always easy since there is no standard method
for engineers to keep track of this information in issues trackers.
In Jira, we found three popular methods: (1) directly mapping to
fixing commits, (2) using pull requests, and (3) using patch files.
Our approach supports all three methods.

3 STUDY SETUP

The goal of this work is to detect the implementation issues that
lead to—possibly unintentional—design decisions and subsequently
change the system’s architecture. Furthermore, we want to expand
these results by predicting whether resolving a submitted issue would
require architecturally significant changes. This information could
prove valuable to engineers and help them deliver higher quality
code [25]. In the remainder of this section, we will summarize our
subject systems (Section 3.1), and describe the devised workflow
for determining the architectural significance of issues followed by
a discussion of the results (Section 3.2). In Section 3.3, we will
introduce a machine learning approach for predicting architectural
significance of issues. Finally, Section 3.4 will overview the threats
to the validity of our results.

3.1 Subject Systems

We report the empirical results involving five Apache [1] open-
source projects. Apache was chosen because it is one of the largest
open-source organizations in the world and has produced a number
of impactful systems. Furthermore, Apache systems have well-
maintained code repositories, release notes, and issue trackers. Table
1 lists our subject systems. We analyzed the largest available Apache
systems that rely on Jira [2] for tracking issues and satisfy the fol-
lowing criteria:

(1) The systems belong to different software domains, to ensure
broad applicability of our results.

(2) The issues and their fixing commits are tracked. Specifically,
we analyze “resolved” and “closed” issues because they have
complete sets of fixing commits.

(3) The systems have large numbers of resolved and closed issues
to give us sufficient data points for our analysis and machine
learning models.

3.2 Recovering Significant Issues

Figure 1 depicts our framework for identifying a system’s architec-
turally significant issues. The process begins by mining the set of
issues from our subject systems’ issue repositories and filtering the
ones not conforming to our criteria (recall Section 2.2). On aver-
age, about 35% of the issues are discarded at this stage. For each
issue, our framework automatically extracts its pertinent commit
information. The commit information is used to identify the system
version at which the issue has been merged with the code base and
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For each issue:
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Figure 1: Framework for the identification of architecturally significant issues in a software project.
Overall ARC ACDC
System | | # |B% | F1% | 0% |C% | Mj% Mn% | # |B%|F1% | O%]C% | Mj% | Mn%| # |B% | F1% | 0% |C% | Mj% ]| Mn%
Hadoop | 7374 | 56.6 | 32.2 | 112 | 152 | 614 | 234 | 1066 | 61.5 | 366 | 1.9 | 266 | 602 | 13.2 | 633 | 589 | 386 | 2.5 | 27.8 | 39.1 | 13.1
Nutch 1524 | 457 | 438 | 106 | 7.0 | 522 | 408 | 89 |427| 573 | 00 | 45 | 640 | 315 | 60 |383| 617 | 0.0 | 1.7 | 667 | 3L7
Wicket | 4637 | 59.7 | 335 | 68 | 24 | 595 | 381 | 1362|579 | 370 | 51 | 1.5 | 591 | 394 | 930 | 603 | 358 | 3.9 | 2.0 | 628 | 352
Cxf 5852 | 623 | 260 | 117 | 34 | 77.7 | 189 | 2441|640 | 317 | 43 | 37 | 765 | 198 | 1403 | 57.0| 371 | 59 | 34 | 777 | 19.0
OpenJPA | 1675 | 622 | 216 | 162 | 53 | 71.1 | 236 | 580 | 586 | 255 | 159 | 47 | 778 | 176 | 453 | 563 | 263 | 174 ] 42 | 797 | 161

Table 2: Overview of the results of our architectural significance analysis. Column Overall shows the issues’ general distribution.
ARC and ADCD columns depict the distribution of architecturally significant issues under each recovery technique. Issue types are
bug (B), feature/improvement (F/I), or other (0). Issue priority is critical (C), major (Mj), or minor (Mn)

the version immediately preceding it. We then extract the system’s
source-code at these two snapshots. By applying the two selected
architecture recovery techniques (ACDC [35] and ARC [14]), we re-
cover two architectural views of the system at each snapshot. Finally,
the a2a [6] similarity metric is used, with the highest sensitivity,
to identify any architectural discrepancies stemming from the is-
sue and its extracted commits. Issues whose resolution has caused
architectural change, as indicated by a2a, are labeled as significant.

Table 2 displays the results of running the above analysis on our sub-
ject systems. The Overall column contains the general distribution
of issues in each system. The other top level columns contain in-
formation about the architecturally significant issues detected using
ACDC and ARC. The data is further subdivided based on the issue
type and priority. Issue type can be bug (B), feature or improvement
(F/I), or other types such as test and task (O). Issue priority is either
critical (C), major (Mj), or minor (Mn).

The data shows that, in general, there are more bugs submitted to
issue repositories than features or improvements. Interestingly, al-
though the number of architecturally significant issues is only a small
fraction of all submitted issues, their distribution in terms of priority
is not very different from the original issue distribution. While this
finding deserves a closer inspection, it appears that engineers are
typically unable to isolate architecturally significant issues, and con-
sequently do not consider them any more (or less) important than
“regular” issues. The distribution of bugs, features, and improve-
ments does not show drastic change between significant and regular
issues either. This is a finding we have not seen in literature previ-
ously. Overall, our results suggest that architectural significance is
an overlooked facet of implementation issues, and cannot be easily
inferred from the existing tags applied to issues.

3.3 Predicting Significant Issues

The main objective of our work is to enable classifying issues
based on their architectural significance. Recent studies have shown
that developers who explicitly consider the impact of their code-
level changes on their system’s architecture deliver higher quality
code [25]. This suggests that notifying engineers of the likely archi-
tectural importance of issues at the time they are submitted can result

in better-informed implementation decisions. To enable such noti-
fication, we use the information that is readily available for newly
submitted issues: title, description, priority, and type.

Figure 2 displays the overview of our classification-model building
process. Most of the information in issues is textual. Therefore,
to construct the automatic classification model, first, we need to
parse and pre-process the textual sections of the retrieved issues, i.e.,
title and description. This step has a big impact on optimizing the
classification step and data-noise removal [36]. For each issue, we
remove the English stop-words [27], code snippets, and stack traces
that are sometimes submitted alongside issues descriptions. We then
use the Porter stemmer to reduce the inflected (or sometimes derived)
words to their word stems [26]. This helps to group the words with
similar basic meanings together.

To perform machine learning on text documents, we must transform
the textual content into numerical feature vectors. The most intuitive
way to do so is to use the bags-of-words representation. In this
approach, we create a dictionary of all the words in the corpora.
Then, for each issue we count the occurrences of the words in the
dictionary. Using this approach, issues with longer descriptions
will have higher average count values than shorter documents, even
though they may pertain to the same topic. To address this problem,
we use Term Frequencies (TF) [20], which normalizes the number
of occurrences with respect the total number of words in the issue
description and title. Finally, we append the one-hot-encoded [21]
representation of issue type and priority to this feature vector.

Previous studies have shown that when training models on primarily
textual data with on the order of several thousand data points, a

. Feature
Pl Pre-Processing Extraction
navzed J T 1 Training
b Feature F Classifier
................. Processed Vectors -
Issues [To[3[2[0[1 2]

Figure 2: Workflow for building our automatic architectural
significance classifier.
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ARC ACDC
System | Precision | Recall Precision | Recall
Hadoop 0.793 0.637 0.883 0.547
Nutch 0.941 0.276 0.951 0.217
Wicket 0.843 0.657 0.678 0.417
Cxf 0.801 0.698 0.928 0.468
Openlpa 0.965 0.503 0.903 0.399
Cross-Project 0.816 0.592 0.806 0.573

Table 3: Precision and recall of our classifier for each sys-
tem. The Cross-Project row shows the result of applying the
classifier on the combined issues of all systems.

classifier with high bias performs well. Theoretical and empirical
results suggest that Naive Bayes [12] does well in such circum-
stances [11, 22], and we adopt it for our classification.

‘We use precision and recall as the performance evaluation metrics.
Precision shows the ratio of correctly predicted architecturally sig-
nificant issues over all predicted significant issues. Recall denotes
the ratio of correctly predicted architecturally significant issues over
all of the actually significant issues. Table 3 shows the evaluation
results obtained using the 10-fold-cross-validation setup, where each
dataset is randomly partitioned into 10 equal-sized subsets. Nine of
the subsets are used as training data, while the last subset is retained
as testing data. The process is then repeated 10 times.

The numbers reported in Table 3 are the average values across the
10 repetitions. The top five rows show the results of training and
running our classifier on the individual systems; the Cross-Project
row is the result of applying the classifier on our entire corpus of
issues across all systems. The precision of our classifier is very good,
surpassing 90% in certain cases under both ARC and ACDC. The
overall precision across the five systems is above 80% under both
recovery techniques. The recall values for our classifier are lower
than the precision values. In the case of ARC, with the exception
of Nutch, they are all above 50% for the individual systems, and
around 60% across all systems. In the case of ACDC, the recall
values are lower: only the Hadoop and Cross-Project values are
above 50%. The reason may lie in ACDC’s dependency analysis-
based architecture recovery algorithm, a hypothesis we will have to
evaluate further. Nutch is again a notable outlier. OpenJpa yields the
second-lowest recall values under both ARC and ACDC. These two
systems have much smaller datasets of issues compared to the rest
of our corpus. Moreover, Nutch has about an order of magnitude
fewer architecturally significant issues than other systems, which
further hampers the efficacy of our classification model.

3.4 Threats to Validity

Threats to Construct Validity: The dataset containing architec-
turally significant issues depends on the recovery techniques em-
ployed. To mitigate this problem, we selected two techniques that
exhibit higher accuracy than their competitors [13]. Furthermore,
any technique can be easily incorporated in our framework.

Threats to External Validity: Due to practical limitations, we only
used open-source projects. Furthermore, all the issues in our study
belong to systems implemented in Java and use the Jira issue tracker.
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To help mitigate this issue, we selected systems from different do-
mains, thus expanding our study’s scope (recall Section 3.1).

4 RELATED WORK

Understanding architectural decisions is important for software main-
tenance and comprehension. A number of studies have been con-
ducted to justify its necessity and show its concrete benefits. Falessi
et al. argued for the value of capturing and explicitly document-
ing design decisions [10]. Burge et al. showed that understanding
architectural decision helps make better decisions [8]. Tang et al.
empirically showed that knowing the architectural decisions can
improve the quality of software systems [32].

Some researchers focused on the importance of having architectural
awareness, i.e., an ability to understand and assess varied aspects
of the software architecture and architectural decisions. Tyree et al.
argued that architectural decisions are usually not documented, and
this impedes software architects to understand and make architec-
tural decisions [34]. Nowak et al. also suggested that architectural
awareness can enhance the efficiency and quality of the architec-
ture design process, and they proposed a methodology to manually
capture the architectural knowledge in the design process [23].

Applying machine learning and natural language processing tech-
niques for software comprehension and maintenance has been receiv-
ing increasing attention from the research community. Especially,
issue data extracted from software repositories is widely used in
that it contains important information related to bug and software
quality [9]. Antoniol et al. built a classifier using machine learning
techniques to classify issues into two classes: bugs and non bugs [4].
Wiese et al. used issues as contextual data to improve the co-change
prediction model, i.e., a model to help developers aware of artifacts
that will change together with the artifact they are working on, of
software systems [39]. Weiss et al. employed a nearest neighbors
technique to automatically predict the fixing efforts of issues to
facilitate issue assignment and maintenance scheduling [38].

5 CONCLUSION AND FUTURE WORK

In this paper, we described a method for automatically detecting
architecturally significant issues, and classifying them based on the
textual and non-textual information contained in each issue. Our
technique aims to raise architectural awareness thus helping engi-
neers deliver higher quality code based on well-informed decisions.
Our study was conducted on five large open-source software projects.
Using our automated detection technique, we analyzed 21,062 issues
and identified their architectural significance. Our results suggest
that current categorizations of issues (type and priority) do not ef-
fectively encompass architectural significance. Expanding on these
resulting, we built a classification model to predict the architectural
significance of newly submitted issues.

For our future work, we plan to expand our study to more systems by
adding the support for other issue trackers. We also plan to improve
the performance of our classification model by adapting recent ad-
vances in the field of generative adversarial nets, which in theory can
enable us to artificially augment the size of our dataset [42]. Finally,
we aim to explore the feasibility of a similar technique to predict the
non-functional effects of implementation issues (e.g., security and
reliability) in existing software systems [15, 18, 19, 28, 29].
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