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ABSTRACT

The quantification of spatio-temporal hydroclimatic extreme events is a key variable in water resources
planning, disaster mitigation, and preparing climate resilient society. However, quantification of these
extreme events has always been a great challenge, which is further compounded by climate variability
and change. Recently complex network theory was applied in earth science community to investigate
spatial connections among hydrologic fluxes (e.g., rainfall and streamflow) in water cycle. However, there
are limited applications of complex network theory for investigating hydroclimatic extreme events. This
article attempts to provide an overview of complex networks and extreme events, event synchronization
method, construction of networks, their statistical significance and the associated network evaluation
metrics. For illustration purpose, we apply the complex network approach to study the spatio-
temporal evolution of droughts in Continental USA (CONUS). A different drought threshold leads to a
new drought event as well as different socio-economic implications. Therefore, it would be interesting
to explore the role of thresholds on spatio-temporal evolution of drought through network analysis. In
this study, long term (1900-2016) Palmer drought severity index (PDSI) was selected for spatio-
temporal drought analysis using three network-based metrics (i.e., strength, direction and distance).
The results indicate that the drought events propagate differently at different thresholds associated with
initiation of drought events. The direction metrics indicated that onset of mild drought events usually
propagate in a more spatially clustered and uniform approach compared to onsets of moderate droughts.
The distance metric shows that the drought events propagate for longer distance in western part com-
pared to eastern part of CONUS. We believe that the network-aided metrics utilized in this study can
be an important tool in advancing our knowledge on drought propagation as well as other hydroclimatic
extreme events. Although the propagation of droughts is investigated using the network approach, how-
ever process (physics) based approaches is essential to further understand the dynamics of hydroclimatic
extreme events.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

and Singh, 2010). In addition to that, these events are detrimental
to multiple sectors like infrastructure, human life, water supply,

Hydroclimatic extreme event (e.g. floods and droughts) is the
result of complex physical processes and is often characterized
by multiple climatological and hydrological parameters that vary
across a wide range of spatial and temporal scales (Mishra and
Singh, 2010). For instance, floods are not only dependent on high
precipitation events, but also on the land cover type and water
management structures (Peterson et al., 2013). Similarly, droughts
too are controlled by multiple climate and human factors making it
extremely difficult to determine their important drivers (Mishra
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water quality, energy and agriculture (Mishra and Singh, 2010;
Rajsekhar et al., 2015). For example, the economic loss of USD
350 billion can be attributed to hydroclimatic extremes (NCEI,
2017) in USA (since 1980 to till date). As a result, it is important
to understand the mechanisms of hydroclimatic extreme events,
and to build more plausible early warning systems to mitigate
these losses (Basher, 2006; Mishra and Singh, 2011; Van loon,
2015).

The evolution of variables triggering hydroclimatic extremes
often differs in terms of magnitude, duration and spatial extents.
For example, the magnitude of extreme precipitation along with
their timing and seasonality are significant drivers of floods,
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whereas, drought events are triggered by dynamical interaction of
atmospheric variables such as precipitation and evapotranspira-
tion over a longer period of time. Therefore, an index that inte-
grates the coevolution of these variables is typically studied to
understand droughts. The hydroclimatic extremes are often ana-
lyzed using different statistical techniques, such as, frequency esti-
mation (Mckee et al., 1993; Hamed and Rao, 1999; Song and Singh,
2010; Sun et al., 2014), multivariate analysis (Kao and Govindaraju,
2010; Hao et al., 2013; Rajsekhar et al., 2015), wavelet analysis
(Jain and Lall, 2001; Kim and Valdés, 2003; Adamowski, 2008;
Ozger et al., 2009), clustering (Stahl and Demuth, 1999; Bunde
et al., 2005; Srinivas et al., 2008; Yang et al., 2013; Rajsekhar
et al., 2015) and Bayesian methods (Kuczera, 1999; Kwon et al,,
2016; Mishra and Singh, 2009; Madadgar and Moradkhani,
2013). Unlike floods, droughts usually span over large geographical
areas and often last for months to years representing a dominant
three-dimensional (latitude, longitude and time) space-time
drought structure (Lloyd-Hughes, 2012). Therefore, an integrated
analysis that factors the spatial behavior into time series analysis
are employed to study droughts (Hannaford et al., 2011). As a
result, space-time structure of droughts at a regional scale is char-
acterized by studying the severity — area - frequency (SAF) and
severity - area — duration (SAD) curves (Mishra and Singh, 2009;
Sheffield et al., 2009; Hannaford et al, 2011; Lloyd-Hughes,
2012; Xu et al., 2015; Zhan et al., 2016).

Recent studies have introduced a framework based on network
theory to investigate the spatio ~temporal characteristics of hydro-
climatic extremes (Malik et al., 2012; Boers et al., 2013). A network
can be defined as a collection of components (or, units) that are
meaningfully connected together. For example, in hydrologic cycle,
all the components that are connected to each other can be viewed
as a network. Among these components of hydrologic cycle, some
components like rainfall and runoff are more strongly connected,
whereas, the connections between temperature and groundwater
is comparatively weak.

The connection among hydrologic fluxes within the hydrologic
cycles varies in terms of their spatio-temporal associations and
propagation mechanisms, etc. With this conception, several studies
investigated the global linear and nonlinear correlation structure of
precipitation and temperature in a networks perspective (Tsonis
and Roebber, 2004; Tsonis et al., 2006; Donges et al., 2009a,
2009b; Steinhaeuser et al, 2012; Gozolchiani et al., 2011;
Scarsoglio et al., 2013). Several other studies in hydrology have
considered smaller, regional networks that focus on a specific vari-
able of interest, like spatial streamflow networks in USA
(SivaKumar and Woldemeskel, 2014; Fang et al., 2017), stream
flow networks in Canada (Halverson and Fleming, 2015), spatial
rainfall networks in Australia (SivaKumar and Woldemeskel,
2015; Jha et al,, 2015) and South east Asia (Naufan et al., 2017).
These studies surely have advanced our knowledge on the network
properties of various climatological variables important to hydrol-
ogy. However, the advance of complex network approaches appli-
cation to study the properties of spatio temporal hydroclimatic
extremes is still in its nascent stage. Based on the recent develop-
ments and applications of complex network theory, it is now pos-
sible to advance the quantification of spatio-temporal patterns
(evolutions) of hydroclimatologic extreme events using network
concepts.

In this regard, this article attempts to introduce the theory and
applications of complex network applications for hydroclimatic
extreme event to the wider audience of the hydrologic community.
This paper provides an overview of complex networks and extreme
events, event synchronization method, construction of networks,
their statistical significance and the associated network evaluation
metrics. We applied network theory concepts and introduced two

new metrics specific to the spatio-temporal propagation of
droughts in CONUS.

2. An overview of complex networks and their application in
characterizing hydroclimate extremes

This section provides an overview of hydroclimatic extremes
and different types of relationship between extreme events that
can be modeled as networks. A detailed discussion is provided on
event synchronization, which was recently applied to quantify
the association between extreme events in a number of recent
studies. After establishing the background for analyzing extreme
events in a network perspective, we discuss different types of net-
works that can be formed based on the relationships between spa-
tial locations of extreme events. An overview of metrics that were
previously used for quantifying the spatio-temporal characteristics
of hydroclimatic extreme events from a networks perspective is
discussed.

2.1. Identifying hydroclimatic extreme events

The definition of extreme events plays an important in complex
network construction. It is necessary to understand the various
characterizations of extreme events, before conceptualizing the
extreme events that are suitable for network analysis. The extreme
events can be selected in multiple ways, however, based on previ-
ous studies two distinct methods are commonly used for identifi-
cation of extreme events (Beniston et al., 2007; Alexander et al.,
2006; Groisman et al., 2001; Kharin et al., 2007; Sillmann et al.,
2013; Mishra and Singh, 2012; Leonard et al., 2014; Smakhtin,
2001). The first method is based on absolute magnitudes (i.e. high-
est/lowest value) within a given year. This methodology provides a
single value of extreme event per year, which is beneficial for
water resources planning and management. However, since this
methodology extracts a single extreme event per year, other events
that can be an extreme but are lesser/higher in magnitude than
highest/lowest event might be neglected. As a result, unless the
data length is sufficiently long (>50 years), the complex network
might not capture the dynamics of all the extreme events. The sec-
ond approach is based on threshold values (e.g. >95th and 99th
percentiles) to select extreme events. By using this approach it is
possible to capture sufficient number of events that can be useful
to replicate the characteristics of hydro climatic extreme events
in a region. However, the selections of thresholds are rather arbi-
trary resulting in inaccurate extreme event quantification
(Begueria, 2005; Thibaud et al., 2013). Therefore, these limitations
should be considered before selecting hydroclimatic extreme
events for network analysis.

Previous studies have mainly used the threshold approach to
quantify the extreme events. For example, Malik et al. (2012) used
threshold approach (i.e. 90th and 94th percentile) for characteriz-
ing the extreme precipitation events during the period of 1951-
2007. The authors have indicated that the chosen thresholds are
useful during the active phase of the Indian Summer Monsoon
which is critical to Indian subcontinent. By using these thresholds,
they were able to study the spatial structures of underlying atmo-
spheric processes responsible for the active phase of monsoon.
Similarly, many studies used the concept of thresholds to study
the spatio-temporal characteristics of South American Monsoon
(Boers et al., 2013, 2014a,b, 2016; Feldhoff et al., 2015) and Asia
(Su-hong et al., 2014; Stolbova et al., 2014). Similarly a recent
study (Rheinwalt et al., 2016) adopted complex networks to study
the spatio-temporal characteristics of extreme rainfall in Germany
using magnitude based thresholds (i.e. daily rainfall >10 mm).
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Therefore, depending on the objective and data availability, appro-
priate threshold needs to be selected to generate sufficient number
of extreme events for constructing complex networks of extreme
events.

2.2. Relationship between hydroclimate extremes

Once the extreme events are defined, the next step is to identify
the type of relationship between extreme events. Generally, rela-
tionships between any two variables can be broadly characterized
into the two categories, i.e. causal and functional connectivity
(Wright, 1921). A causal relationship indicates that one event is
the result of occurrence of another event. For example, occurrence
of rainfall is one of the primary reasons for streamflow generation.
Hence, this type of relationship could be categorized as causal. Pre-
vious studies, particularly with respect to climate networks have
analyzed these causal relationships between variables using linear
approach of Granger Causality (Granger, 1969) and a nonlinear
approach of transfer entropy (Schreiber, 2000). Recently, using
causal networks, Ebert-Uphoff and Deng (2012)have identified
the causal relationship among the four prominent modes of atmo-
spheric low-frequency variability in boreal winter including the
Western Pacific Oscillation (WPO), Eastern Pacific Oscillation
(EPO), Pacific-North America (PNA) pattern, and North Atlantic
Oscillation (NAO). Mokhov et al. (2011) used Granger causality to
identify the mutual influence between EI-Nino/ Southern Oscilla-
tion and atmospheric processes in Europe. In another related study,
Runge et al. (2015) identified causal pathways to gain insights into
the Pacific-Indian Ocean interactions and Indian Summer mon-
soon. However, these networks have not been applied until now
to identify the causal relationships associated with extreme events.
Therefore, in this article we did not focus on building networks
based on causal relationships.

Functional connectivity is another type of relationship, which
indicates that two variables vary in a synchronized manner and
coevolve together. For instance, the coevolution of droughts
between two distinct locations may have similar spatio- temporal
patterns, but they may not have causal relationship. However, it
can be hypothesized that the atmospheric mechanisms triggering
these droughts might be similar (Rajsekhar et al., 2012; Mishra
et al,, 2015). This kind of relationship was previously applied in
hydroclimatic studies such as prediction of variables in ungauged
river basins (Sivapalan, 2003; Samaniego et al., 2010), and drought
regionalization (Portela et al., 2015; Yoo et al., 2012), etc. A key
advantage of applying complex network theory in this context is
that it does not require additional climate variables and indices
to analyze spatiotemporal patterns (Malik et al., 2012). In this arti-
cle, we focused on analyzing spatio-temporal patterns of hydro-
climatic extremes using functional connectivity type of relation-
ship to develop complex networks.

Pearson’s correlation coefficient is a popular metric to quantify
the linear dependence between any two variables (Hlinka et al.,
2014). However, Pearson correlation coefficient assumes that the
variables follow a Gaussian distribution (Von Storch, 1999). There-
fore application of Pearson correlation coefficient in case of vari-
ables that follow non-Gaussian distributions may be suboptimal
and it may not capture the complex dependence between extreme
variables. In addition, evolutions of hydroclimatic extreme events
are non-uniformly distributed over time creating irregularly
spaced data series. Analysis of event-based time series can be chal-
lenging using similarity measures like Pearson’s correlation might
not perform well in these contexts. Extremogram (Davis and
Mikosch, 2009), copulas (Gudendorf and Segers, 2010) and rear-
rangement functions (Puccetti and Wang, 2015), and event syn-
chronization (Quiroga et al., 2002) can be applied to quantify the
functional relationship between extreme events. Among them,

the event synchronization technique was recently applied in com-
plex network analysis, which is discussed in the next section.

2.2.1. Event synchronization (ES) methodology for determining
association between extreme events

Malik et al. (2012) applied Event synchronization (ES) method-
ology for finding the relationship between extreme events occur-
ring at different spatial locations. Event synchronization counts
the number of temporally coinciding events in any two-event ser-
ies by allowing small deviations between the occurrences of the
events, i.e, a dynamical delay between the events occurring at
two different spatial units (i.e., climatic locations). As a result, this
metric does not assume any probability distribution to be followed
by the underlying data. In addition to that, as it explicitly considers
the only coincidence of extreme events between two regions
excluding the remaining time period, it is precisely suitable for
irregularly spaced data like the extreme events.

Once the extreme events are extracted, in order to decide if two
events at locations [ and m are synchronous, we first estimate the
dynamic delay is estimated as

6 G0~ th — 61— )

7 = min SR (1)

In this context, t} represent the time index when the extreme event i
has occurred in the region I. Similarly, tJ, would represent the time
index when the extreme event j has occurred in region m. The dif-
ference ti — ¢! indicates waiting time between two consecutive
extreme events in location I The same interpretation can be
extended for other regions and events. To exclude unreasonable
long dynamic delays, a maximum delay of 7,4 is selected between
the extreme events occurring at two locations. Now, if 0 < dj, < r}'{n
and 0 < df’m < Tmax, then events i and j at location [ and m are con-
sidered as synchronous events with the event at [ preceding event
at m.

Mathematically, it can be expressed as
i _ )1 if 0 <dj, <7) and 0 < d}, < Tmax 2)
m 0 otherwise

Now, ES;,, can be estimated as the relative number of extreme
events at [ occurring before events at m as

> S
ESpm = 2 (3)
m n

where n, represents the total number of events at location I. Simi-
larly, the relative number of extreme events at m occurring before
events at | is estimated as

> S
ESmi =~ 4)

where n,,, represents the total number of events at location m. This
procedure is performed for all combinations of locations N with
where extreme events can be measured to derive a matrix of ES val-
ues with the dimension of N x N. It is important to notice that, the
ES matrix is not symmetric in nature. For instance, the value ES,;
represents how likely an extreme event in location m can propagate
to location I, which is different from the value of ES,,. Therefore,
each element in the ES matrix represents the likelihood of extreme
event propagation from one location to the other regions.
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2.2.2. Estimating statistically significant event synchronization (ES)
values

One way to extract statistically significant values is by utilizing
the bootstrapping method (Efron and Tibishirani, 1999). In this
methodology, for estimating statistical significance, 1000 surrogate
pairs of event time series with n; events at location [ and n,, events
at location m placed independently as a uniformly random distri-
bution of extreme events. Then the ES metric is calculated for all
the possible pairs. In this way, 1000 values of event synchroniza-
tion metrics for each pair of nodes is obtained. Now depending
on the desired significance level (i.e. 0.1, 0.05, 0.01), the corre-
sponding percentile (i.e. 90th, 95th and 99th) of these 1000 null
models is estimated as ES”. By using actual number of extreme
events at locations [ and m, the original distribution of events
was preserved as suggested by Boers et al. (2013, 2014a). For an
ES value to be statistically significant at the desired significance
level, it should be greater than EST value.

2.3. Representation of hydroclimate extremes as networks

In purely mathematical sense, a network or graph can be
defined as a group of nodes or vertices that are connected together.
The connections between any two nodes are called as links or
edges. When analyzing the spatio-temporal extreme events, stud-
ies until now have considered the spatial locations of extreme
event occurrence as nodes, whereas the relationship between
two nodes with respect to the extreme events (i.e. ES value) as
links. Typically, a network can be illustrated in pictorial as a set
of nodes joined by lines for the edges. A network can be stored
as a two dimensional matrix (N x N) commonly known as adja-
cency matrix, where N is the total number of nodes in a network.
In the matrix, each element represents the presence/absence of
an edge between any two nodes. By changing the edge types, we
can possibly construct four  types of  networks
(Figs. 1a, ¢ and 2a, c). Similarly the adjacency matrix will change
depending on the network type (Figs. 1b, d and 2b, d). In the fol-
lowing text, we discuss the differences between each network type
and their corresponding adjacency matrices.

Fig. 1(a) represents the simplest form of network where the
presence of links between nodes is represented without any per-
ception of direction or weight. Therefore, the presence/absence of
links in a network between nodes can be represented as binary val-
ues. We illustrate this in Fig. 1(b), where the presence of link
between two nodes is represented as a black dot in the matrix
whereas; if there is no entry it corresponds to no links. We can
observe that the corresponding adjacency matrix of an
unweighted-undirected matrix is symmetric in nature. Fig. 1(c)
represents the presence of links between nodes with their respec-
tive weights. These weights distinguish one link from another.
Therefore, correspondingly, the adjacency matrix also changes as
shown in Fig. 1(d). Instead of the dark dots in the matrix, we see
the colored dots scaled to weights of the links. However, it is
important to note that the matrix is still symmetric. Therefore,
for undirected networks, the adjacency matrix is symmetric; how-
ever, the presence/absence of weights might change the element
structure in the adjacency matrix. These kind of networks have
been previously employed to primarily understand the atmo-
spheric process causing the extreme events (Malik et al., 2012;
Boers et al., 2013, 2014a,b, 2015a,b, 2016; Feldhoff et al., 2015).

In addition to the above two networks, we can also represent
direction/flow between the nodes in a network. Fig. 2(a) represents
a network of nodes with edges that have a direction. Once the
direction is introduced, the two way relationship does not hold
true. For example, in the Fig. 2(a), we can see that node a has a link
directed towards e, but not the opposite. As a result, the same is
reflected in the adjacency making it asymmetric (Fig. 2b). How-

ever, since there are no weights assigned to the network, it still
is binary in nature. Fig. 2(c) and (d) represent the weighted version
of directed network and its corresponding adjacency matrix. By
using networks where direction can be included, we can construct
network that can possibly represent the spatio-temporal propaga-
tion of the extreme events. This propagation concept was explored
in studies by Boers et al. (2015a,b) and Marwan and Kurths (2015)
to develop a prediction scheme of extreme rainfall events pertain-
ing to South American monsoons. Therefore, depending on the goal
of the study, we should carefully select the type of network to be
utilized. Other more advanced and complicated networks like mul-
tiplex networks, interdependent networks where a group of net-
works interact with each other forming a network of networks
are also possible. However, for this study we focus on the above
four network types.

2.4. Network metrics

We discuss some basic network metrics that have been used in
studying the hydroclimatic extreme events. In addition to that, we
also indicate how these studies have interpreted these metrics
with respect to the characterization of extreme events.

2.4.1. Degree and its probability distribution

Degree is one of the most intuitive and basic measure of a com-
plex network. Degree measures the total number of connections
from a particular location [ to all the other N locations (Fig. 3). In
case of undirected-unweighted adjacency matrix A, it can be
expressed as shown in Eq. (5).

N
Di=> Am (5)
m=1

where N represents the total number of nodes in a network. There-
fore, when using ES methodology, if the extreme events at a partic-
ular location is in sync with extreme events occurring at relatively
more number of locations, then it is said to have higher degree val-
ues. Determining the probability distribution of degrees in a net-
work is another measure that gives insight on the structural
properties of a network. For example, if the degree distribution fol-
lows a binomial distribution, it could be termed as a random net-
work, where each node is connected with an independent
probability (Erdos and Rényi, 1960). Whereas, if the degree distribu-
tion follows a power law form, then those networks are more real
world-like and the nodes are connected in a preferential way
(Albert and Barabasi, 2002). However, it was found that usually this
type of power law behavior is found only in sparsely connected net-
works. Nevertheless, denser networks exhibit a divergence of power
law behavior (Callaway et al., 2000).

Malik et al. (2012) analyzed annual extreme rainfall events in
Indian summer monsoon, and observed that high degrees are
observed in northwest Pakistan and lowest values occur in south-
east India. The authors suggested that the high degree values are
mainly due to longer spatial connections of Indian summer mon-
soon extremes in these regions. In addition to that, a bimodal Pois-
son probability distribution was observed revealing the two modes
of Indian summer monsoon rainfall extremes. Similarly, Stolbova
et al. (2014) calculated the degree metric separately based on the
pre-monsoon, monsoon and post monsoon for the Indian Subcon-
tinent and observed that the spatial distribution of high degree
regions are not similar indicating a possibility of different rainfall
extreme mechanisms among the seasons. In case of South Ameri-
can Monsoon system, Boers et al. (2013) indicated that high degree
values for extreme rainfall event were found in regions of north-
eastern Brazil to Amazon basin and along the eastern slopes of
the central Andes and the adjacent subtropical Atlantic Ocean. This
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Fig. 1. A simple schematic representation of (a) undirected-unweighted network and its corresponding (b) adjacency Matrix layout. Similarly, we also illustrate (c) the
undirected-weighted network and its corresponding (d) adjacency matrix’s layout. The black dots in (b) represents the presences of links between the nodes in (a). Similarly,
the colored dots represents the weighted links between nodes in the network shown in (c). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

spatial pattern indicates the main and well-known climatological
moisture pathways along which extreme rainfall events synchro-
nize (Vera et al. 2006; Marengo et al. 2012).

2.4.2. Regional connectivity

This degree metric is further modified to represent local con-
nectivities of certain region R that have been known to be particu-
larly important for extreme events occurrence. The regional
connectivity (RC) of a location i to a comparatively larger region
R is defined as the number of links connecting i and any location
within that region. It can be expressed as

RG(R) = > A (6)
meR

This measure can thus be used to assess the spatial locations
where extreme events occur synchronously with events in a given
region R under consideration. For example, Boers et al. (2015a,b)
used this metric to compare how the rainfall extreme events of
regions important to south American monsoon system are con-
nected in various available datasets. The authors have identified
some significant differences in regional connectivity for the study
regions among the selected datasets. In an another article (Boers
et al., 2016), utilized the RC to identify the regional connectivity
of Altiplano and Puna Plateaus along with four mountainous catch-
ments in Andes Region belonging to South America for different
classifications of extreme rainfall events. Through this metric it
was observed that the extreme rainfall events originating in Andes
have spatially distant connections in South America indicating the

influence of rossby wave activity (Hoskins and Ambrizzi, 1993) as
well as several frontal systems (Salio et al. 2007; Romatschke and
Houze, 2010).

2.4.3. Strength and network divergence

Even though, degree metric was useful in detecting various
spatio-temporal characteristics of extreme rainfall events, it does
not consider the direction and weightage of the connections. As
mentioned before, the inclusion of weight and direction of the con-
nections might improve the representation of extreme event prop-
agation. This weighted and directed version of degree is known as
strength. To clearly explain the strength metric, we refer to Fig. 4,
which illustrates two hypothetical scenarios, where the location [ is
connected to other locations with varying intensity of ES value. For
example, if an extreme event starts in location [, then most likely it
propagates to region m since its ES value is highest among the
others (Fig. 4a) and it is less likely to propagate to region t due
to its low ES value. Therefore, it is obvious that the sum of all the
ES values originating from location | will indicate the resultant
influence of the location [ in propagating extreme events to other
locations. As a result, outward-strength given by Eq. (7).

N
S =" "Cim (7)
m=1

where N is the total number of nodes present in a network and C
represents the adjacency matrix which is both weighted and direc-
ted. Therefore, higher the magnitude of Sr{", the higher is the influ-
ence of the location [ in extreme event propagation. Similarly,
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Fig. 2. A simple schematic representation of (a) directed-unweighted network and its corresponding (b) adjacency Matrix layout. Similarly, we also illustrate (c) the directed-
weighted network and its corresponding (d) adjacency matrix’s layout. The black dots in (b) represents the presences of links between the nodes in (a). Similarly, the colored
dots represents the weighted links between nodes in the network shown in (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Fig. 3. A simple schematic representation of degree. The alphabets (I, m, o, p and t)
depict the nodes and the lines depict the presence of network connections.

(Fig. 4b) represents that if an extreme event starts in location o,
then most likely it would propagate to location I due to its high
ES value. Whereas, it is less likely that an event from region t can
propagate to | because of its low ES value. The sum of ES values
directed towards location [ will indicate the vulnerability of region
I to events happening elsewhere. This sum of ES values better
known as inward-strength is given by Eq. (8).

. N
SH" =3 o (8)
m=1

where N is the total number of nodes present in a network. There-

fore, higher the Srf”, higher will be the vulnerability of a climate
division to spatial propagation of the extreme events. Utilizing
these two definitions, a new measure called as network divergence
defined as the difference of in-strength and out-strength at each
location is calculated as shown in Eq. (9)

ASry = Srj" — Sr{* 9)

Positive values of DS indicate sinks of the network: extreme
events in these spatial locations are preceded by extreme events
in other locations. For example, a region with a high positive value
of DS would indicate that it is more likely for the extreme events to
start at that particular location and subsequently propagate to
other locations. Whereas, negative values indicate sources:
extreme events in these locations are followed after extreme
events in other locations. Regions with high negative values of
DS as thus considered as spatial sinks of extreme events. Similarly,
a weighted and directed regional connectivity of a region can also
be defined as

1

out _

RGH() = g S (10)
i 1
in _ L

Rcl (R) - |R| m§ERle (1 1)

where |R| denotes the number of locations contained in region R.
Using these definitions, Boers et al. (2015a,b) developed a predic-
tion scheme with an accuracy of 60%, which increases to 90% during
El Nino conditions of extreme rainfall events in Eastern Central
Andes region of South America.
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Fig. 4. A simple schematic representation of (a) outward-strength, and (b) inward-strength. In both the cases, the alphabets (1, m, o, p and t) depicts the nodes. The colored
arrows illustrate the weight of the links between the nodes. The direction of arrows represent the direction of event propagation. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

2.4.4. Local and global clustering coefficient

Clustering coefficient quantifies one of the fundamental proper-
ties of a network, which measures the extent to which nodes tend
to cluster in a network (Watts and Strogatz, 1998). More particu-
larly, the local clustering coefficient and global clustering coeffi-
cient are recently utilized to the study the characteristics of
Indian and South American monsoon systems. As the name sug-
gests, the local clustering coefficient is computed at the node level,
whereas, global clustering coefficient is computed for the whole
network. The local clustering coefficient of location i measure the
probability that two randomly chosen connections of [ are also
connected. For an unweighted-undirected network it can be calcu-
lated as the ratio of number of triangles connected to a location I
and the total number of possible pairs given by Eq. (12)

ZAIm ~Akl -Akm
LCC, =K1 (12)

> AmAu

k<m

where [, m, k represent any three nodes in a network and A repre-
sents its adjacency matrix. The global clustering coefficient (Watts
and Strogatz, 1998) is calculated based on the average local cluster-
ing coefficients of all the nodes in a network, as shown in Eq. (13).

N .
GCC:Z% (13)

i=1

where, N represents the total number of nodes present in a network.

Regions with higher local clustering coefficient (LCC) indicate a
spatially homogeneous phenomenon, whereas, global clustering
coefficient (GCC) gives the overall cohesiveness of a network.
Malik et al. (2012) and Boers et al. (2013) have indicated that the
lower values of the LCC can be related with more fragmented
extreme rainfall fields, whereas larger values represent a more
clustered activity in the case of Indian Summer and South Ameri-
can Monsoon, respectively. The GCC was used to study the co-
evolution of South American monsoon extreme event and its asso-
ciated moisture divergence network with ENSO index (Boers et al.,
2015a,b). It was observed that GCC of extreme event networks
related to moisture divergence are negatively correlated with

ENSO index, whereas the extreme precipitation event networks
do not show any significant correlation. (Boers et al., 2015a,b)

2.4.5. Betweenness centrality

Betweenness centrality is a path based metric based on the
shortest paths between two nodes. Betweenness centrality is a
prominent metric for information transfer, which suggests that
nodes with higher betweenness centrality have more information
passed through them than the other nodes. Mathematically, it is
given by

BC, = Zk#l#m O-km(l) (14)
ktlem O km

where 37, _..,.0un is the total number of shortest paths between k
and m and )", _..,,0um(l) indicates the same but passing through
location [ In general, it was found that nodes with high between-
ness centrality have more information passed through them than
the other nodes. Therefore, in the context of extreme rainfall events
too, Malik et al. (2012) and Boers et al. (2013) hypothesized that the
regions with high betweenness are important information path-
ways for extreme rainfall events. However, even though the cluster-
ing coefficient and betweenenss centrality metrics have been
applied to characterize spatio-temporal characteristics of extreme
events, the studies often lack solid physical basis for the observed
spatial variations.

3. Application of complex network approach to study the
spatio-temporal propagation of drought in continental USA

To illustrate the usefulness of the above presented networks
approach, we study the spatio-temporal propagation of droughts
in CONUS. The spatio-temporal evolution of drought is a complex
process as the hydro-climatic processes are inter-connected at dif-
ferent spatial units (i.e., local to regional scale) (Mishra and Singh,
2010). Considering that drought has larger spatial and temporal
extent, the application of complex networks can be a useful tool
to study the propagation of drought. In addition to that, no prior
study investigated the spatio-temporal characteristics of drought
events in CONUS from the perspective of networks based on event
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synchronization. Therefore, in this section, a network approach
based on the event synchronization is applied to investigate the
dynamic synchronization properties of droughts in continental
CONUS by including their spatiotemporal characteristics for the
period of 1900-2016. We utilize the network metrics related to
weighted-directed network for studying the spatio-temporal prop-
agation of droughts in CONUS. In addition to that, we also intro-
duce two metrics that quantify the dominant orientation and
distance travelled by droughts in the following example
application.

3.1. Drought data description and source

Palmer Drought Severity Index (PDSI) is one of the commonly
used indicators for monitoring droughts (Mishra and Singh,
2010). Several studies used PDSI to investigate the spatial and tem-
poral drought characteristics (Mishra and Singh, 2010; Karl and
Koscielny, 1982). We used monthly PDSI time series available for
344 climatic divisions of CONUS during the period of 1900-2016,
which was obtained from the United States climatic divisional
database available through the National Oceanic and Atmospheric
Administration.

PDSI is derived based on the principles of moisture supply and
demand utilizing the precipitation and temperature variables of a
region. The data for the climate divisions have been corrected for
time-of observation bias (Karl et al., 1986). It was found that even
in the regions of complex terrain, such as the mountainous areas of
the western U.S., the standardized departures of temperature and
precipitation from normal are spatially consistent within a climate
division (Karl and Riebsame, 1984). The presence of these attri-
butes motivated us to use PDSI climate division data sets in our
study.

3.2. Selection of drought event threshold

The PDSI was used to quantify the conditions of water surplus
as well as deficit at any given location. Positive and negative values
of PDSI usually represent wet and dry conditions of a region,
respectively. Therefore, drought event (e.g., mild to extreme) can
be categorized based on negative thresholds of the PDSI time ser-
ies. Also, different threshold leads to a new drought event as well
as different socio-economic implications. For example, human
health risks, water quality concerns and plant stresses are found
to be markedly different for mild (PDSI<-1) and moderate
droughts (PDSI < —2) (Mishra and Singh, 2010). Therefore, it would
be interesting to explore the role of thresholds on spatio-temporal
evolution of drought through network analysis. In addition to that,
as we use drought onset time for constructing the networks, it will
be relevant to study the potential influence of ‘threshold’ on the
spatio-temporal drought propagation characteristics at different
severity levels. Hence, we classify the onset of drought events
using two types of threshold: (a) Mild drought onset based on
PDSI < —1 with duration >3 months, and (b) Moderate drought
onset based on PDSI < —2 with duration >3 months. It is important
to note that our threshold definition is more focused towards ini-
tiation of mild and moderate drought events. We did not focus
on initiation of extreme droughts as it will reduce the number of
events in our analysis. By using longer drought periods, we only
consider the sizeable events and distinguish them from smaller
duration events that might not pose significant risks.

3.3. Event synchronization (ES) methodology for drought event
analysis

The temporal distributions of drought events are typically non-
uniformly distributed, which is appropriate for ES application.

Therefore, we employed ES methodology as explained in Sec-
tion 2.2.1 to analyze drought events in this study. As explained
before, we extracted PDSI time series which has a sequence of mild
(moderate) drought events corresponding to months with PDSI <
—1 (PDSI < —2) with duration >3 months for each climate division
in CONUS. We introduce a maximum delay of Ty« =3 months
between the drought events occurring at two climate divisions.
Fig. 5 illustrates a hypothetical example of drought event series
between two location [ and m. The figure shows that the events
within the prescribed time window are considered as synchronized
events. It is to be noted that drought events, which occur at the
very same time step at different locations, are discarded, since
the temporal ordering of events is not determined in those
instances. In addition to that, since we utilized the drought onset
month for the formulation of ES metric, the value of ES;,, qualita-
tively represents how likely a drought in division [ can propagate
to division m. Hence, greater the value of ES;, more likely a
drought in [ will propagate to m. This procedure is performed for
all combinations of climate divisions (I and m), to derive a matrix
of ES values with the dimension of 344 x 344.

3.4. Construction of drought networks

This study aims to characterize the propagation of droughts
based on directions with strong spatial preferences using a direc-
ted weighted network. Therefore, for preserving only the statisti-
cally significant relationships, we use the bootstrapping approach
as explained in the Section 2.2.2. We obtain 1000 surrogate values
of event synchronization metrics for each pair of climatic divisions
and define 99th percentile values of these 1000 null models as ES”.
Using this information, a directed and weighted network link from
climate division | to m can be constructed, if ES;, is greater than

threshold value of ES], as

Clm _ ESIm,I#m if ESIm > ESﬁn (15)
0, otherwise

From a network perspective, the resulting matrix C will repre-
sent a weighted-directed adjacency matrix of dimension 344 x
344; where a non-zero element in matrix represents the likelihood
of propagation of drought between any two divisions, where each
climate division would represent a node.

3.5. Network analysis of drought events

For analyzing the drought networks, we employ the network
metric of strength, and introduce two new measures based on
strength to characterize the dominant orientation and propagation
distance of the droughts. As the strength metric is already defined
earlier (Section 2.4.3), we only discuss the contextual meaning of
strength in the propagation of drought in this section. However,
for other two metrics, we first build the background in the context
of drought events and subsequently define them mathematically
for illustration purpose.

The magnitude of Sr** [Refer Eq. (7)], can be interpreted syn-
onymous with the influence of the climate division in drought
propagation. Higher its magnitude, higher is the influence of the
climate division in drought propagation. Similarly, the magnitude
of Sr'™ [Refer Eq. (8)], will indicate the degree of vulnerability of cli-
mate division to drought events happening elsewhere. Therefore,
higher the Srf", higher will be the vulnerability of a location to spa-
tial propagation of the drought events. In addition to these metrics,
we also compute the probability distribution of Sr** and Sr'" to
study the structural properties of the drought networks in CONUS.
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Fig. 5. A hypothetical representation of synchronized onset of moderate drought events. Here, we define the onset of a moderate drought event (vertical red and dotted black
lines) as the month when PDSI becomes lesser than —2 (horizontal dashed red line). Drought events (i, p) at climatic division [ are said to be synchronized (vertical red lines)

with drought events (j, q) at climatic division m, if they occur within the prescribed time window of 7/

i and Th?, respectively. The events that occur at the very same time step

in divisions [ and m, are discarded, since the temporal ordering of events is not determined in those instances. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Now that we have established a framework to assess the critical
regions in drought propagation, we further investigated the domi-
nant orientation and geographical distance through which the
propagation ‘from’ and ‘to’ climate divisions may occur. For the
purpose, we introduced the angle (6,,) between the reference lati-
tude (horizontal line) going through the centroid of division I and
the straight-line between the centroids of region’s [ and m as illus-
trated in Fig. 6(a); whereas, the length between the centroids of [
and m is estimated as geographical distance (D). Likewise, we
estimated the angle and distance between the climate divisions
only if there exists a connection between them (i.e. C;;, > 0). In
the next step, we develop a matrix which contains angles (0) and
distances (D) similar to the matrix C as shown in Egs. (16) and (17)

Oim, if C;#0
Any, = . 16
Ml { undefined, otherwise (16)

. Dy, if =0
Diy, = 17
tim { undefined, otherwise a7

It is imperative that the calculated angles lie in the range of [0,
27]; we simplify the directional interpretations by classifying the
angle range into eight orientations each of ©/4 and grouping the
angles as orientations according to the table 1. As a result, we
interpret the directionality as an orientation rather than an angle
for simplicity.

Similar to the case of strength, we can estimate the dominant
orientations for the links directed towards the selected node (i.e.
inward-orientation) as well as links directed from the selected
node towards the other nodes (i.e. outward-orientation). Fig. 6
(b) and (c) illustrates the estimation of both out-orientation and
in-orientation in a pictorial form for a hypothetical location L In

the case of outward-orientation, initially the out-strength of loca-
tion [ along the predefined orientations can be estimated as shown
in Eq. (18)

Sr"(¢) =D Cim (18)

meg

Then the orientation along which outward-strength is maxi-
mum can be considered as dominant orientation along which the
droughts may propagate. Therefore, we define outward-
orientation as the principal direction in which droughts may prop-
agate as expressed in Eq. (19).

or" = arg m/(;ax(Sr;’”t(qb)) (19)

Now, we define its corresponding outward-distance as the aver-
age geographical distance between the location [ and the regions
along the outward-orientation as Eq. (20)

ZmeOr;”“D“m

out
Dr)™ = "
ot

(20)

whereas, Mg, Tepresents the number of Dij, elements along the

out

orientation Or{". As evident from the formulation, Or"* represents
the dominant orientation in which drought at climate division [
may propagate. The corresponding Dr{** indicates the mean geo-
graphical distance a drought event in climate division | may propa-
gate along the orientationOr{". In the same way, the inward-
strength of location [ along the predefined orientations can be esti-

mated as shown in Eq. (21)

Sri'(¢) = Comi 1)

me¢



G. Konapala, A. Mishra/Journal of Hydrology 555 (2017) 600-620 609

a) b)

145

180

latitude

latitude

225

longitude

Outward-Strength

c)
90 90
45 145 e
' @
% kel
; 0 = 180
~ZIm B
315 225 Tl 315
270 270
longitude longitude
“ Inward-Strength _
10 15 20 5 10 15 20

Fig. 6. A schematic representation to aid the calculation of (a) angle and direction. The distance between | and m is the straight line connecting these two centroids. Whereas
the direction of propagation is estimated as the angle between the horizontal dotted line and the straight-line connecting climate divisions | and m. A schematic
representation for estimating: (b) outward-orientation, and (c) inward-orientation. In both the cases, the color of the lines illustrates the outward-strength and inward-
strength values. The orientation with maximum value of outward-strength and inward-strength is considered as dominant direction for drought propagation. The red dotted
line represents the average geographical distance of the dominant outward- and inward-orientation as outward-distance and inward-distance, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Classification of angles and their corresponding orientation.

Angle (0) Orientation (¢)

0<0<45 East North East (ENE)

45 <0<90 North North East (NNE)
90<0<135 North North West (NNW)
135<0<180 West North West (WNW)
180 <0<225 West South West (WSW)
225 <6<270 South South West (SSW)
270<60<315 South South East (SSE)
315 <0< 360 East South East (ESE)

The orientation along which inward-strength is maximum can
be considered as dominant orientation though which drought
may propagate to location [ as expressed in Eq. (22).

Ory" = argmax(Sri'(9)) (22)

The corresponding inward-distance is estimated as the average
geographical distance between the location I and the regions along
the inward-orientation as shown in Eq. (23)

ZmeOrf" Dlml

nor;n

Dri* = (23)

where, NOr;n represents the number of defined Di,, elements along

the orientation Or" and Or™ represents the dominant orientation
though which a drought event may propagate to climate division
l. The corresponding Dri" indicates the mean geographical distance
from which drought may propagate to location [ along the orienta-
tion Or{"*. We formulated these two metrics to include the direction
and weight aspects of a network. However, the metrics with similar
names but different interpretations were introduced in Rheinwalt
et al. (2016) and Boers et al. (2014a,b) for the case of undirected-
unweighted networks.

4. Results and discussions

4.1. Effect of thresholds on general characteristics of drought events
(1900-2016)

By utilizing the theory of runs, the estimated number of drought
events with a threshold equivalent to PDSI < —1 and duration >3
months (i.e. threshold (1): initiation of mild drought) for CONUS
is shown in (Fig. 7a). By using this threshold, more number of
drought events can be observed in the northwestern, north eastern
and southeastern parts of USA. Whereas, the regions located in
central part of CONUS has relatively less number of drought events.
We calculated the duration of mild onset drought as the number of
months with PDSI values continuously below the value of —1. Then
the average duration of drought per event is determined as the
mean of duration of all drought events estimated using the mild
onset threshold. The average duration of drought per event
(Fig. 7b) is higher in central and southwestern parts in comparison
to other regions of CONUS. This indicates that, the drought events
classified using this threshold is relatively short, but more frequent
in northwestern, northeastern and southeastern parts of CONUS.
Whereas, the events in central and southwestern CONUS are rela-
tively longer, but are less frequent. Drought severity is estimated as
cumulative sum of PDSI values continuously below the value of —1.
Then, the average severity per drought event is estimated as mean
of drought severity of all drought events. Similarly, the average
intensity per event is calculated as the average of severity divided
by duration of its corresponding drought event. Both severity
(Fig. 7c) as well as intensity (Fig. 7d) exhibit similar spatial charac-
teristics of higher magnitude in western and central part of CONUS
in comparison to eastern part of CONUS. Overall, it was observed
that these characteristics vary spatially across continental CONUS
in accordance with previous studies (Anderson et al., 2011;
Andreadis et al., 2005).

The number of drought events with a threshold equivalent to
PDSI < -2 and duration >3 months (i.e. threshold (2): initiation
of moderate drought) across CONUS is shown in Fig. 8(a). We esti-
mate average duration of drought, average severity per event and
average intensity per drought event similar to the case of mild
drought onset but with a threshold of —2. More number of drought
events can be observed in the southern and western parts of USA.
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Fig. 7. Spatial distribution of (a) number of mild drought onset events, (b) average duration of drought in months when considering the mild drought onset, (c) average

severity per event, and (d) Average intensity per event.

Whereas, the central and eastern CONUS region have relatively less
number of drought events. The average duration of drought events
(Fig. 8(b)) is higher in central and southwestern CONUS regions.
Therefore, droughts in southwestern regions are both frequent
and considerably longer duration. However, the drought events
in central part of CONUS are relatively short, but more frequent.
In the eastern part of CONUS, droughts are less frequent as well
as comparatively shorter in duration. In terms of severity
(Fig. 8c) and intensity (Fig. 8d), the central north part of CONUS
witness higher magnitude compared to other regions. In addition,
the drought characteristics varies spatially across continental
CONUS similar to previous studies (Ganguli and Ganguly, 2016;
Ge et al,, 2016).

In summary, the spatial patterns of droughts vary significantly
with respect to thresholds. As the threshold is low for initiating
mild drought events, it leads to more number of drought events
as well as longer drought duration (Fig. 7b ). However, increasing
the threshold to initiate a moderate drought event led to higher
drought severity (intensity) in comparison to mild drought events.
Therefore, by studying networks using different drought thresh-
olds can provide insights on drought propagation properties at
different severity levels.

4.2. Propagation of drought and their associated strength

The spatial patterns of outward-strength derived based on mild
and moderate drought onset networks are shown in Fig. 9. In case
of mild drought onset, higher magnitude of outward-strength are
concentrated around the Ohio River valley region of USA and lower
values occur in all the other regions of USA (Fig. 9a). Higher
outward-strength in case of mild drought onset network (i.e.,
threshold 1) emerges from the central east part of CONUS region
or more particularly known as Ohio Valley region. As a result, cli-
mate divisions in that region may have a potential influence in
early drought propagation to other regions. In addition, in the case
of moderate drought onset, Ohio River Valley region has higher val-
ues of outward-strength compared to other regions of USA
(Fig. 9b). Higher outward-strength in case of moderate drought
onset indicates that these regions may likely to play an important
role in propagation of droughts to other regions at a later stage.
Therefore, if drought onsets in any of the higher outward-
strength regions, it is more likely that it would propagate to other
divisions creating a regional drought with large spatial extent.
However, the geographical area of higher outward-strength
divisions in case of mild onset is comparatively more than that of
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moderate drought onset. Ohio River Valley seems to be a critical
region in this aspect as it plays a role in influencing propagation
of mild as well as moderate droughts. This region also known to

exhibit highest regional winter moisture variability in the United
States, as it is represented by the leading rotated principal
component of winter precipitation (Walsh et al., 1982) and the
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third principal component of Palmer drought severity index values
(Karl and Koscielny, 1982). The leading principal component in the
case of winter rainfall indicates that this region contributes signif-
icantly to variability of winter precipitation across continental
USA. Similarly, the third principal components of the PDSI values
indicate substantial variability of drought in that region. Therefore,
this change in variability may have contributed to high outward
strength values in Ohio River valley. Further, it was observed that
the occurrence of an El Nino condition would decrease the precip-
itation in that region (Zhang et al., 2010). In addition, it was
observed that ENSO has a considerable influence on the intra-
seasonal temperature extremes in this region (Gershunov and
Barnett, 1998). However, it did not appear to be a significant rela-
tionship between atmospheric conditions of Ohio River valley with
Pacific North American (PNA) index and North Atlantic Oscillation
(NAO). As a result, the higher value of out-strength in Ohio River
valley may be connected to higher climate variability as well as
its teleconnections with ENSO variability.
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The kernel density estimates of probability distribution of
outward-strength for both mild and moderate drought onset net-
works are displayed in Fig. 9(c). The probability distributions of
outward-strength in both scenarios are significantly different from
each other. In case of mild drought onset, distribution is regular
and more extensive indicating the outward-strength is higher
and it has more spatial variability. Also, the shape of probability
distribution in case of a mild drought onset network can be said
to have characteristics of a random network due to its modality
(Barabasi and Albert, 1999). Whereas, the distribution of moderate
drought onset event’s outward-strength is a combination of a real
and random network (Boccaletti et al., 2006) with majority of the
divisions having low values of outward-strength.

Higher values of mild drought onset’s inward-strength are
observed in northeast, upper Midwest and in parts of southeastern
region of CONUS (Fig. 10a). We suggest that higher inward-
strength emerges mainly because the climate divisions in that
region seems to be influenced even by mild droughts occurring
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Fig. 10. Spatial distribution of inward-strength in case of (a) mild, and (b) moderate drought onset events, and (c) represents the KS density estimated probability distribution
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in other regions and potentially it may have geographically more
distant spatial connections. In case of moderate drought onset,
only the upper Midwest region has higher values of inward-
strength compared to other regions of USA (Fig. 10b). Regions with
higher inward-strength are likely to be more influenced by
droughts in other regions and are thus more vulnerable. Therefore,
these regions might be more sensitive to local climate conditions
as well as synoptic climate activity (Mo, 2008; McCabe et al.,
2004). The probability distributions of inward-strength in case of
both the scenarios (Fig. 10c) have the similar characteristics as in
the case of outward-strength (Fig. 9c¢).

We also analyzed the relation between outward-strength and
inward-strength for mild drought onset (Fig. 11a) and moderate
drought onset (Fig. 11b) events separately. In case of mild drought
onset, a strong linear relationship quantified by high Pearson cor-
relation (r) of 0.62 exists between the outward-strength and
inward-strength. This indicates that the climate divisions that
influence the drought propagation at an early stage are also vulner-
able to early stage droughts propagated from other regions. As a
result, it might be difficult to segregate spatial roles of drought
propagation at such an early stage. This might explain why it is dif-
ficult to detect droughts at an early stage (Mishra and Singh, 2010).
However, in case of moderate drought, a weak linear relationship
(r = 0.18) exists between outward- and inward-strength. This indi-
cates that the influence and vulnerable regions might not be the
same resulting in spatially distinct sink and source regions for
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drought propagation. Presence of these hotspot regions might help
in understanding the dynamics of how drought may propagate at a
moderate stage in those regions. Research in similar direction with
respect to extreme rainfall events revealed several important char-
acteristics about propagation of extreme events from Southeastern
South America to central Andes in South America (Boers et al.,
2015a,b; Marwan and Kurths, 2015).

4.3. Orientation characteristics of drought propagation

The outward-orientation for onset of mild and moderate
drought events is illustrated in Fig. 12(a) and (b) respectively. Here,
Or"* represents the dominant orientation in which drought at cli-
mate division [ may propagate to other regions. The number of cli-
mate divisions that are likely to propagate droughts in a particular
direction are also shown in Fig. 12(c). It can be observed that for
most of the climate divisions located in southern part of CONUS,
mild drought propagates towards north-northeast (NNE) direction.
Similarly, majority of the climate divisions in northeastern CONUS
have mild droughts propagating towards the south- southwest
(SSW) direction. In addition, mild droughts from few regions
located in northern CONUS propagate in the southwestern direc-
tion. Interior regions located in northern part of CONUS propagate
mild droughts to southern southeast direction. In case of moderate
droughts, the orientation pattern seems to be more scattered in
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Fig. 12. Spatial distribution of outward-orientation in case of (a) mild, and (b) moderate drought onset events, and (c) represents the number of climate divisions with the

corresponding outward-orientations. The arrows on the map indicate direction.
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Fig. 13. Spatial distribution of in-orientation in case of (a) mild, and (b) moderate drought onset events. Whereas, (c) represents the number of climate divisions with the
corresponding inward-orientations. The arrows on the map indicate direction.

comparison to the case of mild drought (Fig. 12(b)). The areal in large section of eastern USA likely to propagate in the west-
extents of the orientations are comparatively not as uniform as northwest (WNW) direction. Finally, the regions located in north
the latter. The propagation of droughts to the north-northeast central part of CONUS do not exhibit a uniform orientation as

(NNE) direction is restricted to only climate divisions of south opposed to mild drought events. Overall, our results highlight the
west. Whereas, comparatively an initiation of moderate droughts orientations for the onsets of mild and moderate droughts, which
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Fig. 14. Spatial distribution of outward-distance in case of (a) mild, and (b) moderate drought onset events, and (c) represents the KS density estimated probability
distribution of outward-distance in case of mild and moderate onset of droughts.
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have considerable dissimilarity highlighting key fundamental
propagation directions spatially.

The inward-orientation for onset of mild and moderate drought
events is illustrated in Fig. 13(a) and (b) respectively. Fig. 13(c) pro-
vides the number of climate divisions that experience mild and
moderate droughts propagating through a particular direction.
The peripheral regions from northwest to the southeast of CONUS
might experience majority of its mild droughts due to propagation
from the northwestern direction. However, the interior Southern
CONUS region witness mild droughts propagating from south-
southwest (SSW) direction. The northeastern USA usually experi-
ences mild droughts due to propagation from north-northwest
(NNW) direction. Similar to the outward-orientation in the case
of moderate droughts, the spatial extent of the moderate droughts
in case of inward-orientations is also smaller and diverse. The inci-
dence of moderate droughts in majority locations of southwestern
USA may originate from the south-southwest (SSW) direction.
However, the likelihood of moderate drought for northeastern
USA may be originating from the north-northeast (NNE) direction.
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In the western and most of the central part of USA, they are inci-
dents from northwestern direction. This kind of drought orienta-
tion analysis might improve our understanding by illustrating
the different aspects of directions of drought propagation. For
example, the knowledge of dominant inward and outward orienta-
tion of drought propagation might play a key role in developing
early warning systems for droughts. For example, if drought occurs
in a climate division whose dominant direction outward-
orientation is known, and then droughts can be expected in the
areas lying in its dominant outward orientation. Similar informa-
tion can be obtained with the knowledge of inward orientation
of a climatic division too.

4.4. Distance characteristics of drought propagation

The spatial distribution of outward-distance in case of mild and
moderate drought onset events is shown in Fig. 14(a) and (b)
respectively. In case of mild drought events, a clear pattern of
shorter propagation distance (<2000 km) can be observed in the
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Fig. 15. Spatial distribution of inward-distance in case of (a) mild, and (b) moderate drought onset events, and (c) represents the KS density estimated probability distribution

of inward-distance in case of mild and moderate onset of droughts.
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eastern half of USA. Whereas, comparatively longer propagation
distances (>2000 km) can be seen in western half of USA. In case
of moderate drought, a similar pattern with few exceptions in
the Colorado and California regions, where less propagation dis-
tances can be observed. Whereas climate divisions located in Geor-
gia and Tennessee and parts of northeastern CONUS exhibit long
distance propagation. This spatial pattern closely resembles the
spatial map of rainfall entropy of USA (Brunsell, 2010; Martino
et al, 2012) indicating that the outward-distance metric might
be influenced by rainfall variability. In addition, it is interesting
to see that, the probability distribution of outward-distances in
case of mild and moderate droughts do not differ much as in the
case of strength metrics (Fig. 14c). As a result, even though the
inward-strength of mild droughts is higher than that of moderate
droughts, the dominance of spatial influence of these drought
events is more or less similar.

The spatial distribution of inward-distance in case of mild and
moderate drought events is shown in Fig. 15(a) and (b) respec-

tively. The observed spatial pattern of mild drought inward-
distance is similar to mild drought outward-distance. The western
part has higher values (>2000 km) of inward-distance compared to
the eastern CONUS. In case of moderate droughts, a mixed spatial
pattern of high inward-distance magnitude is observed over the
CONUS. Higher values of inward-distance are observed in western,
parts of northeastern and southeastern CONUS. Similar to the
probability distribution of outward-distance, it was observed that
the probability distribution of mild and moderate droughts
inward-distance are similar to each other.

We also analyzed the relation between outward-distance and
inward-distance for onset of mild drought (Fig. 16a) and moderate
drought (Fig. 16b) events separately. In case of mild droughts, a
significant linear relationship quantified by a Pearson correlation
(r) of 0.6 exists between outward-distance and inward-distance.
This indicates that the climate divisions that have the ability to
propagate mild droughts to longer distances also likely to get influ-
enced by drought events from long distances. Whereas, in case of
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Fig. 17. Box plots showing the variation of (a) outward-strength, and (b) inward-strength along the dominant orientations.
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onset of moderate drought events, a weak linear relationship quan-
tified by a Pearson correlation (r) of 0.21 exists between outward-
distance and inward-distance. This indicates that the climate divi-
sions that propagate moderate droughts to long distances do not
necessarily get influenced by moderate drought events incident
from long distances. As a result, different meteorological processes
might be controlling the outward- and inward-distances in case of
CONUS droughts (Mishra and Singh, 2010; Malik et al., 2012,
Stolbova et al., 2014).

4.5. Network characteristics along the dominant directions

In this section, we summarize the variation of the above-
discussed network properties of onset of mild and moderate
drought events separately along their dominant directions. To
illustrate this, we used box plots that summarized the data and
its corresponding variation along each direction. We first summa-
rized the outward- and inward-strength against the corresponding

outward- and inward-direction in Fig. 17(a) and (b) respectively.
The outward-strength values in case of mild drought onset vary
across the orientations, and the highest out-strength (median:
15) was observed for west-northwest (WNW) orientation. How-
ever, the onset of moderate drought’s outward-strengths does
not vary across the orientations. Even within the orientations,
the outward-strength of mild drought events exhibits considerable
variation in comparison to onset of moderate drought events. In
the case of inward-strength too, mild drought events vary across
the orientations and the highest inward-strength (median: 15)
was observed for north-northeast (NNE) orientation.

We summarized inward-distance and outward-distance against
the corresponding outward-direction and inward-direction in
Fig. 18(a) and (b), respectively. Both outward-distance and
inward-distance values are comparable in magnitude and show
considerable variations across the orientation unlike the case of
strength characteristics. Among the outward-distance values for
mild droughts, south-southeast (SSE) and east-northeast (ENE)
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orientation demonstrated comparatively longer (median: 1800 km)
and shorter propagation distances, respectively. Whereas, in the
case of moderate droughts, comparatively longer and shorter prop-
agation distances were exhibited along the west-northwest
(WNW) and east-northeast (ENE) directions respectively. Contrary
to the case of strength characteristics, moderate droughts exhib-
ited higher outward-distance variability within the orientations
compared to the mild droughts. The longer inward-distance (med-
ian: 3100 km) values for mild drought events was observed along
the east-northeast (ENE) direction. Surprisingly, the same direction
(ENE) has the shortest inward-distance (median: 1000 km) in case
of moderate droughts. This differential behavior highlights the fact
that even though mild and moderate droughts are derived from the
same index (i.e. PDSI), the controlling factors for these events may
be completely different (Lohani et al., 1998; Steinemann, 2003).

5. Summary and conclusions

This study reviews the complex network approaches used for
investigating hydroclimatic extreme events. A detailed discussion
is provided on complex networks and extreme events, event syn-
chronization method, construction of networks, their statistical
significance and the associated network evaluation metrics. In
addition to review, we illustrated the application of the complex
network theory built upon the event synchronization metric to
study the propagation of mild and moderate drought onsets using
PDSI monthly time series for a period of 1900-2016. We also intro-
duced two new metrics (orientation and distance) to characterize
the spatio-temporal propagation of drought in Continental USA.
The following conclusions can be drawn from the application of
networks to droughts in this study:

(1) The properties of spatial connections varies when the
droughts propagates at different initiation thresholds (i.e.,
PDSI < —1 and PDSI < —2). Overall, it was observed that the
Ohio River valley region may be treated as a dominant
region to initiate the drought propagation. Similarly, the
upper Midwest section region of CONUS is likely to be vul-
nerable to spatial propagation of drought events happening
elsewhere. As a result, further investigations of atmospheric
and hydroclimatic processes in these locations within a net-
work perspective might improve our understanding in iden-
tifying appropriate processes responsible for propagation of
droughts in CONUS.

(2) Itis important to understand that even though the probabil-
ity distribution of strength characteristics is different, the
location of hot spots (i.e. Ohio River Valley and upper Mid-
western CONUS) found to be similar at both selected thresh-
olds. However, the strength characteristics for onset of mild
drought events are more spatially extensive compared to the
onset of moderate drought events. In addition to that, in case
of mild drought, a significant linear relationship exists
between inward-strength and outward-strength; whereas,
a weaker relationship exists between inward-strength and
outward-strength for onset of moderate drought.

(3) The orientation of droughts offers a new perspective on
understanding the ability of regions to propagate droughts
in a particular direction. It was observed that the droughts
initiated at a lower threshold (PDSI < —1) can exhibit more
clustered and spatially uniform orientations compared to a
higher drought thresholds (PDSI < —2).

(4) The distance characteristics shows existence of long distance
propagation in the western regions in comparison to the
eastern part of CONUS. This kind of information can be ben-
eficial for developing early drought warning systems to

improve water management. For example, if drought is
already present in a particular climate division, this informa-
tion can be applied to alert the regions in its dominant
outward-orientation and within the propagation distance
(outward-distance) ahead of time. Similarly, the inward-
distance and inward-direction metrics can also be incorpo-
rated in early warning drought systems.

(5) One of the primary purposes of drought investigation is to
understand the propagation of spatio-temporal droughts
for a given region (Mishra and Singh, 2010). Although we
illustrated preliminary results about drought propagation,
we still need to build up on this network model to include
additional hydro-climatic factors like rainfall, temperature,
streamflow to form a set of interacting networks to further
understand and predict the drought propagation and occur-
rence in a space-time dimension. We recognize that the
research related to application of network theory in hydro-
logic and environmental systems are still in its nascent stage
and we believe that the present study on the complex net-
works application on propagation of drought events will
advance our understanding on origin and propagation of
hydroclimatic extremes.
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