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Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to
map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active
Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate
its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil
Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water con-
tent) information. The soil properties are computed using pedo-transfer function with soil characteristics

g%':;;f:: derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to
SMAP be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled
SWDI SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag
AWD between accumulations of precipitation and delayed increased in surface soil moisture. However, the

SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI
(SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture
retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will over-
come the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further
compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement
between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), espe-
cially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for
CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and
SPEL Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity
and introduces new spatial mapping capability for drought monitoring. As an agricultural drought index,
SMAP_SWDI has potential to capture short term moisture information similar to AWD and related
drought indices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Soil moisture links water, energy and carbon cycles over land.
Therefore, accurate estimation of soil moisture is critical and a pre-
cursor to formulate better water and land use management prac-
tices and hazards mitigation strategies (Brown et al., 2013). To
date, there have been several satellites that provide soil moisture
information with various degrees of accuracy, spatial resolution
and temporal sampling such as Meteorological Operational Satel-
lites (MetOp) which carrying Advanced SCATterometer (ASCAT)
and NASA’s Aqua which hosts the Advanced Microwave Scanning
Radiometer for Earth Observing System (AMSR-E). In November
2009, the European Space Agency (ESA) launched the satellite mis-
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sion: the Soil Moisture and Ocean Salinity (SMOS), which being the
first mission specifically dedicated to Earth’s surface soil moisture
(Kerr et al., 2010). The SMOS carries an aperture synthesis L-band
radiometer (1.41 GHz) for the estimation of surface parameters at
an approximately 40 km resolution which provide estimates of
surface soil moisture within approximately the top 5 cm. Since
launched, numerous studies have utilized the SMOS soil moisture
datasets for many applications such as deriving drought index (M
artinez-Fernandez et al., 2016; Scaini et al., 2015), quantifying
drought impacts on crop yield (Chakrabarti et al., 2014) or
hydro-meteorological application (Zhuo et al., 2015). There have
been a number of comparisons between these satellites’ soil mois-
ture product with in situ datasets (Brocca et al., 2011; Parrens
et al., 2012; Fascetti et al., 2016).

Recently, Soil Moisture Active Passive (SMAP; Entekhabi et al.,
2010a) satellite was launched by NASA (in January 2015) to map
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surface soil moisture information from space. SMAP carries sensors
of an active L-band radar 3 km (1.26 GHz) and a passive L-band
radiometer 36 km (1.41 GHz) on a single platform and to provide
a combined global measurement of surface soil moisture at an
intermediate spatial resolution of 9 km (Entekhabi et al., 2010a,
2015). SMAP will compliment a host of passive and active sensors
including the SMOS mission, AMSR2, RADARSAT-2, Sentinel-1,
TerraSAR-X, COSMO-SkyMed and ALOS-2 (McNairn et al., 2015).
Unfortunately, the SMAP 3 km active L-band radar failed after
two months in orbit but the 36 km radiometer continues to pro-
duce information that is valuable to constrain land surface models
in data assimilation.

Although surface soil moisture data obtained from different
sources (e.g., satellite retrievals and land surface models) have
been shown to contain consistent and useful information in their
seasonal cycle and anomaly signals, they typically exhibit very dif-
ferent mean values and variability. Often bias removal is necessary
in order to compare the diagnostics formed based on each data
source (Reichle and Koster, 2004). Cumulative Distribution Func-
tion (CDF) matching technique has been widely used for correcting
satellite based soil moisture biases (Reichle and Koster, 2004;
Draper et al, 2009). These techniques are aimed at re-scaling
two data sets that have consistent averages and/or consistent
dynamic ranges. Therefore, in this study, we apply CDF matching
approach to remove the systematic bias and dynamic range differ-
ences between SMAP soil moisture and in situ datasets.

The advancement made in satellite based soil moisture mea-
surement can add new capability for agricultural drought monitor-
ing. Agricultural drought refers to a period with declining soil
moisture and consequent crop failure without any reference to sur-
face water resources (Mishra and Singh, 2010). Satellite data are
applied for drought studies (Martinez-Fernandez et al., 2016; Hao
and AghaKouchak, 2013; Ahmadalipour et al., 2016; Anderson
et al., 2013; Crow et al., 2012; Sheffield and Wood, 2008; Bartalis
et al.,2007) as well as to investigate local-scale agricultural drought
anatomy (Mishra et al., 2015). Shellito et al. (2016) suggested SMAP
soil moisture drying is more rapid than in situ following rainfall
events. The applications of SMAP for agricultural drought studies
are very limited due to the unavailability of SMAP data for longer
time period. To overcome this limitation we use SWDI as an agricul-
ture drought index that is derived based on the soil water charac-
teristics (i.e., Field capacity and Available water content). The
SWDI was selected in this study because its formulation does not
depend on longer data unlike other standardized drought indices
(e.g., Standardized Precipitation Index, Standardized Soil Moisture
Index, etc.) derived based on the anomalies of long term data sets.
Therefore selection of SWDI will overcome the limited (short)
length of SMAP data for agricultural drought studies.

The main objectives of this paper are twofold: 1) Produce
SMAP-based agricultural drought indices (SMAP_SWDI) for Con-
tiguous United States (CONUS), where in situ soil moisture records
are available for comparison and evaluation, and 2) Compare
SMAP_SWDI with other agriculture drought index (i.e., Atmo-
spheric Water Deficit index) derived from precipitation and tem-
perature data as inputs. Section 2 describes the in situ and SMAP
satellite data products. Section 3 presents the methodology used
for re-scaling and introduces drought indices. Section 4 provides
results. Discussions and conclusions are drawn in Section 5.

2. Data
2.1. In situ datasets

The US Climate Reference Network (USCRN; https://www.ncdc.
noaa.gov/crn/) operated by the National Oceanic and Atmospheric

Administration (NOAA) provides high-quality long term tempera-
ture, precipitation, soil moisture and soil temperature observa-
tions. The USCRN stations are installed over CONUS using
triplicate-configuration soil moisture and soil temperature probes
at five standard depths (5 cm, 10 cm, 20 cm, 50 cm and 100 cm)
(Bell et al., 2013). USCRN has also been used for the validation pro-
gram of SMAP but not within the Core Validation Sites (Jackson
etal,, 2012; Pan et al., 2016; Velpuri et al., 2016). Detailed informa-
tion related to USCRN can be found in Diamond et al. (2013) and
Bell et al. (2013). Using USCRN database, we selected 104 stations
that are spatially distributed across CONUS and have one full year
data length from 1st April 2015 to 31st March 2016. The criteria for
selecting 104 stations are based on the availability of in situ and
SMAP pixel for the entire study period.

2.2. SMAP L3 soil moisture information

The SMAP satellite mission was launched by NASA in January
2015 (Entekhabi et al., 2010a) to retrieve global soil moisture infor-
mation via measuring brightness temperature through geophysical
inversion. Different levels of SMAP products are defined as Level 2
for half orbit based, Level 3 for daily composites and Level 4 for
model assimilation (Brown et al., 2013). Lying in the mid-
latitudes where the neighboring swaths do not overlap, Level 2
and Level 3 are essentially no difference (Pan et al., 2016). In con-
junction with a forward model of brightness temperature and
ancillary products, the SMAP L3 is an estimate of surface soil mois-
ture within the top 5 cm of the soil column (O’Neill et al., 2016).
There are tentatively three products of SMAP L3 soil moisture that
can be collected from National Snow and Ice Data Center (NSIDC):
(1) The passive L-band radiometer 36 km (1.41 GHz) (2) The active
L-band radar 3 km (1.26 GHz) and (3) The combined active/passive
L-band product at 9 km (Entekhabi et al., 2015). However, we only
choose the passive L-band radiometer 36 km resolution product for
drought analysis in this study, because of the failure of the active L-
band radar 3 km after two months in orbit. The detailed informa-
tion on how SMAP L3 Passive data (SM_L3_P) is retrieved, pro-
cessed can be found in O’Neil et al. (2015). Over CONUS, SMAP
was calibrated and validated for eight in situ in the Core Validation
Sites (CVS) with objective to reduce the unbiased root mean square
error below 0.04 m*/m3 (Jackson et al., 2016).

Bilinear interpolation approach was used to estimate the satel-
lite soil moisture information at in situ locations based on four
adjacent grid points. This method ensures that the closest grid
point to the station will be given the highest weight. This similar
interpolation technique was used to extract even more spatially
variable co-located station rainfall data from satellite precipitation
(Vu et al.,, 2012, 2015; Rozante et al., 2010).

3. Methodology
3.1. Rescaling using CDF matching approach

Surface soil moisture data from different sources (satellite,
ground measurement, land model) typically exhibit very different
mean values and variability. These biases possess an obstacle to
fully exploit the useful information contained in satellite retrieval
through data assimilation technique (Reichle and Koster, 2004).
Although, SMAP was calibrated over 8 in situ stations in Core Val-
idation Sites, but these are not within the USCRN stations network
at this time of study. Therefore, bilinear interpolation and bias cor-
rection approach is required to downscale the resolution and
reduce the mismatch between satellite and in-situ observations.
Rescaling techniques are used to adjust satellite data to match
in situ variability (Brocca et al., 2011). When remote sensing data
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are assimilated into a hydrological or meteorological model, they
gravitate towards the distributional characteristics of the model
prognostics and diagnostics. Combined use of remote sensing and
in situ data requires harmonization of the ranges of variability
and mean conditions (Liu et al., 2011; Brocca et al, 2010;
Entekhabi et al., 2010b; Miralles et al., 2010; Koster et al., 2009).
Hence in this study we used the Cumulative Distribution Function
(CDF) matching approach, which has been extensively used in bias
correction and dynamic range matching of satellite soil moisture
and in situ data (Kumar et al., 2012; Brocca et al., 2011; Drusch
et al., 2005; Reichle and Koster, 2004). This approach considerably
increased the SMOS biases (Lee and Im, 2015). The CDF matching
method can be considered as an enhanced non-linear technique
for removing systematic differences between two datasets
(Brocca et al., 2011).

The procedure for CDF matching is briefly described using fol-
lowing steps: (1) construct the cumulative distribution functions
(CDF) for in situ and SMAP soil moisture data, (2) compute the dif-
ference ‘d; between the CDF of in situ and SMAP soil moisture, (3)
the time series of ‘d;’ for all percentiles are approximated using lin-
ear interpolation, and (4) add the ranked SMAP soil moisture with
newly constructed ‘d;’ from previous step to construct scaled SMAP
dataset.

3.2. Soil water deficit index (SWDI)

The Soil Water Deficit Index (SWDI) (Martinez-Fernandez et al.,
2015) captures drought conditions by quantifying associated soil
moisture deficit. We use SWDI to quantify agricultural drought
based on the surface soil moisture for the top 5 cm depth, which
is useful for drought studies. The SWDI has a direct relation to agri-
culture drought because it affects the soil moisture suction capac-
ity of different type of crops. SWDI considered to be an effective
agricultural drought index, as it is based on soil moisture and basic
soil water parameters (Martinez-Fernandez et al., 2015, 2016). This
drought index is able to adequately identify the main attributes
that define an agricultural drought event. The SWDI is calculated
using Eq. (1):

SWDI = <9* 9“) x 10 (1)
HAWC

where, 6, Oawc, Orc represents soil moisture (m*/m?) and volumetric
water content (m>*/m3) at available water capacity (AWC), field
capacity (FC) respectively. 0au is calculated by subtracting 6rc with
volumetric water content at wilting point (0yp) as in Eq. (2):

Oawc = Orc — Owp (2)

When SWDI is positive, the soil moisture content is higher than
field capacity, hence, excessive water is available above capillary
storage for crop growth. When SWDI is negative, it signifies the
drought condition. In this study, the SWDI was computed in
weekly time scale similar to Martinez-Fernandez et al. (2016)
and the drought classification based on SWDI is provided in Table 1.
We applied theory of runs (Mishra and Singh, 2010) to calculate
drought characteristics, such as percentage of drought events and

Table 1
Classification of SWDI for different drought categories (Adapted
from Martinez-Fernandez et al., 2015).

SWDI value Drought category
>0 No drought

0to -2 Mild

—-2to -5 Moderate

—5to —10 Severe

<-10 Extreme

total drought severity (TDS) using weekly SWDI. The theory of
run can be applied to a time series of drought variable (i.e., SWDI
and AWD) to identify drought and wet events based on either
below or above the selected threshold level (Mishra and Singh,
2010). The percentages of drought events show the severe to
extreme drought occurrence (%) during the study period for differ-
ent stations. The TDS indicates a cumulative deficiency of a
drought indicator below the critical level (SWDI < -5 is used in
this study).

3.3. Atmospheric water deficit (AWD)

The Atmospheric Water Deficit (AWD) is used to validate the
reliability of the SWDI for agricultural drought monitoring. AWD
is a suitable index to monitor drought dynamic related to soil
water storage (Torres et al.,, 2013). The AWD is computed based
on 7-day water deficit for each day of year (DOY), which is calcu-
lated by subtracting 7-day running sum of potential evapotranspi-
ration (ETp) and precipitation (P) (Purcell et al., 2003). The ETy in
Purcell et al. (2003) was calculated using the FAO (Food and Agri-
cultural Organization) modified form of the Penman Monteith
equation (Allen et al., 1998). Van der Schrier et al. (2011) compared
Penman-Monteith and Thornthwaite (Thornthwaite, 1948)
approach to compute ETy for Palmer Drought Severity Index (PDSI)
and concluded that both methods produced similar PDSI values in
terms of correlation, regional averages, trends and identifying
extremely dry or wet months. Therefore, in this study, ET, was
computed based on Thornthwaite method as it requires less
parameter such as daily mean temperature and station latitude
(Thornthwaite, 1948). AWD was reversely computed (P-ETp) to
obtain negative values when precipitation P is less than ETy (Marti
nez-Fernandez et al., 2016). In brief, weekly AWD can be obtained
from the following steps (Torres et al., 2013; Purcell et al., 2003):
(1) compute daily evapotranspiration (ETy) using Thornthwaite
approach for each station, (2) compute 7-day running sum of rain-
fall (P) and ETj for the study period, (3) then subtract the 7 days
running sum time series of ETy from P, and (4) finally compute
weekly AWD by summing up the daily AWD calculated from pre-
vious step. The weekly temporal scale is selected for agriculture
drought monitoring as it has been commonly used in irrigation
schedule by farmer (Purcell et al., 2003;Mishra et al., 2015). In this
study, both AWD and SMAP_SWDI time series are derived at
weekly time scale. In Purcell et al. (2003), the drought threshold
was set at —50 mm for weekly AWD (using 16 sites over 4 geo-
graphical regions in USA). The similar threshold is used in this
study.

3.4. Soil water characteristics

This section describes the methodology to derive the volumetric
water content at wilting point (6yp) and field capacity (0gc). Several
approaches are available to estimate these soil water characteris-
tics, such as, laboratory analysis (to experimentally derive water
retention curve (van Genuchten, 1980) of unaltered soil monoliths
from 0 to 5 cm depth) (i.e. Martinez-Fernandez et al., 2016); based
on percentiles using long term soil moisture time series (Hunt
et al., 2009); or pedotransfer function (PTF) (Bouma and van
Lanen, 1987). While the first technique is costly and time consum-
ing, the second approach requires a rather longer time series of soil
moisture data to validate the method. Considering these limita-
tions, we utilize the PTF technique (e.g., regression approach) to
estimate the 6wp and Ogc based on soil physical characteristics,
such as, texture (%Sand, %Silt, %Clay), organic matter and bulk den-
sity. PTF is a well-known technique to bridge the gap between soil
data and hydraulic characteristics, it has been proven useful in
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many areas, where there is no availability of soil water parameters
(Wosten et al., 2001).

Several PTF regression formulas have been developed, for exam-
ple, Rawls et al. (1982) formulated the PTF based on 1323 soil sam-
ples over 32 states in USA using soil texture, organic matter and
bulk density. Batjes (1996) developed the PTF for global soil data-
set using soil texture extracted from FAO-UNESCO Soil Map of the
World. More recently Saxton and Rawls (2006) developed new soil
water characteristics equations based on the USDA soil database
consists of soil texture and organic matters. It is an upgraded ver-
sion from Saxton et al. (1986) with inclusion of large and more reli-
able data consists of additional variables. In this study, we applied
the PTF from Saxton and Rawls (2006) (Egs. 3 and 4) to derive the
soil water characteristics for CONUS based on soil physical charac-
teristic from the top soil layer of FAO Harmonized World Soil Data-
base (HWSD) (FAO, 2009) (at 5 km spatial resolution).

91500 = 9;500 + (014 X 9;500 - 002)
01500 = —0.024S + 0.487C + 0.0060M + 0.005(S x OM) (3)
—0.013(C x OM) + 0.068(S x C) + 0.031

O35 = 03, + [1.283(03,)% — 0.37403, — 0.015]
03, = —0.2515 + 0.195C + 0.0110M -+ 0.006(S x OM) (4)
—0.027(C x OM) + 0.452(S x C) + 0.299

in which:

S: Sand (% weight);

C: Clay (% weight)

OM: Organic Matter (% weight): converted from Organic Carbon
by a factor of 0.58 (Pribyl, 2010; Shangguan et al., 2014)

01500: 1500 kPa moisture (or wilting point — volumetric content)

033: 33 kPa moisture (or field capacity - volumetric content)

03500, 0531 1500 and 33 kPa soil moisture, first solution (volumet-
ric content)

The calculation was carried out at HWSD original spatial resolu-
tion then extracted at in situ grid points using bilinear interpola-
tion approach.

3.5. Goodness of fits test

In this study, Pearson correlation coefficient ‘R’ and Willmott
Index of agreement ‘d’ are used to measure the performance of
two time series. It is to be noted that more than one measure for
goodness of fits should be reported (Willmott, 1982). The Pearson
correlation coefficient ‘R’ is a popular index to measure the
strength of a linear or monotonic relationship between observed
data and model output #x*x(Gan et al., 2014). The Pearson correla-
tions ranges from —1 to 1 and are computed at a 95% confidence
level. However it does not account for the dependence of magni-
tude between the two datasets. Therefore the second index is used
to measure the model performance, which is Willmott’s index of
agreement ‘d’ (Willmott, 1981), which is calculated as in Eq. (5).

n

> (Mi—0y)°
d=1- =1 (5)

n

> (IM; = 0] +10, - 0))°

i=1

where M is model and O is observation time series, O is the average
value of observed soil moisture. The Willmott index values has a
range between 0 and 1, with value closer to 1 indicates a better
model performance. This index has been widely used in measuring
soil moisture performance for many other studies (Qin et al., 2013;
Torres et al., 2013).

4. Results and discussion
4.1. Evaluation of SMAP L3 and in situ soil moisture dynamics

Soil moisture plays an important role in agricultural drought
management. Therefore as a first step, we evaluated the perfor-
mance of the SMAP L3 surface soil moisture with respect to USCRN
in situ soil moisture at four locations over CONUS. These locations
were selected based on different vegetation from Modis Global
Land cover (Broxton et al.,, 2014) and different climate regimes
from Koppen climate type (Koppen, 1900; Rubel and Kottek,
2010) and are similar to the study by Pan et al. (2016). The detail
vegetation/climate region for each location is tabulated in Table 2.
The daily time series of soil moisture from SMAP and in situ obser-
vations are plotted along with precipitation (shown in Fig. 1), and
the their performance was evaluated using Pearson correlation
coefficient (R) and Willmott Index of agreement (d). It was
observed that the SMAP and in situ soil moisture follow closely
with precipitation events. The consistency between SMAP and
in situ soil moisture data differs based on the climate (vegetation)
regimes, for example, a reasonable performance was observed for
Austin, Texas (Fig. 1¢) based on high correlation ‘R’ (0.89), however,
it has lower Willmott index ‘d’ (0.67) in comparison to stations
Bowling Green, KY (Fig. 1b) and Coshocton, OH (Fig. 1d). The pos-
sible reason for comparatively low ‘d’ at Austin may be due to
SMAP soil moisture underestimates the peak of in situ observa-
tions for the events in May 2015 and Nov 2015 to Feb 2016. Even
though SMAP data captures fairly well the linear relationship with
in situ soil moisture and precipitation events, the comparatively
low ‘d’ is mainly attributed to mismatch in peak values. Higher
inconsistency between SMAP and in situ soil moisture data was
observed for station Los Alamos, NM (Fig. 1a) based on low corre-
lation (R = 0.14) and Willmott index (d = 0.42). However, the SMAP
soil moisture data is able to capture the in situ peak values for few
months, except during January to April months.

Based on the previous discussion it was observed that there is
an inconsistency pattern exists between SMAP L3 and in situ soil
moisture time series and it varies with respect to climate (vegeta-
tion) regimes. This inconsistency between two time series will lead
to inaccurate in situ drought information based on original SMAP
L3 soil moisture data. Therefore, bias correction technique using
CDF rescaling approach was applied to rescale the SMAP L3 time
series to match with in situ soil moisture observations.

As an example, the application of CDF rescaling approach for
SMAP L3 product using in situ dataset at Austin station (TX) and
Los Alamos (NM) is shown in Fig. 2. The rescaled SMAP L3 data
for Austin (red dashed line in Fig. 1a1) matches well with in situ
soil moisture observations (black line), when compared to original
SMAP L3 data (blue line). The soil moisture time series at daily
time scale based on original, rescaled SMAP and in situ observa-
tion for the station located at Austin (TX) is shown in Fig. 2b1.
Black continuous line indicates in situ soil moisture at 5 cm; green
circle represents the original SMAP L3 soil moisture at top 5 cm;
while red points show the Bias corrected SMAP L3 soil moisture
time series. It was observed that the rescaling approach harmo-
nizes the mean and amplitude of variations and SMAP L3 satisfac-
torily captures in situ soil moisture pattern. The scatter plot
between original and bias corrected SMAP is provided in Fig. 2c1
and the RMSE are significantly improved by reducing from 0.15
to 0.06 (m>/m>). In contrast to Austin, the SMAP poorly performed
over Los Alamos station. The rescaled SMAP’s CDF matches well
with in situ data (Fig. 2a2), whereas there is a large mismatch
between original SMAP and in situ (Fig. 2b2) observation. This
suggests that the rescaled SMAP can improve the RMSE values
as seen in Fig. 2c2.
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Table 2

Goodness of fits (‘d’ and ‘R’) comparison between selected drought indices (The values in brackets are computed based on 1-week lag time of SWDI with AWD).

Station/State Vegetation/Koppen Climate type

Willmott Index of agreement ‘d’

In-situ SWDI & SMAP_SWDI

Pearson correlation coefficient ‘R’

SMAP_SWDI & AWD

In-situ SWDI & SMAP_SWDI

Los Alamos NM Grass land/Cfc 0.35
Bowling Green KY Deciduous Broadleaf Forest/Cfa 0.87
Austin TX Savannas/Cfa 0.96

Coshocton OH Cropland & Natural Vegetation Mosaic/Cfa, Dfa 0.81

—0.02 0.45 (0.43)
0.77 0.17 (0.48)
0.92 0.56 (0.84)
0.65 0.30 (0.61)

NM Los Alamos

Soil Moisture (m’/m’)

TX Austin 33

T ]'ﬂ“lll

0.8

) 4

Soil Moisture (m’/n’)
Soil Moisture (m’/m?)
o
3]

KY Bowling Green

05 0
20
40 3
60 I
= 80 ™~
S
&
v
3
2 .
S
= 2\|e
= 0 °
tg ° %;:a In situ soil moisture
° e © SMAP L3 soil moisture
Ll o |wme 7T
A M J J A S O N D J F M A
OH Coshocton
1 0
~
g
5o§
N—

Fig. 1. Daily in-situ and satellite (SMAP L3) soil moisture estimates along with precipitation observation for stations: (a) Los Alamos-NM (R = 0.14; d = 0.42) (b) Bowling
Green-KY (R=0.73; d = 0.74) (c) Austin-TX (R = 0.89; d = 0.67) (d) Coshocton-OH (R =0.63; d = 0.69). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Taylor diagram in Fig. 3 compares the performance of rescaled
SMAP and in situ soil moisture data at daily time scale based on
104 USCRN stations located in CONUS. The average correlation
coefficient value using all the stations found to be 0.67. This is rel-
atively higher than the correlation between soil moisture from
Advanced Microwave Scanning Radiometer-EOS (AMSR-E) prod-
ucts over CONUS with CRN and SCAN in situ network (around
0.48-0.56) (Pan et al., 2014, 2016).

4.2. Estimation of the SWDI

The weekly SWDI time series is derived based on in-situ, origi-
nal and rescaled SMAP L3 soil moisture datasets for 104 USCRN
stations spreading over CONUS. First, the SWDI was computed at
daily time scale, and then it was aggregated to weekly temporal
scale. This approach is similar to Martinez-Fernandez et al.
(2016), where they applied the SMOS dataset to compute SWDI.
The SWDI time series obtained from in situ and original (rescaled)
SMAP soil moisture data was compared with AWD at four selected
stations (Fig. 4). A broad range of scenario was observed based on
agreement (disagreement) between SWDI derived from three dif-
ferent sources of information (e.g., in situ, original and rescaled).

The temporal patterns and typology of differences are informative
for applying SMAP data for drought analysis. Among these four
locations, best match was observed for Austin, TX (Fig. 4c) and rel-
atively poor performance was observed at Los Alamos, NM
(Fig. 4a). The deficit of rainfall was clearly captured by SWDI based
on its higher negative values during 2015 and 2016 drought
events. For example, the lack of precipitation during June to
November 2015 at Austin, TX (Fig. 4c) led to extreme drought con-
ditions as the SWDI values reduced to nearly —20 from mid-July to
November 2015 (weekly AWD also reduced to less than
—150 mm). The SWDI and AWD values increase in mid-
November when higher amount of rainfall observed in first week
of November 2015, then gradually reduce to approximately zero
for the subsequent 3 months. The severe drought period shown
in Fig. 4c for Austin (TX) agrees well with a previous study
(Velpuri et al., 2016). In the previous study (Velpuri et al., 2016),
the authors compared average SMAP soil moisture for the two
month Sep-Oct 2015 with US Drought Monitor weekly data and
observed that the reduction of soil moisture coincides with
extreme drought during the first three weeks of October 2015. This
drought condition was resolved by a heavy rainfall by the last week
of October that led to the soil moisture value to normal condition.
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Fig. 3. Taylor diagram comparing the performance of rescaled SMAP and in situ soil
moisture over 104 USCRN stations for study period 2015/04-2016/03. Correlation
coefficient is represented by blue dashed dotted line while RMSD is displayed by
green dashed line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Similar information was captured (Fig. 4c) by the weekly SWDI for
in situ and rescaled SMAP data during the first week of November
2015. However, the raw SMAP_SWDI (represented in dashed grey
color), due to its bias, is only able to indicate an increasing in soil
moisture, but to the level of SWDI equals to ‘-8’ (severe drought).

The comparison based on Willmott index (d) and correlation
coefficient (R) between in situ SWDI, SMAP_SWDI and AWD at four

locations are provided in Table 2. It was observed that the Willmott
‘d’ and correlation ‘R’ values indicate good agreement (d > 0.8;
R > 0.65) between rescaled SMAP_SWDI and in situ SWDI at three
locations except Los Alamos (NM). This may be perhaps due to
the difference between the in situ and the SMAP soil moisture
dynamics as well as the possible missing data retrieved from satel-
lite swath paths. The lower goodness of fits (‘d’ and ‘R’) between
in situ and SMAP_SWDI time series are likely to influence drought
characteristics, such as, drought severity and percentage of
drought events, which will be discussed in the latter Section 4.4.
Also as seen in Table 2, the ‘R’ values between rescaled SWDI
and AWD are significantly better with 1-week lag time compared
to without lag (displayed in brackets in Table 2), at three sites
except Los Alamos (NM). It is expected that the 1-week lag time
between SWDI and AWD likely to have higher correlation in com-
parison to without lag time and similar finding was observed in
Martinez-Fernandez et al. (2015) but for SMOS_SWDI with in situ
in Spain. Even though, the relationship between in situ and SMAP
based SWDI might be poor, the performance can improve with
respect to other drought indices. For example, the station located
in Los Alamos witnesses a poor correlation (—0.02) between
in situ and SMAP based SWDI, however comparatively better cor-
relation exists between SMAP_SWDI with AWD (R=0.43). The
higher correlation between SMAP_SWDI and AWD (R = 0.84) was
observed for station located at Austin, TX.

4.3. Comparison between SMAP_SWDI and AWD over CONUS

We compared in situ (SMAP) based SWDI and AWD for 104
in situ stations located in diverse climatic (vegetation) regions
spread across CONUS. As a first step we compared SWDI derived
based on in situ observations and SMAP L3 information based on
Willmott ‘d’ and Pearson ‘R’ (Fig. 5). The comparison between these
indices are classified into three groups (similar to Albergel et al.
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(2012) based on correlation coefficients): Best (values higher or
equal to 0.7); Fair (values range between 0.5 and 0.7), and Poor
(values less than or equal to 0.5). This proposed classification could
be different and in general they are experience-based levels of per-
formance that are applicable in this context (Entekhabi et al.,
2010b). As seen in Fig. 5a, it was observed that the correlations
are statistically significant (p < 0.05) for more than 85% selected
stations since the precipitation storms and dry-downs as well as
seasonality are probably both well-captured by the in situ and
SMAP L3 radiometer data. This may be possible since the wet
and dry spells as well as seasonality are reasonably captured well
by SMAP L3 with respect to in situ data. It was observed that nearly
85% and 60% of the selected stations performed best (index > 0.7)
based on Wilmott Index of agreement and Pearson correlation
coefficient respectively (Fig. 5a, b). This observation is similar to
Pan et al. (2016) where the fair to best correlation coefficients
(R>0.5) are observed for most part in CONUS (Fig. 5b), except
for few locations on the east coast and some isolated pockets in
the Rocky Mountains. The poor performance was observed for
15% and 40% of the stations based on the Wilmott Index of agree-
ment and Pearson correlation coefficient respectively and they are
concentrated around the higher topography areas such as in the
central parts around Rocky Mountain and Great Plains region.
The average value of ‘d’ and ‘R’ based on 104 stations are 0.82
and 0.7 respectively which indicates the improvement made by
bias corrected data.

The performance of 1 week delayed SMAP_SWDI and AWD
were compared based on Pearson correlation (R) for 104 in situ sta-
tions (Fig. 6). The poor correlation values (R < 0.5) between 1-week
lag SMAP_SWDI and AWD are found in the regions mostly located
around Great Plains and along US east coast (similar locations as in

Fig. 5b). Approximately 75% of the stations performed reasonably
well (R > 0.5) based on the correlation between SMAP_SWDI and
AWD (Fig. 6). Similar range of correlations is found based on qual-
ity controlled 1-week delay SMOS_SWDI with AWD in Martinez-
Fernandez et al. (2015).

4.4. Assessment of drought characteristics over CONUS

4.4.1. Percentage of drought event

Percentage of drought event was calculated based on the ratio
between numbers of weeks under severe drought divided by the
total number of weeks for the study period, subsequently multi-
plied by 100 to obtain the percentage (%). This ratio represents
the percentage of time that the location is under drought condi-
tion. In this study, we only evaluated severe to extreme drought
events which are identified by predefined threshold, for example,
-5 is used as threshold to quantify severe and extreme droughts
for SWDI and —50 mm as a threshold for AWD. The spatial distri-
bution of percentage of drought event based on SMAP_SWDI and
AWD are shown in Fig. 7a and b respectively. For comparison
between these three selected indices, we classified the percentage
of drought events (P) into four groups: (1) P <25% (i.e., it repre-
sents less than 12 weeks of drought events), (2) 25% < P <50% (3)
50% <P <75%, and (4) P>75% (i.e., it represents more than 37
weeks of drought events). The percentage of stations correspond-
ing to each aforementioned group is calculated based on the total
number of 104 stations used in this study (Fig. 7). These two
drought indices indicates higher percentage of drought events in
the western US during the study period. The difference between
these two drought indices was observed based on the percentage
of drought, for example, SMAP_SWDI has fair amount of ratio
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Fig. 6. Pearson correlation coefficient (R) between weekly SMAP_SWDI (lag 1 week) and AWD. The average “R” over CONUS is 0.58.

(~20%) for the first three categories and about 40% of stations hav-
ing less than 12 weeks (<25%) under drought (Fig. 7a). On the other
hand, AWD has most of the stations (> 60%) witness moderate
drought events and less number of stations witness droughts for
longer period (Fig. 7b). However, both indices do have common
stations for percentage of drought event less than 25%, distributed
along east coast as well as percentage higher than 50% along the
southern states spanning from California to Texas.

4.4.2. Drought severity

Total Drought Severity (TDS) was calculated based on
SMAP_SWDI and AWD for 104 stations during the study period
are shown in Fig. 8. The TDS was computed at weekly time scale
based on the accumulation of deficit below the truncation levels.

Because SWDI and AWD have different drought deficit magnitude,
therefore in order to compare the TDS among spatially distributed
stations, we classified the stations based on absolute TDS into four
groups by applying quartile technique (75th, 50th and 25th per-
centile) (Fig. 8): Extreme drought severity (>75th percentile), Sev-
ere drought severity (50th to 75th percentile), Moderate drought
severity (25th to 50th percentile), mild drought severity (<25th
percentile). It is worth to mention that the quartiles represented
in Fig. 8 are based on spatial distribution of stations. The distribu-
tions of TDS for SWDI and AWD look quite similar (Fig. 8). The spa-
tial distribution of stations for selected drought indices indicates
severe to extreme drought (>50th of TDS) along Rocky Mountain
to Great Plains, west coast to southern US and several stations in
Florida. This is consistent with previous findings that droughts
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tend to be more persistent in the interior sections of the CONUS,
particularly the central to northern Great Plains and Rocky Moun-
tains, in comparison with the remainder of the country (Andreadis
et al., 2005; Soule, 1992; Karl and Koscielny, 1982; Walsh et al.,
1982). It is clearly seen that the eastern and northeastern CONUS
has less Total Drought Severity than the western part of CONUS
over the study period.

4.5. Agricultural drought mapping for CONUS

The spatial distribution of mean value of SMAP soil moisture
over CONUS for the month September 2015 is provided in
Fig. 9a. It can be observed that the western part of CONUS have
lower soil moisture values in comparison to the central and eastern
regions. Most importantly, this figure also reflects the soil moisture
gradient across the CONUS. The distinct wet and dry soil moisture
region is divided along the states of Minnesota, lowa, Kansas, Okla-
homa and Texas (from north to south) as seen in Fig. 9a. However,
it is difficult to quantify the agriculture drought for the particular
month/week by analyzing the spatial distribution of soil moisture.
Therefore, the SWDI is used to construct agricultural drought maps
to quantify spatial drought pattern for the CONUS. The calculation
of SWDI depends on the soil parameters such as available water
capacity (0awc) and Field Capacity (0gc). Lack of adequate AWC
information is one of the major limitations for agricultural drought
monitoring based on short satellite records. It is important to gen-
erate accurate values of 0gc and 0yp for CONUS that can match spa-
tial resolution of SMAP. We obtain soil parameters (6awc and 0gc)
from pedo-transfer function using HWSD soil characteristics (%
Clay, %Sand, Organic Matter) and they are re-gridded to match
SMAP data posting.

The spatial distribution of SMAP_SWDI (Fig. 9b) is similar to the
SMAP soil moisture distribution (Fig. 9a). However, instead of dis-

playing the soil moisture value in volumetric content unit, the
SMAP_SWDI depicts the severity of drought (from mild drought
to extreme drought). Severe and extreme droughts in September
2015 are observed over western and central part of CONUS. In
addition, the SMAP SWDI is also compared with existing drought
indices, such as, monthly AWD (Fig. 9c), self-calibrating Palmer
Drought Severity Index (sc-PDSI; downloaded from https://
crudata.uea.ac.uk/cru/data/drought/) (Fig. 9d), Palmer Z index
(Fig. S1la - in Supplementary) and Standardized Precipitation
Evapotranspiration Index (Fig. S1b - in Supplementary) (SPEI,
Vicente-Serrano et al., 2010). Because each drought index has its
own range (for example SWDI ranges from —10 to 0; sc-PDSI
ranges from —4 to 4) and drought threshold, thus for simplicity,
in this study, we classify these indices in terms of nature of
drought (from mild drought to extreme drought) as displayed in
Fig. 9 and S1. Brief discussions on selection of these drought indices
are presented.

The gridded AWD was computed based on daily precipitation
and temperature from Climate Prediction Center 0.5° global prod-
uct. The data can be downloaded from ftp site: “ftp://ftp.cdc.noaa.-
gov/Datasets/”. Gridded weekly AWD was computed following the
procedure discussed in Section 3.3. The monthly AWD was aver-
aged from weekly AWD and demonstrated in Fig. 9c. At a glance,
the spatial drought pattern for AWD product is similar to SMAP
SWDI in capturing the severe and extreme drought in western
and central part of CONUS as well as some of the wet states over
northeastern CONUS and Florida.

Two Palmer’s drought indices are selected for comparison
because it enables measurement of both wetness and dryness
based on the concept of supply and demand using the water bal-
ance equation from prior precipitation, moisture supply, runoff
and evaporation demand at the surface level (e.g., Karl, 1986;
Alley, 1984). For example, the Palmer Z-Index is an agricultural
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drought index and it reflects the monthly, short-term soil moisture
anomaly. The sc-PDSI was introduced by Wells et al. (2004) with
its main purpose to compare drought characteristics from different
climate regimes. The sc-PDSI can better capture the activity of nat-
ural vegetation as well as variability in crop production when com-
pared with the SPEL The SPEI is based on a water balance model
that is integrated monthly (or weekly) (Vicente-Serrano et al.,
2010). SPEI integrates the sensitivity of sc-PDSI to changes in evap-
oration demand. In this study, we selected short time scale (i.e.,
SPEI 1) for comparison as it can better reflects soil water content
(Mishra and Singh, 2010) as an proxy for as monitoring agricultural
droughts.

In this study we show the example maps of September 2015
which is about the peak of the extended drought covering CONUS
recently. Based on spatial comparison, there is agreement (dis-
agreement) among drought indices. Using sc-PDSI, extreme
droughts are clustered in the western part and northeastern part
of US (Fig. 9d), however Z-Index (Fig. Sla) indicates extreme
droughts in Southern part of US (Fig. S1a). This indicates a clear
difference in spatial pattern of droughts based on these two
drought indices, even though both are useful for agricultural
drought study. The information content in these two indices is

useful as sc-PDSI is able to recognize long-term agricultural
drought, whereas, Z-Index corresponds to short-term (monthly)
agricultural drought conditions with no memory to previous
monthly deficits or surpluses. The SMAP based SWDI
(SMAP_SWDI) captures spatial drought areas that are present in
sc-PDSI and Palmer Z index in the western and southern part of
US (Fig. 9d and S1a). The SMAP_SWDI adds spatial details that
are not present in the current drought products. SPEI 1 is also able
to capture most of spatial drought information available in sc-
PDSI and Z-Index. There is a reasonable agreement between
SMAP_SWDI and SPEI 1 (Fig. 9b and S1b) based on their spatial
drought patterns. In comparison to SPEI 1, the SMAP-SWDI better
captures the nature (e.g., extreme vs. moderate) of drought indi-
cated by sc-PDSI and Z-Index.

As agricultural drought indices, the SMAP_SWDI captures short
term moisture information from AWD and Z-Index (where past
month has no influence) as well as long term information from
sc-PDSI (where antecedent conditions accounts two-thirds of its
value). More importantly it can add valuable mapping capability
with finer scale detail than available in current drought maps.
SMAP-SWDI is able to capture drought information at higher spa-
tial resolution, which can be used to better inform local stakehold-
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ers responsible for developing water management strategies and
policies.

5. Conclusions

In this study, we investigated the potential application of Soil

Moisture Active Passive (SMAP) information for agricultural
drought study. Agricultural drought is quantified using the Soil
Water Deficit Index (SWDI) based on SMAP and soil properties
(field capacity and available water content) information and com-
pared with Atmospheric Water Deficit (AWD) Index. The following
conclusions are drawn from this study:

(1) The performance of original SMAP L3 passive radiometer

volumetric soil moisture data to capture in situ soil moisture
dynamics varies with respect to climate (vegetation)
regimes. This inconsistency between two time series can
possibly lead to inaccurate drought estimation. However,
the performance of SMAP L3 can be satisfactorily used to
monitor agricultural drought at field (in situ) scale by using
suitable rescaling approach.

(2) Due to the availability of short data record (SMAP launched

in Jan 2015), the applications of SMAP for agricultural
drought studies can be limited based on the standardized
drought indices (e.g., Standardized Soil Moisture Index,
etc.), which are derived based on the anomalies of long term
data sets. To overcome this limitation SWDI can be used as
an agriculture drought index that is derived based on the soil
water characteristics (i.e., Field capacity and Available water
content). The formulation of SWDI does not depend on
longer data and it will overcome the limited (short) length
of SMAP data for agricultural drought studies.

(3) In this study we followed three steps to derive SMAP based

SWDI (SMAP_SWDI): (a) first rescale the SMAP L3 passive
radiometer soil moisture data to harmonize its average and
amplitude of variations with co-located in situ data, (b) then
pedo-transfer function (PTF) is used to compute soil water
characteristics based on soil texture at the selected location,
and (c) the information obtained from steps (a & b) are used
as inputs to develop SMAP_SWDI time series. SMAP_SWDI

can be a good agricultural drought indicator as it is able to
capture information content in AWD with 1-week delay tem-
poral scale. SMAP_SWDI can be able to capture drought infor-
mation, which can be used to better inform local stakeholders
responsible for developing water management strategies and
policies. The results of this study open the path for using
SMAP soil moisture products in drought monitoring. The
key challenge is quantifying the soil texture, soil water char-
acteristics as well as long-term marginal probability distribu-
tion information required for transforming soil water content
into meaningful drought indices. However, more studies are
necessary when long-term SMAP data are available.

(4) The performance of SMAP_SWDI was evaluated with AWD as

areference indicator. The AWD can capture soil water storage
dynamics and it is derived based on the concept of water bal-
ance model. In this study, we selected short time scale (i.e.,
weekly) for comparison as it can better reflect soil water con-
tent as a proxy for monitoring agricultural droughts. The spa-
tial distribution of drought severity for CONUS based on
SMAP_SWDI and AWD looks quite similar, for example, both
drought indices are able to capture severe to extreme drought
events along Rocky Mountain to Great Plains, west coast to
southern part of US and few locations in Florida.

(5) SMAP_SWDI can be a good agricultural drought indicator as

it is able to capture information content compared to AWD,
Palmer Z-Index, sc-PDSI and SPEI 1. SMAP_SWDI is able to
capture short term moisture information similar to AWD,
Z-Index (where past month has no influence) as well as long
term information from sc-PDSI (where antecedent conditions
accounts two-thirds of its value). This integrated short and
long-term information can make SMAP_SWDI a robust agri-
cultural drought indicator. SMAP_SWDI is able to capture
drought information at higher spatial resolution, which can
be used to better inform local stakeholders responsible for
developing water management strategies and policies. How-
ever, more studies are necessary when long-term SMAP data
are available.

The results of this study open the path for using SMAP soil

moisture products in drought monitoring. The SMAP instruments
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and satellite operations are optimized to produce global maps of
soil moisture. This source of information on soil moisture is a valu-
able complement to the sparse in situ soil moisture networks and
land surface modeling alone. The mapping capability of soil mois-
ture remote sensing opens a new window on the onset and evolu-
tion of regional droughts. The key challenge is quantifying the soil
characteristics (wilting point and field capacity) as well as long-
term marginal probability distribution information required for
transforming soil water content into meaningful drought indices.
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