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Climate Change and Drought: a Perspective on Drought Indices
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# Springer International Publishing AG, part of Springer Nature 2018

Abstract
Droughts occur naturally, but climate change has generally accelerated the hydrological processes to make them set in quicker
and become more intense, with many consequences, not the least of which is increased wildfire risk. There are different types of
drought being studied, such as meteorological, agricultural, hydrological, and socioeconomic droughts; however, a lack of
unanimous definition complicates drought study. Drought indices are used as proxies to track and quantify droughts; therefore,
accurate formulation of robust drought indices is important to investigate drought characteristics under the warming climate.
Because different drought indices show different degrees of sensitivity to the same level of continental warming, robustness of
drought indices against change in temperature and other variables should be prioritized. A formulation of drought indices without
considering the factors that govern the background state may lead to drought artifacts under a warming climate. Consideration of
downscaling techniques, availability of climate data, estimation of potential evapotranspiration (PET), baseline period, non-
stationary climate information, and anthropogenic forcing can be additional challenges for a reliable drought assessment under
climate change. As one formulation of PET based on temperatures can lead to overestimation of future drying, estimation of PET
based on the energy budget framework can be a better approach compared to only temperature-based equations. Although the
performance of drought indicators can be improved by incorporating reliable soil moisture estimates, a challenge arises due to
limited reliable observed data for verification. Moreover, the uncertainties associated with meteorological forcings in hydrolog-
ical models can lead to unreliable soil moisture estimates under climate change scenarios.

Keywords Drought indices . Climate change . Drought assessment . Global warming

Overview of Drought Indices

Drought is an extreme climatic event that is insidious in nature
because it develops slowly and often sneaks up on one [1]. As
it gradually increases in intensity and duration, it can have
major consequences, making it one of the costliest natural
hazards [1]. Moreover, drought has multiple eco-
hydrological and socioeconomic impacts [2] including in-
creased risk of wildfire [3], water scarcity [4], loss of crops
[5] and livestock [6], increased food prices [7], migration [8],

and indirect health effects [9]. The physical processes in-
volved in drought are highly non-linear and involve feed-
backs, and its impact propagates through multiple levels un-
equally that often cannot be quantified objectively [10].
Consequently, it is difficult to have a universal definition for
drought [10].

However, drought definitions can be broadly categorized
as either conceptual or operational [11].Conceptual definition
outlines the basic drought concepts with a general description
of the physical processes involved, such as shortage of precip-
itation (meteorological drought), shortage of soil moisture (ag-
ricultural drought), shortage of water in lakes and streams
(hydrological drought), and shortage of water for use by soci-
ety related to water management [1, 12]. None of these are
necessarily correct or wrong, and thus, all need to be recog-
nized. On the other hand, operational definition focuses at
identifying the onset, duration, and termination of drought
episodes including their severity [1, 12]. Operational defini-
tions aim at providing precise drought-related information to
support an effective early warning system [12]. Apart from the
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above definitions, a legal definition of drought is also avail-
able [13]. In addition to the effect of drought being context-
dependent, drought definitions such as that of operational
drought [4] and socioeconomic drought [1, 11] are also in
existence. Generalized definition of drought can be developed
only through the aggregation of process-specific instanta-
neous droughts [10]. But, this definition is based on the as-
sumption that these processes are in equilibriumwith the long-
term climate, thereby overlooking the distinction between
drought and water scarcity [10, 14]. Thus, numerous and di-
verse disciplines adopt different drought definitions depend-
ing on the stakeholder’s need as well as hydroclimatic vari-
ables included [1, 12].

Consistency among these drought definitions is a key to
remove any ambiguity in framing drought policies and mak-
ing decisions. The corresponding decision support tools rely
on indicators and indices that are widely used to quantify the
physical characteristics of drought (intensity, duration, and
severity) [15]. Drought indicators and drought indices are for-
mulated to track the hydrological cycles and are used inter-
changeably in drought-monitoring community [16]. Drought
indicators are used in a broader sense that aggregate parame-
ters such as precipitation, temperature, streamflow, groundwa-
ter levels, reservoir levels, snowpacks, soil moisture levels,
and drought indices [16]. On the other hand, drought indices
are single numeric values estimated from various
hydroclimatic variables that influence drought and, therefore,
it has a significant advantage over mere raw data in quantify-
ing drought characteristics [16].

Drought assessment studies have made considerable prog-
ress so far in developing several drought indices applicable to
various types of drought [1], such as Standardized
Precipitation Index (SPI) for meteorological drought [17],
Standardized Runoff Index (SRI) for hydrological drought
[11, 18], and soil moisture percentiles for agricultural drought
[1, 19] However, the development and choice of drought in-
dices should be specific to the primitive as well as newly
emerging real-world problems and, therefore, it depends on
several factors [1]. The following section provides an over-
view of some of the critical factors associated with formula-
tion of drought indices:

1. Types of drought: The interconnection between various
types of drought that occur simultaneously or sequentially
makes it difficult to distinguish between one drought type
from the other [20]. For example, the propagation of me-
teorological drought (which is caused mainly by precipi-
tation deficit) to agricultural (caused by soil moisture def-
icit) and hydrological (deficit in water storage or
streamflow) drought is non-linear in nature [21, 22]. In
addition, the impact of meteorological drought shifts
prominently towards soil moisture (agricultural drought)
that further propagates to cause water storage deficits

(hydrological drought) for even longer durations (Fig. 1)
[23]. This complicates the formulation of drought indices
with a view of quantifying a specific type of drought
independent of the others.

2. Drought characteristic: Drought events havemultiple and
interrelated characteristics such as severity, duration, peak
intensity, and recurrence interval [24, 25]. Each of these
characteristics may have a considerable influence on the
impacts of drought. Consequently, monitoring natural and
socioeconomic drought needs a joint assessment of indi-
vidual drought characteristics as well as identifying the
most dominant drought event specific to the impact being
studied [21]. Moreover, in arid regions that naturally re-
ceive scanty or no rainfall, thereby always at the verge for
water shortage, drought characteristics estimated in rela-
tive terms and absolute terms will be significantly differ-
ent. In other words, the climatology of a specific region
can influence drought characteristics significantly, espe-
cially if drought is measured in terms of anomalies.

3. Climate change: Impact of drought under a global
warming scenario is more likely to aggravate in the future
[26, 27]. Of course droughts have always occurred, and
the variability in sea surface temperature anomalies can
cause global droughts [28, 29]. In addition, a change in
regional climate such as slow-moving anticyclones that
alters the climatology of a region by hindering the prog-
ress of synoptic weather systems can be responsible for
enhancing the land-atmosphere feedback processes [30,
31]. Due to the lack of available moisture in these re-
gimes, the land-atmosphere feedback processes exacer-
bate the situation by increasing atmospheric temperatures
and thus increasing the atmospheric demand for moisture,
thereby leading to increased drying and heating of land
surface at the same time, the impact of which is often
alarming (such as wildfire risk) [3]. Figure 1 shows the
connection between those processes that affects the prop-
agation of drought under climate change.

Thus, underpinning the mechanisms behind such processes
is relevant to formulate reliable drought indices that should
incorporate all such participating processes, including the var-
ious human contributions that influence the drought charac-
teristics and socioeconomic conditions [21]. In addition, the
non-stationarity [32] in future climate may lead to large un-
certainties in quantifying droughts [33]. Therefore, drought
indices need to be robust and revised by including the non-
stationary climate information.

4. The distinction between water scarcity and drought:
Water scarcity and drought have separate implications
[14]. Unsustainable use of water resources can lead to
water scarcity and, therefore, can be controlled, while
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drought is a natural hazard and its impacts can only be
mitigated by adapting to the climate variability with prior
measures [14]. In arid or semi-arid regions, dry conditions
quickly lead to water scarcity, and this example empha-
sizes that the background climatology is also a factor.
Hence, in water-scarce or arid regions, where drought
and water scarcity usually occur simultaneously, drought
situations are more severe and further aggravate water
scarcity [12, 14]. Consequently, in such regions, the
choice of a suitable indicator that makes a clear distinction
between drought and water scarcity is necessary in mak-
ing effective water management decisions [14].

5. Multivariate aspects of drought: Drought is influ-
enced by multiple hydroclimatic variables such as
precipitation, runoff, potential evapotranspiration
(PET), and soil moisture [1]. Thus, a single drought
indicator may be insufficient to quantify drought and,
therefore, such assessment requires drought indicators
that blend more than one drought index or drought-
affecting variables [2].

The overall objective of this article is to provide a perspec-
tive on drought indices under climate change scenarios. The
section BRelevance of Drought Indices in Climate Change^
presents the relevance of drought indices in climate change
assessment, followed by a discussion on application and lim-
itations of existing drought indices in the section BApplication
and Limitations of Existing Drought Indices.^ The section
BChallenges Associated With Drought Indices in Climate
Change Studies^ provides an overview of challenges associ-
ated with drought indices for climate change studies, and sum-
mary and conclusion are provided in the section BSummary
and Conclusions.^

Relevance of Drought Indices in Climate
Change

A number of drought indices have been developed to quantify
a drought [1]. Most of the drought indices use either only
precipitation or in combination with other meteorological

Fig. 1 Schematic diagram showing the drought propagation under climate change. (Note: this figure was revised with respect to original drought
propagation concept proposed by Wilhite [12])
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variables. Also, numerous studies have investigated the effect
of climate change on drying of global terrestrial surfaces.
However, most of the studies on dryness fail to consider the
background aridity [34–36] and thereby fail to incorporate the
changes in available energy, air humidity, and wind speed
[34]. Failure to account for such variables in formulating
drought indices may lead to a spurious increase in drought
under warming climate [34]. Therefore, instead of only con-
sidering contemporaneous anomalies to derive drought indi-
ces, it is important to also consider the factors that govern the
background state [34]. On the other hand, it is evident that
climate change-induced warming has accelerated hydrologi-
cal processes, firstly, by increasing the energy available for
evapotranspiration (ET) and, secondly, by increasing temper-
atures and thus the water holding capacity of the atmosphere
[37]. Consequently, it results in more intense, widespread, and
persistent extreme climatic events like droughts. Therefore,
temperature is likely to be an important variable for deriving
appropriate drought indices under global warming. The fol-
lowing section provides an overview on the importance of
temperature and anthropogenic forcings for drought assess-
ment, followed by an example highlighting the role of drought
under global warming.

Reconstructions [38] and instrumental observations [39]
demonstrate that the Earth’s surface temperature has increased
substantially over the past century, and by the end of the
twenty-first century (2081–2100), it is expected to exceed
the desirable limits of 1.5 and 2 °C above the pre-industrial
level (1850–1900) [40]. Consequently, the intensity of precip-
itation has increased substantially, because as regulated by the
Clausius-Clapeyron (C-C) relationship, there is an increase in
atmospheric moisture holding capacity of approximately 7%
per °C rise in temperature [41]. However, the surface energy
available increases at a much slower rate and this governs the
total precipitation amount through the availability of moisture
[42]. Hence, there is also a considerable increase in longer dry
periods [43]. Except for tropical hurricanes (characterized
with large water vapor content), the troposphere is able to
radiate away the energy released by condensed precipitation,
and the distribution of relative humidity mostly remains rela-
tively constant in both lower and higher latitudes under cli-
mate change [42]. Under such conditions, changes in mean
precipitation depend on the water availability over both ocean
and land surfaces [43]. However, land areas away from the
oceans lack the adequate moisture supply to meet the evapo-
rative demand of the atmosphere, leading to continental dry-
ing, high temperatures, and lower relative humidity, as found
in the model projections [35, 44]. Moreover, as the ocean
surface tends to warm at a slower rate than the land and the
atmosphere [35, 44], there is a considerable delay in the re-
charge process of the atmospheric moisture to finally reach the
saturation level (necessary for precipitation), thereby resulting
in longer dry periods over land [45]. Longer dry spells have

direct influence in initiating long-term and severe droughts
[46].

The extra heat due to global warming has accelerated the
drying process in the recent past [27, 47], which is likely to
cause more severe, persistent, and widespread droughts in the
future with respect to the current climate [48, 49].
Furthermore, increases in severity of drought in future cli-
mates could be largely caused by the mean state change in
the warming world. Previous studies have investigated the
mean state aridity change due to global warming in terms of
an aridity index defined by the ratio of annual precipitation to
annual PET [34, 36, 50], and it is also shown that terrestrial
climate would become drier as the Earth warms [34, 35],
which leads to the expansion of the world drylands [36].
Furthermore, the anticyclonic regimes commonly present in
setting up a drought are characterized by weather patterns that
steer precipitating weather systems elsewhere and create a
stable atmosphere that shuts down local convection. Hence,
once the weather conditions are favorable for drought, climate
change exacerbates the problem by adding small amounts of
heat that accumulate over time, increasing temperatures and
ET (drying) [26, 30]. Furthermore, due to limited moisture
availability over land, such climate regimes experience a con-
siderable rise in sensible heat fluxes (due to the absence of
cooling by evaporation) during limited supply of latent energy
fluxes (due to soil moisture depletion), thereby further raising
the land surface temperature [37, 51]. This coupling effect
between soil moisture and temperature is commonly referred
as soil-temperature coupling [31, 37] and can be a potential
stressor for wildfire risk [52]. Observational studies confirm
relationships between surface moisture deficit (leading to pre-
ceding drought conditions) and hot extremes in regional [53]
as well as global [54] scales. Moreover, it is observed that
higher correlation between warmer and dry conditions can
increase the likelihood of concurrent heat and drought events
[55]. Therefore, owing to the increasing exposure of heat
events [56, 57], the compound effect of heat wave and drought
will more likely have severe impacts in the future. Thus, tem-
perature that directly controls evaporation and ET should be
considered as an important contributor to drought events un-
der the global warming scenarios [58]. Existing and popular
indices used in drought studies under climate change incorpo-
rate the atmospheric demand (Standardized Precipitation
Evapotranspiration Index (SPEI)) [59] and temperature effect
with a crude approximation of potential evapotranspiration
(Palmer Drought Severity Index (PDSI)) [60].

Interestingly, drought events during the last few decades, as
well as projected in the future, are less likely to be comparable
to the medieval droughts due to induced warming from green-
house gas emissions, land cover, and land use changes from
anthropogenic contributions [27, 49, 61, 62]. One such evi-
dence of anthropogenic influence is the warming of the Indian
Ocean that, coupled with the increase in sea surface
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temperature anomalies, caused the unprecedented Sahelian
drought during the late twentieth century [63, 64]. Also, ob-
served records indicate increased severity and frequency of
droughts over California during the past two decades related
to anthropogenic warming [65, 66]. It is reported that early
runoff due to early melting of snowpack in the region has
affected the moisture content from the top soil layer, thereby
exacerbating hydrological drought during the summer [65].
Furthermore, anthropogenic contribution to recent and
projected increase in drying trends in Syria has been reported
by Kelley et al. [67]. The increasing and long-term drying
trend has been attributed to the changes in precipitation driven
by the increase in mean sea level pressure together with the
long-term increase in warming over the Eastern
Mediterranean Region for which no natural cause is apparent
[67]. This is well supported by the positive response of the
long-term drying to the increase in greenhouse gas emission
based on the model simulations that correlates well with the
twentieth-century-observed precipitation trends in the
Mediterranean Region [67, 68]. The combined effect of cli-
mate change on increased drying and land use changes has
aggravated the drought impact in the region [69], causing
migration of as many as 1.5 million people from rural to urban
areas that contributed to the onset of Syrian civil war [67, 70].

Thus, drought quantification cannot be fully understood
only based on the natural variability of climate as anthropo-
genic influence also plays a significant role in triggering as
well as propagating drought events [1, 71]. Consequently,
efforts have been made based on the existing climate models
to detect anthropogenic contributions and attribute its influ-
ence on various climate extremes, including drought [71, 72].
In addition, the increase in population density further aggra-
vates the human component influencing drought [1]. For ex-
ample, due to increased land use in overpopulated regions,
runoff has increased substantially, thereby leaving little water
to percolate into the soil [73]. Together with an increase in
water demand for domestic [74], agricultural, and energy [75]
sectors in highly populated regions, drought can pose a sig-
nificant potential threat in the future. Therefore, a realistic
assessment of drought also needs to incorporate such effects
arising from the increase in anthropogenic influences.

From the above discussion, it can be observed that variables
associated with temperature (e.g., PET) play an important role
in triggering droughts (dry spells); therefore, it must be consid-
ered in deriving drought indices for climate change assess-
ment. In addition, the uncertainty associated with projected
temperature is comparatively less with respect to precipitation
based on the global climate model (GCM) outputs. In addition
to temperature, other variables, such as precipitation, infiltra-
tion loss, and runoff, also significantly contribute to the occur-
rence of drought [26]. Drought indices and indicators should
assimilate all these factors to quantify drought characteristics in
the context of non-stationary climate [26].

Example of the Association Between Drought Indices
and Land Surface Warming

In this section, we investigate the association between global
warming and droughts. The self-calibrated PDSI (PDSI_sc)
[60, 76] was selected for our analysis, as it is based on the
physical water balance and it incorporates the effects of precip-
itation, temperature, PET, and runoff. The PET is best estimated
based on the Penman-Monteith (PM) method [77, 78] instead
of the simple Thornthwaite (TH) method [79] that leads to
overestimation of drying in energy-limited areas [26]. The
PDSI_sc can successfully capture long-term changes in drought
with response to global warming, and it has been used in pre-
vious studies related to large-scale drying trends [26, 48, 80].

Therefore, we analyze the long-term temporal changes in
drought using PDSI_sc as a measure of dryness to investigate
whether overland droughts (drying) go hand-in-hand with rise
in land surface air temperature (LSAT) by using the historical
period (Fig. 2). Because a steady and sharp rise in global
tropospheric temperature has been experienced since the
mid-1970s [63, 81], this analysis is focused from 1975 on-
wards. Our analysis is based on continental averages; howev-
er, it is important to note that land-atmosphere feedback pro-
cesses, which have major influence on drought, can be more
accurately explained at finer scales.

We obtained a global gridded monthly observed PDSI_sc
dataset [76, 82] (1850–2014) available at 2.5° resolution.
Observed monthly LSAT was obtained from the updated
CRUTEM4 dataset (1850–2017) at 0.5° resolution, as devel-
oped by the UKMeteorological Office Hadley Centre and the
Climatic Research Unit at the University of East Anglia [83].
The gridded LSAT and PDSI_sc data are spatially averaged
over the six continents. Finally, anomalies in continental mean
annual LSAT are estimated for the period 1975–2014 with
respect to the reference period 1961–1990.

The relationship between drying and rise in LSAT is well
accounted by the negative correlation magnitude observed for
all the six continents, with relatively stronger correlation for
South America (− 0.68), Africa (− 0.48), and Australia (−
0.48) (Fig. 2). Furthermore, the results from Fig. 2 clearly
indicate that drought indices, such as PDSI_sc, possess the
required skill to capture the severe drying patterns due to
increased loss of soil moisture by overland evaporation.
However, there are limitations to the assessment of drought
characteristics based on drought indices, as discussed in the
following section.

Application and Limitations of Existing
Drought Indices

Drought indices have evolved considerably through recent
decades, keeping up with the evolution of drought itself under
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the changing climate. This section provides an overview of
commonly used drought indices along with their limitations
and skill to adapt to the climate change.

1. Palmer Drought Severity Index: PDSI was originally de-
veloped by Palmer [60] and is based on the primitive soil
water balance that considers precipitation, runoff, and
evaporative demand for a specific region. Nevertheless,
the calibration period has a strong influence on the PDSI
value and it can be a limitation for its use in areas other
than used for the calibration [84]. Guttman [84] showed
that PDSI, being an autoregressive process, inherits a
long-term memory owing to the temporal effect of the soil
and atmospheric moisture conditions. Further scope of
improvement in PDSI remains in the context of other
shortcomings such as (i) fixed temporal scale and inherent
autoregressive characteristic of PDSI over water-stressed
regions [85], (ii) an inherent timescale that makes PDSI
unsuitable for hydrological droughts [1], (iii) assumptions

that any form of precipitation as rain leads to ambiguity in
the application of PDSI in winter months and at high
elevations [1]. For example, Sheffield et al. [86] found a
marked difference in drought characteristics based on
model-simulated and PDSI datasets over the snow-
dominated regions, which is attributed to the inadequate
representation of winter processes in the calculation of
PDSI; (iv) PDSI also inherits a negative bias in runoff
estimations by assuming that runoff occurs only after all
the soil layers are saturated [1], and (v) PDSI suffers from
a considerable time lag in identifying developing and
diminishing droughts [87].

Moreover, Palmer [60] used an empirical approach and
averaged the climatic characteristics and duration factors in
the estimation of PDSI over very few regions, which limits
the comparison of PDSI values among diverse climatological
regions [88]. Overall, it can be said that PDSI is a relative
measure of drought and the methods adopted to calibrate it

Fig. 2 (Left) anomaly in spatially averaged yearly observed LSAT for the
period 1975–2014 with respect to the period 1961–1990 (bar plot with
positive (red) and negative (steel blue) anomaly) and in spatially averaged
annual PDSI_sc (line; orange) for the period 1975–2014. (Right)
scatterplot (violet) and regression line (blue) of annually averaged

PDSI_sc and LSAT anomaly for a Africa, b Asia, c Australia, d
Europe, e North America, and f South America. It is to be noted here
that monthly PDSI_sc values are annually averaged and then correlation
coefficients are estimated against anomaly based on yearly observed
LSAT
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are based on the previous climate scenario which is no longer
valid in the context of the continuously changing climate [26,
48]. To overcome this spatial inconsistency in PDSI, Wells
et al. [76] proposed PDSI_sc that self-calibrates (sc) the index
at any location automatically by replacing the empirical cli-
mate characteristics and duration factors with dynamically
derived values based on the historical climate data of that
region.

Further improvement in PDSI has been made by replacing
the TH [79] method with the PM [77, 78] method in the
calculation of PET. PET based on the TH method [79] ne-
glects climate variables such as solar and longwave radiations,
humidity, and wind speed which affect the rate of moisture
loss from the upper soil layers [26]. This leads to overestima-
tion of drying in energy-limited areas [26]. The PM method
[77, 78] can overcome these limitations for the estimation of
PET. As a result, the self-calibrated PDSI based on the PM
method (scPDSIpm) can be more appropriate to estimate
large-scale changes in droughts (mainly agricultural droughts)
in the context of global warming [27]. More recently, few
other challenges have emerged, associated with the estimation
of PET, as discussed in the section BSparse Availability of
Precipitation Data.^ However, it is also important to note that
PDSI actually tries to incorporate ET along with runoff, soil
recharge, and moisture using precipitation, temperature, and
available soil water data [60]. Despite several criticisms, PDSI
gives a complete picture of the water cycle and remains as one
of the most comprehensive drought indices [89]. Overall,
PDSI_sc is a readily available standardized drought index
and it can successfully capture long-term relative drying pat-
terns in response to global warming [27, 48, 80, 82, 90].

2. Standardized Precipitation Index: The SPI [17] is one of
the most popular indices used mainly to quantify meteo-
rological drought. The SPI is based on a probabilistic
approach, its estimation only requires precipitation data,
and it is relatively easy to calculate. Nevertheless, exclu-
sion of temperature, PET, wind speed, and soil moisture
data as an input variable is a major limitation for generat-
ing reliable drought information under the warming cli-
mate [1, 59, 91].

3. Reconnaissance Drought Index (RDI) and Standardized
Precipitation Evapotranspiration Index: (i) The RDI [92]
is an improvement over the SPI, and it includes PET as
one of the key variables. However, PET assesses the at-
mospheric demand for water but does not necessarily re-
late to ET because it needs to also assess the water avail-
ability. The RDI was used for drought monitoring and
climate change impact assessment on water resources
[93]. The RDI for a given time period is estimated as a
ratio between accumulated precipitation and PET [92].
However, the RDI lacks the ability to capture the variabil-
ity of drought effectively with respect to change in

temperature [59]. Application of RDI may not be suitable
when PET is equal to zero [59]. (ii) The SPEI [59] pro-
vides a relatively flexible approach that captures the com-
bined effect of precipitation and PET [59]. Moreover, the
SPEI performs adequately by considering equal sensitiv-
ity to precipitation and ETref [94]. However, the SPEI may
have few limitations in the case of comparing drought
events between different climatic regions. For example,
in semi-arid regions, the SPEI may be more sensitive to-
wards the ETref, while in humid regions, it shows more
sensitivity to precipitation [94]. Moreover, unlike the
PDSI, the SPEI is not based on the water budget frame-
work and fails to incorporate the soil moisture component
for identifying agricultural droughts [59].

4. Multivariate Drought Index (MDI): MDIs are combina-
tions of multiple hydroclimatic variables or drought indi-
cators [95] that provide an alternative way to capture mul-
tiple aspects of drought conditions for efficient drought
monitoring and early warning [96, 97]. Some of them can
be listed as follows:

(a) Objective Blend of Drought Indicators (OBDI):
Svoboda et al. [98] proposed OBDI based on the
linear-weighted average of multiple drought indices

(b) Aggregated Drought Index (ADI): The ADI [99] is
constructed separately for each month using
drought-affecting variables such as precipitation,
streamflow, PET, reservoir storage, soil moisture,
and snow water content. Principal component anal-
ysis is used to find the dominant hydrological signals
corresponding to each drought type (meteorological,
hydrological, and agricultural) [99]. However, PCA
has limitations such as assumption of linearity in
data transformation and dimensional reduction in
the direction based on maximum variance

(c) Joint Drought Index (JDI): The JDI [100] considers
joint probabilities of precipitation and streamflow
using multivariate probability distribution (e.g.,
copula)

(d) Multivariate Standardized Drought Index (MSDI):
The MSDI [101] is introduced as a joint distribution
of precipitation and soil moisture using a copula.
Nevertheless, a copula has limitations such as lack
of its ability to model high-dimensional dependence
structure

(e) Rajsekhar et al. [2] proposed the Multivariate
Drought Index that uses kernel entropy compo-
nent analysis (KECA) and incorporates variables
such as precipitation, runoff, PET, and soil mois-
ture. This index allows the user to extract higher
information related to drought characteristics
based on higher magnitude of entropy value [2].
However, soil moisture data are subjected to
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large uncertainties and this reduces the confi-
dence in the application of these indices.

5. Relative Drought Indices: Drought indices such as relative
SPI (rSPI) and relative PDSI (rPDSI) are developed with
an aim to provide an improvement in drought assessment
under the non-stationary climate by providing an alterna-
tive way to compare drought between two or more time
periods as well as between two or more stations. The
former is achieved when drought indices are calibrated
using aggregated observational data from all the stations
based on a given reference period and then applied to
future climate. This method can be applied to estimate
the spatial shift of drought due to climate change [102].
On the other hand, the latter method is based on observa-
tional data from a given station, thereby allowing the user
to capture the temporal changes of drought in the future
with respect to the present climate [102]. However, the
indices derived using the second methodology may have
shortcomings such as lack of comparability between dif-
ferent climate regions [102].

Challenges Associated With Drought Indices
in Climate Change Studies

Although drought indices are useful to study climate change
impact assessment, the following section discusses major
challenges and limitations for such studies.

Disagreement Among Drought Indices

The global mean temperature indirectly reflects the evapora-
tive demand of the atmosphere in the absence of adequate
moisture. Therefore, we estimated and compared the sensitiv-
ity of the abovementioned drought indices (SPI, SPEI, and
PDSI_sc) with respect to rise in global mean temperature.
The drought indices based on a shorter temporal window of
1month were selected and derived for the entire globe: (i) SPI-
1 was generated using precipitation dataset provided by the
Global Precipitation Climatology Centre (GPCC) [103]
(http://gpcc.dwd.de/) at 0.5° resolution, (ii) SPEI-1 data is
downloaded at 0.5° resolution from Global SPEI dataset
(available at http://spei.csic.es/database.html). This SPEI
dataset is based on monthly precipitation and PET data
available at the Climate Research Unit of the University of
East Anglia that uses CRU TS version 3.23 dataset [104]
(https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html).
The PET is estimated using the Penman-Monteith method [77,
78], and (iii) we use the same monthly dataset for PDSI_sc
[76, 82] as in the previous analysis for Fig. 2.

The global gridded datasets of SPI-1, SPEI-1, and PDSI_sc
are spatially averaged to generate time series at monthly scale.

We analyze the sensitivity of mean annual drought indices at
continental scale with respect to the change in the correspond-
ing observed annual mean LSAT for the period 1901–2013
(Fig. 3). The LSAT is averaged at annual scale for estimating
the anomalies so that any seasonal influence in the analysis is
avoided. To perform the sensitivity analysis, we organized the
magnitude of drought indices in temperature increments cor-
responding to temperature anomalies nearest to every 0.25 °C
change in global mean temperature ranging from − 0.5 to
0.75 °C.

Figure 3 shows the box plots corresponding to an incre-
mental change in temperature. We selected a shorter temporal
scale that allows the drought indices to capture the influence
of the warming on the loss of soil moisture leading to drying
more effectively [1]. It can be noted that as compared to
PDSI_sc, SPI-1 and SPEI-1 show a little change with rise in
overland warming (Fig. 3). This may not be surprising as the
SPI does not incorporate temperature or related variables as an
input. On the other hand, the SPEI lacks the ability to produce
comparable results between different climate regimes subject-
ed to long-term drying [94]. Furthermore, the SPEI does not
include the soil moisture information and, therefore, does not
respond to the soil moisture drought adequately during the
historic period [59].

However, PDSI_sc captures a consistent increase in drying
with the rise in temperature (Fig. 3). This may be due to its
ability to capture long-term droughts by incorporating soil
moisture deficit or surplus from the previous months [105].
Thus, while one drought index responds to the long-term drying
with rise in temperature effectively, the other two indices seem
to behave differently. This can be a major limitation among
drought indices to adequately detect climate change impacts
on drought characteristics under various climate regimes and
temporal scale. Thus, apart from the disparity in defining
drought objectively [10], drought indices can arrive at different
results that leads to ambiguity in the decision or policy-making
process related to impact assessment under climate change.

Sparse Availability of Precipitation Data

It has been shown that sparse and poor quality of precipitation
data [106] generate large uncertainties in quantifying spatio-
temporal drought assessment under climate change [26, 27,
80, 107]. For example, Sheffield et al. [80] underestimated
long-term drying based on PDSI_sc using NCEP/NCAR re-
analysis data from four different precipitation datasets
(CRUTS 3.10, DaiP, GPCC V4, and WilP). Out of these four
products, CRUTS 3.10 has a poor spatial coverage since 1990
[107]. In other words, datasets based on poor gauge coverage
can produce substantial uncertainty when gaps are filled with
data from different sources (e.g., neighboring grid points)
based on some climatology statistics [107]. Therefore, the
compound effect of uncertainties in estimating topographical
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variables [108], coarse resolution of climate model outputs
[109], and poor quality of precipitation dataset can generate
large uncertainties in the calculation of drought indices.

Moreover, hydrological drought prediction requires high-
quality data to improve initial hydrological conditions based
on which future droughts are estimated. Data assimilation
(DA) that merges observation (in situ or remotely sensed) with
model output overcomes such limitation on data availability,
and it improves the accuracy of drought prediction by provid-
ing accurate initial conditions [110]. Various Land Data
Assimilation Systems (LDASs) have been developed so far,
some of them are discussed as applicable to drought-related
studies: the North America Land Data Assimilation System
(NLDAS) [111], Global Land Data Assimilation System
(GLDAS) [112], and Coupled Land and Vegetation Data
Assimilation System (CLVDAS) [113] that can improve

drought assessment under climate change. The land surface
models (LSMs) provide improved parameterizations for sea-
sonal and diurnal simulations of water fluxes, energy fluxes,
and state variables that are essential for monitoring agricultur-
al and hydrological droughts at hourly and daily timescales
[114]. In addition, LSMs such as NLDAS-2 provide soil mois-
ture for various depths and surface and sub-surface runoff data
that enhance the accuracy to estimate agricultural and hydro-
logical drought over North America, respectively. For exam-
ple, top 2-m soil moisture anomaly can be indicative of agri-
cultural drought, whereas the total runoff can indicate hydro-
logical drought [114]. However, land surface models are still
undergoing improvement in the applied physics to the hori-
zontal and vertical distribution of soil hydraulic properties,
incorporation of sink holes, and representation of the spatio-
temporal distribution of precipitation [115].

Fig. 3 Sensitivity of drought indices with change in LSAT for the six
continents. a Africa. b Asia. c Australia. d Europe. e North America. f
South America. Box plot showing median, interquartile range (IQR),
outliers, and overall range excluding the outliers for the annual mean of
continental averaged drought indices, SPI-1 (red); SPEI-1(green); and

monthly PDSI_sc (blue) for every 0.25 °C change in LSAT during the
period 1901–2013. To estimate the statistics related to box plot, values of
drought indices are accumulated in bins corresponding to temperature
anomalies nearest to every 0.25 °C change in global mean temperature
ranging from − 0.5 to 0.75 °C
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Estimation of PET

PET refers to the atmospheric evaporative demand and is ex-
tensively used in drought studies as a direct measure of rela-
tive dryness [48, 107] or as an input variable in the estimation
of PDSI [60], RDI [92], and SPEI [59]. However, the selection
of model used to estimate PET is crucial in the reliable assess-
ment of drying under the changing climate. For instance, the
temperature-based model derived based on historical records
to estimate PET is unlikely to reproduce reliable PET during
the late twenty-first century. In other words, under the
warming climate scenario, purely temperature-based models
(TH method [79]) are likely to overestimate drying in the
future climate [116]. Thus, climate variables such as radiation,
wind speed, vapor pressure deficit, and humidity need to be
considered. Consequently, the PM method that takes into ac-
count all of these climate variables is found to be more robust
in the estimation of PET compared to other existing methods
and has been extensively used in the context of studying the
temporal and spatial variability of drought in the twenty-first
century [48, 117]. However, large uncertainties can be seen
due to the lack of reliable forcing data to calculate scPDSIpm
[27, 107]. For example, changing cloud cover that controls the
incoming solar radiation and wind speed variations that effect
the rate of ET are more region specific [107, 118]. Along with
spatiotemporal inhomogeneity of forcing data, these variables
can trigger uncertainties in the global-scale assessment of
drought under climate change [26, 27]. There are conflicting
views if estimated drying under climate change will be signif-
icantly different, depending onwhether precipitation or PET is
used as the drought variable [119]. In addition to that, under
high CO2 conditions, plants actually become more efficient
and the resulting water savings that plants experience keeps
higher amounts of water on land on average—i.e., the con-
ventional drought indices might not account for this, leading
to an overestimation of drought severity [120]. Furthermore,
Milly and Dunne [121] reported discrepancies in the estima-
tion of the change in PET that leads to bias in continental
drying trends. It is primarily attributed to the fact that stomatal
conductance is not included as an input while estimating PET,
and also due to the parameterization of sensible heat flux in
terms of the gradient of potential temperature rather than tem-
perature [121]. To avoid such discrepancies, an alternative
method to estimate PET using the energy-based approach is
proposed [121]. The proposed method assumes that long-term
latent heat flux of PET is equal to the net radiation absorbed at
the land surface [121]. However, the robustness of this ap-
proach requires more investigation and validation.

Downscaling of Meteorological Variables

Temperature and precipitation are the primary meteorological
variables of the hydrological processes [1] with higher

uncertainty associated with precipitation in terms of its spatio-
temporal distribution. Therefore, there is a need to develop
robust downscaling methods to generate rainfall information
at finer resolution to minimize the associated uncertainties
[109, 122]. Consequently, drought indices derived from pre-
cipitation require effective downscaling techniques that can
resolve discrepancies arising from scale issues [123], thereby
helping the stakeholders to improve decision making [1].
However, drought assessments using GCM outputs are limit-
ed owing to considerable high bias associated with the precip-
itation estimates [124, 125], in addition to substantial intrinsic
uncertainties originating from the inter-model variability
[126–128]. This can be partly overcome by adopting simulta-
neous bias correction and spatial downscaling approaches
[129]. In addition, GCMs do not exhibit a high degree of
predictability especially over the extra-tropics owing to the
limited physical understanding of the ocean-atmosphere inter-
actions in those regions [130]. This sets a major limitation to
specify initial conditions for meteorological drought predic-
tion [131].

Moreover, downscaling techniques face multiple chal-
lenges [132]. For example, (i) when a change factor method
[122, 133] is applied to the coarser GCM outputs, it fails to
include the local climate features, while transferring the rela-
tive change in signals directly to the scaled historical dataset.
This limits the capability of this method to represent the
change in climate, including time of occurrence and periodic-
ity of events (such as drought) [132]. (ii) Although statistical
downscaling methods are simpler than dynamical downscal-
ing methods in terms of methodology and computational re-
sources, it has considerable limitations. For example, statisti-
cal downscaling is done for each variable at individual grid
points, thereby incorporating bias when applied to several
variables or to several locations within one region [134]. In
addition, the assumption of stationarity in the present climate
will also be valid under the future climate scenarios, which
implies overconfidence on the GCM’s ability to simulate the
future climate variables (especially rainfall) [132]. Whereas,
(iii) a dynamical downscaling method clearly ignores the
upscaled information from the local scale (sub-grid cells of
GCMs) to the coarser grid cells and considers only one-way
mode of transferring information (i.e., from the GCM to the
nested RCM). Thus, the large-scale climate characteristics in-
fluenced by the local climate patterns may not be captured in
the downscaled product [135].

Another challenge in downscaling methods arises from the
lack of adequate hydrometric data in different parts of the
world, specially developing countries [136]. However, with
the advancement in DA techniques and land surface models,
it is now possible to generate hydrological fluxes at finer res-
olutions [137]. For example, LDAS (https://ldas.gsfc.nasa.
gov/) incorporates the high-resolution vegetation and soil cov-
erages and provides merged data products at 0.25° resolution
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and 0.125° resolution for global and regional (across central
North America) analyses, respectively. Within this frame-
work, the GLDAS [112] provides high-quality global land
surface fields (implementing snow cover, water equivalent,
soil moisture, surface temperature, and leaf area index) at 1°
and 0.25° resolution from 1979 onwards that support several
present and future climate predictions for various types of
water resources applications.

Choice of Baseline Period

The choice of baseline period plays an important role when
comparing future drought under climate change with respect
to historical drought as the reference period [27, 80, 90, 107,
138]. It is well known that by considering a longer (entire)
period as the base period, the drought indices can be better
calibrated and the future drought events can be compared with
appropriate historical droughts [60, 90, 107]. However, the
improper choice of base period with respect to which drought
events are evaluated can produce considerable bias in the
drought assessment under climate change. For example,
Sheffield et al. [80] and Dai [48] used two different baseline
(historical) periods (1950–2008 and 1950–1979, respectively)
to quantify changes in drought under global warming. The
average drought characteristics (e.g., duration, severity) were
different based on two different baseline periods, which fur-
ther led to difference in interpretation when future droughts
(under climate change) were compared to historical drought
characteristics. In ideal scenarios, it is important to choose a
baseline climatology that captures historical major drought
events, for example, in this case, the inclusion of the Dust
Bowl: the dry 1930s (1930–1931, 1934, 1936, and 1939–
1940) [29] in the baseline period is likely to yield a different
set of results [26]. In addition, the selection of 1950–2008 as
the baseline period may include the effects of recent anthro-
pogenic climate change that may be responsible to mask the
climate change signals in the results of the analysis [26].

Similarly, the choice of different baseline periods can
generate discrepancies in summarizing the results related
to the same drought episode. For example, William et al.
[71] and Luo et al. [138] investigated the causes behind the
recent multiyear California drought (2012–2014). William
et al. [71] reported that the anthropogenic warming trends
account for 8–27% of the anomaly in 2012–2014 drought.
On the other hand, Luo et al. [138] suggest that this mul-
tiyear drought most likely resulted from natural variability
of climate and dominated by precipitation rather than tem-
perature. The difference in results may be due to the usage
of different drought indices, as well as the selection of
different baseline periods: 1931–1990 [71] and 1979–
2015 [138]. Thus, the baseline period should be appropri-
ately chosen with caution by considering the drought as-
pect being studied.

Non-stationary Climate and Choice of Probability
Distribution

The appropriate selection of probability distribution plays an
important role in deriving robust drought indices under climate
change, especially considering stationary (historical) vs. non-
stationary (future scenarios) patterns of climate variables. For
example, calculation of SPI [17] is based on either a gamma
distribution [17] or Pearson type III distribution [139], whereas
calculation of SPEI is based on a log-log distribution [59].
These distributions perform considerably well in fitting the time
series of the hydroclimatic variables over a wide range of cli-
matic region [140]. However, the selection of a single suitable
probability distribution is challenging [141]. Vicente-Serrano
et al. [141], while investigating best probability distributions
to calculate the Standardized Streamflow Index (SSI), reported
that most commonly used probability distributions (log-normal,
Pearson type III, log-logistic, general extreme value, general-
ized Pareto, and Webull) for flow frequency analysis provided
good fits to streamflow data. However, none of the six proba-
bility distributions were able to adequately fit the streamflow
series based on L-moment diagram. Therefore, the selection of
distribution in developing a drought index is crucial and, if not
done with caution, can generate large uncertainties.

Furthermore, it is well known that stationarity that impli-
cates physical constancy of mechanisms involved in the hy-
drologic processes is no longer applicable due to the substan-
tial anthropogenic changes in the present climate [32, 142].
Thus, drought characteristics will be different between station-
ary and non-stationary climate. Therefore, non-stationary sta-
tistics that are deterministic functions of time should be im-
plemented in reliable assessment of hydrologic processes in
the changing climate [32]. For example, the selection of prob-
ability distributions for precipitation is often challenged by
significant zero values (mostly in dry climates), highly left
skewed distributions, as well as limited data lengths [1].
Also, due to the non-stationary nature of climate variables
under future climate scenarios, the probability distribution pa-
rameters of precipitation will change over time. Therefore, it is
important to consider non-stationarity by changing the proba-
bility distribution parameters over different timescales to im-
prove drought assessment under climate change. Considering
the strong association between precipitation and soil moisture,
a similar assumption will also hold for soil moisture.

Defining the Role of Anthropogenic Influence

Apart from the natural variability of climate, human activities
have a significant control on drought initiation, propagation,
and societal impacts [1, 66, 67, 69, 70, 74, 143].
Consequently, drought risk management is directed towards
either adaptation to the natural causes of drought or mitigation
of human-induced drought [143]. Identifying the
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anthropogenic causes of drought is crucial to assign proper
weight to improve water management policies [74, 143].
However, the coupling of human components in hydrological
models is in a preliminary stage for appropriately characteriz-
ing droughts under climate change. It is necessary to identify
the associated challenges in distinguishing between natural
and human influences due to the interplay between climate,
soil, and vegetation dynamics [144, 145].

Detection and attribution (D&A) techniques [146], devel-
oped so far, use the combination of observation and GCMs in
a virtual forcing scenario. This may allow the models to cal-
culate drought characteristics in the absence of human influ-
ences [65, 71, 138]; however, the GCMs are vulnerable to
uncertainties arising from boundary conditions, variability in
the Earth system, parameter estimation, and model structure
[147]. Furthermore, lack of observations for verification, and
dependence on the model selection and the applied methodol-
ogy, makes the existing D&A techniques less reliable in risk
assessment of drought under the anthropogenic influence
[148]. Therefore, quantifying uncertainties by estimating con-
fidence intervals for risk ratios [148], and multimodel averag-
ing rather than relying on individual model results [149], is
necessary to avoid overconfidence in drought risk assessment
based on drought indices. Moreover, uncertainties depend on
the sample size of data and the severity of drought being
studied; therefore, extra caution is needed while applying
D&A methods [147].

Human-made infrastructures, such as dams and reservoirs,
can also greatly affect the propagation of soil moisture and
hydrological drought [74, 150]. Drought indices should cap-
ture such changes in drought propagation along with other
human interactions such as dynamic changes associated with
land use, irrigation efficiency, and rapid increase of popula-
tion. However, such dynamics of human interactions is still in
a preliminary stage in existing large-scale hydrologic model-
ing framework, and scientific advances are needed to over-
come the aforementioned challenges.

Summary and Conclusions

A comprehensive discussion on the role of drought indices for
climate change assessment is provided in this article. Existing
drought indices were reviewed and compared based on their
skill and limitations to capture drought characteristics in a
non-stationary climate. Major shortcomings related to the for-
mulation of drought indices under the changing climate, in-
cluding the lack of robust approaches to separate the human
component from the natural variability of climate, choice of
baseline period, use of non-stationary climate information,
and lack of observed data for validation, were discussed.
Significant progress is being made in drought research, and
there is a scope to improve formulation of efficient drought

indices with the hope of better drought preparedness by filling
the gaps arising due to such shortcomings. The following
conclusions can be drawn from this study:

1. The performance of drought indices, such as PDSI_sc, SPI,
and SPEI, showed different degrees of sensitivity against
the same level of observed warming at continental scale.
Therefore, the formulation of drought indices without con-
sidering the factors that govern the background state may
lead to drought artifacts under a warming climate.

2. Estimation of PET based on the energy budget framework
can be a better physically based approach compared to
only temperature-based equations. Also, uncertainties
due to the spatial inhomogeneity in forcing data need to
be considered to estimate PET for drought assessment
under climate change [26, 27].

3. Major advancement in hydrologic modeling for drought
assessment has been made with the development of
LDAS. Land surface models have been successful in
maintaining water and energy balance at macro-scale
levels, thereby accurately capturing the components of
hydrological fluxes in the top 1–2 m of the land surface
at hourly and daily timescale, as well as at finer resolution
[18]. These models have considerably improved the near-
real-time assessment of drought by providing modeled
soil moisture, soil water equivalent, and runoff estimates
at diurnal timesteps [18]. However, shortcomings need to
be addressed in the existing LSMs by reducing uncer-
tainties in hydrological fluxes by integrating in situ mea-
surements and remotely sensed products [114, 115].

4. The choice of appropriate methodologies to develop
drought indices for climate change assessment should
consider projected climate variables with less uncertainty.
This can be achieved by climate models simulating the
best estimates of PET [107, 118, 121], and atmospheric
demand or soil moisture [119, 151]. Specially, drought
projections based on soil moisture-derived indices should
be treated with extra caution owing to the lack of suitable
observations for verification [33, 119]. Besides, there re-
mains great uncertainty in what the future climate will be
[152]; therefore, multimodel assessment is recommended
against assessment using individual models [149].

5. Apart from the natural variability of climate, increase in
severe and persistent droughts due to anthropogenic influ-
ence is reported in the last few decades [48]. Separating
the natural causes from the human-induced factors is most
likely to make drought assessment more realistic, thereby
helping policy makers to simplify the complexities related
to the water management decisions [153]. This can be
achieved by objectively defining the role of human activ-
ity in drought assessment using drought indices.

6. Drought indices are widely used in multiple purposes by
different stakeholders [154]. However, the actual usefulness
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and proper implementation of drought indicators/indices re-
ly on how easily they can be interpreted by the stakeholders
and serve the end user’s needs [1]. On the other hand, cli-
mate change affects a wider range of interconnected sectors
[155], thereby further increasing the inherent complexity of
quantifying socioeconomic droughts [1].

7. Climate model outputs as well as observed data are often
available at coarser resolution, and it may limit our under-
standing on the hydrologic processes at finer scale [109].
Consequently, improved downscaling approaches should
be developed to transform the information from coarser
resolution to finer grid cells, thereby improving the as-
sessment of drought impacts more realistically [1, 122].
For a good overview of different downscaling approaches
for climate change assessment, see Maraun et al. [109].
Along with proper bias correction techniques, downscal-
ing can provide quality data inputs for reliable drought
assessment studies [156, 157]. Furthermore, an optimized
model selection approach can be useful to select models
with minimum uncertainty which should be adopted
while downscaling drought indices based on climate
models to capture their future variability [158].

8. The non-stationarity associated with climate change is like-
ly to alter the parameters of the probability distributions of
input variables in the formulation of drought indices.
Therefore, adopting appropriate methods to capture non-
stationary information for characterizing drought under cli-
mate change will likely to generate reliable information for
risk assessment and infrastructural management under the
changing climate. Moreover, spatial drought risk can be
investigated by integrating multiple drought characteristics
(e.g., severity-duration-frequency (SDF)) [159, 160] that
allows the user to compare historical major droughts with
future scenarios under climate change [161].
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