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status using an individual-based, dynamic network model where individuals initiate
and terminate contacts with conspecifics based on their behavioral predispositions and
their infection status. Our results suggest that both heterogeneity in physiology and
subsequent covariation of physiology with contact rate could powerfully influence epi-
demic dynamics. Overall, we found that 1) individual variability in susceptibility and
infectiousness can reduce the expected maximum prevalence and increase epidemic
variability; 2) when contact rate and susceptibility or infectiousness negatively covary,
it takes substantially longer for epidemics to spread throughout the population, and
rates of epidemic spread remained suppressed even for highly transmissible patho-
gens; and 3) reductions in contact rate resulting from infection-induced behavioral
changes can prevent the pathogen from reaching most of the population. These effects
were strongest for theoretical pathogens with lower transmissibility and for popula-
tions where the observed variation in contact rate was higher, suggesting that such
heterogeneity may be most important for less infectious, more chronic diseases in
wildlife. Understanding when and how variability in pathogen transmission should be
modelled is a crucial next step for disease ecology.

Introduction

Direct transmission of a pathogen from one host to the next is a complex process
that depends on host behavior, host physiology, and the transmission efficiency of
the pathogen itself (Begon et al. 2002). In natural systems, it has been demonstrated
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that these interrelated facets of transmission can vary widely
between individuals. In fact, empirical studies suggest that
unequal contact rates are the rule rather than the exception
(Craft and Caillaud 2011), that contact rates can vary with
infection-induced behavioral changes (Croft et al. 2011), and
that these changes are likely non-uniform across individu-
als (Lopes et al. 2016). Innate and plastic heterogeneity in
susceptibility to infection has been documented for several
species (Dwyer et al. 1997, Beldomenico and Begon 2010,
Gibson et al. 2016), and variability in infectiousness has also
been observed, particularly when concomitant infections
are present (Cattadori et al. 2007). Finally, there is evidence
that the first individual infected in a population (i.e. the
index case) and the relative composition of behavioral phe-
notypes (e.g. bold versus shy continuum) can substantially
alter how effectively a pathogen spreads within a population
(Adelman et al. 2015, Keiser et al. 2016).

Nevertheless, it is not uncommon for disease models to
overlook individual variation in behavior and physiology.
This is often done for practical or necessary reasons, but has
resulted in a lack of understanding of how these heteroge-
neities scale up to affect disease dynamics in natural popula-
tions (Beldomenico and Begon 2010, Barron et al. 2015).
The rate at which a pathogen will spread in a host popu-
lation is a function of the number of infected individuals
(I), the number of susceptible individuals (S), and the rate
(B) at which infectious individuals successfully transmit the
pathogen. The transmission rate (p) encapsulates two sepa-
rate processes that are required for a successful transmission
event: 1) an appropriate contact between a susceptible and
infectious individual, and 2) the actual transmission between
an infected and susceptible host given contact, which
depends upon the physiology of both the host and the patho-
gen (McCallum et al. 2017) (see Supplementary material
Appendix 1 for a schematic representing transmission and
definitions of key terms). Thus, p can further be broken down
into the behavioral () and physiological (,) components of
transmission, respectively (Hawley et al. 2011). The apparent
simplicity of P as a single parameter may belie non-linearities
that can arise at any stage of transmission and affect a patho-
gen’s spread through a population (McCallum et al. 2017).

Interactions between the behavioral and physiological
components of transmission may arise under a variety of
contexts for wildlife (Supplementary material Appendix 1),
and the effects of these interactions can be exacerbated by
host behavior—parasite feedback loops (Ezenwa et al. 2016).
Covariation between susceptibility and exposure to patho-
gens in wildlife may be mediated through both the neuro-
endocrine system and behavioral syndromes (Hawley et al.
2011). For instance, in some species, testosterone in males
not only increases exposure through agonistic contacts, but
can also raise males” susceptibility to parasites (Grear et al.
2009). There is also evidence that suites of behaviors (e.g.
coping style) can mediate individual exposure risk, and that
those same behavioral syndromes are often associated with
distinct physiological traits as well (e.g. hypothalamic—
pituitary—adrenal (HPA) axis reactivity and stress levels)

(Natoli et al. 2005, Koolhaas 2008). Finally, covariation
between infectiousness and contact rate can arise when patho-
gens alter host behavior to make it easier for the pathogen to
spread between hosts (particularly in trophically transmitted
parasites, Berdoy et al. 2000) or indirectly through sickness
behaviors that reduce host activity levels such as fever, leth-
argy, and limited foraging (Adelman et al. 2014, Welicky and
Sikkel 2015). Alternatively, uninfected individuals may avoid
infected conspecifics, or infected individuals may associate
less with their counterparts (Croft et al. 2011). Modeling
studies in humans have begun to incorporate the effects of
behavioral changes in response to infectious disease, includ-
ing adherence to vaccination programs, fear-induced contact
reduction, hygiene improvement, or changes in mobility
or traveling (Coclho and Codego 2009, Funk et al. 2010,
Meloni et al. 2011), but few investigations have been made
into the effects of behavioral changes on the spread of disease
in natural populations. Notably, since physiology can covary
with behavior, disease models should ideally incorporate pos-
sible interactions between these two components, not just
including one component or the other (Hawley et al. 2011).

For example, “superspreaders” are individuals that con-
tribute a disproportionately high number of secondary cases
either through an unusually high number of contacts or
by being especially infectious (Lloyd-Smith et al. 2005). In
disease ecology, however, the focus has largely been on vari-
ability in contact rate () (VanderWaal and Ezenwa 2016,
White et al. 2017a), while individual heterogeneity in physi-
ology, plasticity in behavior in response to infection, and
possible covariation between behavioral and immune com-
petence have been somewhat neglected (Barron et al. 2015).
The role that physiological immunity might play in super-
spreading has not been fully elucidated (Hawley and Altizer
2011, VanderWaal and Ezenwa 2016), but there is evidence
that some individuals are particularly vulnerable to infection
(super-receivers) or particularly adept at transmitting the
pathogen to others due to high infection load or shedding
rates (super-shedders) (Cattadori et al. 2007, Zohdy et al.
2012).

Without modification, an undetlying assumption of tra-
ditional, mean-field disease models is that every individual
in a population has an equal probability of contacting and
infecting any other individual (Anderson and May 1991).
These compartmental models can be constructed to reflect
different categories of relative risk according to factors like
sex or age, which has been done for HIV (Anderson et al.
1986, May et al. 1988). For instance, for the gypsy moth
and its nuclear polyhedrosis virus, Dwyer et al. (1997)
incorporated a continuous distribution of susceptible classes
and demonstrated a resulting non-linear relationship between
virus density and transmission. In some cases, however, it is
also important to account for variable contact rates in order
to explain superspreading patterns (Lloyd-Smith et al. 2005,
Meyers 2007). Network models are a tool that can capture
individual variability in the number and rate of contacts (f,).
With a network modeling approach, a contact (i.e. an edge)
is any interaction that could allow for transmission of an
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infectious agent between a pair of individuals (i.e. nodes). In
general, network models that account for contact heterogene-
ity predict less frequent, but more explosive outbreaks than
their compartmental model counterparts (Lloyd-Smith et al.
2005).

Many wildlife studies still employ static networks,
which do not reflect real-time behavioral shifts or poten-
tially capture changes in the network in response to disease
(Masuda and Holme 2013, White et al. 2017a). In contrast,
dynamic network models describe association patterns in
real-time and allow for rewiring events in which individu-
als can change who they are interacting with at any given
time step (Blonder et al. 2012). Dynamic networks can be
thought of as a continuum between mass-action models,
which have high mixing rates, and static network models,
which have fixed and prolonged contacts (Volz and Mey-
ers 2007, Bansal et al. 2010). However, the implications
of using static versus dynamic contact networks for disease
model predictions are still not fully understood, and the tools
for dynamic network analysis lag behind their static coun-
terparts (Blonder et al. 2012, Masuda and Holme 2013).
In a theoretical framework, utilizing a static network for a
dynamic system was found to overestimate epidemic predic-
tions (Fefferman and Ng 2007, Masuda and Holme 2013).
Similarly, incorporating dynamic, empirically-based interac-
tions in livestock networks markedly changed predicted epi-
demic outcomes; Chen et al. (2014) incorporated temporal
variability with and without changes in individuals’ degree
order and observed greater discrepancies in predictions for
pathogens with lower values of R, Springer et al. (2017)
found that incorporating dynamic interactions increased the
theoretical transmission of cryptosporidium through wild
lemur networks. However, Stehlé et al. (2011) suggested that
daily aggregated networks were acceptable proxies for real-
time dynamic networks for an SEIR model of conference
attendees. As of now, the implications of including dynamic
interactions appears to be highly system specific, and there is
no clear consensus on when dynamic interactions should be
incorporated into disease models (White et al. 2017a).

In this manuscript, we employ an individual-based,
dynamic network modeling approach because dynamic net-
works allow us to explicitly incorporate contact heterogene-
ity, variability in physiology, and behavioral changes resulting
from infection. Specifically, we ask: how might possible
covariation in the behavioral (B,) and the physiological (8 p)

components of transmission affect epidemic dynamics? We

Table 1. Variables and parameters used in models.

tested scenarios where contact rate covaried with suscepti-
bility, infectiousness, or infection status. This last scenario
allowed us to investigate how infection-induced behavioral
changes could potentially affect disease dynamics. For a theo-
retical, directly-transmitted pathogen, we evaluated how these
different covariation scenarios might affect epidemic variabil-
ity in the forms of: maximum prevalence reached, the time it
took to reach maximum prevalence, the realized transmission
rate, and the likelihood of epidemic fade-out. By fade-out, we
are referring to simulations where the pathogen never spreads
beyond the initially infected individual. We conducted
a random forest analysis to identify key factors that were
most likely to explain these metrics. While previous contact
network studies have identified the importance of contact
heterogeneity within a population (Lloyd-Smith et al. 2005),
our results suggest that both heterogeneity in physiology and
subsequent covariation of physiology with contact rate could
powerfully influence epidemic dynamics.

Methods

We developed an individual-based, dynamic network model
that explores how heterogeneity in individual contact behav-
ior, susceptibility, and infectiousness can interact to affect
pathogen transmission. We employed a susceptible—infected
(SI) model to describe the spread of a pathogen through a
closed population, assuming no births, deaths or disease-
related mortality (Anderson and May 1991). We used a
factorial design to explore the effects of epidemiological
parameters on epidemic outcomes and measured the maxi-
mum prevalence reached during 750 time steps, the number
of time steps it took to reach that maximum prevalence, and
the rate of epidemic spread. Simulations were conducted for
a population size of 525 individuals with 100 repetitions per
parameter set (Table 1).

Dynamic network framework

At each time step during the simulation, individuals (nodes)
could form or remove contacts (edges) with conspecifics
based on their intrinsic individual behavioral phenotype (i.e.
contact rate, ). This dynamic network behavior relies on
a discrete time, separable temporal exponential-family ran-
dom graph model (STERGM) framework, which allows for
biologically realistic variation in mean degree, duration of

Parameter

Levels Values

Transmission efficiency (t)

low, medium, high

0.025, 0.25, 0.5

Total separation between mean degree (B,) low, high 2,4,6(x2);0,4,8(x4)
Dissolution rate of edges constant 25 time steps

Population size constant 525 individuals

Total density of network/edges constant expected mean degree = 4
Duration of simulation constant 750 time steps

Number of simulations per parameter set constant 100
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contacts, and disease-induced behavioral changes (Krivitsky
and Handcock 2014). These models are built on an expo-
nential random graph (ERGM) framework; ERGMs are a
family of statistical models that describe random graphs (i.c.
random networks) based on their underlying node attributes
such as degree, betweenness, transitivity, etc. (Robins et al.
2007). A random graph Y consists of nodes, 7, and edges,
m, with state space: V:i=1.,mj=1...,n. Y, =1 if an
edge exists between nodes 7and j, and ¥, =0 otherwise. The

i
basic form of an ERGM is: P(Y = },) = M , which

k()

describes the probability of observing a given network, y,
given the space of all possible networks, ¥, that could exist
for a given set of nodes. The numerator contains both a set
of model statistics g() and coefficients corresponding to
those statistics, 0. The denominator, k(y), represents the
sum of the numerator across all possible networks (Krivitsky
and Handcock 2014). STERGMs extend into discrete time
by utilizing two independent ERGMs: a formation and dis-
solution model. STERGMs employ the Markov assump-
tion that the state of a network at the current time step
is memoryless — so the formation and dissolution of edges
is only dependent upon the current state of the network
(Hanneke et al. 2010). We assume the simplest case for the
dissolution model — that all edges have the same probability
of dissolving (i.e. a Bernoulli process). For all simulations,
we assumed a constant edge dissolution probability of 25
time steps (Table 1).

Models were constructed in R (ver. 3.3.2, <www.r-
project.org >) using self-written modules in the ‘EpiModel’
package (ver. 3.4.0, <www.cpimodel.org/>) (Jenness
et al. 2016a). The EpiModel package provides a suite of pre-
written and modifiable functions for simulating infectious
disease dynamics, including stochastic network models
that rely on temporal ERGMs from the ‘statnat’ package.
The EpiModel package has been used to investigate com-
plex disease dynamics and interventions for diseases like
HIV (Jenness et al. 2016b). Fully annotated sample code
is provided in the Supplementary material Appendix 2,
and all code and simulation data for the manuscript are

available from the Dryad Digital Repository (White et al.
2017b).

Covariation: incorporating _and 8,

We considered three mechanisms by which the physiological
components of transmission (B,) and contact rate () may
covary: 1) susceptibility versus contact rate; 2) infectious-
ness versus contact rate; and 3) infection status versus con-
tact rate (Supplementary material Appendix 1 Fig. A2). For
each scenario, we tested a control scenario where individuals
exhibited no variation in physiology (B,) but heterogeneity in
contact rate (B), a null scenario where individuals exhibited
heterogeneity in physiology (B,) but no heterogeneity in con-
tact rate (B,), a positive covariation scenario where physiology
(B,) positively covaries with contact rate (B) (Supplemen-
tary material Appendix 1 Fig. A2a, blue line), and a negative
covariation scenario where physiology (B,) negatively covaries
with contact rate (§,) (Supplementary material Appendix 1
Fig. A2a, red line).

At the start of each simulation, every individual was
assigned an intrinsic contact rate (B,) and physiological
state (8 p) — cither susceptibility (s) or infectiousness ()
depending on the experiment. The behavioral component of
transmission () was thus incorporated implicitly into the
transmission process by determining which hosts are contact-
ing one another at any given time step based on the dynamic
network simulation. For a given set of conditions, the popu-
lation was divided equally into thirds (175 individuals per
sub-group) with each group assigned a higher-than-average
(‘high’), an average (‘mediumy’), or a lower-than-average
(‘low’) number of contacts (Supplementary material Appen-
dix 1 Fig. A2b; Table 2). These behavioral phenotypes can be
thought of as corresponding roughly to spectrums of indi-
vidual personality (e.g. shy versus bold) that might dictate
social behavior. Empirical studies in wildlife have cited mean
degrees ranging from less than one to approximately eight
(Godfrey et al. 2009, Perkins et al. 2009, Hirsch et al. 2013).
We simulated a mean degree of 4, which appears to be a rea-
sonable approximation for social animals like macaques and
prairie dogs (Maclntosh et al. 2012, Verdolin et al. 2014).

Table 2. Experimental design for sections ‘Susceptibility versus contact rate’ and ‘Infectiousness versus contact rate’.

No. of individuals in

Mean degree for ‘low’ contact

Mean degree for ‘high” contact B, (susceptibility, s, or

Type of covariation sub-group variability treatment (B) variability treatment (B,) infectiousness, «)
Control 175 2 0 1

175 4 4 1

175 6 8 1
Null 175 4 4 unif {0,2}

175 4 4 unif {0,2}

175 4 4 unif {0,2}
Positive 175 2 0 0

175 4 4 1

175 6 8 2
Negative 175 2 0 2

175 4 4 1

175 6 8 0
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For susceptibility versus contact rate and infectiousness ver-
sus contact rate, individuals with higher-than-average or
lower-than-average contact rates had an absolute difference
in mean degree of either 2 or 4. So, for example, simula-
tions with a ‘low’ separation of mean degree would have
three separate groups with mean degrees of 2, 4 and 6 (e.g.
Supplementary material Appendix 1 Fig. A2b), and those
with a ‘high’ separation would have three separate groups
with mean degrees of 0, 4 and 8 (Table 1). In terms of sim-
ulating the STERGM, the only network statistic, 2(y)>
included is mean degree and the coefficients are §=[246]
or 8=[048] for low and high variation in contact rate,
respectively (Table 2).

We incorporate the physiological component of transmis-
sion, B , explicitly into the final probability of transmission
given contact (i.e. the existence of an edge in the dynamic
network). Depending on the experiment, B, is represented
either through susceptibility of the susceptlble host, s, or
infectiousness of the infected host, K. To induce covarla—
tion, individuals were assigned physiological states (§,) cor-
responding to their contact rates. For these physmfoglcal
states, individuals were assigned a ‘low’, ‘medium’ or ‘high’
value (0, 1 or 2, respectively) for their susceptibility (s) or
infectiousness (k) — such that the average susceptibility or
infectiousness in the population would always be approxi-
mately equal to 1 (Table 2).

The mechanism of transmission

The possibility of transmission was evaluated at each time step
if 1) two nodes shared an edge, and 2) one node was infected
and one node was susceptible. The final transmission prob-
ability, P(7"), that we used for this model is based on the
intuition involved in the Reed—Frost or chain binomial mod-
els which estimate the likelihood that an individual ‘escapes’
infection during a discrete time step (Kyvsgaard et al. 2007).
Instead of calculating the likelihood of an individual escap-
ing infection from multiple infectious hosts in the popula-
tion, we allow for the possibility that during a time step,
multiple opportunities for transmission could occur when a
susceptible and infectious host share an edge in the dynamic
network. This might correspond to discrete events like bites,
coughing, sneezing, vector transfer, etc. The resulting final
transmission probability is: P(7)=1-(1-1)" where T rep-
resents the transmission efficiency per individual interac-
tion, and the action rate, a, represents the potential number
of infectious interactions that could occur via an edge per
time step. While the transmission efficiency likely represents
a complex relationship between pathogen physiology and
host immunocompetence, we use it here to represent the
idea that, all else being equal, certain pathogens are more
infectious than others on average (Supplementary material
Appendix 1). We vary transmission efficiency, 7, in our fac-
torial design (Table 1) and discuss the modifications for the
final transmission probability for each specific experimental
scenario below.
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Susceptibility versus contact rate

For this mechanism, individuals varied in B via their sus-
ceptibility (s, likelihood of being infected given contact with
an infected conspecific). A successful transmission event was
dependent upon the innate susceptibility (s) of the suscep-
tible contact in the susceptible-infected dyad such that the
final transmission probability, P(T), took the form:
P(7)=1-(1—min{l,Tx s})"

Here, action rate (o) is defined as the number of possible
transmission events per time step. In this scenario, we
assume the action rate to be equal to one per time step for
each susceptible-infectious interaction, so the final trans-
mission probability simplifies to P(7')= min{l,1xs}. At
time step t = 1, one individual was randomly selected to be
the first infected individual (i.e. the index case). If the first
randomly selected individual had a susceptibility of zero
(s=0), the pathogen could not propagate further.

Infectiousness versus contact rate

For this mechanism, individuals varied in P, via their
infectiousness (k, likelihood of successfully transmitting the
pathogen given contact with an uninfected conspecific). In
this model, the probability of successtul transmission, P(77),
to a susceptible individual given contact with an infectious
individual was proportional to the infectiousness of the
infected contact:

P(7T)=1-(1-1)""

In this case, infectiousness (k) was modelled as affecting the
action rate (o), which could be interpreted as the pathogen
load or the amount of shedding by an infectious host per
time step. At time step t =1, one individual was randomly
selected to be the first infected individual (i.e. the index case).
If the first randomly selected individual had an infectiousness
of zero (k= 0), the pathogen could not propagate further.

Infection status versus contact rate: disease-induced
behavioral changes

The objective of this scenario was to test the possible effects
of sickness-induced behavioral changes. For example, a very
sick individual that is highly infectious might increase their
contact rate (e.g. furious rabies) or decrease their contact
rate because of fever, lethargy, or anorexia (Adelman et al.
2014, Welicky and Sikkel 2015). To consider the possibil-
ity that the magnitude of behavioral change is correlated
with infectiousness (e.g. individuals with a higher pathogen
load might display more extreme sickness behaviors), we
allow individuals to become cither ‘highly infectious’ or ‘less
infectious’ post-exposure with a corresponding change in
contact rate () depending on the type of covariation (Table
3). It is worth noting that in the above scenarios (‘Suscep-



Table 3. Experimental design for section ‘Infection status versus contact rate’.

Mean degree Mean degree B, (infectiousness, Percent of individuals

Type of covariation pre-exposure (B.) post-infection (B,) K)- post-infection (post-exposure) (%)
Control 4 4 1 (low infectious) 100
Null 4 4 1 (low infectious) 50

4 4 2 (high infectious) 50
Positive 4 6 1 (low infectious) 50

4 8 2 (high infectious) 50
Negative 4 2 1 (low infectious) 50

4 0 2 (high infectious) 50

tibility versus contact rate’ and ‘Infectiousness versus con-
tact rate’) it is possible for a secondary correlation to result
between contact rate and infection status. For example, in
the positive covariation scenario for susceptibility versus
contact rate, we would expect highly susceptible individu-
als (who also have higher contact rates) to become infected
first. This experiment differs from the previous two in that
contact rate is allowed to change explicitly as a result of
infection status.

To begin, we modelled a control case where no changes in
contact rate (f,) occurred post-infection and individual infec-
tiousness was homogenous throughout the population (k=1
for all individuals). For the null case, there was no change
in contact rate (B) upon infection, but individuals had het-
erogeneity in infectiousness (individuals were randomly
assigned an infectiousness of k =1 or 2 upon infection). For
positive and negative covariation, an individual’s contact rate
increased or decreased upon infection respectively, and after
a successful exposure, individuals had an equal likelihood of
becoming highly infectious (k =2) or less infectious (k= 1)
(Table 3). Unlike the first two scenarios tested (above), each
simulation began at t =1 with two infected individuals. For
the null, positive, and negative covariation cases, these con-
sisted of one highly infectious individual (k = 2) and one less
infectious individual (k = 1); it was necessary to include both
classes of infected individuals at the start of the simulation for
the purposes of calibrating the dynamic network. All remain-
ing susceptible individuals started with a mean degree of four.
For positive covariation, less infectious individuals increased
their expected mean degree to 6, and highly infectious indi-
viduals increased their expected mean degree to 8. Likewise,
for negative covariation, less infectious individuals decreased
their expected mean degree to 2, and highly infectious indi-
viduals decreased their expected mean degree to 0 (Table
3). In the EpiModel package, this was achieved by using
infection status itself as a network statistic via the ‘nodefac-
tor’ term for simulating the dynamic network (Jenness et al.
2016a). This term of the model allows different sub-groups
of the population to have heterogeneity in their attributes —
in this case, mean degree (Jenness et al. 2016a). However,
infected individuals were not any more likely to form edges
with susceptible conspecifics than infected conspecifics, so
there was no preferential mixing as a result of infection sta-
tus. A necessary consequence of including infection status as
a factor governing edge formation was that network density

either increased (positive covariation) or decreased (negative
covariation) over time.

We tested two forms of infectiousness: 1) the form
described in ‘Infectiousness versus contact rate where
infectiousness influences the action rate in the exponent
of the final transmission probability P(T)zl—(l—’r)ow;
and 2) a form where infectiousness (k) directly modifies
the probability of infection (‘Susceptibility versus con-
tact rate’) so that the final transmission probability was
equal to: ]P%T) =1-(1-minf{l,txk})", which simplifies to
P(7')=min{l,7xk} when the action rate, o0 =1.

Metrics and nonlinear least square regression

We included four metrics to investigate differences in epi-
demic outcomes across experiments and covariation types.
First, we measured the maximum prevalence reached in 750
time steps. Because this is an SI model, the mean maximum
prevalence reflects both the maximum prevalence reached by
successful simulation runs and the percentage of epidemics
fading-out. We also explicitly measured the time it took to
reach maximum prevalence and the percentage of simulation
runs fading-out for each treatment.

Finally, since the contact structure of different experimen-
tal set-ups (particularly those with higher variation in contact
rate) could limit the proportion of the population eligible
to be infected, we measured a ‘realized” transmission rate ()
to estimate the rates of epidemic spread in each popula-
tion. To do this we used nonlinear least square regression
implemented through the ‘nlsLM’ function in the ‘minpack.
Im’ package (ver. 1.2-1) in R (Elzhov et al. 2016). We fit
each individual epidemic simulation to the logistic growth

equation: [ (r)= where [ (¢) is the number of

1+bxe P
infected individuals at time # K is the carrying capacity; B

is the realized transmission rate, and & is a scaled parameter

K-1I,

equal to where /, is the initial population size at time

0
zero (derivation in the Supplementary material Appendix 3).

We assigned values of I, appropriate to each simulation
(I,=1 for susceptibility or infectiousness versus contact
rate and [, =2 for infection status versus contact rate), and
we allowed both K and P to vary to determine the best fit,
although K was not allowed to exceed the total number of
individuals in the simulation.
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Random forest analysis

In simulation studies, significance testing can be less useful
because an essentially unlimited sample size can result in label-
ing even small differences in the magnitude of outcomes as
statistically significant (White etal. 2014). To further a descrip-
tive approach to the analysis of our simulation results, we have
used random forest analysis —a machine learning method that
can handle complex, non-linear relationships between model
inputs and outputs, as well as potential collinearity between
covariates (Cutler et al. 2007). Random forest analysis is a
recursive partitioning method that combines the predictions
from numerous fittings of classification trees to the same set
of data (Breiman 2001, Cutler et al. 2007). Variable impor-
tance measures resulting from these analyses can be used to
estimate the relative importance of a covariate in determining
model outcomes, and unlike most univariate methods, can
account for possible correlations between inputs. To calculate
variable importance, we employed a measure of permutation
importance which has been demonstrated to be more robust
than node impurity (Strobl et al. 2007, 2009). Using the
‘cforest’ function in the ‘party’ package in R (ver. 3.3.2), we
simulated 10 000 trees per analysis to ensure that the order
of variable importance was robust to changes in the random
seed, and we calculated mean decrease in accuracy variable
importance scores using the ‘varimp’ function in the ‘party’
package (Hothorn et al. 2006, Strobl et al. 2007, 2009). The
mean decrease in accuracy describes the loss of predictive
value that results from a particular variable being randomly
permutated. Stated another way, higher mean decrease in
accuracy scores indicate a greater importance in model predic-
tion. For susceptibility versus contact rate and infectiousness
versus contact rate, we included the following as covariates:
transmission efficiency, separation between mean degree, type
of covariation, and physiological phenotype of the index case.
For infection status versus contact rate, we included transmis-
sion efficiency, type of covariation, and form of infectiousness
(i.e. in the exponent or the product of the final transmission
probability). The response variables for all three mechanisms
were: maximum prevalence, time until maximum prevalence,

and the realized p.

Data deposition

Data available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.8t201 > (White et al. 2017b).

Results

Susceptibility versus contact rate

Allowing for variability in susceptibility of the host popu-
lation (null case) reduced the maximum prevalence reached
during the 750-step simulation (compared to the control case)
and increased the variability of observed epidemic outcomes
with at least one-quarter of epidemics fading out (Fig. 1, 2).
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Figure 1. Time course of simulated epidemics for susceptibility ver-
sus contact rate for the lowest transmission efficiency tested of
7=10.025. Columns correspond to the difference in mean degree
tested, and rows correspond to the mechanism of covariation: con-
trol (no variability in susceptibility, no covariation), null (variability
in susceptibility, no covariation), positive covariation, and negative
covariation. Individual trials are shown as semi-transparent, and the
numbers in the lower right hand corner of each panel describe the
percentage of simulations fading-out for each treatment. The dashed
lines in each panel correspond to the expected maximum prevalence
based on contact structure. For higher variations in contact rate,
one-third of the population has a p, =0, limiting maximum preva-
lence to 0.66. Time courses for the corresponding medium
(t=0.25) and high (t=0.5) transmission efficiencies are available
in the Supplementary material Appendix 4 Fig. A3—-A4.

This finding was consistent across differences in mean degree
and for different transmission efficiencies (Supplementary
material Appendix 4 Fig. A3—A4). In general, for simulations
with higher variation in contact rate (i.e. difference in mean
degree of 4), the maximum prevalence was lower relative to
corresponding simulations with smaller variations in contact
rate (i.e. difference in mean degree of 2). This finding reflects
the fact that one-third of the population is expected to be
isolated (B, = 0) for networks constructed with higher varia-
tion in contact rate (i.e. mean degree difference = 4). Nota-
bly, positive covariation counteracted this observed difference
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Figure 2. For susceptibility versus contact rate, violin plots depicting
for all covariation types: (A) the maximum prevalence reached in
750 time steps; (B) the time it takes to reach that maximum preva-
lence; and (C) the realized transmission rate (B), which describes the
rate of epidemic spread. The columns correspond to the transmis-
sion efficiency (i.e. 0.025, 0.25 and 0.5), and the rows correspond
to the difference in mean degree (i.c. 2 or 4).

in maximum prevalence between the control case and other
covariation types, and this effect was consistent across infec-
tion probabilities (Fig. 2A). In the case of negative covaria-
tion, there was an observable increase in the time it took to
reach maximum prevalence relative to the control, null, and
positive covariation scenarios; this increase was the greatest for
lower transmission efficiencies and higher variation in contact
rate (Fig. 2B). In general, the epidemics spread more quickly
with higher transmission efficiency, regardless of variation
in contact rate. The differences in the realized f between
positive and negative covariation were largest for higher values
of transmission efficiency and high contact rate variability
(Fig. 2C). Negative covariation continued to substantially
suppress the realized B even at higher values of transmission
efficiency.

Infectiousness versus contact rate

Variability in infectiousness (null case) increased variabil-
ity in epidemic outcomes (Fig. 3); simulations experienced
fade-out because of those individuals in the population with
an infectiousness of zero (k =0). These observations were
consistent across simulated differences in mean degree and
transmission efficiencies (Supplementary material Appendix 4
Fig. A5—-AG). As with susceptibility versus contact rate, a larger
simulated variation in contact rate within the population also
decreased the maximum prevalence, even in the control case
(Fig. 4A); this was the result of a contact structure where
one-third of the population was socially isolated (, = 0). For
negative covariation, there was a substantial increase in the
time it took to reach maximum prevalence relative to the
control, null, and positive covariation scenarios; this effect
was most pronounced for lower transmission efficiencies
and higher variation in contact rate (Fig. 4B). Similar to
the results for susceptibility versus contact rate, a faster rate
of epidemic spread occurred for simulations with higher
transmission efﬁciency regardless of variation in contact rate,
and the difference in magnitude of the realized B between
positive and negative covariation was largest for higher
values of transmission efficiency and contact rate variability

(Fig. 4C).

Infection status versus contact rate

For infection status versus contact rate, we tested two ways
that infectiousness might play into the final transmission
probability (‘Infection status versus contact rate: disease-
induced behavioral changes’), but results were consistent
across these two different formulations. As with suscepti-
bility versus contact rate and infectiousness versus contact
rate, simply including heterogeneity in physiology increased
variability in epidemic outcome (Fig. 5; compare control
versus null cases). Reduction in contact rate upon infection
(negative covariation) drastically reduced the maximum
prevalence reached within 750 time steps (Fig. 5, 6A), while
increasing contact rate upon infection (positive covaria-
tion) had a comparatively minimal effect on increasing the
maximum prevalence relative to the null and control cases
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Figure 3. Time course of simulated epidemics for infectiousness
versus contact rate for the lowest transmission efficiency tested of
7 =0.025. Columns correspond to the difference in mean degree
tested, and rows correspond to the mechanism of covariation:
control (no variability in infectiousness, no covariation), null
(variability in infectiousness, no covariation), positive covaria-
tion, and negative covariation. Individual trials are shown as semi-
transparent, and the numbers in the lower right hand corner of
each panel describe the percentage of simulations fading-out for
each treatment. The dashed lines in each panel correspond to the
expected maximum prevalence based on contact structure. For
higher variations in contact rate, one-third of the population has a
f.=0, limiting maximum prevalence to 0.66. Time courses for the
corresponding medium (v = 0.25) and high (t = 0.5) transmission
efliciencies are available in the Supplementary material Appendix

4 Fig. A5-AG.

(Fig. 5, 6A). In general, the differences in the time it took
to reach maximum prevalence for positive, negative, and
null covariation were largest for lower transmission efficien-
cies (Fig. 6B). This is likely because the control, null and
positive covariation cases all saturated very quickly at higher
transmission efficiencies (Supplementary material Appendix
4 Fig. A7-A8). Consistent with susceptibility versus con-
tact rate and infectiousness versus contact rate, the realized
transmission rate () was highest for higher values of trans-
mission efficiency, and high contact variability revealed the
sharpest differences between all four types of covariation

(Fig. 6C).
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Figure 4. For infectiousness versus contact rate, violin plots depict-
ing for all covariation types: (A) the maximum prevalence reached
in 750 time steps; (B) the time it takes to reach that maximum
prevalence; and (C) the realized transmission rate (f), which
describes the rate of epidemic spread. The columns correspond to
the transmission efficiency (i.e. 0.025, 0.25 and 0.5), and the rows
correspond to the difference in mean degree (i.e. 2 or 4).
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Figure 5. Time course of simulated epidemics for infection status
versus contact rate for the lowest transmission efficiency tested of
7=0.025. Columns correspond to how infectiousness was mod-
elled (either in the exponent or the product of the final transmission
probability), and rows correspond to the mechanism of covariation:
control (all infection statuses have equal mean degree and no vari-
ability in infectiousness), null (variability in infectiousness, but no
covariation with contact rate), positive covariation, and negative
covariation. Individual trials are shown as semi-transparent, and the
numbers in the lower right hand corner of each panel describe the
percentage of simulations fading-out for each treatment. The dashed
lines in each panel correspond to the expected maximum prevalence
based on contact structure. Time courses for the corresponding
medium (t = 0.25) and high (t =0.5) transmission efficiencies are
available in the Supplementary material Appendix 4 Fig. A7-A8.

Random forest results

Variable importance scores for maximum prevalence indicate
that the physiological phenotype of the index case had the
highest importance for susceptibility versus contact rate and
infectiousness versus contact rate; this was followed in impor-
tance by separation in mean degree, and then type of covaria-
tion (Table 4). Transmission efficiency had a negligible mean
decrease in accuracy for both mechanisms in predicting maxi-
mum prevalence. For infection status versus contact rate, the
type of covariation had the highest variable importance score,
followed by transmission efficiency.

For time until maximum prevalence, index case also
had the highest importance for susceptibility versus con-
tact rate and infectiousness versus contact rate. In order
of decreasing score, this was followed by transmission effi-
ciency, type of covariation, and degree of separation. Type
of covariation was most important for predicting time until
maximum prevalence for infection status versus contact
rate (Table 4).

For the realized transmission rate (f), pathogen trans-
mission efficiency was an informative predictor for all three
experiments (Table 4). For both susceptibility versus con-
tact rate and infectiousness versus contact rate, physiol-
ogy of the index case had the highest variable importance
score, but this score was of similar order of magnitude to
pathogen transmission efficiency; variation in contact rate
had a negligible variable importance score (two orders of
magnitude lower) for both mechanisms. For infection sta-
tus versus contact rate, the transmission efficiency had the
highest ranking variable importance score, which was of
similar order of magnitude to covariation type. The form
of infectiousness (either in the exponent or the product of
the final transmission probability) had a negligible effect in
predicting all three response variables for infection status
versus contact rate.

Discussion

Accounting for contact heterogeneity has been shown to
dramatically alter disease predictions (Keeling and Eames
2005); however, our results support the idea that both het-
erogeneity in physiology and subsequent covariation of
physiology with contact rate could also powerfully influence
epidemic dynamics. Overall, we found that 1) individual
variability in susceptibility or infectiousness, which is typi-
cally unaccounted for in wildlife disease models, can both
increase epidemic variability and the likelihood of disease
fade-out; 2) when contact rate and susceptibility or infec-
tiousness negatively covary, it takes longer for epidemics to
spread throughout the population, and the rate of epidemic
spread is reduced even for highly transmissible pathogens;
and 3) reductions in contact rate resulting from infection-
induced behavioral changes can prevent the pathogen from
reaching most of the population and can dramatically limit
the rate of epidemic spread, even for pathogens with high
transmissibility.

Our results demonstrated that simply allowing for hetero-
geneity in susceptibility or infectiousness without any kind of
covariation could increase variability of epidemic outcomes.
An increase in the variability of epidemic outcomes (i.e. suc-
cessful invasion of the population versus fade-out) will have
important implications for disease predictions, control and
interventions.

The random forest analysis highlighted the potential
importance of physiological phenotype of the index case in
explaining much of the observed variation in epidemic out-
come for susceptibility versus contact rate and infectiousness

547



(A)

0.025 0.25 0.5
i 1.00 == e e —— g = - .
9 075§ x
° ° °
% 0.50- S
B @
o 0 | ] o
& 000- e ° °
c 1.00 == === = ——— ————
3 075- T
S 3
¢ 0.50§ a
9 025§ 1 8
= (] °
BOSECSESS o =
8=22 L=22 L=22
Eott® ESoE® E5E®
Z 2> Z 2o ZzZ 2o
3°¢gg 382 8°¢2

Type of covariation

—_
o
N

0.25 0.5

jusuodx3

N Ao
o O O
= S
b
=
- -

Time until maximum prevalence
o
1
[ )

Negative -l -HE—
19Npold

0- e atdas ats
= [ - U
5_%> v5_%> ©_2%¢
_ = .= 5 _ = .S S — = .
ToE® ESE® ESE
§z2%292 §z29 §z3
Q o> O o> O o

Type of covariation

G!

7~

2 0.025 0.25 05

Q9

®  0.002- -I- m

- = i-* £

O 0.001- -|-* 3

9 a ¢ 1 i 2

= 0.000*% = ° °

(/)

S 0.002- 'l' T

£ + tal

o 0.001- == c

oot B (R

S 0.000°*® ° 3

& 5_%2 5_2¢2 5_¢2
ES5E2m E520 E32®

Z 2> Z B Z ‘D oy

3£L 8°¢g2 38752

Type of covariation

Figure 6. For infection status versus contact rate, box and whisker
plots depicting for all covariation types: (A) the maximum preva-
lence reached in 750 time steps; (B) the time it takes to reach that
maximum prevalence; and (C) the realized transmission rate
(B), which describes the rate of epidemic spread. The columns
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versus contact rate. Much of this predictive power is likely a
function of how the model structured, where roughly one-
third of the population is not susceptible (s = 0) or not infec-
tious (k = 0). While such extreme physiological phenotypes
might be less common in natural populations, this theoreti-
cal finding does support the results of recent empirical work
where the index case and group composition of phenotype
played important roles in epidemic outcomes (Adelman et al.
2015, Keiser et al. 2016). Across the three different mecha-
nisms, negative covariation decreased maximum prevalence,
increased time to reach maximum prevalence, and dampened
the rate at which the disease spread through the population
relative to all other types of covariation. Universally, differ-
ences between types of covariation were strongest for theo-
retical pathogens with lower transmission efficiency, which
suggests that such heterogeneity may be most important
for less infectious, more chronic diseases in wildlife such as
bovine tuberculosis (Cosgrove et al. 2012). This finding is
consistent with studies using empirically informed networks
that have found dynamic interactions to be more important
at lower transmissibility (Chen et al. 2014, Springer et al.
2017). Additionally, differences in the time it took to reach
maximum prevalence for different types of covariation were
most pronounced for simulations with higher variation in
contact rate. In general, simulations with higher contact
variation had higher rates of epidemic spread — with the key
exception of negative covariation where the realized trans-
mission rate stayed roughly constant even at high values of
pathogen transmission efficiency (Fig. 2C, 4C, 6C).

Trends for time until maximum prevalence and the intrin-
sic rate of increase were consistent for susceptibility versus
contact rate and infectiousness versus contact rate. Across
parameter sets, infectiousness versus contact rate simulations
reached a higher maximum prevalence — a result of infec-
tiousness affecting the action rate rather than transmission
efficiency in the final transmission probability. The transmis-
sion efficiency positively correlated with the realized trans-
mission rate (B) for all three experiments (Fig. 2C, 4C, 6C),
but overall, played a negligible role in explaining maximum
prevalence, especially for susceptibility versus contact rate
and infectiousness versus contact rate. For infection status
versus contact rate, negative covariation (i.e. decreased con-
tact rate upon infection) dramatically reduced the maximum
prevalence reached within 750 time steps relative to the other
two experiments, especially for lower values of transmission
efficiency. Negative covariation also increased the time it took
to reach maximum prevalence for all values of transmission

Figure 6. Continued

correspond to the transmission efficiency (i.e. 0.025, 0.25 and 0.5)
and the rows correspond to way that individual infectiousness
affected the final transmission probability (i.e. in the exponent or
the product). Note: in this case, we elected to display results with a
box and whisker plot rather than a violin plot because the violin
plots poorly portrayed some of the distinct point values and
dichotomous epidemic outcomes.



Table 4. Variable importance results from random forest analysis. Reported as mean decrease in accuracy scores from random forest analy-
sis rounded to four significant figures. Higher values indicate a higher variable importance and corresponding predictive power.

Model outcome Variable

Infection status versus
contact rate

Infectiousness versus
contact rate

Susceptibility
versus contact rate

Maximum prevalence  Variation in contact rate (f,, separation in
mean degree)

Covariation

Transmission efficiency (t)

Physiology of the index case (B,: s or ¥)

Form of infectiousness (exponent or
product)

Variation in contact rate (B, separation in
mean degree)

Covariation

Transmission efficiency (t)

Physiology of index case (B,: s or x)

Form of infectiousness (exponent or
product)

Variation in contact rate (B, separation in
mean degree)

Covariation

Transmission efficiency (t)

Physiology of index case (B,: s or x)

Form of infectiousness (exponent or
product)

Time until maximum
prevalence

Realized beta (B)

0.07515 0.1252 -

0.04213 0.02488 0.1060
—0.0001008 0.0004898 0.06941

0.1390 0.2591 -

- - -0.0002619
5615 7261 -
8652 8439 79 560

10 180 10 380 15940
12 740 14 900 -

- - —-7.755
9.339 X 107 1.570 X 107 -
7.404 X 10 5.623 X 1077 5.0133 X 10”7
1.104 X 10% 6.402 X 1077 6.043 X 10
1.139 X 10% 6.497 X 1077 -

- - 5.436 X 10

efficiency and decreased the rate of epidemic spread. These
findings were consistent across the two different formula-
tions of final transmission probability that were simulated.
While intuitive, these results are important because reduc-
tion of activity and contact rate because of infection are well-
documented (Croft et al. 2011, Welicky and Sikkel 2015,
Lopes et al. 2016), but less commonly incorporated into dis-
ease models.

For simplicity of analyzing a complex model, we assumed
a constant population size — no births or natural or disease-
induced mortality. To limit the number of epidemiological
parameters, we also made the simplifying assumption of an
SI model rather than a more complicated SIR or SEIR disease
model. Another key assumption of our models was the dis-
crete physiological (BP) versus social (B,) states that were
assigned to each individual. Because the formation model of
STERGMs consists of a discrete set of covariates, we had to
individually assign nodes to distinct behavioral phenotypes
(e.g. low, medium and high contact rates). This feature of
STERGMs prevented us from testing a continuous covaria-
tion that might be more reasonable in empirical populations.
Future studies could test different continuous distributions
of susceptibility and infectiousness or add more discrete lev-
els of contact rate within the population. While populations
in natural settings are unlikely to replicate the exact contact
structure that we employed here, it is not uncommon to
for a small proportion of the population be responsible for
the majority of contacts. For instance, superspreaders gen-
erally represent a much smaller proportion of the popula-
tion and the resulting contact distribution is usually skewed
(Clay et al. 2009). This is sometimes referred to as the 20/80
rule, where 20% of the individuals are responsible for 80% of
the contacts (Woolhouse et al. 1997).

More work needs to be done to characterize the effects
of static network approximations on disease modelling
predictions, since our work suggests that disease-induced
behavioral changes (which are not likely to be adequately
captured through static network approximations) could
have a substantial effect on the likelihood of successful
pathogen invasion. While STERGMs are well suited to
calibration with empirical data (Jenness etal. 2016b), wild-
life host—pathogen systems with existing dynamic contact
network and individual physiological data are rare (Craft
and Caillaud 2011, White et al. 2017a). Another consider-
ation for future studies is the clumping of contacts in time
(known as bursts) in empirical systems. STERGM models
do not necessarily capture temporal clumping because they
assume an exponential probability for dissolution rate of
edges (Masuda and Holme 2013). In addition, more work
needs to be done to characterize differences in physiology
in wild populations that result from innate genetic differ-
ences and plastic responses to infection, particularly since
wild populations are often more heterogeneous and likely
to experience more heterogeneous environments than
those studied in labs (Dwyer et al. 1997). For instance,
Beldomenico and Begon (2010) highlighted how natural
populations may also experience additional interactions
between resource availability, host density and body con-
dition, which can mediate host susceptibility.

Collaboration between the fields of disease ecology and
ecoimmunology will likely yield more empirical study systems
in which these ideas can be tested (Adelman et al. 2014). In
particular, improvements in radiotelemetry, radio-frequency
identification (RFID), and temperature sensing passive inte-
grated transponder (PIT) tags may allow for concrete steps
forward in the simultaneous collection of contact and sick-
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ness behavior (Adelman et al. 2014). The type of dynamic
network modelling presented here could be used to explicitly
investigate ratios and index cases of behavioral and physio-
logical phenotypes in closed populations (Keiser et al. 2016).

Host heterogeneity in contact rate and physiology and
potential covariations between these two components
exist in a myriad of real life systems (Hawley et al. 2011,
VanderWaal and Ezenwa 2016). However, there is no con-
sistent framework that outlines when individual heteroge-
neity in pathogen transmission is important and when it
is necessary to account for those differences in sampling
or interventions, even though allowing for such differences
can markedly change predictions of an epidemic’s duration
and behavior (Keeling and Eames 2005, Meyers 2007).
By including the heterogeneity of hosts, populations or
resources in modeling approaches, disease ecologists may
develop targeted control measures that could increase the
benefit—cost ratio of management strategies (Eisinger and
Thulke 2008). This may occur through targeted monitor-
ing or interventions (including vaccination, culling, treat-
ment, etc.) on high-risk individuals, sub-populations, or
spatial hot-spots that act as ‘hubs’ for the population (Hay-
don et al. 2006). The caveat for such strategies is that the
cost of identifying ‘super’ individuals must be less than
the uniform administration of an intervention (Paull et al.
2012). Given the time and resource-intensive nature of
gathering pathogen data in wildlife populations, improved
models will provide insight to the amount of research
effort necessary to better capture the transmission process
(Krause et al. 2013, Tompkins et al. 2011). Understand-
ing how and when variability in pathogen transmission
should be modelled is a crucial next step for the field of
disease ecology and is a critical refinement for future mod-
eling strategies. Through an iterative approach to empirical
experiments and modeling (Restif et al. 2012), and addi-
tional collaboration between the fields of animal behavior,
ecoimmunology and disease ecology, we can improve dis-
ease modeling predictions to account for heterogeneity in
contact rate and host physiology, as well as the potential
feedbacks between these critical facets of pathogen trans-
mission.

Conclusions

These results highlight the importance of heterogeneity in
physiology and the potential role that covariation between
the behavioral and physiological components of pathogen
transmission could play in epidemic outcomes. Simply allow-
ing for variability in host physiology without instituting any
type of covariation fostered increased epidemic variability.
Random forest analysis supported the idea that much of this
variation could be attributed to the physiological phenotype
of the index case for susceptibility versus contact rate and
infectiousness versus contact rate, which was not surpris-
ing, given the extreme physiological phenotypes (s=x=0)
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present in the population that contributed to fade-out events.
The observed differences between different types of covaria-
tion were strongest for low transmission efficiencies and for
larger variation in contact rate, with negative covariation
increasing the time until maximum prevalence across mecha-
nisms tested. This suggests that accounting for such hetero-
geneity may be most important for less infectious, chronic
wildlife diseases and for populations that exhibit more het-
erogeneous contact structure. For infection status versus
contact rate, negative covariation dramatically decreased the
maximum prevalence reached during the duration of the
simulation, and this finding was robust to the formulation
of final transmission probability. Accounting for covaria-
tion in behavior and physiology may be important for future
wildlife disease models and disease modelling more broadly.
More empirical and modelling work should be performed to
determine the circumstances and methods for best capturing
heterogeneity in pathogen transmission.
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