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Although heterogeneity in contact rate, physiology, and behavioral response to infec-
tion have all been empirically demonstrated in host–pathogen systems, little is known 
about how interactions between individual variation in behavior and physiology scale-
up to afect pathogen transmission at a population level. he objective of this study is 
to evaluate how covariation between the behavioral and physiological components of 
transmission might afect epidemic outcomes in host populations. We tested the con-
sequences of contact rate covarying with susceptibility, infectiousness, and infection 
status using an individual-based, dynamic network model where individuals initiate 
and terminate contacts with conspeciics based on their behavioral predispositions and 
their infection status. Our results suggest that both heterogeneity in physiology and 
subsequent covariation of physiology with contact rate could powerfully inluence epi-
demic dynamics. Overall, we found that 1) individual variability in susceptibility and 
infectiousness can reduce the expected maximum prevalence and increase epidemic 
variability; 2) when contact rate and susceptibility or infectiousness negatively covary, 
it takes substantially longer for epidemics to spread throughout the population, and 
rates of epidemic spread remained suppressed even for highly transmissible patho-
gens; and 3) reductions in contact rate resulting from infection-induced behavioral 
changes can prevent the pathogen from reaching most of the population. hese efects 
were strongest for theoretical pathogens with lower transmissibility and for popula-
tions where the observed variation in contact rate was higher, suggesting that such 
heterogeneity may be most important for less infectious, more chronic diseases in 
wildlife. Understanding when and how variability in pathogen transmission should be 
modelled is a crucial next step for disease ecology.

Introduction

Direct transmission of a pathogen from one host to the next is a complex process 
that depends on host behavior, host physiology, and the transmission eiciency of 
the pathogen itself (Begon et al. 2002). In natural systems, it has been demonstrated 
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that these interrelated facets of transmission can vary widely 
between individuals. In fact, empirical studies suggest that 
unequal contact rates are the rule rather than the exception 
(Craft and Caillaud 2011), that contact rates can vary with 
infection-induced behavioral changes (Croft et al. 2011), and 
that these changes are likely non-uniform across individu-
als (Lopes et al. 2016). Innate and plastic heterogeneity in 
susceptibility to infection has been documented for several 
species (Dwyer et al. 1997, Beldomenico and Begon 2010, 
Gibson et al. 2016), and variability in infectiousness has also 
been observed, particularly when concomitant infections 
are present (Cattadori et al. 2007). Finally, there is evidence 
that the irst individual infected in a population (i.e. the 
index case) and the relative composition of behavioral phe-
notypes (e.g. bold versus shy continuum) can substantially 
alter how efectively a pathogen spreads within a population 
(Adelman et al. 2015, Keiser et al. 2016). 

Nevertheless, it is not uncommon for disease models to 
overlook individual variation in behavior and physiology. 
his is often done for practical or necessary reasons, but has 
resulted in a lack of understanding of how these heteroge-
neities scale up to afect disease dynamics in natural popula-
tions (Beldomenico and Begon 2010, Barron et al. 2015). 
he rate at which a pathogen will spread in a host popu-
lation is a function of the number of infected individuals 
(I), the number of susceptible individuals (S), and the rate 
(β) at which infectious individuals successfully transmit the 
pathogen. he transmission rate (β) encapsulates two sepa-
rate processes that are required for a successful transmission 
event: 1) an appropriate contact between a susceptible and 
infectious individual, and 2) the actual transmission between 
an infected and susceptible host given contact, which 
depends upon the physiology of both the host and the patho-
gen (McCallum et al. 2017) (see Supplementary material 
Appendix 1 for a schematic representing transmission and 
deinitions of key terms). hus, β can further be broken down 
into the behavioral (βc) and physiological (βp) components of 
transmission, respectively (Hawley et al. 2011). he apparent 
simplicity of β as a single parameter may belie non-linearities 
that can arise at any stage of transmission and afect a patho-
gen’s spread through a population (McCallum et al. 2017).

Interactions between the behavioral and physiological 
components of transmission may arise under a variety of 
contexts for wildlife (Supplementary material Appendix 1), 
and the efects of these interactions can be exacerbated by 
host behavior–parasite feedback loops (Ezenwa et al. 2016). 
Covariation between susceptibility and exposure to patho-
gens in wildlife may be mediated through both the neuro-
endocrine system and behavioral syndromes (Hawley et al. 
2011). For instance, in some species, testosterone in males 
not only increases exposure through agonistic contacts, but 
can also raise males’ susceptibility to parasites (Grear et al. 
2009). here is also evidence that suites of behaviors (e.g. 
coping style) can mediate individual exposure risk, and that 
those same behavioral syndromes are often associated with 
distinct physiological traits as well (e.g. hypothalamic–
pituitary–adrenal (HPA) axis reactivity and stress levels) 

(Natoli et al. 2005, Koolhaas 2008). Finally, covariation 
between infectiousness and contact rate can arise when patho-
gens alter host behavior to make it easier for the pathogen to 
spread between hosts (particularly in trophically transmitted 
parasites, Berdoy et al. 2000) or indirectly through sickness 
behaviors that reduce host activity levels such as fever, leth-
argy, and limited foraging (Adelman et al. 2014, Welicky and 
Sikkel 2015). Alternatively, uninfected individuals may avoid 
infected conspeciics, or infected individuals may associate 
less with their counterparts (Croft et al. 2011). Modeling 
studies in humans have begun to incorporate the efects of 
behavioral changes in response to infectious disease, includ-
ing adherence to vaccination programs, fear-induced contact 
reduction, hygiene improvement, or changes in mobility 
or traveling (Coelho and Codeço 2009, Funk et al. 2010, 
Meloni et al. 2011), but few investigations have been made 
into the efects of behavioral changes on the spread of disease 
in natural populations. Notably, since physiology can covary 
with behavior, disease models should ideally incorporate pos-
sible interactions between these two components, not just 
including one component or the other (Hawley et al. 2011). 

For example, “superspreaders” are individuals that con-
tribute a disproportionately high number of secondary cases 
either through an unusually high number of contacts or 
by being especially infectious (Lloyd-Smith et al. 2005). In 
disease ecology, however, the focus has largely been on vari-
ability in contact rate (βc) (VanderWaal and Ezenwa 2016, 
White et al. 2017a), while individual heterogeneity in physi-
ology, plasticity in behavior in response to infection, and 
possible covariation between behavioral and immune com-
petence have been somewhat neglected (Barron et al. 2015). 
he role that physiological immunity might play in super-
spreading has not been fully elucidated (Hawley and Altizer 
2011, VanderWaal and Ezenwa 2016), but there is evidence 
that some individuals are particularly vulnerable to infection 
(super-receivers) or particularly adept at transmitting the 
pathogen to others due to high infection load or shedding 
rates (super-shedders) (Cattadori et al. 2007, Zohdy et al. 
2012).

Without modiication, an underlying assumption of tra-
ditional, mean-ield disease models is that every individual 
in a population has an equal probability of contacting and 
infecting any other individual (Anderson and May 1991). 
hese compartmental models can be constructed to relect 
diferent categories of relative risk according to factors like 
sex or age, which has been done for HIV (Anderson et al. 
1986, May et al. 1988). For instance, for the gypsy moth 
and its nuclear polyhedrosis virus, Dwyer et al. (1997) 
incorporated a continuous distribution of susceptible classes 
and demonstrated a resulting non-linear relationship between 
virus density and transmission. In some cases, however, it is 
also important to account for variable contact rates in order 
to explain superspreading patterns (Lloyd-Smith et al. 2005, 
Meyers 2007). Network models are a tool that can capture 
individual variability in the number and rate of contacts (βc). 
With a network modeling approach, a contact (i.e. an edge) 
is any interaction that could allow for transmission of an 
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infectious agent between a pair of individuals (i.e. nodes). In 
general, network models that account for contact heterogene-
ity predict less frequent, but more explosive outbreaks than 
their compartmental model counterparts (Lloyd-Smith et al. 
2005). 

Many wildlife studies still employ static networks, 
which do not relect real-time behavioral shifts or poten-
tially capture changes in the network in response to disease 
(Masuda and Holme 2013, White et al. 2017a). In contrast, 
dynamic network models describe association patterns in 
real-time and allow for rewiring events in which individu-
als can change who they are interacting with at any given 
time step (Blonder et al. 2012). Dynamic networks can be 
thought of as a continuum between mass-action models, 
which have high mixing rates, and static network models, 
which have ixed and prolonged contacts (Volz and Mey-
ers 2007, Bansal et al. 2010). However, the implications 
of using static versus dynamic contact networks for disease 
model predictions are still not fully understood, and the tools 
for dynamic network analysis lag behind their static coun-
terparts (Blonder et al. 2012, Masuda and Holme 2013). 
In a theoretical framework, utilizing a static network for a 
dynamic system was found to overestimate epidemic predic-
tions (Feferman and Ng 2007, Masuda and Holme 2013). 
Similarly, incorporating dynamic, empirically-based interac-
tions in livestock networks markedly changed predicted epi-
demic outcomes; Chen et al. (2014) incorporated temporal 
variability with and without changes in individuals’ degree 
order and observed greater discrepancies in predictions for 
pathogens with lower values of R0. Springer et al. (2017) 
found that incorporating dynamic interactions increased the 
theoretical transmission of cryptosporidium through wild 
lemur networks. However, Stehlé et al. (2011) suggested that 
daily aggregated networks were acceptable proxies for real-
time dynamic networks for an SEIR model of conference 
attendees. As of now, the implications of including dynamic 
interactions appears to be highly system speciic, and there is 
no clear consensus on when dynamic interactions should be 
incorporated into disease models (White et al. 2017a).

In this manuscript, we employ an individual-based, 
dynamic network modeling approach because dynamic net-
works allow us to explicitly incorporate contact heterogene-
ity, variability in physiology, and behavioral changes resulting 
from infection. Speciically, we ask: how might possible 
covariation in the behavioral (βc) and the physiological (βp) 
components of transmission afect epidemic dynamics? We 

tested scenarios where contact rate covaried with suscepti-
bility, infectiousness, or infection status. his last scenario 
allowed us to investigate how infection-induced behavioral 
changes could potentially afect disease dynamics. For a theo-
retical, directly-transmitted pathogen, we evaluated how these 
diferent covariation scenarios might afect epidemic variabil-
ity in the forms of: maximum prevalence reached, the time it 
took to reach maximum prevalence, the realized transmission 
rate, and the likelihood of epidemic fade-out. By fade-out, we 
are referring to simulations where the pathogen never spreads 
beyond the initially infected individual. We conducted 
a random forest analysis to identify key factors that were 
most likely to explain these metrics. While previous contact 
network studies have identiied the importance of contact 
heterogeneity within a population (Lloyd-Smith et al. 2005), 
our results suggest that both heterogeneity in physiology and 
subsequent covariation of physiology with contact rate could 
powerfully inluence epidemic dynamics.

Methods

We developed an individual-based, dynamic network model 
that explores how heterogeneity in individual contact behav-
ior, susceptibility, and infectiousness can interact to afect 
pathogen transmission. We employed a susceptible–infected 
(SI) model to describe the spread of a pathogen through a 
closed population, assuming no births, deaths or disease-
related mortality (Anderson and May 1991). We used a 
factorial design to explore the efects of epidemiological 
parameters on epidemic outcomes and measured the maxi-
mum prevalence reached during 750 time steps, the number 
of time steps it took to reach that maximum prevalence, and 
the rate of epidemic spread. Simulations were conducted for 
a population size of 525 individuals with 100 repetitions per 
parameter set (Table 1). 

Dynamic network framework

At each time step during the simulation, individuals (nodes) 
could form or remove contacts (edges) with conspeciics 
based on their intrinsic individual behavioral phenotype (i.e. 
contact rate, βc). his dynamic network behavior relies on 
a discrete time, separable temporal exponential-family ran-
dom graph model (STERGM) framework, which allows for 
biologically realistic variation in mean degree, duration of 

Table 1. Variables and parameters used in models.

Parameter Levels Values

Transmission efficiency (τ) low, medium, high 0.025, 0.25, 0.5
Total separation between mean degree (βc) low, high 2, 4, 6 ( 2); 0, 4, 8 ( 4)
Dissolution rate of edges constant 25 time steps
Population size constant 525 individuals
Total density of network/edges constant expected mean degree  4
Duration of simulation constant 750 time steps
Number of simulations per parameter set constant 100
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contacts, and disease-induced behavioral changes (Krivitsky 
and Handcock 2014). hese models are built on an expo-
nential random graph (ERGM) framework; ERGMs are a 
family of statistical models that describe random graphs (i.e. 
random networks) based on their underlying node attributes 
such as degree, betweenness, transitivity, etc. (Robins et al. 
2007). A random graph Y consists of nodes, n, and edges, 
m, with state space: { : , ; , , }Y i n j nij = … = …1 1 . Yij = 1  if an 

edge exists between nodes i and j, and Yij = 0  otherwise. he 

basic form of an ERGM is: P Y y
g y

k y
=( ) =

( )( )
( )

exp θ′
, which 

describes the probability of observing a given network, y, 
given the space of all possible networks, Y, that could exist 
for a given set of nodes. he numerator contains both a set 
of model statistics g y( )  and coeicients corresponding to 
those statistics, θ . he denominator, k y( ) , represents the 
sum of the numerator across all possible networks (Krivitsky 
and Handcock 2014). STERGMs extend into discrete time 
by utilizing two independent ERGMs: a formation and dis-
solution model. STERGMs employ the Markov assump-
tion that the state of a network at the current time step 
is memoryless – so the formation and dissolution of edges 
is only dependent upon the current state of the network 
(Hanneke et al. 2010). We assume the simplest case for the 
dissolution model – that all edges have the same probability 
of dissolving (i.e. a Bernoulli process). For all simulations, 
we assumed a constant edge dissolution probability of 25 
time steps (Table 1).

Models were constructed in R (ver. 3.3.2,  www.r-
project.org ) using self-written modules in the ‘EpiModel’ 
package (ver. 3.4.0,  www.epimodel.org/ ) (Jenness  
et al. 2016a). he EpiModel package provides a suite of pre-
written and modiiable functions for simulating infectious 
disease dynamics, including stochastic network models 
that rely on temporal ERGMs from the ‘statnat’ package. 
he EpiModel package has been used to investigate com-
plex disease dynamics and interventions for diseases like 
HIV (Jenness et al. 2016b). Fully annotated sample code 
is provided in the Supplementary material Appendix 2, 
and all code and simulation data for the manuscript are 

available from the Dryad Digital Repository (White et al. 
2017b).

Covariation: incorporating βc and βp

We considered three mechanisms by which the physiological 
components of transmission (βp) and contact rate (βc) may 
covary: 1) susceptibility versus contact rate; 2) infectious-
ness versus contact rate; and 3) infection status versus con-
tact rate (Supplementary material Appendix 1 Fig. A2). For 
each scenario, we tested a control scenario where individuals 
exhibited no variation in physiology (βp) but heterogeneity in 
contact rate (βc), a null scenario where individuals exhibited 
heterogeneity in physiology (βp) but no heterogeneity in con-
tact rate (βc), a positive covariation scenario where physiology 
(βp) positively covaries with contact rate (βc) (Supplemen-
tary material Appendix 1 Fig. A2a, blue line), and a negative 
covariation scenario where physiology (βp) negatively covaries 
with contact rate (βc) (Supplementary material Appendix 1 
Fig. A2a, red line). 

At the start of each simulation, every individual was 
assigned an intrinsic contact rate (βc) and physiological 
state (βp) – either susceptibility (s) or infectiousness ( )κ  
depending on the experiment. he behavioral component of 
transmission (βc) was thus incorporated implicitly into the 
transmission process by determining which hosts are contact-
ing one another at any given time step based on the dynamic 
network simulation. For a given set of conditions, the popu-
lation was divided equally into thirds (175 individuals per 
sub-group) with each group assigned a higher-than-average 
(‘high’), an average (‘medium’), or a lower-than-average 
(‘low’) number of contacts (Supplementary material Appen-
dix 1 Fig. A2b; Table 2). hese behavioral phenotypes can be 
thought of as corresponding roughly to spectrums of indi-
vidual personality (e.g. shy versus bold) that might dictate 
social behavior. Empirical studies in wildlife have cited mean 
degrees ranging from less than one to approximately eight 
(Godfrey et al. 2009, Perkins et al. 2009, Hirsch et al. 2013). 
We simulated a mean degree of 4, which appears to be a rea-
sonable approximation for social animals like macaques and 
prairie dogs (MacIntosh et al. 2012, Verdolin et al. 2014). 

Table 2. Experimental design for sections ‘Susceptibility versus contact rate’ and ‘Infectiousness versus contact rate’.

Type of covariation
No. of individuals in 

sub-group
Mean degree for ‘low’ contact 

variability treatment (βc)
Mean degree for ‘high’ contact 

variability treatment (βc)
βp (susceptibility, s, or 

infectiousness, κ)

Control 175 2 0 1
175 4 4 1
175 6 8 1

Null 175 4 4 unif {0,2}
175 4 4 unif {0,2}
175 4 4 unif {0,2}

Positive 175 2 0 0
175 4 4 1
175 6 8 2

Negative 175 2 0 2
175 4 4 1
175 6 8 0
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For susceptibility versus contact rate and infectiousness ver-
sus contact rate, individuals with higher-than-average or 
lower-than-average contact rates had an absolute diference 
in mean degree of either 2 or 4. So, for example, simula-
tions with a ‘low’ separation of mean degree would have 
three separate groups with mean degrees of 2, 4 and 6 (e.g. 
Supplementary material Appendix 1 Fig. A2b), and those 
with a ‘high’ separation would have three separate groups 
with mean degrees of 0, 4 and 8 (Table 1). In terms of sim-
ulating the STERGM, the only network statistic, g y( ) ,  
included is mean degree and the coeicients are θ = [ ]2 4 6  
or θ = [ ]048  for low and high variation in contact rate, 
respectively (Table 2).

We incorporate the physiological component of transmis-
sion, βp, explicitly into the inal probability of transmission 
given contact (i.e. the existence of an edge in the dynamic 
network). Depending on the experiment, βp is represented 
either through susceptibility of the susceptible host, s, or 
infectiousness of the infected host, κ . To induce covaria-
tion, individuals were assigned physiological states (βp) cor-
responding to their contact rates. For these physiological 
states, individuals were assigned a ‘low’, ‘medium’ or ‘high’ 
value (0, 1 or 2, respectively) for their susceptibility (s) or 
infectiousness (κ) – such that the average susceptibility or 
infectiousness in the population would always be approxi-
mately equal to 1 (Table 2). 

The mechanism of transmission

he possibility of transmission was evaluated at each time step 
if 1) two nodes shared an edge, and 2) one node was infected 
and one node was susceptible. he inal transmission prob-
ability, P T( ) , that we used for this model is based on the 
intuition involved in the Reed–Frost or chain binomial mod-
els which estimate the likelihood that an individual ‘escapes’ 
infection during a discrete time step (Kyvsgaard et al. 2007). 
Instead of calculating the likelihood of an individual escap-
ing infection from multiple infectious hosts in the popula-
tion, we allow for the possibility that during a time step, 
multiple opportunities for transmission could occur when a 
susceptible and infectious host share an edge in the dynamic 
network. his might correspond to discrete events like bites, 
coughing, sneezing, vector transfer, etc. he resulting inal 
transmission probability is:  P T( ) = − −( )1 1 τ

α  where τ rep-
resents the transmission eiciency per individual interac-
tion, and the action rate, α, represents the potential number 
of infectious interactions that could occur via an edge per 
time step. While the transmission eiciency likely represents 
a complex relationship between pathogen physiology and 
host immunocompetence, we use it here to represent the 
idea that, all else being equal, certain pathogens are more 
infectious than others on average (Supplementary material 
Appendix 1). We vary transmission eiciency, τ, in our fac-
torial design (Table 1) and discuss the modiications for the 
inal transmission probability for each speciic experimental 
scenario below.

Susceptibility versus contact rate

For this mechanism, individuals varied in βp via their sus-
ceptibility (s, likelihood of being infected given contact with 
an infected conspeciic). A successful transmission event was 
dependent upon the innate susceptibility (s) of the suscep-
tible contact in the susceptible–infected dyad such that the 
inal transmission probability, P T( ) , took the form: 

P T s( ) = − − ×( )1 1 1min{ , }τ
α

Here, action rate (α) is deined as the number of possible 
transmission events per time step. In this scenario, we 
assume the action rate to be equal to one per time step for 
each susceptible–infectious interaction, so the inal trans-
mission probability simpliies to P T s( ) = ×min{ , }1 τ . At 
time step t  1, one individual was randomly selected to be 
the irst infected individual (i.e. the index case). If the irst  
randomly selected individual had a susceptibility of zero 
(s  0), the pathogen could not propagate further. 

Infectiousness versus contact rate

For this mechanism, individuals varied in βp via their 
infectiousness (κ, likelihood of successfully transmitting the 
pathogen given contact with an uninfected conspeciic). In 
this model, the probability of successful transmission, P T( ) ,  
to a susceptible individual given contact with an infectious 
individual was proportional to the infectiousness of the 
infected contact: 

P T( ) = − −( )
×

1 1 τ
α κ

In this case, infectiousness (κ) was modelled as afecting the 
action rate (α), which could be interpreted as the pathogen 
load or the amount of shedding by an infectious host per 
time step. At time step t  1, one individual was randomly 
selected to be the irst infected individual (i.e. the index case). 
If the irst randomly selected individual had an infectiousness 
of zero (κ  0), the pathogen could not propagate further. 

Infection status versus contact rate: disease-induced 
behavioral changes 

he objective of this scenario was to test the possible efects 
of sickness-induced behavioral changes. For example, a very 
sick individual that is highly infectious might increase their 
contact rate (e.g. furious rabies) or decrease their contact 
rate because of fever, lethargy, or anorexia (Adelman et al. 
2014, Welicky and Sikkel 2015). To consider the possibil-
ity that the magnitude of behavioral change is correlated 
with infectiousness (e.g. individuals with a higher pathogen 
load might display more extreme sickness behaviors), we 
allow individuals to become either ‘highly infectious’ or ‘less 
infectious’ post-exposure with a corresponding change in 
contact rate (βc) depending on the type of covariation (Table 
3). It is worth noting that in the above scenarios (‘Suscep-
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tibility versus contact rate’ and ‘Infectiousness versus con-
tact rate’) it is possible for a secondary correlation to result 
between contact rate and infection status. For example, in 
the positive covariation scenario for susceptibility versus 
contact rate, we would expect highly susceptible individu-
als (who also have higher contact rates) to become infected 
irst. his experiment difers from the previous two in that 
contact rate is allowed to change explicitly as a result of 
infection status. 

To begin, we modelled a control case where no changes in 
contact rate (βc) occurred post-infection and individual infec-
tiousness was homogenous throughout the population (κ  1 
for all individuals). For the null case, there was no change 
in contact rate (βc) upon infection, but individuals had het-
erogeneity in infectiousness (individuals were randomly 
assigned an infectiousness of κ 1 or 2 upon infection). For 
positive and negative covariation, an individual’s contact rate 
increased or decreased upon infection respectively, and after 
a successful exposure, individuals had an equal likelihood of 
becoming highly infectious (κ  2) or less infectious (κ  1) 
(Table 3). Unlike the irst two scenarios tested (above), each 
simulation began at t  1 with two infected individuals. For 
the null, positive, and negative covariation cases, these con-
sisted of one highly infectious individual (κ  2) and one less 
infectious individual (κ  1); it was necessary to include both 
classes of infected individuals at the start of the simulation for 
the purposes of calibrating the dynamic network. All remain-
ing susceptible individuals started with a mean degree of four. 
For positive covariation, less infectious individuals increased 
their expected mean degree to 6, and highly infectious indi-
viduals increased their expected mean degree to 8. Likewise, 
for negative covariation, less infectious individuals decreased 
their expected mean degree to 2, and highly infectious indi-
viduals decreased their expected mean degree to 0 (Table 
3). In the EpiModel package, this was achieved by using 
infection status itself as a network statistic via the ‘nodefac-
tor’ term for simulating the dynamic network (Jenness et al. 
2016a). his term of the model allows diferent sub-groups 
of the population to have heterogeneity in their attributes – 
in this case, mean degree (Jenness et al. 2016a). However, 
infected individuals were not any more likely to form edges 
with susceptible conspeciics than infected conspeciics, so 
there was no preferential mixing as a result of infection sta-
tus. A necessary consequence of including infection status as 
a factor governing edge formation was that network density 

either increased (positive covariation) or decreased (negative 
covariation) over time.

We tested two forms of infectiousness: 1) the form 
described in ‘Infectiousness versus contact rate’ where 
infectiousness inluences the action rate in the exponent 
of the inal transmission probability  P T( ) = − −( )

×

1 1 τ
α κ

;  
and 2) a form where infectiousness (κ) directly modiies 
the probability of infection (‘Susceptibility versus con-
tact rate’) so that the inal transmission probability was 
equal to: P T( ) = − − ×( )1 1 1min{ , }τ κ

α , which simpliies to 
P T( ) = ×{ }min ,1 τ κ  when the action rate, α = 1 .

Metrics and nonlinear least square regression

We included four metrics to investigate diferences in epi-
demic outcomes across experiments and covariation types. 
First, we measured the maximum prevalence reached in 750 
time steps. Because this is an SI model, the mean maximum 
prevalence relects both the maximum prevalence reached by 
successful simulation runs and the percentage of epidemics 
fading-out. We also explicitly measured the time it took to 
reach maximum prevalence and the percentage of simulation 
runs fading-out for each treatment. 

Finally, since the contact structure of diferent experimen-
tal set-ups (particularly those with higher variation in contact 
rate) could limit the proportion of the population eligible 
to be infected, we measured a ‘realized’ transmission rate ( β )  
to estimate the rates of epidemic spread in each popula-
tion. To do this we used nonlinear least square regression 
implemented through the ‘nlsLM’ function in the ‘minpack.
lm’ package (ver. 1.2-1) in R (Elzhov et al. 2016). We it 
each individual epidemic simulation to the logistic growth  

equation: I t
K

b e Kt( ) =
+ × −1 β

 where I t( )  is the number of 

infected individuals at time t; K is the carrying capacity; β  
is the realized transmission rate, and b is a scaled parameter 

equal to K I

I

− 0

0

 where I0 is the initial population size at time 

zero (derivation in the Supplementary material Appendix 3).  
We assigned values of I0 appropriate to each simulation  
(I0  1 for susceptibility or infectiousness versus contact 
rate and I0  2 for infection status versus contact rate), and 
we allowed both K and β to vary to determine the best it, 
although K was not allowed to exceed the total number of 
individuals in the simulation. 

Table 3. Experimental design for section ‘Infection status versus contact rate’.

Type of covariation
Mean degree  

pre-exposure (βc)
Mean degree  

post-infection (βc)
βp (infectiousness,  
κ)- post-infection

Percent of individuals 
(post-exposure) (%)

Control 4 4 1 (low infectious) 100
Null 4 4 1 (low infectious) 50
 4 4 2 (high infectious) 50
Positive 4 6 1 (low infectious) 50
 4 8 2 (high infectious) 50
Negative 4 2 1 (low infectious) 50
 4 0 2 (high infectious) 50
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Random forest analysis

In simulation studies, signiicance testing can be less useful 
because an essentially unlimited sample size can result in label-
ing even small diferences in the magnitude of outcomes as 
statistically signiicant (White et al. 2014). To further a descrip-
tive approach to the analysis of our simulation results, we have 
used random forest analysis – a machine learning method that 
can handle complex, non-linear relationships between model 
inputs and outputs, as well as potential collinearity between 
covariates (Cutler et al. 2007). Random forest analysis is a 
recursive partitioning method that combines the predictions 
from numerous ittings of classiication trees to the same set 
of data (Breiman 2001, Cutler et al. 2007). Variable impor-
tance measures resulting from these analyses can be used to 
estimate the relative importance of a covariate in determining 
model outcomes, and unlike most univariate methods, can 
account for possible correlations between inputs. To calculate 
variable importance, we employed a measure of permutation 
importance which has been demonstrated to be more robust 
than node impurity (Strobl et al. 2007, 2009). Using the 
‘cforest’ function in the ‘party’ package in R (ver. 3.3.2), we 
simulated 10 000 trees per analysis to ensure that the order 
of variable importance was robust to changes in the random 
seed, and we calculated mean decrease in accuracy variable 
importance scores using the ‘varimp’ function in the ‘party’ 
package (Hothorn et al. 2006, Strobl et al. 2007, 2009). he 
mean decrease in accuracy describes the loss of predictive 
value that results from a particular variable being randomly 
permutated. Stated another way, higher mean decrease in 
accuracy scores indicate a greater importance in model predic-
tion. For susceptibility versus contact rate and infectiousness 
versus contact rate, we included the following as covariates: 
transmission eiciency, separation between mean degree, type 
of covariation, and physiological phenotype of the index case. 
For infection status versus contact rate, we included transmis-
sion eiciency, type of covariation, and form of infectiousness 
(i.e. in the exponent or the product of the inal transmission 
probability). he response variables for all three mechanisms 
were: maximum prevalence, time until maximum prevalence, 
and the realized β.

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.8t201  (White et al. 2017b).

Results

Susceptibility versus contact rate 

Allowing for variability in susceptibility of the host popu-
lation (null case) reduced the maximum prevalence reached 
during the 750-step simulation (compared to the control case) 
and increased the variability of observed epidemic outcomes 
with at least one-quarter of epidemics fading out (Fig. 1, 2). 

his inding was consistent across diferences in mean degree 
and for diferent transmission eiciencies (Supplementary 
material Appendix 4 Fig. A3–A4). In general, for simulations 
with higher variation in contact rate (i.e. diference in mean 
degree of 4), the maximum prevalence was lower relative to 
corresponding simulations with smaller variations in contact 
rate (i.e. diference in mean degree of 2). his inding relects 
the fact that one-third of the population is expected to be 
isolated (βc  0) for networks constructed with higher varia-
tion in contact rate (i.e. mean degree diference  4). Nota-
bly, positive covariation counteracted this observed diference 

Figure 1. Time course of simulated epidemics for susceptibility ver-
sus contact rate for the lowest transmission eiciency tested of 
τ  0.025. Columns correspond to the diference in mean degree 
tested, and rows correspond to the mechanism of covariation: con-
trol (no variability in susceptibility, no covariation), null (variability 
in susceptibility, no covariation), positive covariation, and negative 
covariation. Individual trials are shown as semi-transparent, and the 
numbers in the lower right hand corner of each panel describe the 
percentage of simulations fading-out for each treatment. he dashed 
lines in each panel correspond to the expected maximum prevalence 
based on contact structure. For higher variations in contact rate, 
one-third of the population has a βc  0, limiting maximum preva-
lence to 0.66. Time courses for the corresponding medium 
(τ  0.25) and high (τ  0.5) transmission eiciencies are available 
in the Supplementary material Appendix 4 Fig. A3–A4.
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in maximum prevalence between the control case and other 
covariation types, and this efect was consistent across infec-
tion probabilities (Fig. 2A). In the case of negative covaria-
tion, there was an observable increase in the time it took to 
reach maximum prevalence relative to the control, null, and 
positive covariation scenarios; this increase was the greatest for 
lower transmission eiciencies and higher variation in contact 
rate (Fig. 2B). In general, the epidemics spread more quickly 
with higher transmission eiciency, regardless of variation  
in contact rate. he diferences in the realized β between 
positive and negative covariation were largest for higher values 
of transmission eiciency and high contact rate variability 
(Fig. 2C). Negative covariation continued to substantially 
suppress the realized β even at higher values of transmission 
eiciency.

Infectiousness versus contact rate

Variability in infectiousness (null case) increased variabil-
ity in epidemic outcomes (Fig. 3); simulations experienced 
fade-out because of those individuals in the population with 
an infectiousness of zero (κ  0). hese observations were 
consistent across simulated diferences in mean degree and 
transmission eiciencies (Supplementary material Appendix 4 
Fig. A5–A6). As with susceptibility versus contact rate, a larger 
simulated variation in contact rate within the population also 
decreased the maximum prevalence, even in the control case 
(Fig. 4A); this was the result of a contact structure where 
one-third of the population was socially isolated (βc  0). For 
negative covariation, there was a substantial increase in the 
time it took to reach maximum prevalence relative to the 
control, null, and positive covariation scenarios; this efect 
was most pronounced for lower transmission eiciencies 
and higher variation in contact rate (Fig. 4B). Similar to 
the results for susceptibility versus contact rate, a faster rate 
of epidemic spread occurred for simulations with higher 
transmission eiciency regardless of variation in contact rate, 
and the diference in magnitude of the realized β between 
positive and negative covariation was largest for higher 
values of transmission eiciency and contact rate variability 
(Fig. 4C).

Infection status versus contact rate

For infection status versus contact rate, we tested two ways 
that infectiousness might play into the inal transmission 
probability (‘Infection status versus contact rate: disease-
induced behavioral changes’), but results were consistent 
across these two diferent formulations. As with suscepti-
bility versus contact rate and infectiousness versus contact 
rate, simply including heterogeneity in physiology increased 
variability in epidemic outcome (Fig. 5; compare control 
versus null cases). Reduction in contact rate upon infection 
(negative covariation) drastically reduced the maximum 
prevalence reached within 750 time steps (Fig. 5, 6A), while 
increasing contact rate upon infection (positive covaria-
tion) had a comparatively minimal efect on increasing the 
maximum prevalence relative to the null and control cases 

Figure 2. For susceptibility versus contact rate, violin plots depicting 
for all covariation types: (A) the maximum prevalence reached in 
750 time steps; (B) the time it takes to reach that maximum preva-
lence; and (C) the realized transmission rate (β), which describes the 
rate of epidemic spread. he columns correspond to the transmis-
sion eiciency (i.e. 0.025, 0.25 and 0.5), and the rows correspond 
to the diference in mean degree (i.e. 2 or 4).
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(Fig. 5, 6A). In general, the diferences in the time it took 
to reach maximum prevalence for positive, negative, and 
null covariation were largest for lower transmission eicien-
cies (Fig. 6B). his is likely because the control, null and 
positive covariation cases all saturated very quickly at higher 
transmission eiciencies (Supplementary material Appendix 
4 Fig. A7–A8). Consistent with susceptibility versus con-
tact rate and infectiousness versus contact rate, the realized 
transmission rate (β) was highest for higher values of trans-
mission eiciency, and high contact variability revealed the 
sharpest diferences between all four types of covariation 
(Fig. 6C).

Figure 3. Time course of simulated epidemics for infectiousness 
versus contact rate for the lowest transmission eiciency tested of 
τ  0.025. Columns correspond to the diference in mean degree 
tested, and rows correspond to the mechanism of covariation: 
control (no variability in infectiousness, no covariation), null 
(variability in infectiousness, no covariation), positive covaria-
tion, and negative covariation. Individual trials are shown as semi-
transparent, and the numbers in the lower right hand corner of 
each panel describe the percentage of simulations fading-out for 
each treatment. he dashed lines in each panel correspond to the 
expected maximum prevalence based on contact structure. For 
higher variations in contact rate, one-third of the population has a 
βc  0, limiting maximum prevalence to 0.66. Time courses for the 
corresponding medium (τ  0.25) and high (τ  0.5) transmission 
eiciencies are available in the Supplementary material Appendix 
4 Fig. A5–A6.

Figure 4. For infectiousness versus contact rate, violin plots depict-
ing for all covariation types: (A) the maximum prevalence reached 
in 750 time steps; (B) the time it takes to reach that maximum 
prevalence; and (C) the realized transmission rate (β), which 
describes the rate of epidemic spread. he columns correspond to 
the transmission eiciency (i.e. 0.025, 0.25 and 0.5), and the rows 
correspond to the diference in mean degree (i.e. 2 or 4).
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Random forest results

Variable importance scores for maximum prevalence indicate 
that the physiological phenotype of the index case had the 
highest importance for susceptibility versus contact rate and 
infectiousness versus contact rate; this was followed in impor-
tance by separation in mean degree, and then type of covaria-
tion (Table 4). Transmission eiciency had a negligible mean 
decrease in accuracy for both mechanisms in predicting maxi-
mum prevalence. For infection status versus contact rate, the 
type of covariation had the highest variable importance score, 
followed by transmission eiciency.

For time until maximum prevalence, index case also 
had the highest importance for susceptibility versus con-
tact rate and infectiousness versus contact rate. In order 
of decreasing score, this was followed by transmission ei-
ciency, type of covariation, and degree of separation. Type 
of covariation was most important for predicting time until 
maximum prevalence for infection status versus contact 
rate (Table 4). 

For the realized transmission rate (β), pathogen trans-
mission eiciency was an informative predictor for all three 
experiments (Table 4). For both susceptibility versus con-
tact rate and infectiousness versus contact rate, physiol-
ogy of the index case had the highest variable importance 
score, but this score was of similar order of magnitude to 
pathogen transmission eiciency; variation in contact rate 
had a negligible variable importance score (two orders of 
magnitude lower) for both mechanisms. For infection sta-
tus versus contact rate, the transmission eiciency had the 
highest ranking variable importance score, which was of 
similar order of magnitude to covariation type. he form 
of infectiousness (either in the exponent or the product of 
the inal transmission probability) had a negligible efect in 
predicting all three response variables for infection status 
versus contact rate.

Discussion

Accounting for contact heterogeneity has been shown to 
dramatically alter disease predictions (Keeling and Eames 
2005); however, our results support the idea that both het-
erogeneity in physiology and subsequent covariation of 
physiology with contact rate could also powerfully inluence 
epidemic dynamics. Overall, we found that 1) individual 
variability in susceptibility or infectiousness, which is typi-
cally unaccounted for in wildlife disease models, can both 
increase epidemic variability and the likelihood of disease 
fade-out; 2) when contact rate and susceptibility or infec-
tiousness negatively covary, it takes longer for epidemics to 
spread throughout the population, and the rate of epidemic 
spread is reduced even for highly transmissible pathogens; 
and 3) reductions in contact rate resulting from infection-
induced behavioral changes can prevent the pathogen from 
reaching most of the population and can dramatically limit 
the rate of epidemic spread, even for pathogens with high 
transmissibility. 

Our results demonstrated that simply allowing for hetero-
geneity in susceptibility or infectiousness without any kind of 
covariation could increase variability of epidemic outcomes. 
An increase in the variability of epidemic outcomes (i.e. suc-
cessful invasion of the population versus fade-out) will have 
important implications for disease predictions, control and 
interventions. 

he random forest analysis highlighted the potential 
importance of physiological phenotype of the index case in 
explaining much of the observed variation in epidemic out-
come for susceptibility versus contact rate and infectiousness 

Figure 5. Time course of simulated epidemics for infection status 
versus contact rate for the lowest transmission eiciency tested of 
τ  0.025. Columns correspond to how infectiousness was mod-
elled (either in the exponent or the product of the inal transmission 
probability), and rows correspond to the mechanism of covariation: 
control (all infection statuses have equal mean degree and no vari-
ability in infectiousness), null (variability in infectiousness, but no 
covariation with contact rate), positive covariation, and negative 
covariation. Individual trials are shown as semi-transparent, and the 
numbers in the lower right hand corner of each panel describe the 
percentage of simulations fading-out for each treatment. he dashed 
lines in each panel correspond to the expected maximum prevalence 
based on contact structure. Time courses for the corresponding 
medium (τ  0.25) and high (τ  0.5) transmission eiciencies are 
available in the Supplementary material Appendix 4 Fig. A7–A8.
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versus contact rate. Much of this predictive power is likely a 
function of how the model structured, where roughly one-
third of the population is not susceptible (s  0) or not infec-
tious (κ  0). While such extreme physiological phenotypes 
might be less common in natural populations, this theoreti-
cal inding does support the results of recent empirical work 
where the index case and group composition of phenotype 
played important roles in epidemic outcomes (Adelman et al. 
2015, Keiser et al. 2016). Across the three diferent mecha-
nisms, negative covariation decreased maximum prevalence, 
increased time to reach maximum prevalence, and dampened 
the rate at which the disease spread through the population 
relative to all other types of covariation. Universally, difer-
ences between types of covariation were strongest for theo-
retical pathogens with lower transmission eiciency, which 
suggests that such heterogeneity may be most important 
for less infectious, more chronic diseases in wildlife such as 
bovine tuberculosis (Cosgrove et al. 2012). his inding is 
consistent with studies using empirically informed networks 
that have found dynamic interactions to be more important 
at lower transmissibility (Chen et al. 2014, Springer et al. 
2017). Additionally, diferences in the time it took to reach 
maximum prevalence for diferent types of covariation were 
most pronounced for simulations with higher variation in 
contact rate. In general, simulations with higher contact 
variation had higher rates of epidemic spread – with the key 
exception of negative covariation where the realized trans-
mission rate stayed roughly constant even at high values of 
pathogen transmission eiciency (Fig. 2C, 4C, 6C).

Trends for time until maximum prevalence and the intrin-
sic rate of increase were consistent for susceptibility versus 
contact rate and infectiousness versus contact rate. Across 
parameter sets, infectiousness versus contact rate simulations 
reached a higher maximum prevalence – a result of infec-
tiousness afecting the action rate rather than transmission 
eiciency in the inal transmission probability. he transmis-
sion eiciency positively correlated with the realized trans-
mission rate (β) for all three experiments (Fig. 2C, 4C, 6C), 
but overall, played a negligible role in explaining maximum 
prevalence, especially for susceptibility versus contact rate 
and infectiousness versus contact rate. For infection status 
versus contact rate, negative covariation (i.e. decreased con-
tact rate upon infection) dramatically reduced the maximum 
prevalence reached within 750 time steps relative to the other 
two experiments, especially for lower values of transmission 
eiciency. Negative covariation also increased the time it took 
to reach maximum prevalence for all values of transmission 

Figure 6. For infection status versus contact rate, box and whisker 
plots depicting for all covariation types: (A) the maximum preva-
lence reached in 750 time steps; (B) the time it takes to reach that 
maximum prevalence; and (C) the realized transmission rate  
(β), which describes the rate of epidemic spread. he columns 

correspond to the transmission eiciency (i.e. 0.025, 0.25 and 0.5) 
and the rows correspond to way that individual infectiousness 
afected the inal transmission probability (i.e. in the exponent or 
the product). Note: in this case, we elected to display results with a 
box and whisker plot rather than a violin plot because the violin 
plots poorly portrayed some of the distinct point values and 
dichotomous epidemic outcomes.

Figure 6. Continued
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eiciency and decreased the rate of epidemic spread. hese 
indings were consistent across the two diferent formula-
tions of inal transmission probability that were simulated. 
While intuitive, these results are important because reduc-
tion of activity and contact rate because of infection are well-
documented (Croft et al. 2011, Welicky and Sikkel 2015, 
Lopes et al. 2016), but less commonly incorporated into dis-
ease models. 

For simplicity of analyzing a complex model, we assumed 
a constant population size – no births or natural or disease-
induced mortality. To limit the number of epidemiological 
parameters, we also made the simplifying assumption of an 
SI model rather than a more complicated SIR or SEIR disease 
model. Another key assumption of our models was the dis-
crete physiological (βp) versus social (βc) states that were 
assigned to each individual. Because the formation model of 
STERGMs consists of a discrete set of covariates, we had to 
individually assign nodes to distinct behavioral phenotypes 
(e.g. low, medium and high contact rates). his feature of 
STERGMs prevented us from testing a continuous covaria-
tion that might be more reasonable in empirical populations. 
Future studies could test diferent continuous distributions 
of susceptibility and infectiousness or add more discrete lev-
els of contact rate within the population. While populations 
in natural settings are unlikely to replicate the exact contact 
structure that we employed here, it is not uncommon to 
for a small proportion of the population be responsible for 
the majority of contacts. For instance, superspreaders gen-
erally represent a much smaller proportion of the popula-
tion and the resulting contact distribution is usually skewed 
(Clay et al. 2009). his is sometimes referred to as the ‘20/80’ 
rule, where 20% of the individuals are responsible for 80% of 
the contacts (Woolhouse et al. 1997). 

More work needs to be done to characterize the efects 
of static network approximations on disease modelling 
predictions, since our work suggests that disease-induced 
behavioral changes (which are not likely to be adequately 
captured through static network approximations) could 
have a substantial efect on the likelihood of successful 
pathogen invasion. While STERGMs are well suited to 
calibration with empirical data (Jenness et al. 2016b), wild-
life host–pathogen systems with existing dynamic contact 
network and individual physiological data are rare (Craft 
and Caillaud 2011, White et al. 2017a). Another consider-
ation for future studies is the clumping of contacts in time 
(known as bursts) in empirical systems. STERGM models 
do not necessarily capture temporal clumping because they 
assume an exponential probability for dissolution rate of 
edges (Masuda and Holme 2013). In addition, more work 
needs to be done to characterize diferences in physiology 
in wild populations that result from innate genetic difer-
ences and plastic responses to infection, particularly since 
wild populations are often more heterogeneous and likely 
to experience more heterogeneous environments than 
those studied in labs (Dwyer et al. 1997). For instance, 
Beldomenico and Begon (2010) highlighted how natural 
populations may also experience additional interactions 
between resource availability, host density and body con-
dition, which can mediate host susceptibility. 

Collaboration between the ields of disease ecology and 
ecoimmunology will likely yield more empirical study systems 
in which these ideas can be tested (Adelman et al. 2014). In 
particular, improvements in radiotelemetry, radio-frequency 
identiication (RFID), and temperature sensing passive inte-
grated transponder (PIT) tags may allow for concrete steps 
forward in the simultaneous collection of contact and sick-

Table 4. Variable importance results from random forest analysis. Reported as mean decrease in accuracy scores from random forest analy-
sis rounded to four significant figures. Higher values indicate a higher variable importance and corresponding predictive power.

Model outcome Variable
Susceptibility 

versus contact rate
Infectiousness versus 

contact rate
Infection status versus 

contact rate

Maximum prevalence Variation in contact rate (βc, separation in 
mean degree)

0.07515 0.1252 –

Covariation 0.04213 0.02488 0.1060 
Transmission efficiency (τ) –0.0001008 0.0004898 0.06941 
Physiology of the index case (βp: s or κ) 0.1390 0.2591 –
Form of infectiousness (exponent or 

product)
– – –0.0002619

Time until maximum 
prevalence

Variation in contact rate (βc, separation in 
mean degree)

5615 7261 –

Covariation 8652 8439 79 560 
Transmission efficiency (τ) 10 180 10 380 15 940 
Physiology of index case (βp: s or κ) 12 740 14 900 –
Form of infectiousness (exponent or 

product)
– – –7.755

Realized beta (β) Variation in contact rate (βc, separation in 
mean degree)

9.339  10–08 1.570  10–07 –

Covariation 7.404  10–07 5.623  10–07 5.0133  10–07

Transmission efficiency (τ) 1.104  10–06 6.402  10–07 6.043  10–07

Physiology of index case (βp: s or κ) 1.139  10–06 6.497  10–07 –
Form of infectiousness (exponent or 

product)
– – 5.436  10–09 
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ness behavior (Adelman et al. 2014). he type of dynamic 
network modelling presented here could be used to explicitly 
investigate ratios and index cases of behavioral and physio-
logical phenotypes in closed populations (Keiser et al. 2016). 

Host heterogeneity in contact rate and physiology and 
potential covariations between these two components 
exist in a myriad of real life systems (Hawley et al. 2011, 
VanderWaal and Ezenwa 2016). However, there is no con-
sistent framework that outlines when individual heteroge-
neity in pathogen transmission is important and when it 
is necessary to account for those diferences in sampling 
or interventions, even though allowing for such diferences 
can markedly change predictions of an epidemic’s duration 
and behavior (Keeling and Eames 2005, Meyers 2007). 
By including the heterogeneity of hosts, populations or 
resources in modeling approaches, disease ecologists may 
develop targeted control measures that could increase the 
beneit–cost ratio of management strategies (Eisinger and 
hulke 2008). his may occur through targeted monitor-
ing or interventions (including vaccination, culling, treat-
ment, etc.) on high-risk individuals, sub-populations, or 
spatial hot-spots that act as ‘hubs’ for the population (Hay-
don et al. 2006). he caveat for such strategies is that the 
cost of identifying ‘super’ individuals must be less than 
the uniform administration of an intervention (Paull et al. 
2012). Given the time and resource-intensive nature of 
gathering pathogen data in wildlife populations, improved 
models will provide insight to the amount of research 
efort necessary to better capture the transmission process 
(Krause et al. 2013, Tompkins et al. 2011). Understand-
ing how and when variability in pathogen transmission 
should be modelled is a crucial next step for the ield of 
disease ecology and is a critical reinement for future mod-
eling strategies. hrough an iterative approach to empirical 
experiments and modeling (Restif et al. 2012), and addi-
tional collaboration between the ields of animal behavior, 
ecoimmunology and disease ecology, we can improve dis-
ease modeling predictions to account for heterogeneity in 
contact rate and host physiology, as well as the potential 
feedbacks between these critical facets of pathogen trans-
mission. 

Conclusions

hese results highlight the importance of heterogeneity in 
physiology and the potential role that covariation between 
the behavioral and physiological components of pathogen 
transmission could play in epidemic outcomes. Simply allow-
ing for variability in host physiology without instituting any 
type of covariation fostered increased epidemic variability. 
Random forest analysis supported the idea that much of this 
variation could be attributed to the physiological phenotype 
of the index case for susceptibility versus contact rate and 
infectiousness versus contact rate, which was not surpris-
ing, given the extreme physiological phenotypes (s  κ  0) 

present in the population that contributed to fade-out events. 
he observed diferences between diferent types of covaria-
tion were strongest for low transmission eiciencies and for 
larger variation in contact rate, with negative covariation 
increasing the time until maximum prevalence across mecha-
nisms tested. his suggests that accounting for such hetero-
geneity may be most important for less infectious, chronic 
wildlife diseases and for populations that exhibit more het-
erogeneous contact structure. For infection status versus 
contact rate, negative covariation dramatically decreased the 
maximum prevalence reached during the duration of the 
simulation, and this inding was robust to the formulation 
of inal transmission probability. Accounting for covaria-
tion in behavior and physiology may be important for future 
wildlife disease models and disease modelling more broadly. 
More empirical and modelling work should be performed to 
determine the circumstances and methods for best capturing 
heterogeneity in pathogen transmission.
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