Ettu: Analyzing Query Intents in Corporate Databases

Gokhan Kul, Duc Luong, Ting Xie, Patrick Coonan,
Varun Chandola, Oliver Kennedy, Shambhu Upadhyaya
University at Buffalo
{gokhanku, ducthanh, tingxie, pcoonan, chandola, okennedy, shambhu}@buffalo.edu

ABSTRACT

Insider threats to databases in the financial sector have be-
come a very serious and pervasive security problem. This
paper proposes a framework to analyze access patterns to
databases by clustering SQL queries issued to the database.
Our system Ettu works by grouping queries with other simi-
larly structured queries. The small number of intent groups
that result can then be efficiently labeled by human oper-
ators. We show how our system is designed and how the
components of the system work. Our preliminary results
show that our system accurately models user intent.

Keywords

Insider Threats; Databases; Clustering

1. INTRODUCTION

It is increasingly important for organizations to be able to
detect and respond to cyber attacks. An especially difficult
class of cyber attack to detect is the so called insider attacks
that occur when employees misuse legitimate access to a re-
source like a database. The difficulty arises because appar-
ently anomalous behavior from a legitimate actor might still
have legitimate intent. For example, a bank teller in Buffalo
who withdraws a large sum for a client from California may
be acting legitimately (e.g., if the client has just moved and
is purchasing a house), or may be committing fraud.

The “U.S. State of Cybercrime Survey” [1] states that 37%
of organizations have experienced an insider incident and
that only 3% of these cases were reported to authorities.
Many of the remaining incidents could not be prosecuted
due to lack of evidence. A 2015 study [10] identified insider
attacks as the most costly attack type among all attack types
surveyed. According to the report, financial sectors were the
hardest hit with the highest annualized cost over all industry
sectors. Worse still, the average response time to an insider
attack is 54.5 days, the longest of any attack type surveyed.

The challenge of addressing of insider attacks lies in the
difficulty of precisely specifying access policies for shared re-

sources such as databases. Coarse, permissive access policies
provide opportunities for exploitation. Conversely, restric-
tive fine-grained policies are expensive to create and limit
a legitimate actor’s ability to adapt to new or unexpected
tasks. In practice, enterprise database system administra-
tors regularly eschew fine-grained database-level access con-
trol. Instead, large companies commonly rely on reactive
strategies that monitor external factors like network activ-
ity patterns and shared file transfers. In a corporate envi-
ronment, monitoring user actions requires less preparation
and gives users a greater degree of flexibility. However, ex-
ternal factors do not always provide a strong attestation of
the legitimacy of a database user’s actions. Instead, we pro-
pose an approach that attempts to infer a user’s intent from
their interactions with the database. Actions inconsistent
with known acceptable intents can be disallowed, or flagged
for inspection by an administrator.

This paper is organized as follows. We discuss the related
work that creates a basis for our research in Section 2l We
introduce our core contribution, a technique for query in-
tent modeling and describe Ettu’| a system that uses query
intent modeling as a way to flag potential insider attacks in
Section[3d] In Section[f]we evaluate the feasibility of query in-
tent modeling, and conclude by identifying the steps needed
to deploy query intent modeling into practice in Section

2. RELATED WORK

The basic idea behind our system is to profile normal user
behavior, detect suspicious behavior using this information,
and distinguish malicious behavior from benign intents [5].
Indeed, this idea is not new; there are many anomaly detec-
tion systems focusing on suspicious behavior of users. Spe-
cific examples focus on file transfers 9], online and social
behavior [2|, command-line statements [8] and SQL queries
issued to a database |7]. As the basic unit of interaction be-
tween a database and its users, the sequence of SQL queries
that a user issues effectively models the user’s behavior.
There are different approaches to understand the intents
behind SQL queries. One approach relies on the syntax
of queries |4] and permits fast query validation. Another
method is to use a data—centric approach, which performs
better in detecting anomalies [7]. However, when the data
contained in the database is not available to the detection
system, it is impossible to use such an approach.

'Ettu is derived from the last words of the Roman emperor
Julius Caesar, “Et tu, Brute?” in Latin, meaning “ You, too,
Brutus?” in English to emphasize that this system is meant
to detect the unexpected betrayals of trusted people.

3. SYSTEM OUTLINE

Ettu operates in three stages: (1) An offline clustering
phase where query logs are aggregated and summarized so
that they can be easily examined, (2) A semi-automated
labeling phase to identify potential signs of insider attacks,
and (3) A pattern-generation phase that creates pattern
matchers that screen queries online as they are processed by
the database. These stages are illustrated in Figure [I]

/ Good
Query —>

—>
logs > /v_\‘ Pattern
005~ W e

— \‘

(1) Clustering (2) Labeling
Figure 1: The typical Ettu Workﬂow.

3) Pattern Generation

The initial input to Ettu is a log of query activity pro-
cessed by the target database. The log is annotated with
supplemental metadata like usernames and timestamps. The
goal of the first phase is to produce a concise, but precise
summary of the log. To summarize the log, queries are clus-
tered together into “similar” groups. Each group consists of
a set of queries that are issued with similar goals in mind
due to the similarity of their structures.

As a declarative language, the abstract syntax tree (AST)
of a SQL statement acts as a proxy for the intent of the query
author. Intuitively, our approach is based on the assump-
tion that overlap between the ASTs of two queries implies
overlapping intents. Thus, naively, we would group a query
Q@ with other queries that have nearly (or completely) the
same AST as Q. For the remainder of this paper, we will
use queries @ to denote both the query itself and its AST
encoding. This structural definition of intent has seen sub-
stantial use already, particularly in the translation of natural
language queries into SQL [@

SELECT
T
CoLS FROM WHERE
\ \ \
CcoL_ID A 1=
T~ N
A.a Ab A.b 5

Figure 2: An abstract syntax tree of query SELECT A.a, A.b
FROM A WHERE A.b != 5.

Queries are grouped by intent using a simple clustering
process: (1) A query is first encoded through its AST and
then summarized as a vector of features that identify mean-
ingful subgraphs of the AST; (2) A distance metric defined
over the feature vectors creates a measure of similarity be-
tween queries and enables standard vector-based clustering
algorithms to organize queries into intent groups; (3) A sim-
ple user interface uses ground truth from human analysts to
validate and refine the intent groups.

3.1 Weisfeiler-Lehman

An ideal distance metric would measure the level of sim-
ilarity or overlap between ASTs and their substructures.
Naively, for two SQL queries Q1 and Q2, one satisfactory
metric might be to count the number of connected subgraphs
of 1 that are isomorphic to a subgraph of Q2. Subgraph iso-
morphism is NP-complete, but a computationally tractable
simplification of this metric can be found in the Weisfeiler-
Lehman (WL) Algorithm , Instead of comparing all pos-
sible subgraphs of @)1 against all possible subgraphs of Q2,
the WL algorithm restricts itself to specific subgraphs.

Given a query @, let N € @ denote a node in Q. N is
labeled with the SQL grammar symbol that N represents.
The i-descendant tree of N: desc(N, 1) is the sub-tree rooted
at N, including all descendants of N in) up to and including
a depth of 1.

EXAMPLE 1. Given the tree in Figure[d, desc(COLS,?2) is
the tree containing the nodes COLS, COL_ID, A.a, and A.b.

The WL algorithm identifies a query @ by all possible i-
descendant trees that can be generated from Q:

1d(Q) = { desc(N,i) | N € Q ANi € [0,depth(Q)] }

Here depth(Q) is the maximum distance from the root of
Q to a leaf. As an optimization, subtrees are determinis-
tically assigned a unique integer identifier, and the query
is described by the bag of @’s i-descendant tree identifiers.
Thus two query trees with an isomorphic subtree will both
include the same identifier in their description. The bag of
identifiers is encoded as a (sparse) feature vector and al-
lows Euclidean distance to measure the similarity (or rather
dis-similarity) of two queries.

The WL algorithm assumes zero knowledge about struc-
tural features of the trees it compares, limiting itself to i-
dependent subtrees. Conversely, the grammar of SQL has a
very well defined structure. In Ettu, we exploit this struc-
ture to eliminate redundancy and create features that more
reliably encode the query’s semantics. Concretely, we con-
sider three improvements over WL. First, the number of
features created by the WL algorithm is large. Although
clustering naturally prunes out features without discrimina-
tive power, we can use SQL’s semantics to identify struc-
tures that are unlikely to be useful. For example, the sub-
tree desc(SELECT, 1) in Figure [2|is common to virtually all
queries. Such features can be pruned preemptively.

Second, the precise structure of a feature may not be rele-
vant to the intent of the query. Queries that are procedurally
generated often include placeholders or components that are
dynamically constructed; At best, such components serve to
modify a simpler, more general query intent.

EXAMPLE 2. Consider the query SELECT * FROM R WHERE
R.a = 5. Although the subtree R.a = 1 identifies the specific
goal of the query, the same goal could also be abstracted as
R.a = ? where ? denotes a placeholder constant.

Finally, SQL makes frequent use of commutative and as-
sociative operators. The semantics of such operators may
overlap, even if their i-descendant subtrees do not.

EXAMPLE 3. Consider the Boolean expressions A AND B
and A AND B AND C. The former AST is a AND node with
2 children while the latter has 3. Although the two ASTs

Iteration: 1 Iteration: 1
Initial AST Level: 1
0 10)
SN LN
(1) 2)1 (13)]
ToLT :
4) (&) (8) (4) 8 (6)
= o 2l S ol e @ Sm @l e <l S
D @ @ 8(@ 8< 0 960
10->0,1,2,3 11->1,4
12->2,5
13->3,6
Iteration: 1 lteration: 2 lteration: 2
Level: 2 ~ level:0 Level: 1
10) (16, 16,
(1) @2 (13) 1) @ |
B —
(14) (8 (15
Va

16 ->10,11,12,13

14->47,8 17 -> 11,14
15->6,8,9 18 -> 13,15
Iteration: 3

Encoded AST

19->12,16,17,18

Figure 3: Weisfeiler-Lehman algorithm applied on AST
given in Figure 2}

have 3 0-descendant subtrees in common, they share no 1-
descendant subtrees; WL ignores the similarity between the
two conjunctive expressions.

We address these challenges below in Sections [3.2] and [3-3]
3.2 Query Skeletons

Given a set of queries, instead of considering all of them,
we only consider the differences in their structures assum-
ing that differences in constant values have a minor effect
on the intent of queries. A query with its constant val-
ues replaced by a placeholder grammar term is called a
query skeleton. Hence, the two queries “SELECT A.a FROM A
WHERE A.b = 5” and “SELECT A.a FROM A WHERE A.b = 27
share the same skeleton because they have exactly the same
query structure except for constant values.

Analysis using the set of query skeletons instead of orig-
inal SQL queries will reduce the number of distinct queries
processed and in general will produce similar clusters. How-
ever, there are some cases where the constants do play a role.
For example, consider the earlier example of a bank teller in
Buffalo withdrawing money for a customer from California.
To handle these cases, we can pass the constants themselves
as additional features for the clustering algorithm.

3.3 Dynamic Features

Second, we generalize the WL algorithm to enable more
flexible, structure-aware query tree labeling. Suppose we
are given a query). Each node N € @ has a set of labels

labels(NN), initialized to the singleton set containing the
SQL grammar atom of N. A labeling rule is applied to the
labels of a node N and those of its children and generates
new labels to be added to labels(IN). Given a set of rules,
we apply them bottom-up to the nodes of) to compute a
full set of labels for @’s nodes. Finally, the feature vector of
Q is defined by the bag |y, 1labels(NV) of all labels on all
nodes of Q.

EXAMPLE 4. The AST for the Boolean formula A=a OR
B=b, would begin with the feature set {|4, =, a, OR, B, = b|}.
We could define a rule to be applied to = nodes that con-
structs a skeleton label: Applied to the subtree B=b, this rule
would add a new label denoting the tree B=2?, where ? is a
placeholder value.

3.4 Clustering

Finally, vector-based clustering is performed on the fea-
ture vectors obtained from query skeletons. These clusters
are manually classified into three categories by the user:
(1) Safe Clusters that correspond to normal activities, (2)
Unsafe Clusters that could potentially be insider attacks,
(3) Unknown Clusters that represent too broad a group of
queries to classify as safe or unsafe. Clusters of this third
type are subdivided further until a set of clusters is obtained
that are purely safe or unsafe.

To help administrators to reliably label intent clusters, we
need a way to compactly present the set of user queries in
each cluster. We adopt Frequent Pattern Trees (FP Trees) (3]
for this purpose. Normally, FP Trees help to mine fre-
quent patterns of item-sets, for example bags of items com-
monly bought together. Individual items in each item-bag
are sorted by their global frequency, or the total number of
times the item occurs in any bag. An FP Tree is a prefix-trie
built over these sorted item-bags. We build an FP Tree over
the queries, using query features as items and query trees as
item-bags. Recall that each feature corresponds to a subtree
of the AST and there is a unique shared feature behind every
node in the FP Tree. To describe a cluster, Ettu presents
the user with an expandable view of the FP Tree. As the
user selectively traverses the tree, Ettu merges the feature
ASTs of nodes from the root to each expanded node to cre-
ate a syntactically correct partial AST for visualization. FP
trees provide three beneficial features for human inspection:
(1) A high compression rate (ratio of total number of items
consumed v.s. number of nodes generated in the tree), com-
pactly summarizing millions of incoming queries per day; (2)
A customizable visualization level, allowing users to settle
on an appropriate level of detail without being overwhelmed.

If the items are sorted in the descending order of frequency,
there are better chances that more prefix strings can be
shared. This assumption is validated by experimental re-
sults in [3]. But this assumption fails when an item occurs
very frequently but with no others. Thus, as an optimiza-
tion we replace frequency by total popularity. The popularity
of a feature in its bag is the number of distinct features that
coexist with it. Total popularity is the sum of single bag
popularities.

We compare the compression rates for FP Trees gener-
ated using both frequency and total popularity in Figure [
which shows how compression rate varies with the number
of queries incorporated into the tree. As the number of
queries increases, the compression rate for both approaches

increases super-linearly, suggesting that FP Trees are a good
way to visualize large query clusters.

Figure 4: Popularity vs Frequency when determining the
compression rate.

4. FEASIBILITY

Our evaluation is based on anonymized SQL query logs
that capture all query activity on the central databases of
a major US bank over a period of approximately 19 hours.
Although there are 1.35 million parsable SELECT queries
in our dataset, there are only 1614 different query skeletons;
Most queries are differ only in constants. Even this simple
optimization significantly reduces the load on Ettu’s users.

In order to demonstrate the feasibility of our proposed
system, we run Ettu with a sample set of 140 different SQL
query skeletons, allowing us to more reliably visualize the
clustering process. We perform hierarchical clustering with
this query skeleton set and compare the clustering result
with our manual clustering. Figure[5]shows correspondences
between 2 trees: the dendrogram of hierarchical clustering
on the left hand side and manual grouping on the right hand
side. The high correlation between two trees shows that Ettu
is actually able to group SQL queries based on their intents
and it is possible to flag queries that deviate from normal
user behavior as abnormal so that database administrator
can easily inspect and prevent possibly harmful activities.

5. FUTURE WORK

This paper represents the first steps for Ettu. We plan
several extensions as future work. First, the dataset we used
to perform our experiments included only 19 hours of data.
We will explore ways to make the clustering process scalable,
allowing Ettu to validate much larger query logs. Second,
we will explore new feature weighting strategies and new
labeling rules that better capture the intent behind logged
queries. Third, we will explore user interfaces that better
present clusters of queries — Different weighting strategies
for sorting features in an FP Tree, for example. Lastly, we
will investigate the effect of temporality on query clustering.

6. ACKNOWLEDGMENTS

This material is based in part upon work supported by
the National Science Foundation under award number CNS
- 1409551. Usual disclaimers apply. We also would like
to thank Manish Gupta and Rick Jesse for their efforts in
preparation of the dataset we used in our experiments.

Ettu manual grouping

=

]

Figure 5: Correspondences between hierarchical clustering
obtained from Ettu and from manual grouping.

7. REFERENCES

[1] CERT Insider Threat Center. 2014 U.S. State of
Cybercrime Survey. July 2014.

[2] G. Gavai, K. Sricharan, D. Gunning, J. Hanley,

M. Singhal, and R. Rolleston. Supervised and
unsupervised methods to detect insider threat from
enterprise social and online activity data. JOWUA,
2015.

[3] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A
frequent-pattern tree approach. DMKD, 2004.

[4] A. Kamra, E. Terzi, and E. Bertino. Detecting
anomalous access patterns in relational databases.
VLDBJ, 2007.

[5] G. Kul and S. Upadhyaya. Towards a cyber ontology
for insider threats in the financial sector. JOWUA,
2015.

[6] F. Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases.
pVLDB, 2014.

[7] S. Mathew, M. Petropoulos, H. Q. Ngo, and
S. Upadhyaya. A data-centric approach to insider
attack detection in database systems. In RAID, 2010.

[8] R. Maxion and T. N. Townsend. Masquerade detection
using truncated command lines. In DSN, 2002.

[9] A. S. McGough, B. Arief, C. Gamble, D. Wall,

J. Brennan, J. Fitzgerald, A. van Moorsel, S. Alwis,
G. Theodoropoulos, and E. Ruck-Keene. Ben-ware:
Identifying anomalous human behaviour in
heterogeneous systems using beneficial intelligent
software. JOWUA, 2015.

[10] Ponemon Institute. 2015 Cost of Cyber Crime Study:
Global. October 2015.

[11] N. Shervashidze, P. Schweitzer, E. J. V. Leeuwen,
K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-lehman
graph kernels. JMLR, 2011.

	Introduction
	Related Work
	System Outline
	Weisfeiler-Lehman
	Query Skeletons
	Dynamic Features
	Clustering

	Feasibility
	Future Work
	Acknowledgments
	References

